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Abstract

Consistency models are promising generative
models as they distill the multi-step sampling of
score-based diffusion in a single forward pass of
a neural network. Without access to sampling
trajectories of a pre-trained diffusion model, con-
sistency training relies on proxy trajectories built
on an independent coupling between the noise
and data distributions. Refining this coupling is a
key area of improvement to make it more adapted
to the task and reduce the resulting randomness
in the training process. In this work, we intro-
duce a novel coupling associating the input noisy
data with their generated output from the consis-
tency model itself, as a proxy to the inaccessible
diffusion flow output. Our affordable approach
exploits the inherent capacity of consistency mod-
els to compute the transport map in a single step.
We provide intuition and empirical evidence of
the relevance of our generator-induced coupling
(GC), which brings consistency training closer
to score distillation. Consequently, our method
not only accelerates consistency training conver-
gence by significant amounts but also enhances
the resulting performance.

1. Introduction
Diffusion and score-based models (Ho et al., 2020; Song
et al., 2021; Karras et al., 2022) have emerged as state-of-
the-art generative models for image generation. Since they
are costly to use at inference time, as they require several
neural function evaluations, many distillation techniques
have been explored (Salimans and Ho, 2022; Meng et al.,
2023; Sauer et al., 2023). A most remarkable approach is
the one coined as consistency models (Song et al., 2023;
Song and Dhariwal, 2024). Consistency models lead to
high-quality one-step generators, that can be trained either
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by distillation of a score-based model, or as standalone
generative models. In this paper, we study consistency
models trained without a pre-trained score model.

At the core of the training of consistency models, an inde-
pendent coupling (IC) between data and noise distribution is
used. Indeed, when training a consistency model without a
pre-trained score model, any point from the data distribution
is matched to any point from the noise distribution in order
to construct trajectories. However, Pooladian et al. (2023)
identified those as a potential issue in flow matching models
(Lipman et al., 2023). Notably, the authors demonstrated
that IC leads to high variance of the gradient estimator of
such generative models. They resort to batch coupling with
optimal transport (OT) tools and prove that it improves per-
formance. Dou et al. (2024) show that this approach can
successfully be adopted in consistency models, and we ac-
tually confirm this in our experiments. However, discrete
OT has its flaws. Most notably, it converges slowly to the
true Wasserstein distance in high dimension, and increasing
the size of the coupling sets leads to increased running time,
since solvers (e.g. Hungarian matching algorithm) typically
have a cubic complexity.

Consistency models map any point on a given reverse dif-
fusion trajectory to the initial data point by minimizing
the distance between the outputs of adjacent points on the
trajectory. Training a consistency model in such a setting
relies on constructing trajectories from an IC between data
and noise distributions, and selecting pairs of intermedi-
ate points from each single trajectory (Song et al., 2023).
Drawing inspiration from Pooladian et al. (2023), we aim at
constructing better couplings between data and noise distri-
butions. Instead of using discrete OT tools, we take another
direction and propose to use the generator itself to construct
trajectories. From an intermediate point computed from an
IC, we let the consistency model predict the corresponding
endpoint, supposedly close to the data distribution. This
predicted endpoint is used to construct a new coupling, from
which two points are selected to train the consistency model
itself. Our approach is illustrated in Figure 1. Our claim is
that it provides couplings that are better aligned to the actual
diffusion updates and thus approximate better the true loss
function of a consistency model. As shown in our experi-
mental section, this procedure results in faster convergence
and often leads to better performance of the resulting model.
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Figure 1. We leverage the current consistency model predictions
to compute a new coupling used for its own training. Using
the original independent coupling (IC) (x, z) and intermediate
points (xi, xi+1) we derive a generator-induced coupling (GC)
(fθ(xi, σi), z) and intermediate points (x̃i, x̃i+1). In purple, we
illustrate that using generator-induced trajectories instead of the
usual independent trajectories results in pairs of points closer to
the ideal PF-ODE update of the corresponding point at i+ 1.

Let us summarize our contributions below:

• We propose a novel type of coupling, denoted
generator-induced coupling (GC), that allows to draw
generator-induced trajectories used to construct pairs
of points for the training of consistency model. We
carefully identify and select the main design compo-
nents of our method through experiments.

• We provide insights into the advantages of this cou-
pling on both synthetic and image datasets. Most no-
tably, we show that trajectories drawn from GC are
closer to ideal trajectories defined by a pre-trained
score model than standard trajectories drawn from IC.

• We experimentally demonstrate the benefits of this
coupling in image generation benchmarks. When com-
bined with standard trajectories from IC, GC leads to
faster convergence and often improves the performance
of the generative model.

2. Preliminaries
Notation. We consider an empirical data distribution p⋆
and noise distribution pz (e.g. Gaussian) defined on Rd. We
note q a joint distribution of samples from p⋆ and pz . We
use a distance function D to measure the distance between
two points from Rd. sg denotes the stop-gradient operator.

In consistency models, we consider a discrete formulation of
diffusion models with N intermediate timesteps. A vector
from an intermediate timestep can be sampled as xi = αix+
σiz, where x ∼ p⋆, z ∼ pz , and (αi) (resp. monotonous
(σi)) are data (resp. noise) schedules. In the commonly
used EDM process (Karras et al., 2022), αi = 1 and can

thus be omitted. We denote (pσi
)i∈[0,N ] the corresponding

intermediate noisy distributions between pσ0 ≈ p⋆ and
pσN
≈ pz , such that xi ∼ pσi .

2.1. Score-Based Diffusion Models

Score-based diffusion models (Ho et al., 2020; Song et al.,
2021) can generate data from noise via a multi-step process
consisting in numerically solving either a stochastic differ-
ential equation (SDE), or an equivalent ordinary differential
equation (ODE) called the probability flow ODE (PF-ODE).
Although SDE solvers generally exhibit superior sampling
quality, the PF-ODE has desirable properties. Notably, it
defines a deterministic map from noise to data. In this con-
text, the diffusion process based on the EDM formulation
(Karras et al., 2022) with αi = 1 defines it as follows:

dx = −σ∇x log pσ(x) dσ, (1)

where ∇x log pσ, a.k.a. the score function, can be approxi-
mated with a neural network sΦ(x, σ) (Vincent, 2011; Song
and Ermon, 2019).

2.2. Consistency Models

Numerically solving the PF-ODE is costly because of multi-
ple expensive evaluations of the score function. To alleviate
this issue, Song et al. (2023) proposed to leverage the deter-
ministic property of the PF-ODE in a consistency model fθ,
learning the output map of the PF-ODE, such that:

fθ(xi, σi) = x0, (2)

for all (xi, σi) ∈ RD×[σ0, σN ] that belong to the trajectory
of the PF-ODE ending at (x0, σ0).

Equation (2) is equivalent to (i) enforcing the boundary
condition fθ(x0, σ0) = x0 and (ii) ensuring that fθ has
the same output for any two samples of a single PF-ODE
trajectory—the consistency property. (i) is naturally satis-
fied by the following model parametrization:

fθ(xi, σi) = cskip(i)xi + cout(i)Fθ(xi, σi) (3)

where cskip(0) = 1, cout(0) = 0, and Fθ is a neural network.
(ii) is achieved by minimizing the distance between the
outputs of two same-trajectory consecutive samples with
the consistency loss:

Lconsistency-distillation(θ) = Ei∼U([0,N ]),xi+1∼pσi+1

[
D
(
sg(fθ(xi, σi)

)
, fθ(xi+1, σi+1)

)]
,

(4)

where xi is computed by discretizing the PF-ODE of Equa-
tion (1) with the Euler scheme as follows:

xi = xi+1 − (σi − σi+1)σi+1∇xi+1 log pσi+1(xi+1). (5)
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The latter loss can be directly used to distill a score model
sΦ(xi+1, σi+1) ≈ ∇ log pσi+1(xi+1) into fθ. In the case
of consistency training, Song et al. (2023) circumvent the
lack of score function by noticing that∇ log pσi+1

(xi+1) =

E
[
xi+1−x
σ2
i+1
|xi+1

]
. This results in selecting pairs of points

xi = x + σiz and xi+1 = x + σi+1z with the same inde-
pendent (x, z) ∼ qI = p⋆(x)pz(z):

Lconsistency(θ) = E(x,z)∼qI,xi=x+σiz,xi+1=x+σi+1z

[
D
(
sg(fθ(xi, σi)

)
, fθ(xi+1, σi+1)

)]
,

(6)

which converges to the distillation loss when N →∞.

3. Data-Noise Coupling
As seen in Section 2.2, consistency models compute vectors
from intermediate timesteps through an IC qI = p⋆(x)pz(z)
of data and noise, in a similar fashion to flow matching
(Lipman et al., 2023). This IC takes root in score-based
diffusion models which have inspired these more recent ap-
proaches (Kingma and Gao, 2024). Indeed, approximating
the score function with a neural network entails sampling
data points perturbed by a Gaussian kernel (Vincent, 2011).
Accordingly, the diffusion-equivalent Denoising Diffusion
Probabilistic Model (DDPM, Ho et al., 2020) initiates by in-
dependently sampling x ∼ p⋆ and z ∼ pz . However, recent
work has shown the benefits of choosing more adapted cou-
plings in flow matching then in consistency models, thereby
going beyond the original inspiration from diffusion models.

Beyond Independent Coupling (IC). The reliance on
IC in consistency and flow models is increasingly recog-
nized as a limiting factor. Recent advancements (Liu et al.,
2023; Pooladian et al., 2023) suggest that improved coupling
mechanisms could enhance both training efficiency and the
quality of generated samples in flow matching. By reducing
the variance in gradient estimation, enhanced coupling can
accelerate training. Additionally, improved coupling could
decrease transport costs and straighten trajectories, yielding
better-quality samples.

The OT Approach. Prompted by these findings, Poola-
dian et al. (2023) have explored OT methods to devise batch
couplings within the framework of flow matching models.
They show that deterministic and non-crossing paths en-
abled by OT with infinite batch size lowers the variance of
gradient estimators. Experimentally, they assess the efficacy
of OT solvers, such as Hungarian matching and Sinkhorn al-
gorithms, in coupling batches of noise and data points. Dou
et al. (2024) have adopted this approach in consistency mod-
els, underscoring the utility of batch OT in boosting model
performance. However, a significant challenge remains in
the generative modeling of images, where the coupling’s

effectiveness is limited by the meaningfulness of distances
between noise and natural images, and by the batch size.

Another line of works using OT tools with score-based mod-
els relies on the Schrodinger Bridge formulation (De Bortoli
et al., 2021; Shi et al., 2024; Korotin et al., 2024). However,
it has mostly proven benefits on transfer tasks rather than
standard generative tasks.

Re-using ODE Couplings. An alternative strategy,
termed ReFlow (Liu et al., 2023), leverages existing cou-
plings provided by the ODE in a flow framework. In this
section, the ODE is defined as dx = v(xt, t) dt with inter-
mediate points calculated as xt = tx+(1−t)z and t ∈ [0, 1].
Once a neural network vθ is trained using these ICs, solving
the backward ODE defines a deterministic function mapping
each sample noise to a sample from the approximated data
distribution. Notably, Liu et al. (2023) show that this new
coupling can reduce transport costs and straighten trajecto-
ries, and can be used iteratively for training models from
straighter and straighter trajectories. The authors note how-
ever that using this procedure with a PF-ODE solver would
not guarantee decreasing transport costs and straightening
trajectories. Nonetheless, in this iterative procedure, errors
can accumulate due to approximation errors from vθ and
the discretization in the ODE solver.

4. Consistency models with
Generator-Induced Coupling (GC)

In this section we introduce our method, named GC, lever-
aging the generator outputs during training. It consists in
using the consistency model itself to re-define the standard
independent coupling (IC). We run a series of experiments
motivating the use and giving intuition on GC. Notably, we
show that the resulting trajectories are closer to the ideal
PF-ODE updates than with standard IC.

4.1. Generator-Induced Coupling (GC) Training

The solution proposed in this work, illustrated in Figure 1,
consists in leveraging the consistency model itself to build a
novel type of coupling. The idea is to leverage the properties
and the accumulated knowledge from the consistency model,
fθ, to construct pairs of points. To do so, the first step is to
sample an intermediate point, which is done as usual with
x ∼ p⋆, z ∼ pz and an IC between the two distributions,
and then predicting its endpoint x̂ via the consistency model:

(x, z) ∼ qI, xi = x+ σiz, x̂ = sg(fθ(xi, σi)). (7)

and this x̂ is coupled to z, thereby defining our generator-
induced coupling q, to construct pairs of points (x̃i, x̃i+1):

(x̂, z) ∼ q, x̃i = x̂+ σiz, x̃i+1 = x̂+ σi+1z. (8)
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Figure 2. Evolution of the variance of the estimator of the gradient during training of both 1m-2m and 2m-2m synthetic settings. Generator-
induced Coupling (GC) training reduces the variance compared to IC training used in the original consistency training algorithm.

Algorithm 1 Training of consistency models with generator-
induced trajectories.

1: Input: Randomly initialized fθ, number of timesteps
k, noise schedule σi, loss weighting λ(·), learning rate
η, distance D, noise distribution pz .

2: Output: Trained consistency model fθ.
3: repeat
4: x ∼ p⋆ // set of real data points
5: z ∼ pz // set of noise vectors
6: i ∼ multinomial

(
p(σ0), . . . , p(σN )

)
7: // sampling timesteps
8: xi ← x+ σiz // computation of intermediate points
9: x̂← sg

(
fθ(xi, σi)

)
// endpoint prediction from the consistency model

10: x̃i ← x̂+ σiz, x̃i+1 ← x̂+ σi+1z
// generator-induced intermediate points

11: L(θ) = λ(σi)D
(
sg(fθ(x̃i, σi)), fθ(x̃i+1, σi+1)

)
// compute consistency loss

12: θ ← θ − η∇θL(θ) // optimization step
13: until convergence

The loss function is defined on this generator-induced pair:

Lg-consistency = E(x̂,z)∼q,x̃i=x̂+σiz,x̃i+1=x̂+σi+1z

[
D
(
sg(fθ(x̃i, σi)), fθ(x̃i+1, σi+1)

)]
.

(9)

The procedure is presented in Figure 1 and Algorithm 1.

Generator-induced trajectories satisfy the boundary
conditions of diffusion processes. Let us note two fol-
lowing important properties of the distribution px̃i

of x̃i:
px̃0

= p0 ≈ p⋆ and px̃N
= pσN

≈ pz . The former is
achieved thanks to the boundary condition of the consis-
tency model (c.f. Section 2.1), and the latter by construction
of the GC q preserving the marginal noise distribution.

4.2. Experimental Insights into Model Properties

In this section, we propose to experimentally validate the
soundness of our proposed coupling procedure by evalu-
ating key quantities. Sections 2.2 and 3 expose three key
properties that could play a role in accelerating the training
and improve the performances of consistency models: (i) a
lower variance of the gradient estimator; (ii) a lower data
to noise coupling transport cost; and (iii) pairs (x̃i, x̃i+1)
closer to the PF-ODE trajectory, as in the distillation setting,
than (xi, xi+1) in IC.

Experimental settings. To observe whether our proposed
method verify these properties in practice, we run experi-
ments on two synthetic settings where the data distribution
p⋆ is a mixture of 2 Gaussians with equal weight, and the
noise distribution pz is either a single Gaussian or a mixture
of 2 Gaussians with equal weight. The goal of the first (resp.
second) setting is to map a 1-mode (resp. 2-mode) noise
distribution to a 2-mode data distribution; we denote this
setting 1m-2m (resp. 2m-2m). The 2m-2m setting, inspired
by Liu et al. (2023), facilitates the visualization of intersect-
ing trajectories. We then compare our GC training to the
standard IC training.

(i) Lower variance of the gradient. In this experiment,
we propose to measure how the variance of the estimator of
the gradient of the GC training compares to the one of the
standard IC training. As highlighted in Section 3 a lower
variance could positively impact the training and perfor-
mances. We then run a full training, in both 1m-2m and
2m-2m settings for both GC and IC trainings, and log the
variance for each batch. As shown in Figure 2, the GC
procedure lowers the variance of the gradient’s estimator in
both settings. Note that, particularly in the 2m-2m setting,
using an Exponential Moving Average (EMA) of the pa-
rameters of the network on top of our method smoothes the
variance specifically at the beginning of the training (around
iteration 200) and lowers it as well.
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Figure 3. GC and IC trainings on 1m-2m (top) and 2m-2m (bottom). (left) GC samples ( ▲) are closer to the shortest paths between noise
and data distributions than IC (★). (right) Generator-induced trajectories have lower transport cost than standard trajectories. In both
cases, transportation cost has two modes.

(ii) Lower transport costs. As stressed in Section 3, a line
of works has brought evidence that reducing the data-noise
coupling transport cost could fasten the training and help
produce better samples. We compare the quadratic transport
costs of mapping an intermediate point to its associated true
or synthetic data, formally E[∥x− xt∥22] and E[|x̂− x̃t|22].
The consistency model used for generating x̃t has been
trained for 2000 steps and has not reached convergence yet.
We run this experiment on both 1m-2m and 2m-2m synthetic
settings, results are depicted in Figure 3. We observe that
E[∥x−xt∥22] ≥ E[|x̂− x̃t∥22]. Additionally, we observe that
GC alters the marginal probabilities, such that px̃i ̸= pσi

for i ∈ [1, . . . , N − 1]. Notably, after intersections, the
trajectories tend to be attracted to paths between the closest
modes. This is confirmed on the right part of the plot where
the expected cost is far lower for GC and the two modes in
the cost tend to disappear for larger timesteps (denoting that
intermediate points x̃t are mapped to nearest mode).

(iii) Closer to the PF-ODE trajectories. As discussed
in Section 2.2, the goal of consistency models enforcing
consistency on pairs of points that belong to a trajectory of
the PF-ODE, but pairs of points (xi, xi+1) built on IC do
not satisfy this property. We hypothesize that our (x̃i, x̃i+1)
built on GC are closer to actual PF-ODE trajectories. To
do so, we first learn a score-based model sΦ in both the
1m-2m synthetic setting and on the CIFAR-10 dataset1 with
an EDM setting. Given sΦ we can compute a PF-ODE
update from any point using Equation (5). We then train
consistency models with either standard IC training or GC
training. We define true PF-ODE updates xΦ

i = xi+1 −
(σi − σi+1)σi+1sΦ(xi+1, σi+1) and x̃Φ

i = x̃i+1 − (σi −
σi+1)σi+1sΦ(x̃i+1, σi+1). Then, we compare their distance
with the training pairs, resp. E[∥xi − xΦ

i ∥2] and E[∥x̃i −
x̃Φ
i ∥2]. The smaller this quantity, the closer the update to

the ideal update obtained from the score-based model. As
shown in Figure 4, GC pairs are consistently closer to actual
PF-ODE trajectories than IC ones.

1Here, the 2m-2m setting would require a bridge process.
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Table 1. FID on CIFAR-10.

Forward process Optimizer FID

EDM Adam 13.0
EDM Lion 8.8
Bridge Lion 8.0

5. Experiments on Image Generation
In the previous section we validate experimentally several
key properties and visualize the impact of our proposed GC
training on two synthetic settings. Here, we experiment GC
training to learn consistency models on unconditional image
generation tasks without a pre-trained score model.

5.1. Experimental Setting

We apply our approach to three image datasets used in an un-
conditional setting: CIFAR-10 (Krizhevsky et al.), 64× 64
CelebA (Liu et al., 2015), and 32× 32 1k-ImageNet (Deng
et al., 2009). We compare our model with standard IC con-
sistency training setting with IC and denote this baseline
IC. The baseline IC model is built on the training principles
and techniques outlined by Song and Dhariwal (2024). Ex-
periments were conducted on NVIDIA A100 40GB GPUs.
Our codebase will be publicly released upon publication to
ensure reproducibility of the results. Details of our experi-
ments can be found in the Appendix.

To evaluate the contribution of GC w.r.t. the baselines IC
and batch-OT, we propose to select a common base model
and optimization strategy based on IC that would be used
for all models, based on its performances on CIFAR-10 and
common practices.

Selecting base components. We start with the standard
EDM forward process (Karras et al., 2022; Song et al., 2023;

Song and Dhariwal, 2024) defined as xi = x + σiz, and
compare Adam (Kingma and Ba, 2015) to Lion (Chen et al.,
2024) with a similar learning rate of 1e−4. We train the
IC model with both optimizers and observe a significant
improvement in FID while using Lion. We then compare
EDM and bridge forward processes with Lion. We define the
bridge process as xi = (1−αi)x+αiz, with αi =

σi

σi+1 and
σi taken from the EDM process. In this way, we conserve a
similar signal-to-noise ratio at given timestep i. Results are
presented in Table 1. We observe a superior performance of
the bridge process with Lion, and we thus stick to these two
components for the following experiments.

EMA generator-induced trajectories. Another key com-
ponent of our based model is the EMA of the network pa-
rameters for both evaluation and GC-training. Indeed, the
following question arises: while training, should GC be com-
puted with an EMA model? Like diffusion and score-based
models, previous works (Song and Ermon, 2020) observed
that at inference EMA models have steadier and better per-
formance. We thus use EMA for reporting the results of
both IC and batch-OT. Additionally, and specifically to GC,
we gain some insight from previous section experiments
that using EMA during training might reduces the variance
of the gradient estimator (see Figure 2). We further report,
in Figure 5(b), an ablation study in our final setting which
supports the superiority of the EMA.

5.2. Results

In this section we report the results of our proposed method
GC and expose our thought process towards the final GC
training procedure. Note that we do not achieve the per-
formance of Song and Dhariwal (2024) on CIFAR-10 and
1k-ImageNet due to using smaller models, a smaller batch
size (512 vs 1024 on CIFAR-10, 512 vs 4096 on ImageNet),
and fewer training steps (100k vs 400k).
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Figure 5. (a) Timestep scheduling comparison for consistency models trained with generator-induced trajectories on CIFAR 10. (b) EMA
ablation study in GC training for µ = 0.5.

Timestep scheduling. First, we learn a consistency model
using the exact same training procedure as described in Sec-
tion 4 on CIFAR-10. We compare the performance of GC
w.r.t. IC during training using the exponentially increasing
number of timesteps from Song and Dhariwal (2024). We
report in Figure 5(a) the FID of one-step generated images.
We observe that, at the beginning of the training, GC al-
lows for a faster convergence speed than IC. Unfortunately,
around the 30k-th iteration, GC suffers from degraded per-
formance. We hypothesize that the timestep scheduling
might not be optimal for training consistency models with
GC and thus train different GC models with a fixed number
of timesteps. Results are reported in Figure 5(a). Interest-
ingly we observe that, with no scheduling, GC offers a faster
convergence without performance degradation. Using 20
timesteps, we match the performance of the best GC results
obtained with standard scheduling.

Mixing procedure. Note that, even though the GC pro-
cedure create new pairs (x̃i, x̃i+1), it still needs to apply
the consistency model to xi drawn from IC. Training only
on GC can then induce a distribution shift, as illustrated
in Figure 3. This can be the reason why we previously
observed a degraded performance reported in Figure 5(a).
We thus propose a simple yet efficient way to reduce this
distribution shift by mixing IC and GC pairs during training,
adding only one hyperparameter. We define a mixing factor
µ used to mix standard trajectories with generator-induced
trajectories. At each training step, training pairs are drawn
from GC with probability µ, while the remaining pairs are
computed from standard IC. We denote GC (µ = ·) the
resulting mixing procedure. Thus, GC (µ = 0) corresponds
to the standard IC procedure and GC (µ = 1) corresponds
to the procedure introduced in Section 4. We run the mixing

procedure on the three image dataset and include batch OT
(Pooladian et al., 2023; Dou et al., 2024) as a supplementary
baseline.

As shown in Figure 6, we observe an interesting interpola-
tion phenomenon between µ = 0 to µ = 1. At µ = 0, we
recover the steady FID improvement of IC training. When
increasing µ, the convergence of the generative model ac-
celerates. However, when reaching µ = 1, the FID im-
provement rate is the fastest at the beginning of the train-
ing, but then suffers from performance degradation. For
0.3 ≤ µ ≤ 0.7, we observe a sweet spot where the con-
vergence is faster than IC and, for CIFAR-10 and CelebA,
the final FID improves compared to both IC and batch-OT
baseline models. We show in Figure 7 samples from CelebA
64× 64. GC seems to produce sharper and more detailed
images specifically when looking at eyes, mouth, and hairs
of generated faces.

Wall-clock Training Time. As illustrated in Figure 6, our
method converges faster than IC in terms of the number
of required training steps. However, each training step is
more time-consuming, as it necessitates a forward evalu-
ation of the consistency model without gradient compu-
tation. Regarding wall-clock training time on CIFAR-10,
100k training steps under standard conditions require ap-
proximately 20 hours on an A100 GPU. In contrast, 100k
training steps employing GC extend to about 25 hours. Im-
portantly, despite the increased time per iteration, the hybrid
model achieves the minimum Fréchet Inception Distance
(FID) sooner than the consistency model, both on CelebA
and CIFAR-10, when considering total wall-clock training
time and the number of iterations needed for reaching the
minimum.
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Figure 6. Performance of consistency models using batch-OT or mixed GC (µ = ·) for different mixing factors µ. GC benefits from an
increased convergence rate over standard IC and achieves better performance than both IC and batch-OT on CIFAR-10 and CelebA for µ
equal to 0.5 and 0.7.

(a) IC = GC (µ = 0). (b) GC (µ = 0.5).

Figure 7. Uncurated samples from consistency models trained on CelebA 64× 64 for fixed noise vectors. Note that models trained with
generator-induced trajectories tend to generate sharper images.

6. Conclusion
In this paper, we introduce a generator-induced coupling
and new trajectories for training consistency models without
a pre-trained score model. We experimentally give intuition
on the interest of those trajectories. Most notably, they are
closer to ideal trajectories from a pre-trained score update
than standard ones. This results in a faster convergence in
terms of both the number of training steps and wall-clock
training time. Our approach paves the way for a new type of
coupling induced by the generator itself. Interestingly, our
method offers a fresh viewpoint on this problem, which is
usually tackled with traditional OT tools.

Limitations. Training consistency models with generator-
induced trajectories leads to intriguing behaviors that we
still do not fully understand. For example, why do they
exhibit different behavior than standard consistency models

regarding the scheduling of timesteps during training? This
is surprising since Song et al. (2023) showed that increasing
the number of timesteps leads to a decreased approximation
error of the consistency model. Future work should carefully
re-examine hyperparameter choices for consistency mod-
els trained with generator-induced trajectories, especially
for scheduling. Another technical limitations of our work
is, at this time, the lack of theoretical support on the bene-
fits of generator-induced trajectories. The advantages they
bring are evaluated experimentally on synthetic settings and
computer vision datasets, but then limited to these scopes.
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A. Appendix
A.1. Broader Impacts

If used in large-scale generative models, notably in text-to-image models, this work may increase potential negative impacts
of deep generative models such as deepfakes (Fallis, 2020).

A.2. Experimental Details

Scheduling functions and hyperparameters from Song and Dhariwal (2024). The training of consistency models
heavily rely on several scheduling functions. First, there is a noise schedule {σi}Ni=0 which is chosen as in Karras et al.
(2022). Precisely, σi =

(
σ0

1
ρ + i

N (σN
1
ρ − σ0

1
ρ )
)ρ

with ρ = 7. Second, there is a weighting function that affects the
training loss. It is chosen as λ(σi) =

1
σi+1−σi

. Combined with the choice of noise schedule, it emphasizes to be consistent
on timesteps with low noise. Then, Song et al. (2023) proposed to progressively increase the number of timesteps N
during training. In their most recent work, they argue that a good choice of dicretization schedule is an exponential
one, which gives N(k) = min(s02⌊

k
K′ ⌋, s1) + 1 where K ′ = ⌊ K

log2[s1/s0]+1⌋, K is the total number of training steps, k
is the current training step, s0 (respectively s1) the initial (respectively final) number of timesteps. Finally, Song and
Dhariwal (2024) propose a discrete probability distribution on the timesteps which mimics the continuous probability
distribution recommended in the continuous training of score-based models by Karras et al. (2022). It is defined as
p(σi) ∝ erf( log(σi+1)−Pmean√

2Pstd
)− erf( log(σi)−Pmean√

2Pstd
).

In practice, Song and Dhariwal (2024) recommend using: s0 = 10, s1 = 1280, ρ = 7, Pmean = −1.1, Pstd = 2.0.

Details on bridge process. For the bridge process, note that we first sample σi from σi =
(
σ0

1
ρ + i

N (σN
1
ρ − σ0

1
ρ )
)ρ

.

On Gaussians experiment, we use ρ = 3, σ0 = 0.001 and σN = 1. Then, we compute αi = σi and define intermediate
points such as xi = αix+ (1− αi)z.

On image experiments, we use ρ = 7, σ0 = 0.001 and σN = 80. Then, we compute αi =
σi

σi+1 and define intermediate
points such as xi = αix+ (1− αi)z.

Details on neural networks architectures. On Gaussians, we use simple MLPs with GELU activation func-
tions. On image datasets, we use the NCSN++ architecture (Song et al., 2021) and follow the implementation from
https://github.com/NVlabs/edm.

Table 2. Hyperparameters for the Gaussians experiments.

Hyperparameter Value

number of samples 10 000
batch size 512
training steps 10 000
learning rate 0.000 05
s0 30
s1 30
ρ 3
σ0 0.001
σ1 1
model MLP
depth 4
hidden dim 256

Details on computational ressources As mentioned in the paper, the image dataset experiments have been conducted on
some NVIDIA A100 40GB GPUs. The Gaussians experiments have also been computed on GPUs (V100 or A100) and run
in few minutes.
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Table 3. Hyperparameters for CIFAR-10. Arrays indicate quantities per resolution of the UNet model.

Hyperparameter Value

batch size 512
image resolution 32
training steps 100 000
learning rate 0.0001
optimizer lion
s0 10
s1 1280
ρ 7
σ0 0.001
σ1 80
network architecture SongUNet

(from Karras et al. (2022) implementation)
model channels 128
dropout 0.3
num blocks 3
embedding type positional
channel multiplicative factor [1, 2, 2]
attn resolutions ∅

Table 4. Hyperparameters for CelebA. Arrays indicate quantities per resolution of the UNet model. All models are trained with two
learning rates and the best is selected.

Hyperparameter Value

batch size 128
image resolution 64
training steps 150 000
learning rate {0.0001, 0.000 05}
optimizer lion
s0 10
s1 1280
ρ 7
σ0 0.001
σ1 80
network architecture SongUNet

(from Karras et al. (2022) implementation)
model channels 128
dropout [0.05, 0.05, 0.1, 0.2]
num blocks [2, 3, 4, 5]
embedding type positional
channel multiplicative factor [1, 2, 2, 2]
attn resolutions ∅
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Table 5. Hyperparameters for ImageNet. Arrays indicate quantities per resolution of the UNet model. All models are trained with two
learning rates and the best is selected.

Hyperparameter Value

batch size 512
image resolution 32
training steps 150 000
learning rate {0.0001, 0.000 05}
optimizer lion
s0 10
s1 1280
ρ 7
σ0 0.001
σ1 80
network architecture SongUNet

(from Karras et al. (2022) implementation)
model channels 128
dropout [0.1, 0.3, 0.3]
num blocks [4, 5, 7]
embedding type positional
channel mult [1, 1, 2]
attn resolutions 16
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