
HGT: Leveraging Heterogeneous Graph-enhanced Large Language Models
for Few-shot Complex Table Understanding

Anonymous ACL submission

Abstract

Table understanding (TU) has achieved promis-001
ing advancements, but it faces the challenges002
of the scarcity of manually labeled tables and003
the presence of complex table structures. To004
address these challenges, we propose HGT, a005
framework with a heterogeneous graph (HG)-006
enhanced large language model (LLM) to007
tackle few-shot TU tasks. It leverages the LLM008
by aligning the table semantics with the LLM’s009
parametric knowledge through soft prompts010
and instruction turning and deals with com-011
plex tables by a multi-task pre-training scheme012
involving three novel multi-granularity self-013
supervised HG pre-training objectives. We em-014
pirically demonstrate the effectiveness of HGT,015
showing that it outperforms the SOTA for few-016
shot complex TU on several benchmarks.017

1 Introduction018

Table Understanding (TU) seeks to learn infor-019

mative embeddings of tables containing inher-020

ently tabular semantics, often formatted in ways021

not easily interpretable by machines as shown in022

Fig. 1. This endeavor enhances machine perfor-023

mance across a range of table-related tasks, such024

as Table QA (Herzig et al., 2020) and Cell Type025

Classification (Ghasemi-Gol et al., 2019) and Table026

Type Classification (Wang et al., 2020b).027

Yet, in real-world scenarios, TU faces the chal-028

lenges of a lack of sufficient human annotations029

and the presence of complex table structures,030

which diminishes the effectiveness and applicabil-031

ity of existing frameworks. As for the first chal-032

lenge, the data-hungry nature of existing frame-033

works results in diminished performance in few-034

shot TU scenarios, where only several samples are035

annotated. Although some studies (Yin et al., 2020;036

Herzig et al., 2020) have adopted pre-training with037

encoder-only architectures (Devlin et al., 2019) to038

alleviate the annotation burden, these solutions still039

require considerable amounts of labeled data for040

Hierarchical
210

Amount incurred
in the current periodproject

0

1 costincome
36,829,903.9253,196,521.18Main business2

2,591,042.454,868,204.64Other businesses3

Amount incurred
in the current periodProject

costincome

36,829,903.9253,196,521.18
Main

business

2,591,042.454,868,204.64
Other

businesses

TU Model

Q: How much is the income of
the other businesses of the
company’s current amount?
A: Cell(3, 1) or 4,868,204.64

Cell Type Classifica�on

Table Type Classifica�on

Table QA

Table Type: Rela�onal type

Embeddings

ParallelDependency

Specific Table -related Tasks
(lack of sufficient manual labels)

Complex Table

Figure 1: Few-shot complex Table Understanding. Com-
plex tables contain intricate cell-to-cell relationships in-
cluding dependency, hierarchical, and parallel ones.

task-specific fine-tuning. As for the second chal- 041

lenge, while current frameworks attempt to capture 042

structural information in tables through the use 043

of position embeddings (Wang et al., 2020b) or 044

by modeling tables as graphs (Wang et al., 2021), 045

these methods are effective for simple tables but 046

wane with complex tables. This shortfall arises 047

because the cell-to-cell relationships in complex 048

tables are more intricate than those encountered in 049

simple tables as shown in Fig. 1. 050

Fortunately, recent advancements have intro- 051

duced techniques that can be integrated into the TU 052

framework to tackle the challenges: 1) Multimodal 053

Large Language Models (LLMs) have shown re- 054

markable effectiveness in managing few-shot tasks 055

involving data from other modalities, such as vi- 056

sion (Liu et al., 2023) and time series (Jin et al., 057

2023a). This is achieved through instruction tuning 058

1

and soft prompts, which seek to align the semantic059

spaces of the other modality encoder with the LLM.060

2) Self-supervised heterogeneous graph (HG) pre-061

training (Ma et al., 2023; Yang et al., 2022) empow-062

ers models to navigate multifaceted relationships063

within data from substantial volumes of unlabeled064

data.065
In this work, we propose HGT, an HG-enhanced066

LLM framework for the few-shot complex TU. To067

enable HGT to model the intricate relationships068

within complex tables, HGT begins with modeling069

the tabular data with the HG and then processing it070

through a tabular graph encoder to generate vectors071

imbued with structural information. Additionally,072

to ensure the LLM achieves comparable perfor-073

mance in table tasks to its performance in natural074

language (NL) tasks, especially in few-shot sce-075

narios, we align the representation spaces of the076

tabular graph encoder and the LLM via instruction077

tuning. Specifically, we incorporate table vectors078

containing structural information as soft prompts079

within the LLM inputs and innovatively design080

three multi-granularity self-supervised tasks tai-081

lored for both tables and LLMs for pre-training.082

After pre-training specific parameters of HGT via083

these self-supervised tasks, the HGT capitalizes084

on the LLM’s exceptional generalization capability085

to adapt to downstream tasks with minimal data086

samples. To validate the performance of HGT in087

few-shot complex TU, we conduct extensive com-088

parative experiments with existing powerful base-089

lines on eight publicly available datasets for three090

specific table-related tasks in few-shot scenarios.091

The experimental results show that HGT exceeds092

the current SOTA for few-shot complex TU across093

multiple benchmark datasets.094

In summary, our main contributions are:095

• To the best of our knowledge, we are the first096

to propose a framework to align table modality097

with NLs to empower the LLM to perform on098

tables with the same few-shot proficiency as099

it does with NLs.100

• To improve the framework’s ability to com-101

plex TU, we propose a refined way to convert102

tables into HGs and design three novel multi-103

granularity self-supervised HG pre-training104

tasks tailored for tabular data and LLMs.105

• We conduct extensive experiments on eight106

publicly available datasets, and the experimen-107

tal results show that HGT exceeds the current108

SOTA for few-shot complex TU across multi-109

ple benchmark datasets.110

2 Related Work 111

2.1 Graph-based Table Understanding 112

Many studies (Du et al., 2021; Jin et al., 2023b) 113

have tried to convert tables into graphs and utilized 114

graph encoders to capture tables’ inherent topo- 115

logical information. These frameworks include 116

employing homogeneous graphs or utilizing a ba- 117

sic node-linking strategy that connects cells exclu- 118

sively to their adjacent counterparts. Consequently, 119

such frameworks underperform when dealing with 120

complex table structures. 121

2.2 LLM-based Table Understanding 122

Following the remarkable success of LLMs in NL 123

tasks, some efforts (Zhang et al., 2023; Chen, 2022) 124

have extended their application to table-related 125

tasks. Although these frameworks leverage the 126

exceptional generalization capacity of LLMs to 127

achieve SOTA performance in some few-shot tasks, 128

they resort to simply converting the table into a 129

row-by-row NL format for input into LLMs. This 130

process leads to a loss of the tables’ intrinsic topo- 131

logical information. 132

2.3 Query Statement-based Table QA 133

Several studies (Cao et al., 2023; Cheng et al., 134

2022) have adapted semantic parsing techniques, 135

traditionally applied to database tables, to general 136

Table QA tasks. This involves transforming the ta- 137

ble into a format interpretable by query languages, 138

such as SQL, and subsequently utilizing Codex to 139

generate a query statement to retrieve the answer. 140

This methodology represents the current SOTA in 141

Table QA. However, its architectural limitations 142

restrict its applicability to other table-related tasks. 143

2.4 Bert-like Encoder-only Table 144

Understanding 145

Since the rise in popularity of pre-training models 146

like BERT (Devlin et al., 2019), there has been 147

considerable effort devoted to designing special- 148

ized encoding methods for tabular data and unique 149

pre-text objectives for pre-training (Herzig et al., 150

2020; Cheng et al., 2021a; Jia et al., 2023). Despite 151

their utilization of self-supervised training, these 152

methods still require a substantial amount of la- 153

beled data during fine-tuning for downstream tasks. 154

Additionally, while they incorporate positional em- 155

bedding into serialized tabular data, they do not 156

effectively capture topological information. 157

2

3 Task Definition158

Given a table T = {ci,j |0 ≤ i < N, 0 ≤ j < M}159

where N is the number of rows, M is the number160

of columns, and ci,j is the cell located in the ith161

row and jth column. Merged cells, characterized162

by a row span or column span greater than 1, are163

prevalent in complex tables. For instance, the cell164

labeled "project" in the top-left corner of the table165

shown in Fig. 3 has a row span of 2. We assign166

the coordinates of such merged cells based on the167

position of the top-left cell before merging. Hence,168

the coordinate of the "project" cell is designated as169

(0,0).170

Sub-TU tasks for Evaluation171

Cell Type Classification (CTC) involves iden-172

tifying the type yc of each cell ci,j within a ta-173

ble T , where yc can belong to a basic taxonomy174

Yc = {header cell, data cell} or a more complex175

one, varying across datasets.176

Table Type Classification (TTC) is a table-level177

categorization task that requires models to classify178

the table T according to a specific taxonomy Yt.179

Table QA demands that the model produce an180

answer ya in response to a natural language ques-181

tion q, with table T serving as the reference for182

deriving the answer ya.183

4 METHODOLOGY184

This section explains the process in three phases:185

tabular HG construction and two tuning stages. An186

overview of HGT is shown in Fig. 2.187

4.1 Tabular Heterogeneous Graph188

Construction189

Given that HGs are more proficient at capturing190

diverse relationships compared to homogeneous191

graphs, we employ HGs in conjunction with a re-192

fined method that considers the semantic roles of193

cells to effectively model the structure of complex194

tables. The subsequent subsections detail the pro-195

cess of converting tabular data into HGs, including196

the creation of nodes and the heuristic rules for197

establishing edges between nodes. The process of198

creating a tabular HG is shown in Fig. 3.199

4.1.1 Tabular Node Construction200

Four Tabular Node Types. TABLE, ROW, Header201

CELL, and Data CELL nodes are denoted as green,202

red, yellow, and blue nodes in Fig. 3. 1) The TA-203

BLE node represents the content described by the204

table, facilitating the table-level tasks. 2) The ROW205

node signifies the information contained within a 206

row, aiding in the prediction of the row’s type dur- 207

ing self-supervised training. 3) The Header CELL 208

node denotes cells located in the header row, iden- 209

tifying column schemas or categories. 4) The Data 210

CELL node represents cells in data rows, meaning 211

the actual data entries of the table. 212

Creating Tabular Nodes. First, CELL nodes are 213

created for each cell in the table, with each node 214

denoted as ci,j , where i and j represent the cell’s 215

coordinates in the original table. If a CELL node is 216

located in the table’s Top Header Row or is part of 217

a merged cell spanning the entire table width, it is 218

viewed as a Header Cell; otherwise, it is identified 219

as a Data Cell. The method for determining the 220

Top Header Row Number of a table is elaborated in 221

Appendix B. Subsequently, an equivalent number 222

of ROW nodes is created to correspond with the 223

number of rows in the table, along with one TABLE 224

node. 225

Initializing Tabular Node Embeddings. An ini- 226

tialization vector is required for each node in the 227

HG. For Header and Data CELL nodes, we em- 228

ploy the output of Sentence-BERT (Reimers and 229

Gurevych, 2019) applied to the text within each 230

cell to obtain their initialization vectors. In the case 231

of ROW nodes ri, we initialize a vector by con- 232

catenating the text from the cells in the ith row and 233

inputting this concatenated text into the Sentence- 234

BERT. TABLE nodes serve to represent the table’s 235

content itself. In a human’s view, a table’s con- 236

tent can be inferred by examining the cells in the 237

headers. Consequently, we opt to concatenate the 238

text from the cells in the headers and to obtain the 239

embedding. 240

4.1.2 Adding Edges 241

To enhance the machine’s understanding of the ta- 242

ble’s semantics, we analyze complex table data 243

and develop the following heuristic method to link 244

nodes: 1) A Table node, representing the whole 245

table, should be linked to all CELL nodes to en- 246

capsulate the global semantics. 2) A Row node 247

derives information from cells within the same row, 248

so the Row node ri should be linked to each Cell 249

node ci∗. 3) A strong correlation exists between 250

the semantics of data cells and their corresponding 251

header cells within the same column. 4) Data cells 252

located in the same column exhibit a stronger rela- 253

tional bond compared to those in different columns. 254

Consequently, adjacent data cells within a column 255

are interconnected. 5) The interpretation of rela- 256

3

Large Language Model
Embedding Layer

Large Language Model
Other Layers

Input
[Instruction Texts] [Instruction Texts]<Table Placeholders>

...
Raw Token Embeddings

...
Replaced Token Embeddings

Tabular
HG

Encoder

Tabular HG

Table

LoRA
Module

Tuned
Frozen

Stage 1:
Self-supervised Training

Task:
Table Row

Classification

Task:
Table Cell
Matching

Task:
Table Context

Generation

Stage 2:
Task-specific Tuning

Few-shot Tasks

Figure 2: An overview of HGT framework. HGT processes <table, instruction> as an input. First, the table is
converted into an HG and processed by a Tabular HG encoder to generate vectors for each tabular node, while the
LLM transforms instruction texts into initial token embeddings. Subsequently, the HG encoder’s outputs serve as
soft prompts for the LLM, enabling the replacement of placeholder embeddings with actual tabular node vectors.
The modified embedding sequence is then processed by the remaining LLM layers. Throughout both Stage 1 and
Stage 2, only the weights of red components are tuned.

tionships between data cells across columns neces-257

sitates the semantic understanding of their respec-258

tive header cells. For instance, as demonstrated259

in Fig. 3, determining the relationship between260

cell c2,0 and cell c2,1 requires an examination of261

their header cells. This examination reveals that262

“53,196,521.18” represents the income from the263

“main business” project.264

Edge types are categorized based on the nodes265

they link, as follows: Table-Header, Table-Data,266

Header-Row, Data-Row, Header-Data, Data-Data,267

and Header-Header edges.268

4.2 Stage 1: Self-supervised Instruction269

Tuning270

Illustrated in Fig. 2, HGT utilizes the tabular HG271

encoder’s output as soft prompts (Li and Liang,272

2021), which form part of the LLM input. The273

weights of both modules are tuned through self-274

supervised instruction tuning to align the vector275

representation spaces of the two modules. This276

subsection provides a detailed description of the277

training process, which involves three granularity278

self-supervised tasks.279

4.2.1 Tabular HG Encoder 280

Following the conversion of the table into a tabu- 281

lar HG, HGT introduces an RGNN (Wang et al., 282

2020a) as the encoder for tabular HG data. The 283

encoder takes a tabular HG as input and gener- 284

ates vector representations for the tabular nodes as 285

output. The RGNN employs a message-passing 286

mechanism to collect semantic and topological in- 287

formation from neighboring cell nodes, consider- 288

ing various edge types. Typically, the RGNN com- 289

prises multiple graph aggregation layers, with each 290

layer using the following aggregation formula for 291

each cell node v: 292

h(l+1)
v = σ

 ∑
et∈Et

∑
u∈N

et
v

1

|Net
v |W

(l)
et h(l)

u

 , (1) 293

where l is the lth layer, N er
v means all neighbor 294

cell nodes of v, Er is the set of edge type, σ is an 295

activation function and W
(l)
et is trainable weights. 296

The last hidden representation is used as part of the 297

input for subsequent modules in the framework. 298

4

210

Amount incurred
in the current periodproject

0

costincome1

36,829,903.9253,196,521.18Main business2

2,591,042.454,868,204.64Other businesses3

0,0c 0,1c

1,1c 1,2c

2,0c

3,0c

2,1c 2,2c

3,1c 3,2c

0r

1r

2r

3r

tc

Figure 3: Converting a table into a heterogeneous graph. Cell nodes of varying types are depicted using distinct
colors: Table nodes in green, Row nodes in red, Data Cell nodes in blue, and Header Cell nodes in yellow. Similarly,
edges are differentiated by color to represent various types. Lines without arrows indicate bidirectional edges. For
the sake of clarity, some edges have been omitted.

4.2.2 Multi-granularity Self-supervised299

Instruction Tasks300

Drawing inspiration from the methodologies pre-301

sented in LLaVA (Liu et al., 2023), Time-LLM(Jin302

et al., 2023a), and GraphGPT (Tang et al., 2023),303

we develop a method to effectively align the vector304

spaces of two distinct modalities of data: tables305

and NLs. We introduce the soft prompts technique306

as a bridge between the two encoders and focus307

on fine-tuning only the tabular graph encoder and308

the LoRA module within the LLM. This process,309

designed to be lightweight, enables the LLM to310

grasp the topological information of tables through311

semantic instruction learning.312

Instruction learning (Wang et al., 2022; Ouyang313

et al., 2022a), a technique that merges fine-tuning314

with prompt learning, significantly enhances the315

generalization capabilities of LLMs. Therefore,316

before the model-tuning process, we pre-format317

the self-supervised training data into an instruction-318

based QA format. Examples of training data for319

the three tasks—Table Row Classification, Table320

Cell Matching, and Table Context Generation—are321

illustrated in Fig. 4.322

To align the LLM with the HG encoder, the323

HGT incorporates additional tokens into the vo-324

cabulary: <tabular_node>, <table_start>, and <ta-325

ble_end>. The token <tabular_node> serves as a326

placeholder for table tasks within the instruction327

text, allowing for the substitution with actual table328

node vectors post-processing by the LLM’s Em-329

bedding layer. The quantity of these placeholders330

matches the number of table nodes relevant to the331

current task. For instance, since there are 10 cell to-332

kens in Fig. 4, the <tabular_node> is replicated 10333

times. The tokens <table_start> and <table_end>334

signify the beginning and ending delimiters of the335

table placeholders.336

The forward propagation in HGT begins with337

the input of a <Table, Instruction> pair, where the 338

instruction text passes through the LLM’s Embed- 339

ding layer, and the table is transformed into a Tabu- 340

lar HG before being processed by the RGNN. The 341

LLM Embedding layer assigns embeddings to each 342

token, creating a sequence, while the RGNN’s out- 343

put provides aggregated vector representations for 344

each table node. Subsequently, HGT replaces the 345

embeddings corresponding to the table placehold- 346

ers within the sequence with the actual node vec- 347

tors. This adjusted embedding sequence is then fed 348

into the LLM’s remaining layers. 349

To enhance the HGT understanding of tables, 350

we innovatively devise three tasks tailored for the 351

graph-enhanced LLM, each varying in granularity: 352

Table Row Classification, Table Cell Matching, and 353

Table Context Generation. The complexity of these 354

tasks increases progressively, aiming to elevate the 355

model’s capability to comprehend semantic infor- 356

mation across different levels. This tiered method 357

is designed to systematically broaden the model’s 358

semantic awareness. Below is the detailed descrip- 359

tions of each task. 360

Table Row Classification (TRC). The objective of 361

this task is to train the model to accurately identify 362

the category of each table row. Utilizing the vec- 363

tor representations of Row nodes provided by the 364

HG encoder, the model discerns whether a node 365

corresponds to a Header Row or a Data Row. The 366

categorization of Row nodes is automated by an al- 367

gorithm elaborated in Appendix. B, eliminating the 368

need for manual intervention and thus qualifying 369

as a self-supervised training process. In the dataset 370

we utilize, the labeling accuracy of the algorithm 371

reaches 97.6%. This task facilitates the model’s 372

initial grasp of coarse-grained information about 373

the structure of table rows. 374

Table Cell Matching (TCM). The task involves 375

supplying the model with vector representations 376

5

Q: Given a sequence of table CELL tokens <table_start> <tabular_node>...< tabular_node> <table_end> that constitute a table. Each
table CELL token contains the content within the CELL. The following is a list of CELL contents:
0) "income", 1) "Float Value: 36,829,903.92", 2) "Other businesses", … , 9) "cost". Please reorder the list of CELLs according to the
order of table CELL tokens (i.e., complete the matching of table CELL tokens and CELL contents).

A: Based on the given 8 table CELL tokens and the list of table CELL contents, we obtain the matching of table CELL tokens and contents
as follows: Table CELL token 0 corresponds to "project" … Table CELL token 9 corresponds to "Float Value: 2,591,042.45".

Q: Given a sequence of table ROW tokens <table_start> <tabular_node>...< tabular_node> <table_end> that constitute a table. Each
table has two ROW types: Header-Row and Data-Row. Please classify each table ROW according to the table ROW tokens.

A: Based on the given 4 table ROW tokens, we can classify them as follows: Table ROW token 0 corresponds to Header-Row. Table ROW
token 1 corresponds to Header-Row. Table ROW token 2 corresponds to Data-Row. Table ROW token 3 corresponds to Data-Row.

Q: Given a tabular TABLE token <table_start> <tabular_node> <table_end> that represents a table. The TABLE token contains the
content within the table. Please generate the context according to the tabular TABLE token.

A: Based on the given TABLE CELL token, the context about the table is: The income and cost of the main business of the company's
current amount is "53,196,521.18", "36,829,903.92"

Figure 4: Examples of three self-supervised instruction tuning datasets, each tailored for distinct tasks: Table Row
Classification, Table Cell Matching, and Table Context Generation.

of each cell node alongside a list of shuffled cell377

contents. The model’s objective is to correctly pair378

each cell node vector with its corresponding orig-379

inal text. For instance, referring to the table de-380

picted in Fig. 3, the model needs to align the node381

vector of c1,1 with the string "income" within the382

list correctly. This training task enables the model383

to discern the semantic information encapsulated384

within the cell contents based on the graph node385

vectors. Essentially, it aligns the semantic space of386

the HG encoder and the LLM.387

Table Context Generation (TCG). The objective388

of this task is to enable the model to generate con-389

text surrounding table data, utilizing the vector rep-390

resentations from the Table node. This task fa-391

cilitates the model’s learning of the table’s global392

semantic information, proving beneficial for tasks393

requiring a comprehensive understanding of the394

table as an entity.395

Examples of data sets in instruction format for396

the three tasks are shown in Fig. 4.397

4.3 Task-specific Instruction Tuning398

Following the completion of the self-supervised399

task in Stage 1, the HGT has successfully aligned400

the representation spaces of the HG encoder and the401

LLM. This alignment, combined with the intrinsic402

capabilities of the LLM, empowers HGT to more403

effectively comprehend the topological nuances of404

complex tables. Consequently, when applied to405

a specific downstream task, HGT requires only a406

small number of training samples to quickly grasp407

the expected answer format for the current task and408

reorganize its pre-existing knowledge into the suit-409

able output format. When fine-tuning in Stage 2,410

the model adopts the same weight-tuning strategy411

as in Stage 1, with all parameters frozen except for412

those of the HG Encoder.413

5 Experiments 414

5.1 Datasets 415

To validate the effectiveness of our model, we se- 416

lected a variety of datasets that are both widely stud- 417

ied and easy to parse, including TURL (Deng et al., 418

2020), WCC (Ghasemi-Gol and Szekely, 2018), 419

IM-TQA (Zheng et al., 2023), HiTab (Cheng et al., 420

2021b), WTQ (Flatten) (Pasupat and Liang, 2015), 421

WTQ (Raw) (Pasupat and Liang, 2015), each perti- 422

nent to CTC, TTC, or Table QA, respectively. 423

Statistics for these datasets are presented in Table 424

1, illustrating variations in the types of annotations, 425

the primary domains covered, and the proportion 426

of complex tables. Given the focus on few-shot TU 427

scenarios, we only list the number of tables within 428

the test sets. Comprehensive details of the dataset 429

annotations and pre-processing are available in Ap- 430

pendix A. 431

5.2 Baselines 432

We compare HGT with eight strong baselines 433

to verify its effectiveness. The eight baselines 434

can be categorized into four groups according to 435

their frameworks. ForTap(Cheng et al., 2021a) 436

and GetPt(Jia et al., 2023) emulate BERT, de- 437

vising specific pretext tasks tailored for tabular 438

data to pre-train the Transformer encoder(Devlin 439

et al., 2019). TabularNet (Du et al., 2021) and 440

TabPrompt(Jin et al., 2023b) incorporate a graph 441

encoder. Binder(Cheng et al., 2022) and Aug- 442

Codex(Cao et al., 2023) rely on Codex to generate 443

query statements to retrieve the answer. TableL- 444

lama(Zhang et al., 2023) and GPT-3.5(Ouyang 445

et al., 2022b) are both LLMs renowned for their 446

exceptional performance in few-shot scenarios. 447

5.3 Implementation Details 448

General Setup Across All Tasks. We employ 449

Vicuna-7B-v1.5(Chiang et al., 2023) as the base 450

6

Datasets
Annotation Type Table Info

CTC TTC Table QA # Test Tables % Complex Tables # QA pairs Main Domains

IM-TQA ✓ ✓ ✓ 153 47.71 627 Manufacturing
WCC ✓ 371 – – General
HiTab ✓ ✓ 3597 92.88 1584 Crime, Health
WTQ (Flatten) ✓ 2108 0.00 4344 General
WTQ (Raw) ✓ 2108 14.80 4344 General

Table 1: Dataset Statistics. “✓” indicates the type of annotation in the dataset that has this task in it. “# Test Tables”,
“% Complex Tables” and “# QA pairs” columns show the number of tables in the test set, the percentage of complex
tables and the numbers of QA pairs, respectively.

Model Type Models
CTC (Macro–F1) TTC (Macro–F1) Table QA (Accuracy)
HiTab IM–TQA WCC IM–TQA WTQ (Flat) WTQ (Raw) HiTab IM–TQA

Bert-like ForTap 55.74 46.32 45.13 52.34 26.31 25.48 23.80 28.07
Encoder-based GetPt 57.45 48.61 47.53 55.42 22.63 22.33 22.29 21.05

Graph-based
TabularNet 53.11 44.53 44.97 55.32 18.12 17.52 21.34 18.98
TabPrompt 64.44 45.75 49.24 53.32 16.62 13.72 19.19 13.08

Query Statement-based
Binder – – – – 50.09 42.63 38.07 39.07
Aug-Codex – – – – 41.39 38.42 53.09 43.54

LLM-based
TableLlama 58.58 52.67 46.31 54.69 37.85 33.32 – 47.05
GPT-3.5 62.46 55.63 52.32 59.10 39.25 37.51 42.05 51.52

HGT 66.24 60.11 56.10 59.58 45.00 43.11 54.61 52.95

Table 2: Overall evaluation results on three TU tasks with best bolded and runner-up underlined. ’–’ indicates that
the current framework cannot handle the current task due to some limitations. 1

model for LLM and a 2-layer RGAT(Wang et al.,451

2020a) as our tabular HG encoder whose hidden di-452

mension is set as 1048. The initial vectors of nodes453

in HG are obtained by Sentence-BERT (Reimers454

and Gurevych, 2019), whose dimension is 768. We455

integrate a LoRA(Hu et al., 2021) module to the456

embedding layer of the LLM. At any tuning stage,457

HGT exclusively tunes the parameters of the RGAT458

and the LoRA module. This lightweight configura-459

tion allows our model to be efficiently trained on460

a single 4090 GPU. We assemble the tables from461

training and validation sets of the datasets men-462

tioned above along with a selection of high-quality463

tables from the TURL as a comprehensive dataset464

consisting of 100k tables for use in the pre-training465

stage. Moreover, recognizing GPT’s limited sen-466

sitivity to numerical data, we prefix cells contain-467

ing only numbers with "Float Value:" and so on,468

which can be achieved by regular expression. This469

enhancement is aimed at bolstering the semantic470

information conveyed by these cells.471

General Setup across Evaluation Tasks. Given472

our aim to validate the HGT’s performance on few-473

shot TU, we randomly generate five 3-shot tasks474

for both training and validation on each dataset475

(i.e., 3 train/dev tables for CTC, 3 train/dev tables476

per class for TTC and 3 train/dev QA pairs for477

Tale QA). Each training task, paired with a corre- 478

sponding validation task, is utilized to fine-tune the 479

models optimally for subsequent testing. Table 2 480

presents the average performance of a framework 481

on the test set across these five tasks. In addition, 482

to align the experiments more closely with real- 483

world scenarios, we adhere to the setup outlined 484

in Zheng et al. (2023) and refrain from explicitly 485

providing the model with the hierarchical structure 486

information in the header row / columns, despite 487

some datasets being explicitly labeled with this de- 488

tail. The detailed setup of baselines is shown in 489

Appendix C. 490

Evaluation Metrics. For CTC and TTC, we adopt 491

Macro-F1 as the evaluation metric. Considering 492

that our framework, along with some baselines, em- 493

ploys a generative architecture, relying solely on 494

exact match might inaccurately categorize some 495

correct responses (e.g., generating an answer with 496

an additional period at the end). Therefore, we in- 497

corporate the semantic-match (Cheng et al., 2022) 498

and human evaluation as the evaluation metric of 499

Table QA. 500

1For a fair comparison with our framework, we use 3-
shot prompting for Binder and Aug-Codex, which decreases
performance compared to the results in their paper. More
details are shown in Appendix C.

7

5.4 Results and Analysis501

The experimental results presented in Table 2502

shows that HGT achieves the best performance503

on 7 out of 8 datasets, with the WTQ (Raw) dataset504

being the sole exception where Binder outperforms505

HGT. The following analysis sheds light on these506

outcomes: 1) While Query Statement-based frame-507

works demonstrate strong capabilities in Table QA,508

their architectural design limits their ability to per-509

form other tabular tasks. Compared to other end-510

to-end frameworks, their generality is somewhat511

lacking. 2) WTQ (Raw) represents the unmodified512

version of WTQ (Flat), retaining the complexity513

of hierarchical headers within tables. A visual de-514

piction of the difference between these versions515

is provided in Fig. 8. The noticeable drop in per-516

formance of other methods on WTQ (Raw) un-517

derscores HGT’s capability to effectively process518

complex table structures. 3) The fact that other519

LLM-based frameworks underperform compared520

to HGT underscores the efficacy of our framework521

in mitigating the drawbacks associated with lin-522

earized table representations which locks the full523

capabilities of LLMs. 4) Without sufficient data524

for fine-tuning the downstream tasks, pre-trained525

models fail to reach their full potential. 5) On526

the IM-TQA dataset, the performance of Query527

Statement-based frameworks falls short compared528

to the LLM-based frameworks. We surmise this529

discrepancy is likely due to the dataset featuring530

particularly complex tables and look-up type ques-531

tions, while Statement-based frameworks excel in532

different problem types, such as arithmetic queries.533

The results of the experiments exploring HGT at534

different numbers of training samples are detailed535

in Appendix. D.536

5.5 Ablation Study537

We conduct ablation experiments on a single538

dataset IM-TQA, the only dataset containing three539

types of labels, to validate the effectiveness of each540

component and self-supervised objective, the re-541

sults of which are shown in Table 3.542

We first conduct ablation studies w/o three self-543

training tasks respectively. We pre-train three mod-544

els without TRC, TCM, and TCG respectively545

to assess their individual impact. These three546

pre-training tasks prove beneficial across all ta-547

ble evaluation tasks, with TCM offering the most548

substantial enhancement across three evaluation549

tasks—enhancements of 5.54%, 3.53%, and 6.70%.550

Modules CTC TTC Table QA
Full HGT 66.24 59.58 52.95
w/o TRC 61.71 58.03 47.05
w/o TCM 60.70 56.05 46.25
w/o TCG 65.38 57.46 50.56
w/o HG 62.42 58.55 49.44
w/o hl 63.09 58.87 48.96

Table 3: Ablation results on IM-TQA dataset. The "w/o
TRC", "w/o TCM", and "w/o TCG": HGT pre-trained
without the specified objective. The "w/o HG": HGT
pre-trained with homogeneous graph. The "w/o hl":
HGT pre-trained without the heuristic linking strategy
described earlier, instead linking all neighboring cells
directly.

This improvement is akin to how a human can only 551

effectively organize disordered cells by understand- 552

ing the table’s semantics and the interrelations be- 553

tween cells. The contribution of TRC is particu- 554

larly noticeable in CTC and Table QA compared 555

to TTC, with improvements of 4.53% and 5.95% 556

respectively. as it aids the model in recognizing 557

that the semantics of cells in header rows and data 558

rows differ, even when their content is identical. 559

TCG is especially advantageous for TTC, more so 560

than the other tasks, aligning with our expectations. 561

We then conduct ablation studies about our 562

method to construct tabular graphs. This involves 563

converting tables into homogeneous graphs rather 564

than heterogeneous ones and replacing the heuris- 565

tic linking strategy with a raw method linking all 566

neighboring cells. Both variants result in substan- 567

tial performance declines in CTC and Table QA, 568

with at least 3.15% and 3.51% reduction on these 569

two tasks, respectively. It indicates that our conver- 570

sion method is more effective than existing meth- 571

ods for modeling complex tables. 572

6 Conclusion 573

In this paper, we introduce a novel framework, 574

HGT, tailored for few-shot complex TU. The ef- 575

fectiveness of HGT is validated across multiple 576

datasets for CTC, TTC, and Table QA, accompa- 577

nied by an in-depth ablation study to examine the 578

impact of each component. 579

In future work, we plan to expand HGT’s appli- 580

cability to tables featuring more diverse layouts and 581

to further improve HGT’s performance in Table QA 582

tasks by implementing techniques that enhance the 583

model’s inference capabilities. 584

8

Limitations585

Firstly, HGT’s performance notably declines when586

dealing with tables that have irregular layouts, such587

as those containing sub-titles or images, or forms588

filled with personalized information. Secondly,589

HGT tends to consume excessive GPU memory590

when processing larger tables. Lastly, when faced591

with Excel-type forms, it is needed to use the API592

to convert them to html-format tables first.593

References594

Yihan Cao, Shuyi Chen, Ryan Liu, Zhiruo Wang, and595
Daniel Fried. 2023. Api-assisted code generation for596
question answering on varied table structures. ArXiv,597
abs/2310.14687.598

Wenhu Chen. 2022. Large language models are few(1)-599
shot table reasoners. ArXiv, abs/2210.06710.600

Zhoujun Cheng, Haoyu Dong, Fan Cheng, Ran Jia,601
Pengfei Wu, Shi Han, and Dongmei Zhang. 2021a.602
Fortap: Using formulas for numerical-reasoning-603
aware table pretraining. In Annual Meeting of the604
Association for Computational Linguistics.605

Zhoujun Cheng, Haoyu Dong, Zhiruo Wang, Ran Jia,606
Jiaqi Guo, Yan Gao, Shi Han, Jian-Guang Lou, and607
Dongmei Zhang. 2021b. Hitab: A hierarchical table608
dataset for question answering and natural language609
generation. ArXiv, abs/2108.06712.610

Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu611
Li, R.K. Nadkarni, Yushi Hu, Caiming Xiong,612
Dragomir R. Radev, Marilyn Ostendorf, Luke Zettle-613
moyer, Noah A. Smith, and Tao Yu. 2022. Bind-614
ing language models in symbolic languages. ArXiv,615
abs/2210.02875.616

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,617
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan618
Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al.619
2023. Vicuna: An open-source chatbot impressing620
gpt-4 with 90%* chatgpt quality. See https://vicuna.621
lmsys. org (accessed 14 April 2023).622

Eric Crestan and Patrick Pantel. 2011. Web-scale table623
census and classification. In Web Search and Data624
Mining.625

Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and626
Cong Yu. 2020. Turl: Table understanding through627
representation learning. SIGMOD Rec., 51:33–40.628

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and629
Kristina Toutanova. 2019. Bert: Pre-training of deep630
bidirectional transformers for language understand-631
ing. ArXiv, abs/1810.04805.632

Lun Du, Fei Gao, Xu Chen, Ran Jia, Junshan Wang, Shi633
Han, and Dongmei Zhang. 2021. Tabularnet: A neu-634
ral network architecture for understanding semantic635

structures of tabular data. Proceedings of the 27th 636
ACM SIGKDD Conference on Knowledge Discovery 637
& Data Mining. 638

Majid Ghasemi-Gol, Jay Pujara, and Pedro A. Szekely. 639
2019. Tabular cell classification using pre-trained 640
cell embeddings. 2019 IEEE International Confer- 641
ence on Data Mining (ICDM), pages 230–239. 642

Majid Ghasemi-Gol and Pedro A. Szekely. 2018. Tab- 643
vec: Table vectors for classification of web tables. 644
ArXiv, abs/1802.06290. 645

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas 646
Müller, Francesco Piccinno, and Julian Martin Eisen- 647
schlos. 2020. Tapas: Weakly supervised table parsing 648
via pre-training. ArXiv, abs/2004.02349. 649

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan 650
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, 651
and Weizhu Chen. 2021. Lora: Low-rank adap- 652
tation of large language models. arXiv preprint 653
arXiv:2106.09685. 654

Ran Jia, Haoming Guo, Xiaoyu Jin, Chao Yan, Lun 655
Du, Xiaojun Ma, Tamara Stankovic, Marko Lozajic, 656
Goran Zoranovic, Igor Ilic, Shi Han, and Dongmei 657
Zhang. 2023. Getpt: Graph-enhanced general table 658
pre-training with alternate attention network. Pro- 659
ceedings of the 29th ACM SIGKDD Conference on 660
Knowledge Discovery and Data Mining. 661

Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, 662
James Y. Zhang, Xiao Long Shi, Pin-Yu Chen, Yux- 663
uan Liang, Yuan-Fang Li, Shirui Pan, and Qingsong 664
Wen. 2023a. Time-llm: Time series forecasting 665
by reprogramming large language models. ArXiv, 666
abs/2310.01728. 667

Rihui Jin, Jianan Wang, Wei Tan, Yongrui Chen, Guilin 668
Qi, and Wang Hao. 2023b. Tabprompt: Graph-based 669
pre-training and prompting for few-shot table under- 670
standing. In Conference on Empirical Methods in 671
Natural Language Processing. 672

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning: 673
Optimizing continuous prompts for generation. Pro- 674
ceedings of the 59th Annual Meeting of the Associa- 675
tion for Computational Linguistics and the 11th Inter- 676
national Joint Conference on Natural Language Pro- 677
cessing (Volume 1: Long Papers), abs/2101.00190. 678

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae 679
Lee. 2023. Visual instruction tuning. ArXiv, 680
abs/2304.08485. 681

Shuai Ma, Jian-wei Liu, and Xin Zuo. 2023. Self- 682
supervised learning for heterogeneous graph via 683
structure information based on metapath. Applied 684
Soft Computing, 143:110388. 685

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, 686
Carroll L. Wainwright, Pamela Mishkin, Chong 687
Zhang, Sandhini Agarwal, Katarina Slama, Alex 688
Ray, John Schulman, Jacob Hilton, Fraser Kelton, 689

9

https://api.semanticscholar.org/CorpusID:264426319
https://api.semanticscholar.org/CorpusID:264426319
https://api.semanticscholar.org/CorpusID:264426319
https://api.semanticscholar.org/CorpusID:252872943
https://api.semanticscholar.org/CorpusID:252872943
https://api.semanticscholar.org/CorpusID:252872943
https://api.semanticscholar.org/CorpusID:237513831
https://api.semanticscholar.org/CorpusID:237513831
https://api.semanticscholar.org/CorpusID:237513831
https://api.semanticscholar.org/CorpusID:237091377
https://api.semanticscholar.org/CorpusID:237091377
https://api.semanticscholar.org/CorpusID:237091377
https://api.semanticscholar.org/CorpusID:237091377
https://api.semanticscholar.org/CorpusID:237091377
https://api.semanticscholar.org/CorpusID:252734772
https://api.semanticscholar.org/CorpusID:252734772
https://api.semanticscholar.org/CorpusID:252734772
https://api.semanticscholar.org/CorpusID:235358189
https://api.semanticscholar.org/CorpusID:235358189
https://api.semanticscholar.org/CorpusID:235358189
https://api.semanticscholar.org/CorpusID:235358189
https://api.semanticscholar.org/CorpusID:235358189
https://api.semanticscholar.org/CorpusID:260500102
https://api.semanticscholar.org/CorpusID:260500102
https://api.semanticscholar.org/CorpusID:260500102
https://api.semanticscholar.org/CorpusID:263609325
https://api.semanticscholar.org/CorpusID:263609325
https://api.semanticscholar.org/CorpusID:263609325
https://api.semanticscholar.org/CorpusID:266176930
https://api.semanticscholar.org/CorpusID:266176930
https://api.semanticscholar.org/CorpusID:266176930
https://api.semanticscholar.org/CorpusID:266176930
https://api.semanticscholar.org/CorpusID:266176930
https://api.semanticscholar.org/CorpusID:230433941
https://api.semanticscholar.org/CorpusID:230433941
https://api.semanticscholar.org/CorpusID:230433941
https://api.semanticscholar.org/CorpusID:258179774

Luke E. Miller, Maddie Simens, Amanda Askell, Pe-690
ter Welinder, Paul Francis Christiano, Jan Leike, and691
Ryan J. Lowe. 2022a. Training language models692
to follow instructions with human feedback. ArXiv,693
abs/2203.02155.694

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,695
Carroll Wainwright, Pamela Mishkin, Chong Zhang,696
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.697
2022b. Training language models to follow instruc-698
tions with human feedback. Advances in Neural699
Information Processing Systems, 35:27730–27744.700

Panupong Pasupat and Percy Liang. 2015. Composi-701
tional semantic parsing on semi-structured tables. In702
Annual Meeting of the Association for Computational703
Linguistics.704

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:705
Sentence embeddings using siamese bert-networks.706
In Proceedings of the 2019 Conference on Empirical707
Methods in Natural Language Processing. Associa-708
tion for Computational Linguistics.709

Jiabin Tang, Yuhao Yang, Wei Wei, Lei Shi, Lixin Su,710
Suqi Cheng, Dawei Yin, and Chao Huang. 2023.711
Graphgpt: Graph instruction tuning for large lan-712
guage models. ArXiv, abs/2310.13023.713

Fei Wang, Kexuan Sun, Muhao Chen, Jay Pujara, and714
Pedro Szekely. 2021. Retrieving complex tables with715
multi-granular graph representation learning. In Pro-716
ceedings of the 44th International ACM SIGIR Con-717
ference on Research and Development in Information718
Retrieval, pages 1472–1482.719

Kai Wang, Weizhou Shen, Yunyi Yang, Xiaojun Quan,720
and Rui Wang. 2020a. Relational graph attention721
network for aspect-based sentiment analysis. In ACL.722

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa723
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh724
Hajishirzi. 2022. Self-instruct: Aligning language725
models with self-generated instructions. In Annual726
Meeting of the Association for Computational Lin-727
guistics.728

Zhiruo Wang, Haoyu Dong, Ran Jia, Jia Li, Zhiyi Fu,729
Shi Han, and Dongmei Zhang. 2020b. Tuta: Tree-730
based transformers for generally structured table pre-731
training. Proceedings of the 27th ACM SIGKDD732
Conference on Knowledge Discovery & Data Mining.733

Yaming Yang, Ziyu Guan, Zhe Wang, Wei Zhao, Cai734
Xu, Weigang Lu, and Jianbin Huang. 2022. Self-735
supervised heterogeneous graph pre-training based736
on structural clustering. Advances in Neural Infor-737
mation Processing Systems, 35:16962–16974.738

Pengcheng Yin, Graham Neubig, Wen tau Yih, and739
Sebastian Riedel. 2020. Tabert: Pretraining for joint740
understanding of textual and tabular data. ArXiv,741
abs/2005.08314.742

Tianshu Zhang, Xiang Yue, Yifei Li, and Huan Sun.743
2023. Tablellama: Towards open large generalist744
models for tables. ArXiv, abs/2311.09206.745

Mingyu Zheng, Yang Hao, Wen-Jie Jiang, Zheng Lin, 746
Yajuan Lyu, Qiaoqiao She, and Weiping Wang. 2023. 747
Im-tqa: A chinese table question answering dataset 748
with implicit and multi-type table structures. In An- 749
nual Meeting of the Association for Computational 750
Linguistics. 751

A Datasets and Pre-processing 752

is located in left
header columns

is located in top
header rows

Cell Type

✓ ✓ column attribute

✓ × column attribute

× ✓ row attribute
× × value

Figure 5: Annotation correspondence of HiTab.

cells stretching across rows
in the first row

cells stretching across rows
in the first column
float type cells
in the first row

float type cells
in the first column

Average distance in vector space
for the first row of cells

Average distance in vector space
for the first column of cells

rows of the table
columns of the table

variance of cell vector space distance
in a row-wise way

variance of cell vector space distance
in a column-wise way

Figure 6: Manual Features for Table Orientation Classi-
fication.

IM-TQA (Zheng et al., 2023) consists of tables 753

in Chinese, gathered from encyclopedias and re- 754

ports, and translated into English. These tables 755

are annotated for the three tasks: CTC, TTC, and 756

Table QA. Due to our method of converting ta- 757

bles into HGs not being suitable for Vertical ta- 758

bles—where header cells do not align with the table 759

rows—we employ a feature engineering method to 760

pre-process and convert Vertical tables into Hor- 761

izontal tables. This method has demonstrated a 762

98 % accuracy rate, with the relevant features de- 763

picted in Fig. 6. HiTab (Cheng et al., 2021b) fea- 764

tures hierarchical matrix tables sourced from sta- 765

tistical reports and Wikipedia articles, annotated 766

for row and column granularity as well as Table 767

QA. We also transform these broad-granularity an- 768

notations into cell-level annotations, as shown in 769

Fig. 5. WTQ (Flatten) and WTQ (Raw) originate 770

from the same work (Pasupat and Liang, 2015) and 771

consist of tables sourced from Wikipedia, accom- 772

panied by questions that involve basic arithmetic 773

operations like sum and max, and sometimes ne- 774

cessitate compositional reasoning. To simplify the 775

10

https://api.semanticscholar.org/CorpusID:246426909
https://api.semanticscholar.org/CorpusID:246426909
https://api.semanticscholar.org/CorpusID:246426909
https://api.semanticscholar.org/CorpusID:9027681
https://api.semanticscholar.org/CorpusID:9027681
https://api.semanticscholar.org/CorpusID:9027681
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
https://api.semanticscholar.org/CorpusID:264405943
https://api.semanticscholar.org/CorpusID:264405943
https://api.semanticscholar.org/CorpusID:264405943
https://api.semanticscholar.org/CorpusID:254877310
https://api.semanticscholar.org/CorpusID:254877310
https://api.semanticscholar.org/CorpusID:254877310
https://api.semanticscholar.org/CorpusID:235447018
https://api.semanticscholar.org/CorpusID:235447018
https://api.semanticscholar.org/CorpusID:235447018
https://api.semanticscholar.org/CorpusID:235447018
https://api.semanticscholar.org/CorpusID:235447018
https://api.semanticscholar.org/CorpusID:265213406
https://api.semanticscholar.org/CorpusID:265213406
https://api.semanticscholar.org/CorpusID:265213406
https://api.semanticscholar.org/CorpusID:253083183
https://api.semanticscholar.org/CorpusID:253083183
https://api.semanticscholar.org/CorpusID:253083183

Table QA task, the authors converted the hierarchi-776

cal structure of header rows into a single row in777

the WTQ (Raw) dataset, resulting in the WTQ (Flat-778

ten) version. An illustration of this transformation779

is presented in Fig. 8. WCC (Ghasemi-Gol and780

Szekely, 2018), a subset of the July 2015 Common781

Crawl, is annotated for TTC using the web table782

taxonomy introduced by Crestan and Pantel 2011.783

It is not explicitly divided into training and test sets,784

so we use the 353 tables that were not sampled as785

the test set. Due to the GPU memory limit, we786

exclude the tables containing more than 150 cells.787

B Top Header Row Number788

The heuristic rule of acquiring the Top Header Row789

Number is shown in Alg. 1. Alg. 2 aims to deter-790

mine the type of each row of a table.791

Algorithm 1 Acquisition of Top Header Row Num-
ber

1: function getThrn(Table X)
2: TopHeadRowNumber thrnX ← 0
3: for Cell x in X.firstRow do:
4: // row span is an attribute of each cell
5: RowSpan rs← x.getRowSpan()
6: thrn← max(rs, thrn)
7: end for
8: Return thrn
9: end function

Algorithm 2 Identify Row Type

1: function identifyRowType(Table X , Row
R)

2: thrnX ← getThrn(X)
3: rth ← getRowLocationNumber(X)
4: // rth represents R located in the rth row

of table X
5: Cell x← R.getF irstCell()
6: // Cell x is the first cell located in row R
7: if rth < thrnX then
8: Return Header-Row
9: else if x.getColumnSpan() =

X.getColumnNumber then
10: Return Header-Row
11: else
12: Return Data-Row
13: end if
14: end function

C Setup of Baselines 792

This section introduces the setup of baselines. 793

GetPt and Aug-Codex have not made their source 794

code publicly available as of yet, leading us to repli- 795

cate the framework based on the details provided 796

in their paper. TableLlama, which does not utilize 797

the Cell Type Classification (CTC) and Table Type 798

Classification (TTC) datasets for training, exhibits 799

suboptimal performance when inputs are presented 800

alongside in-context prompts during testing. To 801

address this, we fine-tuned the model’s parameters 802

using few-shot training data prior to testing. Addi- 803

tionally, given that Tablellama was trained using a 804

substantial volume of data from the HiTab dataset, 805

its test results are not indicative of performance 806

in few-shot scenarios. For GPT-3.5, we employed 807

API calls for the testing, where the training data 808

was integrated as in-context prompts during the test 809

phase. 810

D Results of varied training shots on 811

HiTab 812

We further explore the performance of HGT un- 813

der different numbers of training sampleswith the 814

results depicted in Fig. 7. We choose Aug-codex, 815

Fortap, and Tablellama as the baselines for com- 816

parison. In Fig. 7, the vertical axis represents the 817

accuracy, and the horizontal axis represents the 818

number of training samples, which are 1, 3, 5, and 819

full, respectively. The full setting refers to the use 820

of any amount of data from the training set until 821

optimal results are achieved by the model. It is 822

also noteworthy that Tablellama’s accuracy is only 823

reported in full settings, as it incorporates HiTab 824

training data during its training phase. 825

As you can see from the graph, HGT performs 826

best with a limited number of samples and main- 827

tains competitiveness with the state-of-the-art Aug- 828

Codex even in full settings. 829

Figure 7: Impact of varied shots on HiTab for Table QA.

11

210

Amount incurred
in the current periodproject

0

costincome1

36,829,903.9253,196,521.18Main business2

2,591,042.454,868,204.64Other businesses3

210

Amount incurred
in the current period \n cost

Amount incurred
in the current period \n income

project0

36,829,903.9253,196,521.18
Main

business
1

2,591,042.454,868,204.64
Other

businesses
2

Flatten

Figure 8: Comparison of a table before and after being flattened

Q: Given a sequence of Table CELL tokens <table_start> <tabular_node>...< tabular_node> <table_end> that
constitute a table. Each table CELL token contains the content within the CELL. Tabular CELLs can be divided into five
types: row-index, column-index, row-attribute, column-attribute, value-CELL. Please classify each CELL according to
the table CELL tokens.

A: Based on the given 10 Table CELL tokens, we can classify them as follows: The type of Table CELL token 0 is column-
attribute. The type of Table CELL token 1 is column-attribute. The type of Table CELL token 2 is column-attribute. The
type of Table CELL token 3 is column-attribute. The type of Table CELL token 4 is row-index. The type of Table CELL
token 5 is value-cell. The type of Table CELL token 6 is value-cell. The type of Table CELL token 7 is row-index. The type
of Table CELL token 8 is value-cell. The type of Table CELL token 9 is value-cell.

Q: Given a tabular TABLE token <table_start> <tabular_node> <table_end> that represents a table. The TABLE token
contains the content within the table. Please classify the table according to the tabular TABLE token.

A: Based on the given Table CELL token, we can classify the table as hierarchical.

Q: Given a sequence of Table CELL tokens <table_start> <tabular_node>...< tabular_node> <table_end> that constitute
a table. Each table cell token contains the content within the cell. The table is as follows, each cell is separated by “|”:
project | Amount incurred in the current period | Amount incurred in the current period |
project | income | cost |
Main business | Float Value: 53,196,521.18 | Float Value: 36,829,903.92 |
Other businesses | Float Value: 4,868,204.64 | Float Value: 2,591,042.45 |
Please answer the following question according to the table cell tokens:
Question: How much are the income and cost of the other businesses of the company’s current amount?

A: Based on the given table cells and their tokens, the corresponding Answer: 4,868,204.64, 2,591,042.45.'

Figure 9: Examples of three downstream table-related tasks presented as instructions include: Cell Type Classifica-
tion, Table Type Classification, and Table QA.

E Downstream Table-related Task830

Examples831

Sample inputs for CTC, TTC, and Table QA are832

shown in Fig. 9.833

12

	Introduction
	Related Work
	Graph-based Table Understanding
	LLM-based Table Understanding
	Query Statement-based Table QA
	Bert-like Encoder-only Table Understanding

	Task Definition
	METHODOLOGY
	Tabular Heterogeneous Graph Construction
	Tabular Node Construction
	Adding Edges

	Stage 1: Self-supervised Instruction Tuning
	Tabular HG Encoder
	Multi-granularity Self-supervised Instruction Tasks

	Task-specific Instruction Tuning

	Experiments
	Datasets
	Baselines
	Implementation Details
	Results and Analysis
	Ablation Study

	Conclusion
	Datasets and Pre-processing
	Top Header Row Number
	Setup of Baselines
	Results of varied training shots on HiTab
	Downstream Table-related Task Examples

