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Abstract

Table understanding (TU) has achieved promis-
ing advancements, but it faces the challenges
of the scarcity of manually labeled tables and
the presence of complex table structures. To
address these challenges, we propose HGT, a
framework with a heterogeneous graph (HG)-
enhanced large language model (LLM) to
tackle few-shot TU tasks. It leverages the LLM
by aligning the table semantics with the LLM’s
parametric knowledge through soft prompts
and instruction turning and deals with com-
plex tables by a multi-task pre-training scheme
involving three novel multi-granularity self-
supervised HG pre-training objectives. We em-
pirically demonstrate the effectiveness of HGT,
showing that it outperforms the SOTA for few-
shot complex TU on several benchmarks.

1 Introduction

Table Understanding (TU) seeks to learn infor-
mative embeddings of tables containing inher-
ently tabular semantics, often formatted in ways
not easily interpretable by machines as shown in
Fig. 1. This endeavor enhances machine perfor-
mance across a range of table-related tasks, such
as Table QA (Herzig et al., 2020) and Cell Type
Classification (Ghasemi-Gol et al., 2019) and Table
Type Classification (Wang et al., 2020b).

Yet, in real-world scenarios, TU faces the chal-
lenges of a lack of sufficient human annotations
and the presence of complex table structures,
which diminishes the effectiveness and applicabil-
ity of existing frameworks. As for the first chal-
lenge, the data-hungry nature of existing frame-
works results in diminished performance in few-
shot TU scenarios, where only several samples are
annotated. Although some studies (Yin et al., 2020;
Herzig et al., 2020) have adopted pre-training with
encoder-only architectures (Devlin et al., 2019) to
alleviate the annotation burden, these solutions still
require considerable amounts of labeled data for
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Figure 1: Few-shot complex Table Understanding. Com-
plex tables contain intricate cell-to-cell relationships in-
cluding dependency, hierarchical, and parallel ones.

task-specific fine-tuning. As for the second chal-
lenge, while current frameworks attempt to capture
structural information in tables through the use
of position embeddings (Wang et al., 2020b) or
by modeling tables as graphs (Wang et al., 2021),
these methods are effective for simple tables but
wane with complex tables. This shortfall arises
because the cell-to-cell relationships in complex
tables are more intricate than those encountered in
simple tables as shown in Fig. 1.

Fortunately, recent advancements have intro-
duced techniques that can be integrated into the TU
framework to tackle the challenges: 1) Multimodal
Large Language Models (LLMs) have shown re-
markable effectiveness in managing few-shot tasks
involving data from other modalities, such as vi-
sion (Liu et al., 2023) and time series (Jin et al.,
2023a). This is achieved through instruction tuning



and soft prompts, which seek to align the semantic
spaces of the other modality encoder with the LLM.
2) Self-supervised heterogeneous graph (HG) pre-
training (Ma et al., 2023; Yang et al., 2022) empow-
ers models to navigate multifaceted relationships
within data from substantial volumes of unlabeled
data.

In this work, we propose HGT, an HG-enhanced
LLM framework for the few-shot complex TU. To
enable HGT to model the intricate relationships
within complex tables, HGT begins with modeling
the tabular data with the HG and then processing it
through a tabular graph encoder to generate vectors
imbued with structural information. Additionally,
to ensure the LLM achieves comparable perfor-
mance in table tasks to its performance in natural
language (NL) tasks, especially in few-shot sce-
narios, we align the representation spaces of the
tabular graph encoder and the LLM via instruction
tuning. Specifically, we incorporate table vectors
containing structural information as soft prompts
within the LLM inputs and innovatively design
three multi-granularity self-supervised tasks tai-
lored for both tables and LLMs for pre-training.
After pre-training specific parameters of HGT via
these self-supervised tasks, the HGT capitalizes
on the LLM’s exceptional generalization capability
to adapt to downstream tasks with minimal data
samples. To validate the performance of HGT in
few-shot complex TU, we conduct extensive com-
parative experiments with existing powerful base-
lines on eight publicly available datasets for three
specific table-related tasks in few-shot scenarios.
The experimental results show that HGT exceeds
the current SOTA for few-shot complex TU across
multiple benchmark datasets.

In summary, our main contributions are:

* To the best of our knowledge, we are the first
to propose a framework to align table modality
with NLs to empower the LLM to perform on
tables with the same few-shot proficiency as
it does with NLs.

* To improve the framework’s ability to com-
plex TU, we propose a refined way to convert
tables into HGs and design three novel multi-
granularity self-supervised HG pre-training
tasks tailored for tabular data and LLMs.

* We conduct extensive experiments on eight
publicly available datasets, and the experimen-
tal results show that HGT exceeds the current
SOTA for few-shot complex TU across multi-
ple benchmark datasets.

2 Related Work

2.1 Graph-based Table Understanding

Many studies (Du et al., 2021; Jin et al., 2023b)
have tried to convert tables into graphs and utilized
graph encoders to capture tables’ inherent topo-
logical information. These frameworks include
employing homogeneous graphs or utilizing a ba-
sic node-linking strategy that connects cells exclu-
sively to their adjacent counterparts. Consequently,
such frameworks underperform when dealing with
complex table structures.

2.2 LLM-based Table Understanding

Following the remarkable success of LLMs in NL
tasks, some efforts (Zhang et al., 2023; Chen, 2022)
have extended their application to table-related
tasks. Although these frameworks leverage the
exceptional generalization capacity of LLMs to
achieve SOTA performance in some few-shot tasks,
they resort to simply converting the table into a
row-by-row NL format for input into LLMs. This
process leads to a loss of the tables’ intrinsic topo-
logical information.

2.3 Query Statement-based Table QA

Several studies (Cao et al., 2023; Cheng et al.,
2022) have adapted semantic parsing techniques,
traditionally applied to database tables, to general
Table QA tasks. This involves transforming the ta-
ble into a format interpretable by query languages,
such as SQL, and subsequently utilizing Codex to
generate a query statement to retrieve the answer.
This methodology represents the current SOTA in
Table QA. However, its architectural limitations
restrict its applicability to other table-related tasks.

2.4 Bert-like Encoder-only Table
Understanding

Since the rise in popularity of pre-training models
like BERT (Devlin et al., 2019), there has been
considerable effort devoted to designing special-
ized encoding methods for tabular data and unique
pre-text objectives for pre-training (Herzig et al.,
2020; Cheng et al., 2021a; Jia et al., 2023). Despite
their utilization of self-supervised training, these
methods still require a substantial amount of la-
beled data during fine-tuning for downstream tasks.
Additionally, while they incorporate positional em-
bedding into serialized tabular data, they do not
effectively capture topological information.



3 Task Definition

Given atable 7' = {¢; ;|0 <i < N,0< j < M}
where N is the number of rows, M is the number
of columns, and c; ; is the cell located in the ith
row and jth column. Merged cells, characterized
by a row span or column span greater than 1, are
prevalent in complex tables. For instance, the cell
labeled "project” in the top-left corner of the table
shown in Fig. 3 has a row span of 2. We assign
the coordinates of such merged cells based on the
position of the top-left cell before merging. Hence,
the coordinate of the "project” cell is designated as
(0,0).

Sub-TU tasks for Evaluation

Cell Type Classification (CTC) involves iden-
tifying the type y. of each cell ¢; ; within a ta-
ble T', where y. can belong to a basic taxonomy
Y. = {header cell,data cell} or a more complex
one, varying across datasets.

Table Type Classification (TTC) is a table-level
categorization task that requires models to classify
the table 7" according to a specific taxonomy Y;.

Table QA demands that the model produce an
answer ¥, in response to a natural language ques-
tion ¢, with table T serving as the reference for
deriving the answer y,.

4 METHODOLOGY

This section explains the process in three phases:
tabular HG construction and two tuning stages. An
overview of HGT is shown in Fig. 2.

4.1 Tabular Heterogeneous Graph
Construction

Given that HGs are more proficient at capturing
diverse relationships compared to homogeneous
graphs, we employ HGs in conjunction with a re-
fined method that considers the semantic roles of
cells to effectively model the structure of complex
tables. The subsequent subsections detail the pro-
cess of converting tabular data into HGs, including
the creation of nodes and the heuristic rules for
establishing edges between nodes. The process of
creating a tabular HG is shown in Fig. 3.

4.1.1 Tabular Node Construction

Four Tabular Node Types. TABLE, ROW, Header
CELL, and Data CELL nodes are denoted as green,
red, yellow, and blue nodes in Fig. 3. 1) The TA-
BLE node represents the content described by the
table, facilitating the table-level tasks. 2) The ROW

node signifies the information contained within a
row, aiding in the prediction of the row’s type dur-
ing self-supervised training. 3) The Header CELL
node denotes cells located in the header row, iden-
tifying column schemas or categories. 4) The Data
CELL node represents cells in data rows, meaning
the actual data entries of the table.

Creating Tabular Nodes. First, CELL nodes are
created for each cell in the table, with each node
denoted as ¢; j, where ¢ and j represent the cell’s
coordinates in the original table. If a CELL node is
located in the table’s Top Header Row or is part of
a merged cell spanning the entire table width, it is
viewed as a Header Cell; otherwise, it is identified
as a Data Cell. The method for determining the
Top Header Row Number of a table is elaborated in
Appendix B. Subsequently, an equivalent number
of ROW nodes is created to correspond with the
number of rows in the table, along with one TABLE
node.

Initializing Tabular Node Embeddings. An ini-
tialization vector is required for each node in the
HG. For Header and Data CELL nodes, we em-
ploy the output of Sentence-BERT (Reimers and
Gurevych, 2019) applied to the text within each
cell to obtain their initialization vectors. In the case
of ROW nodes r;, we initialize a vector by con-
catenating the text from the cells in the i*” row and
inputting this concatenated text into the Sentence-
BERT. TABLE nodes serve to represent the table’s
content itself. In a human’s view, a table’s con-
tent can be inferred by examining the cells in the
headers. Consequently, we opt to concatenate the
text from the cells in the headers and to obtain the
embedding.

4.1.2 Adding Edges

To enhance the machine’s understanding of the ta-
ble’s semantics, we analyze complex table data
and develop the following heuristic method to link
nodes: 1) A Table node, representing the whole
table, should be linked to all CELL nodes to en-
capsulate the global semantics. 2) A Row node
derives information from cells within the same row,
so the Row node r; should be linked to each Cell
node c;.. 3) A strong correlation exists between
the semantics of data cells and their corresponding
header cells within the same column. 4) Data cells
located in the same column exhibit a stronger rela-
tional bond compared to those in different columns.
Consequently, adjacent data cells within a column
are interconnected. 5) The interpretation of rela-
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Figure 2: An overview of HGT framework. HGT processes <table, instruction> as an input. First, the table is
converted into an HG and processed by a Tabular HG encoder to generate vectors for each tabular node, while the
LLM transforms instruction texts into initial token embeddings. Subsequently, the HG encoder’s outputs serve as
soft prompts for the LLM, enabling the replacement of placeholder embeddings with actual tabular node vectors.
The modified embedding sequence is then processed by the remaining LLM layers. Throughout both Stage 1 and

Stage 2, only the weights of red components are tuned.

tionships between data cells across columns neces-
sitates the semantic understanding of their respec-
tive header cells. For instance, as demonstrated
in Fig. 3, determining the relationship between
cell c2 0 and cell ¢ 1 requires an examination of
their header cells. This examination reveals that
“53,196,521.18” represents the income from the
“main business” project.

Edge types are categorized based on the nodes
they link, as follows: Table-Header, Table-Data,
Header-Row, Data-Row, Header-Data, Data-Data,
and Header-Header edges.

4.2 Stage 1: Self-supervised Instruction
Tuning

Illustrated in Fig. 2, HGT utilizes the tabular HG
encoder’s output as soft prompts (Li and Liang,
2021), which form part of the LLM input. The
weights of both modules are tuned through self-
supervised instruction tuning to align the vector
representation spaces of the two modules. This
subsection provides a detailed description of the
training process, which involves three granularity
self-supervised tasks.

4.2.1 Tabular HG Encoder

Following the conversion of the table into a tabu-
lar HG, HGT introduces an RGNN (Wang et al.,
2020a) as the encoder for tabular HG data. The
encoder takes a tabular HG as input and gener-
ates vector representations for the tabular nodes as
output. The RGNN employs a message-passing
mechanism to collect semantic and topological in-
formation from neighboring cell nodes, consider-
ing various edge types. Typically, the RGNN com-
prises multiple graph aggregation layers, with each
layer using the following aggregation formula for
each cell node v:

1
W =o | 30 D> Wl ],
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where [ is the [*" layer, N means all neighbor
cell nodes of v, E, is the set of edge type, ¢ is an
activation function and We(f ) is trainable weights.
The last hidden representation is used as part of the
input for subsequent modules in the framework.
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Figure 3: Converting a table into a heterogeneous graph. Cell nodes of varying types are depicted using distinct
colors: Table nodes in green, Row nodes in red, Data Cell nodes in blue, and Header Cell nodes in yellow. Similarly,
edges are differentiated by color to represent various types. Lines without arrows indicate bidirectional edges. For

the sake of clarity, some edges have been omitted.

4.2.2 Multi-granularity Self-supervised
Instruction Tasks

Drawing inspiration from the methodologies pre-
sented in LLaVA (Liu et al., 2023), Time-LLM(Jin
et al., 2023a), and GraphGPT (Tang et al., 2023),
we develop a method to effectively align the vector
spaces of two distinct modalities of data: tables
and NLs. We introduce the soft prompts technique
as a bridge between the two encoders and focus
on fine-tuning only the tabular graph encoder and
the LoRA module within the LLM. This process,
designed to be lightweight, enables the LLM to
grasp the topological information of tables through
semantic instruction learning.

Instruction learning (Wang et al., 2022; Ouyang
et al., 2022a), a technique that merges fine-tuning
with prompt learning, significantly enhances the
generalization capabilities of LLMs. Therefore,
before the model-tuning process, we pre-format
the self-supervised training data into an instruction-
based QA format. Examples of training data for
the three tasks—Table Row Classification, Table
Cell Matching, and Table Context Generation—are
illustrated in Fig. 4.

To align the LLM with the HG encoder, the
HGT incorporates additional tokens into the vo-
cabulary: <tabular_node>, <table_start>, and <ta-
ble_end>. The token <tabular_node> serves as a
placeholder for table tasks within the instruction
text, allowing for the substitution with actual table
node vectors post-processing by the LLM’s Em-
bedding layer. The quantity of these placeholders
matches the number of table nodes relevant to the
current task. For instance, since there are 10 cell to-
kens in Fig. 4, the <tabular_node> is replicated 10
times. The tokens <table_start> and <table_end>
signify the beginning and ending delimiters of the
table placeholders.

The forward propagation in HGT begins with

the input of a <Table, Instruction> pair, where the
instruction text passes through the LLM’s Embed-
ding layer, and the table is transformed into a Tabu-
lar HG before being processed by the RGNN. The
LLM Embedding layer assigns embeddings to each
token, creating a sequence, while the RGNN’s out-
put provides aggregated vector representations for
each table node. Subsequently, HGT replaces the
embeddings corresponding to the table placehold-
ers within the sequence with the actual node vec-
tors. This adjusted embedding sequence is then fed
into the LLM’s remaining layers.

To enhance the HGT understanding of tables,
we innovatively devise three tasks tailored for the
graph-enhanced LLM, each varying in granularity:
Table Row Classification, Table Cell Matching, and
Table Context Generation. The complexity of these
tasks increases progressively, aiming to elevate the
model’s capability to comprehend semantic infor-
mation across different levels. This tiered method
is designed to systematically broaden the model’s
semantic awareness. Below is the detailed descrip-
tions of each task.

Table Row Classification (TRC). The objective of
this task is to train the model to accurately identify
the category of each table row. Utilizing the vec-
tor representations of Row nodes provided by the
HG encoder, the model discerns whether a node
corresponds to a Header Row or a Data Row. The
categorization of Row nodes is automated by an al-
gorithm elaborated in Appendix. B, eliminating the
need for manual intervention and thus qualifying
as a self-supervised training process. In the dataset
we utilize, the labeling accuracy of the algorithm
reaches 97.6%. This task facilitates the model’s
initial grasp of coarse-grained information about
the structure of table rows.

Table Cell Matching (TCM). The task involves
supplying the model with vector representations



(" Q: Given a sequence of table ROW tokens <table_start> <tabular_node>...< tabular_node> <table_end> that constitute a table. Each
table has two ROW types: Header-Row and Data-Row. Please classify each table ROW according to the table ROW tokens.
A: Based on the given 4 table ROW tokens, we can classify them as follows: Table ROW token O corresponds to Header-Row. Table ROW
token 1 corresponds to Header-Row. Table ROW token 2 corresponds to Data-Row. Table ROW token 3 corresponds to Data-Row.

Q: Given a sequence of table CELL tokens <table_start> <tabular_node>...< tabular_node> <table_end> that constitute a table. Each
table CELL token contains the content within the CELL. The following is a list of CELL contents:
0) "income", 1) "Float Value: 36,829,903.92", 2) "Other businesses", ... , 9) "cost". Please reorder the list of CELLs according to the
order of table CELL tokens (i.e., complete the matching of table CELL tokens and CELL contents).

A: Based on the given 8 table CELL tokens and the list of table CELL contents, we obtain the matching of table CELL tokens and contents
as follows: Table CELL token O corresponds to "project" ... Table CELL token 9 corresponds to "Float Value: 2,591,042.45".

current amount is "53,196,521.18", "36,829,903.92"

Q: Given a tabular TABLE token <table_start> <tabular_node> <table_end> that represents a table. The TABLE token contains the
content within the table. Please generate the context according to the tabular TABLE token.
A: Based on the given TABLE CELL token, the context about the table is: The income and cost of the main business of the company's

J

Figure 4: Examples of three self-supervised instruction tuning datasets, each tailored for distinct tasks: Table Row
Classification, Table Cell Matching, and Table Context Generation.

of each cell node alongside a list of shuffled cell
contents. The model’s objective is to correctly pair
each cell node vector with its corresponding orig-
inal text. For instance, referring to the table de-
picted in Fig. 3, the model needs to align the node
vector of ¢ 1 with the string "income" within the
list correctly. This training task enables the model
to discern the semantic information encapsulated
within the cell contents based on the graph node
vectors. Essentially, it aligns the semantic space of
the HG encoder and the LLM.

Table Context Generation (TCG). The objective
of this task is to enable the model to generate con-
text surrounding table data, utilizing the vector rep-
resentations from the Table node. This task fa-
cilitates the model’s learning of the table’s global
semantic information, proving beneficial for tasks
requiring a comprehensive understanding of the
table as an entity.

Examples of data sets in instruction format for
the three tasks are shown in Fig. 4.

4.3 Task-specific Instruction Tuning

Following the completion of the self-supervised
task in Stage 1, the HGT has successfully aligned
the representation spaces of the HG encoder and the
LLM. This alignment, combined with the intrinsic
capabilities of the LLM, empowers HGT to more
effectively comprehend the topological nuances of
complex tables. Consequently, when applied to
a specific downstream task, HGT requires only a
small number of training samples to quickly grasp
the expected answer format for the current task and
reorganize its pre-existing knowledge into the suit-
able output format. When fine-tuning in Stage 2,
the model adopts the same weight-tuning strategy
as in Stage 1, with all parameters frozen except for
those of the HG Encoder.

S Experiments

5.1 Datasets

To validate the effectiveness of our model, we se-
lected a variety of datasets that are both widely stud-
ied and easy to parse, including TURL (Deng et al.,
2020), WCC (Ghasemi-Gol and Szekely, 2018),
IM-TQA (Zheng et al., 2023), HiTab (Cheng et al.,
2021b), WTQ (Flatten) (Pasupat and Liang, 2015),
WTQ (Raw) (Pasupat and Liang, 2015), each perti-
nent to CTC, TTC, or Table QA, respectively.

Statistics for these datasets are presented in Table
1, illustrating variations in the types of annotations,
the primary domains covered, and the proportion
of complex tables. Given the focus on few-shot TU
scenarios, we only list the number of tables within
the test sets. Comprehensive details of the dataset
annotations and pre-processing are available in Ap-
pendix A.

5.2 Baselines

We compare HGT with eight strong baselines
to verify its effectiveness. The eight baselines
can be categorized into four groups according to
their frameworks. ForTap(Cheng et al., 2021a)
and GetPt(Jia et al., 2023) emulate BERT, de-
vising specific pretext tasks tailored for tabular
data to pre-train the Transformer encoder(Devlin
et al., 2019). TabularNet (Du et al., 2021) and
TabPrompt(Jin et al., 2023b) incorporate a graph
encoder. Binder(Cheng et al., 2022) and Aug-
Codex(Cao et al., 2023) rely on Codex to generate
query statements to retrieve the answer. TableL-
lama(Zhang et al., 2023) and GPT-3.5(Ouyang
et al., 2022b) are both LLMs renowned for their
exceptional performance in few-shot scenarios.

5.3 Implementation Details

General Setup Across All Tasks. We employ
Vicuna-7B-v1.5(Chiang et al., 2023) as the base



Datasets Annotation Type Table Info
CTC TTC Table QA | # Test Tables % Complex Tables # QA pairs Main Domains
IM-TQA v v v 153 47.71 627 Manufacturing
wCC v 371 - - General
HiTab v v 3597 92.88 1584 Crime, Health
WTQ (Flatten) v 2108 0.00 4344 General
WTQ (Raw) v 2108 14.80 4344 General

Table 1: Dataset Statistics. “v/” indicates the type of annotation in the dataset that has this task in it. “# Test Tables”,
“% Complex Tables” and “# QA pairs” columns show the number of tables in the test set, the percentage of complex

tables and the numbers of QA pairs, respectively.

CTC (Macro-F1) | TTC (Macro-F1) Table QA (Accuracy)
Model Type Models - -
HiTab IM-TQA | WCC IM-TQA | WTQ (Flat) WTQ (Raw) HiTab IM-TQA
Bert-like ForTap 55.74 46.32 45.13 52.34 26.31 25.48 23.80 28.07
Encoder-based GetPt 57.45 48.61 47.53 55.42 22.63 22.33 22.29 21.05
TabularNet | 53.11 44.53 44.97 55.32 18.12 17.52 21.34 18.98
Graph-based
TabPrompt | 64.44 45.75 49.24 53.32 16.62 13.72 19.19 13.08
Binder - - - - 50.09 42.63 38.07 39.07
Query Statement-based
Aug-Codex - - - - 41.39 38.42 53.09 43.54
TableLlama | 58.58 52.67 46.31 54.69 37.85 33.32 - 47.05
LLM-based
GPT-3.5 62.46 55.63 52.32 59.10 39.25 37.51 42.05 51.52
HGT 66.24 60.11 56.10 59.58 45.00 43.11 54.61 52.95

Table 2: Overall evaluation results on three TU tasks with best bolded and runner-up underlined. ’—’ indicates that

the current framework cannot handle the current task due to some limitations.

model for LLM and a 2-layer RGAT(Wang et al.,
2020a) as our tabular HG encoder whose hidden di-
mension is set as 1048. The initial vectors of nodes
in HG are obtained by Sentence-BERT (Reimers
and Gurevych, 2019), whose dimension is 768. We
integrate a LORA(Hu et al., 2021) module to the
embedding layer of the LLM. At any tuning stage,
HGT exclusively tunes the parameters of the RGAT
and the LoRA module. This lightweight configura-
tion allows our model to be efficiently trained on
a single 4090 GPU. We assemble the tables from
training and validation sets of the datasets men-
tioned above along with a selection of high-quality
tables from the TURL as a comprehensive dataset
consisting of 100k tables for use in the pre-training
stage. Moreover, recognizing GPT’s limited sen-
sitivity to numerical data, we prefix cells contain-
ing only numbers with "Float Value:" and so on,
which can be achieved by regular expression. This
enhancement is aimed at bolstering the semantic
information conveyed by these cells.

General Setup across Evaluation Tasks. Given
our aim to validate the HGT’s performance on few-
shot TU, we randomly generate five 3-shot tasks
for both training and validation on each dataset
(i.e., 3 train/dev tables for CTC, 3 train/dev tables
per class for TTC and 3 train/dev QA pairs for

1

Tale QA). Each training task, paired with a corre-
sponding validation task, is utilized to fine-tune the
models optimally for subsequent testing. Table 2
presents the average performance of a framework
on the test set across these five tasks. In addition,
to align the experiments more closely with real-
world scenarios, we adhere to the setup outlined
in Zheng et al. (2023) and refrain from explicitly
providing the model with the hierarchical structure
information in the header row / columns, despite
some datasets being explicitly labeled with this de-
tail. The detailed setup of baselines is shown in
Appendix C.

Evaluation Metrics. For CTC and TTC, we adopt
Macro-F1 as the evaluation metric. Considering
that our framework, along with some baselines, em-
ploys a generative architecture, relying solely on
exact match might inaccurately categorize some
correct responses (e.g., generating an answer with
an additional period at the end). Therefore, we in-
corporate the semantic-match (Cheng et al., 2022)
and human evaluation as the evaluation metric of
Table QA.

'For a fair comparison with our framework, we use 3-
shot prompting for Binder and Aug-Codex, which decreases
performance compared to the results in their paper. More
details are shown in Appendix C.



5.4 Results and Analysis

The experimental results presented in Table 2
shows that HGT achieves the best performance
on 7 out of 8 datasets, with the WTQ (Raw) dataset
being the sole exception where Binder outperforms
HGT. The following analysis sheds light on these
outcomes: 1) While Query Statement-based frame-
works demonstrate strong capabilities in Table QA,
their architectural design limits their ability to per-
form other tabular tasks. Compared to other end-
to-end frameworks, their generality is somewhat
lacking. 2) WTQ (Raw) represents the unmodified
version of WTQ (Flat), retaining the complexity
of hierarchical headers within tables. A visual de-
piction of the difference between these versions
is provided in Fig. 8. The noticeable drop in per-
formance of other methods on WTQ (Raw) un-
derscores HGT’s capability to effectively process
complex table structures. 3) The fact that other
LLM-based frameworks underperform compared
to HGT underscores the efficacy of our framework
in mitigating the drawbacks associated with lin-
earized table representations which locks the full
capabilities of LLMs. 4) Without sufficient data
for fine-tuning the downstream tasks, pre-trained
models fail to reach their full potential. 5) On
the IM-TQA dataset, the performance of Query
Statement-based frameworks falls short compared
to the LLM-based frameworks. We surmise this
discrepancy is likely due to the dataset featuring
particularly complex tables and look-up type ques-
tions, while Statement-based frameworks excel in
different problem types, such as arithmetic queries.
The results of the experiments exploring HGT at
different numbers of training samples are detailed
in Appendix. D.

5.5 Ablation Study

We conduct ablation experiments on a single
dataset IM-TQA, the only dataset containing three
types of labels, to validate the effectiveness of each
component and self-supervised objective, the re-
sults of which are shown in Table 3.

We first conduct ablation studies w/o three self-
training tasks respectively. We pre-train three mod-
els without TRC, TCM, and TCG respectively
to assess their individual impact. These three
pre-training tasks prove beneficial across all ta-
ble evaluation tasks, with TCM offering the most
substantial enhancement across three evaluation
tasks—enhancements of 5.54%, 3.53%, and 6.70%.

Modules CTC TTC  Table QA
Full HGT 66.24 59.58 52.95
w/oTRC | 61.71 58.03 47.05
w/oTCM | 60.70  56.05 46.25
w/oTCG | 65.38 57.46 50.56
w/o HG 62.42 58.55 49.44
w/o hl 63.09 58.87 48.96

Table 3: Ablation results on IM-TQA dataset. The "w/o
TRC", "w/o TCM", and "w/o TCG": HGT pre-trained
without the specified objective. The "w/o HG": HGT
pre-trained with homogeneous graph. The "w/o hl":
HGT pre-trained without the heuristic linking strategy
described earlier, instead linking all neighboring cells
directly.

This improvement is akin to how a human can only
effectively organize disordered cells by understand-
ing the table’s semantics and the interrelations be-
tween cells. The contribution of TRC is particu-
larly noticeable in CTC and Table QA compared
to TTC, with improvements of 4.53% and 5.95%
respectively. as it aids the model in recognizing
that the semantics of cells in header rows and data
rows differ, even when their content is identical.
TCG is especially advantageous for TTC, more so
than the other tasks, aligning with our expectations.

We then conduct ablation studies about our
method to construct tabular graphs. This involves
converting tables into homogeneous graphs rather
than heterogeneous ones and replacing the heuris-
tic linking strategy with a raw method linking all
neighboring cells. Both variants result in substan-
tial performance declines in CTC and Table QA,
with at least 3.15% and 3.51% reduction on these
two tasks, respectively. It indicates that our conver-
sion method is more effective than existing meth-
ods for modeling complex tables.

6 Conclusion

In this paper, we introduce a novel framework,
HGT, tailored for few-shot complex TU. The ef-
fectiveness of HGT is validated across multiple
datasets for CTC, TTC, and Table QA, accompa-
nied by an in-depth ablation study to examine the
impact of each component.

In future work, we plan to expand HGT’s appli-
cability to tables featuring more diverse layouts and
to further improve HGT’s performance in Table QA
tasks by implementing techniques that enhance the
model’s inference capabilities.



Limitations

Firstly, HGT’s performance notably declines when
dealing with tables that have irregular layouts, such
as those containing sub-titles or images, or forms
filled with personalized information. Secondly,
HGT tends to consume excessive GPU memory
when processing larger tables. Lastly, when faced
with Excel-type forms, it is needed to use the API
to convert them to html-format tables first.
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Figure 5: Annotation correspondence of HiTab.
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Figure 6: Manual Features for Table Orientation Classi-
fication.

IM-TQA (Zheng et al., 2023) consists of tables
in Chinese, gathered from encyclopedias and re-
ports, and translated into English. These tables
are annotated for the three tasks: CTC, TTC, and
Table QA. Due to our method of converting ta-
bles into HGs not being suitable for Vertical ta-
bles—where header cells do not align with the table
rows—we employ a feature engineering method to
pre-process and convert Vertical tables into Hor-
izontal tables. This method has demonstrated a
98 % accuracy rate, with the relevant features de-
picted in Fig. 6. HiTlab (Cheng et al., 2021b) fea-
tures hierarchical matrix tables sourced from sta-
tistical reports and Wikipedia articles, annotated
for row and column granularity as well as Table
QA. We also transform these broad-granularity an-
notations into cell-level annotations, as shown in
Fig. 5. WTQ (Flatten) and WTQ (Raw) originate
from the same work (Pasupat and Liang, 2015) and
consist of tables sourced from Wikipedia, accom-
panied by questions that involve basic arithmetic
operations like sum and max, and sometimes ne-
cessitate compositional reasoning. To simplify the
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Table QA task, the authors converted the hierarchi-
cal structure of header rows into a single row in
the WTQ (Raw) dataset, resulting in the WTQ (Flat-
ten) version. An illustration of this transformation
is presented in Fig. 8. WCC (Ghasemi-Gol and
Szekely, 2018), a subset of the July 2015 Common
Crawl, is annotated for TTC using the web table
taxonomy introduced by Crestan and Pantel 2011.
It is not explicitly divided into training and test sets,
so we use the 353 tables that were not sampled as
the test set. Due to the GPU memory limit, we
exclude the tables containing more than 150 cells.

B Top Header Row Number

The heuristic rule of acquiring the Top Header Row
Number is shown in Alg. 1. Alg. 2 aims to deter-
mine the type of each row of a table.

Algorithm 1 Acquisition of Top Header Row Num-
ber
1: function getT hrn(Table X)
2 TopHeadRowNumber thrny < 0
3 for Cell x in X. first Row do:
4 // row span is an attribute of each cell
5: RowSpan rs <« x.getRowSpan()
6
7
8
9:

thrn < max(rs,thrn)
end for
Return thrn
end function

Algorithm 2 Identify Row Type

1: function identi fyRowType(Table X, Row
R)

2: thrnyx < getThrn(X)
3: T, <— get Row Location Number(X)
4: /I ¢, represents R located in the r;, row

of table X

5: Cell z < R.getFirstCell()
6: /I Cell z is the first cell located in row R
7: if 4, < thrnx then
8: Return Header-Row
9: else if x.getColumnSpan() =
X.getColumnNumber then
10: Return Header-Row
11: else
12: Return Data-Row
13: end if

14: end function

C Setup of Baselines

This section introduces the setup of baselines.
GetPt and Aug-Codex have not made their source
code publicly available as of yet, leading us to repli-
cate the framework based on the details provided
in their paper. TableLlama, which does not utilize
the Cell Type Classification (CTC) and Table Type
Classification (TTC) datasets for training, exhibits
suboptimal performance when inputs are presented
alongside in-context prompts during testing. To
address this, we fine-tuned the model’s parameters
using few-shot training data prior to testing. Addi-
tionally, given that Tablellama was trained using a
substantial volume of data from the HiTab dataset,
its test results are not indicative of performance
in few-shot scenarios. For GPT-3.5, we employed
API calls for the testing, where the training data
was integrated as in-context prompts during the test
phase.

D Results of varied training shots on
HiTab

We further explore the performance of HGT un-
der different numbers of training sampleswith the
results depicted in Fig. 7. We choose Aug-codex,
Fortap, and Tablellama as the baselines for com-
parison. In Fig. 7, the vertical axis represents the
accuracy, and the horizontal axis represents the
number of training samples, which are 1, 3, 5, and
full, respectively. The full setting refers to the use
of any amount of data from the training set until
optimal results are achieved by the model. It is
also noteworthy that Tablellama’s accuracy is only
reported in full settings, as it incorporates HiTab
training data during its training phase.

As you can see from the graph, HGT performs
best with a limited number of samples and main-
tains competitiveness with the state-of-the-art Aug-
Codex even in full settings.

A—HGT Aug-Codex Fortap —O—TableLlama
68
o}
A

56 A

A
a4
32
20

1 3 5 Full

Figure 7: Impact of varied shots on HiTab for Table QA.
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project in the current period proj in the current period \n income|in the current period \n cost
1 income cost Flatten B
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Other
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Figure 8: Comparison of a table before and after being flattened

/ Q: Given a sequence of Table CELL tokens <table_start> <tabular_node>...< tabular_node> <table_end> that )
constitute a table. Each table CELL token contains the content within the CELL. Tabular CELLs can be divided into five
types: row-index, column-index, row-attribute, column-attribute, value-CELL. Please classify each CELL according to
the table CELL tokens.

A: Based on the given 10 Table CELL tokens, we can classify them as follows: The type of Table CELL token O is column-
attribute. The type of Table CELL token 1 is column-attribute. The type of Table CELL token 2 is column-attribute. The
type of Table CELL token 3 is column-attribute. The type of Table CELL token 4 is row-index. The type of Table CELL
token 5 is value-cell. The type of Table CELL token 6 is value-cell. The type of Table CELL token 7 is row-index. The type

\___ of Table CELL token 8 is value-cell. The type of Table CELL token 9 is value-cell. J

p

Q: Given a tabular TABLE token <table_start> <tabular_node> <table_end> that represents a table. The TABLE token
contains the content within the table. Please classify the table according to the tabular TABLE token.
L A: Based on the given Table CELL token, we can classify the table as hierarchical.

J

(" Q: Given a sequence of Table CELL tokens <table_start> <tabular_node>...< tabular_node> <table_end> that constitute N
a table. Each table cell token contains the content within the cell. The table is as follows, each cell is separated by “| ™
project | Amount incurred in the current period | Amount incurred in the current period |

project [ income [ cost |

Main business | Float Value: 53,196,521.18 | Float Value: 36,829,903.92 |

Other businesses | Float Value: 4,868,204.64 | Float Value: 2,591,042.45 |

Please answer the following question according to the table cell tokens:

Question: How much are the income and cost of the other businesses of the company’s current amount?

\A: Based on the given table cells and their tokens, the corresponding Answer: 4,868,204.64, 2,591,042.45." Y,

Figure 9: Examples of three downstream table-related tasks presented as instructions include: Cell Type Classifica-
tion, Table Type Classification, and Table QA.

E Downstream Table-related Task
Examples

Sample inputs for CTC, TTC, and Table QA are
shown in Fig. 9.
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