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Abstract—Fingertip forces are important biomarkers for the
detection and management of various conditions, including stroke
and Parkinson’s disease. This paper presents TouchWave, a
non-contact sensing system designed to monitor fingertip forces
during activities of daily living (ADL). TouchWave leverages
under-cabinet millimeter-wave (mmWave) sensors to capture
both macroscopic hand movements and subtle biomechanical
cues associated with fingertip force production. A novel signal
processing scheme is developed to suppress noise while preserving
force-related information in the mmWave signals. Additionally, a
hybrid deep neural network model is proposed to estimate high-
fidelity fingertip forces. A comprehensive evaluation involving 21
participants demonstrates the effectiveness of TouchWave in both
controlled settings and ADL scenarios.

Index Terms—fingertip force, non-contact sensing, digital
biomarker, mmWave

I. INTRODUCTION

Fingertip force production is a complex neuromechanical
process involving the integration of sensory receptors and mo-
tor neurons, and is critical for functions such as grasping, ob-
ject manipulation, and fine motor control. Recent studies have
highlighted the significant potential of fingertip force metrics
as biomarkers for various neurological disorders, including
stroke [1] and Parkinson’s disease [2]. However, despite their
promise, the measurement of fingertip forces remains largely
confined to laboratory settings, requiring specialized equip-
ment and in-person visits, which limits their utility for daily-
life disease progression tracking and management.

An intuitive approach to enabling fingertip force perception
during activities of daily living involves integrating pressure
sensors into or onto everyday objects (e.g., cups [3]). However,
such solutions often require customization steps that can be
challenging for users without a technical background. To
eliminate this barrier, researchers have explored repurposing
built-in smartphone sensors, such as barometers in air-tight
smartphones [4], for fingertip force sensing. These approaches,
however, are typically constrained by specific hardware de-
signs, limiting their generalizability. Wearable fingertip force
sensors offer a more pervasive alternative. Wearable solutions
include attaching thin-film sensor [5] directly to the fingertips,
as well as inferring fingertip forces through biomechanical
cues measured at other body locations. Such cues include nail
deformation [6], wrist blood volume [7], and arm electromyo-
graphy (EMG) signals [8]. Nevertheless, these methods often
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Fig. 1. Application scenario of our proposed system

interfere with natural hand movements or exhibit instability
during everyday activities. As a result, how to monitor fingertip
forces from activities of daily living in a non-intrusive manner
remains an unsolved challenge.

In this work, we propose a non-contact mmWave sensing
system using touching and pressing interactions in activities
of daily living (ADL) to monitor fingertip force patterns. As
is shown in Fig. 1, the system uses down-looking mmWave
sensors under the cabinet to capture the user’s fingertip force
patterns while the user is conducting daily activities such as
holding cups and using folks. Our key contributions are as
follows:

+ We found mmWave is sensitive to the hand micro-motion
induced by the different levels of fingertip forces. Based
on the observation, we introduce the first non-contact
ADL fingertip forces monitoring system.

+ We design a novel mmWave signal processing scheme to
preserve both macroscopic and subtle motion information
from hands. A two-stream deep neural network is pro-
posed to extract both long-range and short-term temporal
finger dynamics for accurate force estimation.

o We evaluated our system on 21 participants at different
activities of daily living. The accuracy achieved satisfies
the need for biomarker tracking for multiple diseases.

II. NON-CONTACT SENSING OF FINGERTIP FORCES:
CONCEPT AND FEASIBILITY

Biomechanical cues of fingertip forces. Forces on fingertips
are generated through a complex interplay of anatomical
and biomechanical elements, including muscle contractions,
tendon mechanics, and the structure of the bones and joints in
the hand and fingers [9]. When intrinsic muscles within hands,
such as the thenar, hypothenar, and interossei muscles, actuate
to generate fingertip forces, they induce subtle muscle shape
change and minute joint angle variation, externalized as barely
visible skin deformation.



mmWave sensing of biomechanical cues. The Frequency
Modulated Continuous mmWave measures object distances
and velocities using intermediate frequencies (IF), which is
proportional to the wave’s Time-of-Flight. Recent studies
demonstrated that mmWave IF can capture the skin defor-
mation associated with voices [10] and vital signs [11].
The amplitude spectrum of IF reflects macro centimeter-
level deformation, and the phase spectrum of IF shows better
sensitivity to micro sub-millimeter displacement. Based on
such background knowledge, we hypothesize that mmWave
is capable to sense the above biomechanical cues induced by
applying fingertip forces and the sensing results should be
correlated to the applied fingertip forces.

Proof-of-concept. To validate our assumption, we conduct a
proof-of-concept. To see how the mmWave responds to the
change of fingertip forces, we first positioned a mmWave
sensor above a desk at a 50 cm distance. Then, we asked
two study participants to press the force sensors on the desk
surface slightly with their fingers. Fig. 2 reports the force
sensor readings and the corresponding mmWave IF signals
spectrum (amplitude and phase). We observed that both IF
amplitude and phase demonstrate a strong correlation to the
fingertip force, which validates our hypothesis.
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Fig. 2. Proof-of-concept study results on two participants: (a) Fingertip force
readings from a force sensor. (b) Change of amplitude within a span of 40
cm, centered at the pressing hand. (c) Change of phase signal at the pressing
hand.

III. METHODS
A. TouchWave’s Macro-micro Signal Processing Scheme

Based on our insights from the preliminary study, Touch-
Wave utilizes both the macro amplitude and micro phase
spectrum of the mmWave IF for fingertip force estimation.
Here, the spectrum frequency bins are often referred to as
range bins as they are linearly correlated to distances'. For
the amplitude spectrum, traditional mmWave signal process-
ing first identifies a range bin corresponding to each hand.
While the thickness of hands is typically smaller than the
bin width cf = (c is the speed of light, fs is the mmWave
sensor ADC samphng rate, and S represents chirp slope), we
found fingertip force-dependent varying patterns in amplitude
spectrum are shown in multiple range bins due to natural
bending and rotation of the palm during operation (Fig. 2).
We conducted an empirical study using a depth camera to
record 21 participants interacting with everyday objects using
their hands. The results indicate that, for the majority of the
time, participants’ fingertips remained within +7 cm of the

A full description of the mmWave range profiling is beyond the scope of
this paper and can be found in [10]

palm, which is a range that aligns with the typical length
of human fingers. Based on this observation, we utilize the
amplitude spectrum of the range bin corresponding to the
local maximum amplitude (i.e., the palm) and its immediate
neighboring bins covering the +7 cm to retain the macroscopic
force characteristics associated with fingertip interactions. For
the phase spectrum, instead of using signals from multiple
range bins, we extract phase information from the range bin
exhibiting the peak amplitude within the range bins selected
above to optimize signal-to-noise ratio (SNR). The reason
is two-fold: first, extracting phase information from a single
range bin reduces human body motion interferences [10];
second, this bin is closest to the hand exhibiting the strongest
phase patterns correlated to fingertip force applied. Since the
absolute phase readings vary greatly due to slight changes
of hand position, we instead compute the differential phase
signals to highlight dynamic variations and suppress irrelevant
background components. To enable higher spatial resolution
for force estimation on different fingertips, TouchWave further
performs beam steering based on Multiple-input-multiple-
output (MIMO), which is commonly supported by mmWave
sensors. Finally, the amplitude channels and differentiated
phase channels are segmented using moving windows and
fed to TouchWave’s fingertip force estimation model, which
is detailed next.

B. High-fidelity Fingertip Force Estimation
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Fig. 3. The two-steam model for high-fidelity fingertip force estimation.

Model architecture. We adopt an encoder-decoder architec-
ture to map the pre-processed mmWave signals to forces on
multiple fingertips. The encoder-decoder framework is partic-
ularly effective and has proven successful in problems where
physiological information embedded in mmWave signals must
be extracted and reconstructed into continuous and highly
dynamic signals, such as vital signs [11] and voices [10].
Extract fingertip force features in mmWave. In our design,
the encoder is to extract meaningful features from the pre-
processed mmWave signals that are predictive of fingertip
force. Fingertip force evolves over time and is influenced by
both short-term changes (e.g., brief taps or slips) and long-
term patterns (e.g., sustained pressure). Accurately capturing
these temporal dependencies is essential for robust prediction.
In deep neural network design spaces, LSTM can model the
long-range temporal dynamics and suppresses transient noise,
while the convolutional component efficiently captures local
signal patterns. We adopted a hybrid design where LSTM and
CNN form two streams. This design ensures both networks
can retain detailed force features.



Decoder for force estimation The decoder takes the encoded
temporal features and maps them to continuous fingertip force
values. The decoder is implemented using fully connected
layers that process the encoder’s output into a sequence of pre-
dicted force values. This setup allows the decoder to directly
interpret the high-level features extracted by the encoder and
convert them into physically meaningful force readings.

C. Evaluation

Setup. We evaluate TouchWave with the data collection setup
depicted in Fig. 4. This setup integrates a mmWave sensor
(IWR6843ISK-ODS [12], configured as shown in Table I
with 3Tx-4Rx TDM MIMO), calibrated high-precision force
sensors (10 N capacity, 0.02 N resolution, 50 Hz [13]), a
stereo reference camera [14], and a hosting laptop (Intel i7-
11800H). The force sensors were strategically placed on the
desk surface and various daily-use objects (cups, tweezers,
and pens) to capture precise fingertip forces that evaluation
participants apply to them. We use an Arduino Uno to collect
the force sensor readings. All components are synchronized
with the laptop’s internal clock.
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Fig. 4. TouchWave is evaluated against high-accuracy force sensors. The
stereo camera videos are for reference only and are not used in the evaluation.

TABLE I
MMWAVE SENSOR WAVEFORM CONFIGURATION

Parameter Value Parameter Value
Start Frequency 60 GHz ADC Sample Rate 10 MHz
Frequency Slope  61.520 MHz/us  Idle Time 5 us
Bandwidth 3998.8 MHz Ramp End Time 65 us
ADC Start Time 6 us Chirp Periodicity 1 ms
ADC Samples 512 Rx Gain 30 dB

Protocol. In our experiment, each participant needs to com-
plete 18 distinct hand-object interaction activities. A total of
six fingers, including the thumb, index finger, and middle
finger from both hands, were involved. The study was divided
into two parts. In the first part, participants interacted with
objects under controlled conditions. Specifically, participants
put hands on desk, extended all fingers, and pressed the force
sensors with 1) a single finger, using each of the six fingers
mentioned above; 2) two fingers from the same hand at the
same time (e.g., left thumb and left index fingers or right
thumb and right middle fingers); and 3) the same fingers from
both hands simultaneously (e.g., left index and right index
fingers together). In addition, participants were instructed to
control their fingertip to follow a force prompt on screen
(Fig. 4b), which varied between five levels evenly spaced from
0 to 5 N. This design aimed to ensure balanced data collection
across different force levels. In the second part, participants
performed activities freely using their dominant hand without

force restrictions. These activities included pinching a cup on
a table, using tweezers to pick up an object, and writing on
paper, all with their dominant hands. Two one-minute trials
were collected for each activity.

Population. We recruited 21 participants in this study, includ-
ing 9 females and 12 males. The participants were aged 21-28
years, with a mean age of 25 years. The participants’ heights
ranged from 156-195 cm, weights from 43-93 Kg, and middle
finger lengths from 7.0-9.5 cm. Our study is reviewed and
approved by the Institutional Review Board (IRB).

Data preparation and evaluation metrics. In total, we
collected 8.4 hours of data. We apply an 800-ms moving
window with 200-ms stride to segment signals, which leads
to 297 samples for each trials. Samples where a data packet
loss occurs are dropped. For evaluation, we used the root mean
squared error (RMSE) of the predicted force across all relevant
fingers as a metric.

IV. RESULTS
A. Results under Controlled Conditions
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Fig. 5. Single fingertip forces estimated under controlled conditions.

We first trained our model separately on the left and right
hands based on single-finger pressing activities on the flat desk
surface. The data are split by trials on an 80%-20% ratio
for training and testing, with 102 minutes of data provided
for each training. As shown in Fig. 5, the model-estimated
fingertip forces follow the general trend of the ground-truth
sensor readings. As reported in Table II, the models reached
an RMSE of 1.33 N and 1.28 N.

For two-finger pressing, our model is separately trained for
the settings where the fingers are from left hand, right hand,
and both hands. For the setting with both hands, the model
reaches an RMSE of 1.31 N. For one-hand two-finger pressing
activities, our tests report a combined RMSE of 1.72 N and
1.66 N on the left and right hands, respectively. These results
show that the performance of the system decreases when more
fingers from the same hand are tracked. Compared to the two
fingers from both hands, fingers from the same hand are much
closer, bringing more inter-finger interferences.

B. Results on ADL under Naturalistic Conditions

In this part, we evaluate the system’s performance on
everyday activities, which involve multiple-finger cooperation
in dynamic settings. Models are trained on each activity indi-
vidually and reported in Table III. Pinching on the cup using
two fingers from the same hand show comparable RMSE to



TABLE I
PERFORMANCE UNDER CONTROLLED CONDITIONS

Number of

tracked fingers Fingers from RMSE (N)
1 Left Hand 1.33
1 Right Hand 1.28
2 Both Hands 1.31
2 Left Hand 1.72
2 Right Hand 1.66

controlled conditions. Our system reached a low RMSE (1.08
N) in the handwriting activity. This is because participants tend
to apply smaller forces when using a pen than a cup. Among
the three activities, the force on tweezers shows the worst
accuracy. The deformation of metal tweezer legs may have
introduced significant noise into the mmWave sensing data. In
summary, in ADL, TouchWave demonstrates force estimation
performance comparable to that under controlled conditions,
except when participants directly interact with deformable
metal tools.

TABLE III
PERFORMANCE ON ACTIVITIES OF DAILY LIVING

Number of

tracked fingers Activity RMSE (N)
2 Pinch on Cup 1.61
2 Tweezers Pick Up Item 2.67
5 Handwriting with A Pen 1.08

C. Performance on Unseen Persons and ADL

Our model is further examined on its ability to predict
forces on unseen objects and unseen contact surfaces. We
excluded data from 2 participants from the training trials of
right-hand single-finger pressing activities, and further tested
the trained model on these participants. The model reaches a
slightly higher RMSE of 1.42 N on unseen participants. We
then used our model trained on two-finger right hand activities
under controlled conditions to estimate the uncontrolled force
in cup-pinching activities. The tracked fingers in the two
activities both include the right thumb and index finger, yet
the operation was performed differently on distinct contact
surfaces. The RMSE reported is 2.03 N. The results above
show that only a minor accuracy decrease is brought by unseen
users. Compared to unseen users, TouchWave’s force-sensing
performance drops more when generalizing to new objects.
We plan to introduce more activities in the system-building
phase to increase system generalizability.

V. DISCUSSION AND FUTURE WORK

A natural question arises as to whether TouchWave’s pre-
cision is sufficient to support the identification of biomarkers
for conditions such as stroke. Prior studies have shown that,
in stroke patients, the difference in fingertip forces between
impaired and unimpaired hands can be as high as 9.3 N [1].
Our evaluation indicates that TouchWave consistently achieves
an RMSE below 2 N in most scenarios, which is well below
the clinical threshold. This result demonstrates TouchWave’s
potential for distinguishing fingertip force-related biomarkers.

In future work, we plan to conduct targeted case studies
to further assess the system’s validity in disorder prediction

and monitoring. Additionally, we aim to expand its application
to a broader range of daily activities. To further enhance
estimation accuracy, future developments may incorporate
advanced spatial filtering in mmWave signal processing and
integrate biomechanical priors into our deep learning models.

VI. CONCLUSION

In this paper, we presented TouchWave, a novel non-contact
sensing system for monitoring fingertip forces during activities
of daily living (ADL). By leveraging under-cabinet mmWave
sensors, our approach captures both macroscopic and subtle
hand movements associated with force production, without
requiring wearable devices or object instrumentation. We in-
troduced a robust signal processing pipeline and a two-stream
neural network to extract multi-scale temporal features for
high-fidelity force estimation. TouchWave achieves accurate
and reliable force sensing in both controlled and naturalistic
settings, meeting the performance requirements for potential
use in health-related biomarker tracking.

REFERENCES

[1] S. Li, M. L. Latash, G. H. Yue, V. Siemionow, and V. Sahgal, “The
effects of stroke and age on finger interaction in multi-finger force
production tasks,” Clinical Neurophysiology, vol. 114, no. 9, pp. 1646—
1655, 2003.

[2] N.-H. Ko, C. M. Laine, B. E. Fisher, and F. J. Valero-Cuevas, “Dynamic
fingertip force variability in individuals with parkinson’s disease,” Jour-
nal of Hand Therapy, vol. 29, no. 2, p. e8, 2016.

[3] M. Bobin, M. Anastassova, M. Boukallel, and M. Ammi, “Design and
study of a smart cup for monitoring the arm and hand activity of
stroke patients,” IEEE journal of translational engineering in health
and medicine, vol. 6, pp. 1-12, 2018.

[4] R. Takada, W. Lin, T. Ando, B. Shizuki, and S. Takahashi, “A technique
for touch force sensing using a waterproof device’s built-in barometer,”
in proceedings of the 2017 CHI conference extended abstracts on human
factors in computing systems, 2017, pp. 2140-2146.

[51 Y. Luo, Y. Li, P. Sharma, W. Shou, K. Wu, M. Foshey, B. Li,
T. Palacios, A. Torralba, and W. Matusik, “Learning human—environment
interactions using conformal tactile textiles,” Nature Electronics, vol. 4,
pp. 193 — 201, 2021.

[6] H. Popplewell, M. Carré, and R. Lewis, “Measurement of finger pad
forces and friction using finger nail mounted strain gauges,” Wear, vol.
376, pp. 295-304, 2017.

[71 T. Buddhika, H. Zhang, S. W. T. Chan, V. Dissanayake, S. Nanayakkara,
and R. Zimmermann, “fsense: Unlocking the dimension of force for
gestural interactions using smartwatch ppg sensor,” in Proceedings of the
10th Augmented Human International Conference 2019, ser. AH2019.
New York, NY, USA: Association for Computing Machinery, 2019.

[8] P. Liu, D. R. Brown, F. Martel, D. Rancourt, and E. A. Clancy, “Emg-
to-force modeling for multiple fingers,” in 2011 IEEE 37th Annual
Northeast Bioengineering Conference (NEBEC). 1EEE, 2011, pp. 1-2.

[9] J. Maw, K. Y. Wong, and P. Gillespie, “Hand anatomy,” British Journal

of Hospital Medicine, vol. 77, no. 3, pp. C34-C40, 2016.

H. Li, C. Xu, A. S. Rathore, Z. Li, H. Zhang, C. Song, K. Wang, L. Su,

F. Lin, K. Ren et al., “Vocalprint: exploring a resilient and secure voice

authentication via mmwave biometric interrogation,” in Proceedings of

the 18th Conference on Embedded Networked Sensor Systems, 2020, pp.

312-325.

Y. Wu, H. Ni, C. Mao, J. Han, and W. Xu, “Non-intrusive human vital

sign detection using mmwave sensing technologies: A review,” ACM

Trans. Sen. Netw., vol. 20, no. 1, Nov. 2023.

TexasInstruments,  “Iwr6843isk-ods radar evaluation

https://www.ti.com/tool/TWR6843ISK-ODS, 2024.

SingleTact, “Calibrated 8mm diameter, 10n/2.21b force.” [Online].

Available:  https://www.singletact.com/micro-force-sensors/calibrated-

sensors/p/cs8-10n

Stereolabs, “Zed 2 - ai stereo camera,” 2025. [Online]. Available:

https://www.stereolabs.com/products/zed-2

[10]

(1]

[12] module,”

[13]

[14]



