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ABSTRACT

Classic reinforcement learning (RL) frequently confronts challenges when han-
dling tasks involving delays. These delays introduce a mismatch between the re-
ceived observations and the subsequent actions to be executed, evidently deviating
from the Markov property. Existing approaches usually tackle this issue with end-
to-end solutions using state augmentation, often by augmenting the state space
with a predefined maximum dimension to accommodate random delays. How-
ever, this black-box approach, characterized by incomprehensible intermediate
processes and redundant information in augmented states, can result in instability
and even undermine the overall performance. To alleviate the delay challenges in
RL, we propose DEER (Delay-resilient Encoder-Enhanced RL), a framework that
can effectively enhance the interpretability and address the random delay issues.
DEER employs a pretrained encoder to encode delayed states along with their
variable-length past action sequences due to different delays. Specifically, we
leverage delay-free environment datasets to train the encoder and convert delayed
states and their corresponding action sequences into hidden states, which serve as
novel delay-free states for further policy training. In a variety of delayed scenarios,
the trained encoder can smoothly integrate with standard RL algorithms without
extra modifications and enhance the delay-solving capability by simply adapting
the input dimension of the original algorithms. We evaluate DEER through exten-
sive experiments on Gym and Mujoco, which confirm that DEER is superior to
state-of-the-art RL algorithms in both constant and random delay environments.

1 INTRODUCTION

Deep reinforcement learning has made substantial development in games (Mnih et al., 2013; Silver
et al., 2016) and large language models (Ouyang et al., 2022; Carta et al., 2023), where most works
are based on the assumption that action execution and state observation occur instantaneously. How-
ever, delays are inevitable in real-world tasks such as robotics (Duan et al., 2016; Hwangbo et al.,
2017), remote control (Lampe et al., 2014) and distributed communication (Moon et al., 1999). Prior
research (Gu & Niculescu, 2003; Dugard & Verriest, 1998) has revealed the substantial impact of
delays on an agent’s decision process, which not only leads to performance degradation but also
holds the potential to induce instability in dynamic systems, posing severe risks in real-world ap-
plications. Notably, in self-driving scenarios, even minor delays in the observation and execution
modules can markedly amplify the risk of accidents.

Despite the ubiquity of delay as a practical challenge, related research in the domain of RL remains
scarce. Existing methods largely fall into two categories: model-free and model-based approaches.
Most model-free approaches (Katsikopoulos & Engelbrecht, 2003a; Nath et al., 2021a; Ramstedt
& Pal, 2019; Xiao et al., 2020; Schuitema et al., 2010; Agarwal & Aggarwal, 2021; Bouteiller
et al., 2021) rely on state augmentation to transform delayed MDPs into equivalent undelayed ones.
Though being successful to some extent, their effectiveness is limited by the augmented state space’s
dimension. On the one hand, fixed input dimension methods are tailored for environments with
constant delays, making them unsuitable for new tasks with different or random delays. On the
other hand, the dimension of the augmented state space grows linearly with the length of delay,
leading to exponential computational requirements and suboptimal policy learning by the agent.
By contrast, model-based methods (Walsh et al., 2007; Hester & Stone, 2013; Chen et al., 2021;
Firoiu et al., 2018; Derman et al., 2021) aim to predict the current state using the agent’s recently
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Figure 1: Overview of DEER. The overall process consists of two main parts: pre-traininging
an encoder using the offline dataset from undelayed environments to obtain a fixed-length feature
representation for the augemnted states, and during the agent’s interaction with the delayed environ-
ments, utilizing the context representations to guide decision-making. To be specific, details about
the process of policy learning are as follows. For environments with a constant delay of d, the in-
formation state construction is shown by the thick solid line. For random environments, when the
agent misses state st−d, the thin dashed line signifies the information state comprising the preceding
state and action sequences. The variable D in the figure denotes the maximum delay the agent can
tolerate (D = dI + dM ).

received delayed state and action sequence. While being effective in static contexts, their robustness
in dynamic environments requires further enhancement. For instance, Firoiu et al. (2018) proposed
a predictive model using unrolled Gated Recurrent Unit (GRU) (Chung et al., 2014) modules to
iteratively generate a single action, and Derman et al. (2021) introduced the Delayed-Q algorithm
for making decisions based on iterative forward dynamic predictions. However, both methods suffer
from issues including inference time, model precision, and cumulative errors, that can significantly
impact their overall performance.

Considering the outlined challenges, we propose Delay-resilient Encoder-Enhanced RL (DEER)
that leverages an encoder pretrained on offline datasets to enhance online learning in delayed envi-
ronments. Instead of making direct decisions using augmented states, we initially map these states
into a hidden space known as the context representation space. The actions are subsequently inferred
based on these context representations. The overview of DEER is shown in Fig.1. Specifically, we
employ an undelayed offline dataset mainly consisting of random trajectories, complemented by a
small number of expert trajectories, for the pretraining of an encoder-decoder model. The model’s
encoder module is designed to generate a context representation that presents a semantic embed-
ding of the delayed state and its corresponding action sequence. This embedding encapsulates the
implicit information about both the current state and historical states, effectively serving as a high-
dimensional state representation without delay, and can be directly used by standard RL algorithms
to generate the current action. This process features three key advantages: (1) The trained encoder
can easily generalize to diverse delay environments, as it has been trained across various delay set-
tings. Even when facing an unknown delay in a new environment, the pretrained encoder combined
with standard RL algorithms can still work effectively; (2) The proposed approach is versatile in ad-
dressing both constant and random delay environments. Since the encoder transforms the augmented
state into a fixed-length vector, there is no need to modify the agent’s structure for different delay
scenarios; (3) This method explicitly breaks down the end-to-end decision process into two distinct
stages: encoding the augmented state and making decisions based on the embedding, which signif-
icantly improves the interpretability of the entire process. Furthermore, DEER can be seamlessly
integrated with any standard RL algorithm. In this paper, we employ Soft Actor-Critic (SAC) as the
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decision module, and comprehensive experiments on Gym and Mujoco confirm that our approach is
superior to state-of-the-art methods in both constant and random delay environments.

The main contributions of this paper are summarized as follows:

• DEER innovatively leverages offline datasets from delay-free environment tasks to aid in
handling tasks occurring within delayed environments.

• A versatile framework DEER is introduced to enhance agent performance in delayed en-
vironments, which can be smoothly integrated with standard RL algorithms without any
additional modifications.

• With SAC as the decision module, extensive experiments on Gym and Mujoco demonstrate
that DEER achieves competitive or superior learning efficiency and performance compared
with previous state-of-the-art methods.

2 RELATED WORKS

Offline assisted Online RL

A large number of works have been done to improve an agent’s online performance with the aid of
offline RL techniques and they can be categorized as follows:

(1) Combining offline data with online learning. Several early works made an attempt to initialize
a replay buffer by the demonstration data (Vecerik et al., 2017; Hester et al., 2018), while other
works (Lee et al., 2022; Mao et al., 2022; Ball et al., 2023; Nair et al., 2018; Hansen et al., 2022)
designed new prioritized sampling schemes to improve learning efficiency and control distribution
shift in the online learning stage.

(2) Pretraining in representation or policy. The former (Yang & Nachum, 2021) adopted standard
contrastive learning methods to extract the features from a variety of offline datasets, which can be
applied to downstream tasks including online RL, imitation learning and offline policy optimization.
The latter (Rajeswaran et al., 2017; Nair et al., 2020; Zhao et al., 2022; Rudner et al., 2021; Uchendu
et al., 2022) called offline-to-online RL has been more prevalent in recent years and commonly exe-
cutes offline RL algorithms followed by online fine-tuning including parameter transferring, policy
regularization, etc.

Our method shares the same key concept with the influential work by Yang & Nachum (2021),
yet features significant distinctions in data source, loss function, and working principle. Precisely,
we develop an encoder-decoder model to map augmented states, composed of the delayed state
and subsequent action sequence, into a common hidden space. This model is trained on a dataset
primarily containing random data, with a minor portion of expert data from undelayed environments.

Encoders in RL

Encoders have gained widespread usage in reinforcement learning for extracting representations as
input to the policy. The RL4Rec framework (Chen et al., 2019; Zhao et al., 2018) employs a state
encoder to compress users’ historical interactions into a dense representation, capturing user pref-
erences for further inference. Liu et al. (2020) evaluated diverse state encoders and claimed that
an attention-based variant can produce the optimal recommendation performance. Generally, en-
coders in RL4Rec are trained in an end-to-end manner with RL algorithms, distinguishing them
from our approach. In visual RL, pretrained encoders are employed to efficiently extract visual fea-
tures and reduce image input dimensions. Studies such as Shah & Kumar (2021) and Parisi et al.
(2022) demonstrated that pretrained ResNet representations can achieve performance comparable
to state-based inputs with the aid of expert demonstrations. Additionally, Yuan et al. (2022) inves-
tigated the efficacy of the image encoder to enable agents to generalize to unseen visual scenarios
with a substantial distributional shift in a zero-shot manner. Moreover, Ge et al. (2021) employed
a multi-view state encoder to process input states from multiple perspectives, enhancing general-
ization abilities via adaptive traffic signal control transfer learning. Nonetheless, the exploitation of
pretrained models in delay scenarios remains limited in the current literature.
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3 PRELIMINARY

3.1 MARKOV DECISION PROPERTY (MDP)

The sequential decision-making problem is typically formulated as a discounted Markov Decision
Process (MDP), denoted by a tuple (S,A, ρ, p, r, γ). Here, S and A are state and action spaces,
respectively; ρ is the initial state distribution; p : S ×A → S is the transition function; r : S ×A →
R gives the reward to any transitions and γ ∈ [0, 1) is a discount factor. During the interaction
between the agent and the environment, the agent follows a policy π : S → A, resulting in a
sequence of transitions or an entire trajectory τ = (st, at, rt)t≥0. The cumulative return is calculated
as R(τ) =

∑
t=0 γ

trt and the primary objective in RL is to identify a return-maxmizing policy
π∗ = argmaxπE[R(τ)].

3.2 RANDOM DROPPING DELAYED MARKOV DECISION PROCESS (RDDMDP)

In real-world scenarios, especially in tasks such as remote control and distributed communication,
delays resulting from long-distance transmission or heavy data transfers have a significant impact
on agent performance, which are denoted by an intrinsic delay parameter dI in our work. Morever,
during the process of information transmission and interaction, states may be dropped due to ob-
stacles or network malfunctions. Consequently, apart from the first state that is always observable,
the instances of state dropout in subsequent steps follow a Bernoulli distribution with parameter µ,
representing the probability of dropout. Futhermore, the maximum number of extra dropping steps
based on dI , labeled as dM , is defined to ensure that the overall delay is within the agent’s capacity
limit. Therefore, at each time step t, the agent is expected to receive a state st−dI

and a correspond-
ing reward rt−dI

. However, each state dropout follows a Bernoulli distribution: ωt ∼ Bern(µ),
which implies that when ωt equals 0, the agent receives complete information including the state
and reward, and when ωt is 1, it receives nothing.

As a result, the agent works in an environment with inherent random delays, deviating from the
concept discussed in Katsikopoulos & Engelbrecht (2003b) and Nath et al. (2021b). A detailed
elaboration on the discrepancies is available in Appendix A.1. The Random Dropping Delayed
Markov Decision Process (RDDMDP) is proposed as follows:

Definition 1 The RDDMDP can be defined as a 9-tuple (dI , dM ,Iz,A,ρ,p, r, γ, µ):

(1) Intrinsic delay value: dI ∈ Z+, which is caused by long distance transmission or heavy data
transfers;

(2) Maximum number of extra dropping steps: dM ∈ Z+, which is defined to ensure that dI + dM
remains within the agent’s capacity;

(3) Information state space: Iz = S ×Az , where z denotes the random delay value with dI ≤ z ≤
dI + dM , S and A are the same as the definition in MDP ;

(4) Action space: A = A;

(5) Initial information state distribution: ρ(i0) = ρ(s0, a0, ..., adf−1) = ρ(s0)
∏dI−1

i=0 δ(ai − ci),
where ρ is the initial state distribution in MDP and {ci}dI−1

i=0 are actions selected randomly at the
initial of trajectories when states are not observed, and δ is the Dirac delta function;

(6) Transition distribution: p(it+1|it,at), where at ∈ A and the information state it ∈ Iz is
described in detail below;

(7) Reward function: rt = rt−zt , where zt denotes the random delay value at time t;

(8) Discount factor: γ ∈ [0, 1);

(9) Dropping probability: µ ∈ [0, 1), and when µ = 0, the RDDMDP is reduced to the constant
delayed MDP (CDMDP) and the details are provided in Appendix A.2.
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Figure 2: Process of model pretraining. Firstly, the information state dataset is created based on
the original undelayed dataset. All state sequences are standardized to a uniform length D, where
D represents the maximum delay in the environment. Next, these datasets are fed into the seq2seq
model and trained in a supervised manner.

At each time t, there is a chance of µ that the agent does not receive the delayed state st−dI
, leading

to a potential dropout of state. Thus, the random delay value zt is defined in the following manner:

zt =

{
dI , if zt−1 = dI + dM or with probability 1− µ,

zt−1 + 1, others.

The information state is defined correspondingly as 1:

it = (st−zt , (a
(t)
t−n)n=zt:1))

=

{
(st−dI

, (a
(t)
t−n)n=dI :1)), if zt−1 = dI + dM or with probability 1− µ,

concatenate(it−1, at−1), others.

Accordingly, the reward function is expressed as:

rt = rt−zt

=

{
rt−dI

, if zt−1 = dI + dM or with probability 1− µ,

rt−1, others.

After finishing the aforementioned delay modeling, the agent will continue to take actions based on
the current information state it, akin to its behavior in a delay-free environment.

4 METHOD

In this section, we present Delay-resilient Encoder-Enhanced RL (DEER), a concise and effective
framework designed to address delays in RL, which capitalizes on the encoder pretrained on un-
delayed datasets to extract informative features and can properly handle both constant and random
delays. The algorithmic framework of DEER is provided in Algorithm 1.

4.1 PRETRAINED ENCODER

DEER explicitly utilizes pretrained models as feature extractors, requiring no alteration of the RL
algorithm. The pretrained encoder projects information states into embeddings of equal length, help-
ing the agent handle delay challenges without the prior knowledge of environment delays. During
the policy learning across training tasks, the encoder’s parameters remain fixed to acquire universal
information representations.

To acquire a competent encoder, the training of the encoder-decoder model is conducted on the
datasets composed of trajectories generated by a random policy along with a few expert trajectories
collected by a well-trained SAC agent, all from undelayed environments. The input and output of

1The superscript of a(t2)
t1

shows that the action is an element of the information state it2 and the subscript
indicates that the action is taken at timestep t1.
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the model are referred to as the information state It = (st, at, ..., at+d−1) and the state sequence
(st+1, ..., st+d), respectively, and the encoder-decoder model is employed as a regression model for
state predication. In view of the capabilities of the encoder-decoder model, the hidden features ex-
tracted by the encoder are expected to contain valuable information about delays, enabling the agent
to make proper decisions. Moreover, to make the encoder smoothly generalize across various con-
stant delays and effectively handle random delays, the training dataset consists of information states
with diverse action sequence lengths, while maintaining a fixed dimension for the hidden features,
so that the encoder can acquire features that can be directly employed by the agent, irrespective of
the specific delay conditions.

We use a Seq2Seq (Sutskever et al., 2014) model as the encoder-decoder framework, a simple yet
effective choice for handling the delay problem. Multi-Layer Perceptrons (MLPs) are firstly applied
to encode each element in the information state, including a state and a series of actions, to generate
corresponding embeddings. Subsequently, these embeddings are fed into a GRU module to produce
the hidden feature vector whose dimension is a hyperparameter. The Seq2Seq model is optimized
based on the MSE loss to improve the accuracy of state sequence predictions, consequently refining
the hidden feature’s representation of the information state. The complete process of model pretrain-
ing is shown in Fig.2, and the detailed network structure and parameter configurations are presented
in Appendix B.1.

4.2 ENCODER-ENHANCED POLICY LEARNING

The pretrained encoder plays a crucial role in the policy learning phase: extracting essential repre-
sentations of delayed information and enabling standard RL algorithms to learn effectively regard-
less of environment delays.

The encoder provides the context representation based on delayed information, offering distinct ad-
vantages in both constant and random delay environments. In constant delay settings, its strength
lies in the generalization to different types of delays based on the universal training data. This
enables direct transformation of information states with unknown lengths into fixed-length repre-
sentations, avoiding policy input dimension adjustments. In random delay environments, original
information states of varying lengths are encoded into hidden features of constant lengths, facilitat-
ing the adoption of standard RL algorithms that depend on fixed-length inputs. The entire process
of the encoder-enhanced policy learning is shown in Fig.1.

5 EXPERIMENTAL RESULTS

In this section, we thoroughly evaluate the effectiveness of our approach by comparing DEER with
state-of-the-art RL algorithms in both constant and random delay environments. We investigate
various aspects of the context representation’s performance within the same scenario, analyzing the
impact of decision space dimensions on the final performance. Additionally, we conduct an ablation
study to highlight the efficacy of the context representation generated by the pretrained encoder,
which is distinct from the predicted state produced by the same model. Moreover, we consider and
discuss more factors that influence the experimental outcomes, further elucidating the efficacy of
DEER in addressing tasks with delays.

We use SAC (Haarnoja et al., 2018) for decision making, a popular choice for continuous control
tasks due to its integration of the actor-critic architecture and the maximum entropy principle. When
the context representation is produced by the pretrained encoder, the agent takes the action based on
the new state and updates its policy, similar to its behavior in undelayed environments.

All experiments are conducted under the MuJoCo environments from the gym library, including Ant,
HalfCheetah, Hopper, Swimmer, Walker2d, and Reacher. Furthermore, each algorithm is executed
with 5 different seeds in each environment. The details regarding the number of trajectories used in
the pretraining phase are provided in Appendix B.3.

5.1 EVALUATION

The following algorithms are used in comparative studies to illustrate the effectiveness of our pro-
posed method:
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Figure 3: Comparison of algorithms under diverse constant delays.

• Reinforcement Learning with Random Delays (RLRD; Bouteiller et al., 2021). RLRD
introduces a technique where past actions are relabeled using the current policy. This relabeling
procedure generates on-policy sub-trajectories, providing an off-policy and planning-free approach
applicable to environments with constant or random delays.

• Delay-Aware Trajectory Sampling (DATS; Chen et al., 2021). The effectiveness of DATS
can be attributed to the synergistic combination of its unique dynamics model, which incorporates
both the known part resulting from delays and the unknown part inherited from the original MDP,
and its effective planning method, PETS.

• Soft Actor-Critic with Augmented States (SACAS). The implementation of SACAS aligns
with the principles described in Katsikopoulos & Engelbrecht (2003a).

Considering the differences in reward settings between DATS and other methods, we normalize the
cumulative rewards by Return−min_return

Expert_return−min_return . The parameters remain consistent within each
algorithm but may vary across different algorithms. Return represents the cumulative rewards
obtained in each episode; min_return corresponds to the minimum return observed throughout all
experiments; Expert_return indicates the level of expertise achieved in undelayed environments.

Constant Delays. The initial experiments focus on environments with constant delays. Four algo-
rithms are compared in environments where delay values are set to 1, 2, 4, 6 and 8, respectively. As
shown in Figure 3, it is clear that: 1) As delay increases, the performance of all compared algorithms
diminishes; 2) In Ant, Swimmer, Walker2d, and Reacher, DEER outperforms other algorithms, ev-
ident from their respective performance curves, while in HalfCheetah and Hopper, DEER’s perfor-
mance is similar to that of other algorithms or slightly lower with certain delay values (e.g., Hopper
with delay = 8); 3) DEER consistently outperforms the expert in Swimmer across various delays,
further highlighting the effectiveness of the context representation in making informed decisions.

Random Delays. Randomly delayed environments present a tougher challenge compared with con-
stant delays due to the increased risk of information dropout. We evaluate the four aforementioned
algorithms with dI = 2, dM = 4, and dropping probabilities µ = 0.2, 0.4, and 0.6, respectively.
Figures 5 to 7 show the performance comparison of different algorithms under random delays with
different µ. To better analyze the results, we take µ = 0.2 and µ = 0.4, and summarize the fi-
nal results of different algorithms on different tasks in Table 1. Evidently, the loss of information
accounts for a notable performance decline across all algorithms, even if they are capable of achiev-
ing satisfactory results without random delays. Nevertheless, DEER consistently outperforms its
counterparts. In summary, the context representation generated by DEER’s pretrained encoder can
effectively extract valuable information from delayed states, readily applicable across varying delay
settings.
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Table 1: Comparison of algorithms with dropping probability 0.2 and 0.4.
Drop 0.2 0.4

Algorithm DEER RLRD DATS SACAS DEER RLRD DATS SACAS

Ant 0.47 0.16 0.23 0.08 0.38 0.02 0.17 0.03
HalfCheetah 0.32 0.28 0.29 0.3 0.26 0.08 0.08 0.01

Hopper 0.82 0.48 0.64 0.64 0.51 0.31 0.5 0.31
Swimmer 1.79 0.83 0.94 0.83 1.16 0.67 0.82 0.68
Walker2d 0.62 0.49 0.44 0.26 0.32 0.34 0.35 0.158
Reacher 0.91 0.72 0.61 0.8 0.88 0.64 0.75 0.88

5.2 INFLUENCE OF KEY PARAMETER

The context representation plays a crucial role as the input to the decision model and within the
encoder-decoder architecture. Next, we investigate the impact of dimension of the context repre-
sentation on the agent’s performance in delayed environments. The results of DEER for dimensions
with 128, 256, and 512 across various delays are presented in Figures 8 - 15. Similarly, to better ana-
lyze the impact of context representation dimensions on the performance of the agent under different
conditions, we have summarized the results in Tables 2 and 6. From these tables, it can be observed
that the performance of DEER in Reacher appears less sensitive to dimension changes and is pri-
marily sensitive to the delay factor. Moreover, in tasks such as HalfCheetah and Swimmer, higher
dimensions correspond to improved performance, while Hopper and Walker2d present an opposite
trend. This observation suggests that the final performance of the agent depends on the representa-
tion capability of the pre-trained encoder, when the training strategy is kept the same. Only when
the context representation can well represent the delay information, that is, when the pre-trained
encoder can well represent the information state, is it beneficial to the agent’s decision-making.
Therefore, the dimension of the representation information is not necessarily related to the final per-
formance. In summary, taking into account factors including computational complexity and overall
performance, opting for a 256-dimensional context representation is generally recommended.

Table 2: Comparison of DEERs performance in various dimensions with delay values of 4, 6 and 8.
Delay 4 6 8

Dimension 128 256 512 128 256 512 128 256 512

Ant 1344 2574 2415 889 1653 1932 617 1072 1381
HalfCheetah 5236 5780 5337 3320 3853 4234 1874 2924 3111

Hopper 2713 2918 2198 2197 2565 1737 1908 2462 1891
Swimmer 46 78 118 50 83 105 44 48 86
Walker2d 3600 4119 2098 2712 3546 677 1011 3074 239
Reacher -7.9 -7.9 -8 -9.9 -9.8 -9.9 -11.7 -11.5 -11.5

5.3 ABLATION STUDY

The ablation study aims to demonstrate the importance of the context representation compared with
the predicted state, termed "Decision on Last Predicted State" (DOLPS). DOLPS can be inferred
from the decoder module trained with the encoder in DEER at the same time. Experimental results
in Figures 16, 17 and Table 3 consistently confirm DEER’s advantage over DOLPS across various
environments and delays, with DOLPS showing limited effectiveness in Ant, Hopper, and Walker2d.
It is clear that the context representation effectively mitigates prediction errors , which is crucial for
decisions in the original decision space. Furthermore, it captures historical information embedded
in delayed states and action sequences, which is shown to be advantageous for decision-making in
the context of delayed scenarios.

8



Under review as a conference paper at ICLR 2024

Table 3: Comparison of DEER and DOLPS under delay values of 4 and 6.
Delay 4 6

Algorithm DEER DOLPS DEER DOLPS

Ant 2574 -10.8 1653 -16
HalfCheetah 5780 2975 3853 1574

Hopper 2918 663 2565 652
Swimmer 78 42 83 45
Walker2d 4119 238 3546 264
Reacher -7.9 -17 -9.8 -21

5.4 MORE ANALYSIS ON DEER

In this section, we’ll delve deeper into DEER from six aspects related to its design, execution,
and outcomes, aiming to highlight its effectiveness in handling tasks with delays. These aspects
encompass various comparisons and discussions: a time performance contrast between DEER and
other algorithms, a comparison between online and offline DEER, an analysis against state-of-the-
art algorithms in Offline to Online RL, a discussion on the impact of different context representation
dimensions on agent performance, a showcase of the effects of three distinct offline datasets on
resolving delayed tasks, and a fresh comparison in an alternative scenario of random delays. All of
those are provided in Appendix C.4.

5.5 LIMITATION

The experimental results confirm DEER’s efficacy in addressing delay problems, especially high-
lighting the significant performance gains achieved by well-pretrained encoders. However, pre-
trained encoders show certain level of sensitivity to the quantity and state distribution of trajectories
used for training. During the process of model pretraining, we carefully selected the number and
the type of trajectories based on the specific task to train a better encoder. In-depth discussion and
analysis are provided in Appendix C.5.

6 CONCLUSION AND FUTURE WORK

In this paper, we introduce DEER, a concise framework designed to effectively tackle delay issues
in RL, including both constant delays and random delays, and enhance the interpretability of the
entire process. In DEER, an encoder is pretrained using trajectories collected from delay-free en-
vironments to map augmented states containing the delayed information into hidden features called
context representation, which is subsequently used by the agent to derive new actions. Experi-
ments on DEER combined with SAC demonstrate that our method achieves competitive or superior
learning efficiency and performance in comparison with state-of-the-art methods, which validate the
effectiveness and efficacy our approach in addressing delay-related challenges.

Future work will focus on extending DEER to visual reinforcement learning, where agents receive
and process visual information as states. Additionally, efforts will be made to deploy our approach
to real-world systems, such as remote control systems or physical robots, further assessing its per-
formance and applicability in practical scenarios.
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A MORE DISCUSSION

A.1 DIFFERENCE BETWEEN RDMDP AND RDDMDP

The RDMDP proposed in (Katsikopoulos & Engelbrecht, 2003b) and (Nath et al., 2021b) introduces
stochasticity by considering variable time steps between two successive variables, including obser-
vations, actions and rewards. The value of these time steps is not fixed and can differ from unity.
Additionally, the observation of a later state st+1 can only occur after the observation of the current
state st. This implies that the state assumed to be observed at time t is actually observed at a later
time t+ d, where d represents the accumulated delay values before time t and it gradually increases
over time. However, the RDDMDP we study extends the constant delay scenario by introducing a
bounded number of steps with missing states. In our settings, if the state st−dI

was observed at time
t, the next state and reward would be st−dI+1 and rt−dI+1 with probability 1− µ while such infor-
mation could not be acquired with probability µ and we would replace them with st−dI

and rt−dI
.

Therefore, in this paper, the random delay value is defined as the number of time steps between two
observed states. If the next state received in RDDMDP precisely corresponded to the state at the
subsequent moment in time, RDDMDP would be equivalent to RDMDP.

A.2 CONSTANT DELAYED MARKOV DECISION PROCESS (CDMDP)

The dropping probabilty µ = 0 means that there is no information dropout during the interaction
between the environment and the agent. Consequently, the RDDMDP can simplified as the Constant
Delayed MDP (CDMDP) (Walsh et al., 2009).

Definition 2 Similar to RDDMDP (dI , dM ,Iz,A,ρ,p, r, γ, µ), CDMDP can be defined as a 6-
tuple (Id,A,ρ,p, r, γ):

(1) Information state space: Id = S × Ad, where d denotes the delay step and it =

(st−d, (a
(t)
t−n)n=d:1) ∈ Id;

(2) Action space: A = A;

(3) Initial information state distribution: ρ(i0) = ρ(s0, a0, ..., ad−1) = ρ(s0)
∏d−1

i=0 δ(ai − ci),
where (ci)i=0:d−1 denotes the initial action sequence and δ is the Dirac delta function;

(4) Transition distribution: p(it+1|it,at) = p(st−d+1, a
(t+1)
t−d+1, ..., a

(t+1)
t |st−d, a

(t)
t−d, ..., a

(t)
t−1,at) =

p(st−d+1|st−d, at−d)
∏d−1

i=1 δ(a
(t+1)
t−d+i − a

(t)
t−d+i)δ(a

(t+1)
t − at);

(5) Reward function: rt = rt−d;

(6) Discount factor: γ ∈ [0, 1).

B IMPLEMENTATION DETAILS

B.1 DETAILS OF THE PRETRAINED MODEL

In this section, we present the detailed settings for the Encoder. The complete structure of the pre-
trained model is shown in Fig.4. Particularly, in the encoder module, the relevant state representation
is computed as follows:

h1 = GRUen(MLPS1(st)),

hi = GRUen(MLPA(at+i−2), hi−1), i = 2, 3, ..., d+ 1,
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Figure 4: Network structure of pretrained model. It comprises two key modules: the encoder module
and the decoder module. In the encoder module, the context representation is generated by first
encoding the state and the action sequence within the information state using MLPS1

and MLPA,
respectively. The resulting encodings are then fed into the GRUen to obtain hidden states. The
decoder module, on the other hand, is responsible for restoring the encoded information. The state
sequence is processed by MLPS2 , followed by inputting it into GRUde along with the attention ci
and hidden state h̄i. The final states are achieved by applying MLPS3 . Teaching Force is employed
within the decoder to enhance training efficiency.

where hd+1 is the representation utilized in the policy training phase and the subscript d denotes the
delay value. In the decoder, we use teacher forcing and attention to strengthen the performance,

h̄0 = hd+1,

ci = Attention((h1, ..., hd+1), h̄i),

h̄1 = GRUde(MLPS2
(0)⊕ c0, h̄0),

h̄i =

{
GRUde(MLPS2(ŝt+i−1)⊕ ci−1, h̄i−1), with probability p ,

GRUde(MLPS2
(st+i−1)⊕ ci−1, h̄i−1), with probability 1− p,

i = 2, 3, ..., d,

ŝt+i = MLPS3
(h̄i ⊕ ci−1), i = 1, 2, ..., d,

where p denotes the teacher forcing ratio and ⊕ denotes the concatenation of tensor along the last
dimension.

The parameters of the pretrained model are shown in Table 4. K1 and K2 are both hyperparameters,
which denote the dimension of hidden states in GRU and the dimension of embeddings in MLP
separately. In this paper, we conduct experiments with K1=128, 256, 512, respectively with K2 =
64.

Table 4: Parameters of the pretrained model

Name Parameters
GRUen 1 Layer (K2, K1)
GRUde 1 Layer (K1 + K2, K1)
MLPS1

1 Layer (state dimension, K2)
MLPA 1 Layer (action dimension, K2)
MLPS2

1 Layer (state dimension, K2)
MLPS3

1 Layer (2K1, state dimension)
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B.2 PSEUDOCODE

Algorithm 1 Delay-resilient Encoder-Enhanced Reinforcement Learning(DEER)
Input: M random trajectories, N expert trajectories(M >> N), maximum number of delayed

steps D.
Output: Policy πθ in delayed environment.
1: Stage 1(Pretraining Model):
2: Convert M + N trajectories into training and test datasets, following the data format:

(st−D, at−D, · · · , at−1) and corresponding labels: (st−D+1, ..., st), where datasets contain var-
ious delays from 1 to D and action sequence in the information state is padded with zeros until
its length matches D.

3: Initialize a Seq2Seq Model comprising Encoder(·) and Decoder(·).
4: Train the Seq2Seq Model using supervised learning on the constructed dataset.
5: Output the Encoder(·) from the trained Seq2Seq Model.
6:
7: Stage 2 (Decision Model):
8: for each iteration do
9: for each environment step do

10: Identify current delayed step d.
11: Obtain the information state It = (st−d, at−d, ..., at−1).
12: Compute context_representation ht = Encoder(It).
13: Take action at = πθ(ht) in the environment, obtain next state st−d+1, and reward rt.
14: Calculate context_representation ht+1 = Encoder(It+1).
15: Store the transition (ht, at, rt, ht+1) in the replay buffer R.
16: if len(R) ≥ training_threshold then
17: Update policy πθ using the Soft Actor-Critic (SAC) method.
18: end if
19: end for
20: end for
21: Output policy πθ in delayed environments.

B.3 DATASETS USED DURING THE PRETRAINING PROCESS

Table 5: Datasets to pretrain the Seq2Seq model

Environment Random Trajs Expert Trajs
Ant 100 10

HalfCheetah 500 10
Hopper 800 10

Swimmer 500 10
Walker2d 8000 60
Reacher 2000 10
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C ADDITIONAL EXPERIMENTS

C.1 RANDOM DELAYS
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Figure 5: Comparison of algorithms with dropping probability 0.2.
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Figure 6: Comparison of algorithms with dropping probability 0.4.
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Figure 7: Comparison of algorithms with dropping probability 0.6.

C.2 KEY PARAMETERS

Table 6: Comparison of DEERs performance in various dimensions with dropping probabilities of
0.2, 0.4 and 0.6.

Drop 0.2 0.4 0.6

Dimension 128 256 512 128 256 512 128 256 512

Ant 1620 2500 1632 1148 1549 340 711 1286 -12
HalfCheetah 6362 5775 6308 5036 5200 5283 3692 4245 5019

Hopper 2362 2661 2209 2623 2337 2537 2420 1961 2413
Swimmer 49 90 98 44 47 72 45 46 47
Walker2d 4609 4818 3556 2493 4274 3467 1709 2835 1394
Reacher -7 -6.9 -7 -7.8 -7.8 -7.5 -8.6 -8.5 -8.5
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Figure 8: Comparison of DEER’s performance with various dimensions and a delay value of 1.
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Figure 9: Comparison of DEER’s performance with various dimensions and a delay value of 2.
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Figure 10: Comparison of DEER’s performance with various dimensions and a delay value of 4.

0 2 4
Steps 1e6

0

2000

R
et

ur
n

Ant

0 2 4
Steps 1e6

3000

R
et

ur
n

HalfCheetah

0.0 0.5 1.0
Steps 1e6

0

1000

2000

3000

R
et

ur
n

Hopper

0 1
Steps 1e6

50

100

R
et

ur
n

Swimmer

0 2 4
Steps 1e6

0

2000

4000

R
et

ur
n

Walker2d

0 1
Steps 1e6

20

10

R
et

ur
n

Reacher

dim=128 dim=256 dim=512

Figure 11: Comparison of DEER’s performance with various dimensions and a delay value of 6.

19



Under review as a conference paper at ICLR 2024

0 2 4
Steps 1e6

0

R
et

ur
n

Ant

0 2 4
Steps 1e6

3000

R
et

ur
n

HalfCheetah

0.0 0.5 1.0
Steps 1e6

0

1000

2000

3000

R
et

ur
n

Hopper

0 1
Steps 1e6

50

100

R
et

ur
n

Swimmer

0 2 4
Steps 1e6

0

2000
R

et
ur

n

Walker2d

0 1
Steps 1e6

20

10

R
et

ur
n

Reacher

dim=128 dim=256 dim=512

Figure 12: Comparison of DEER’s performance with various dimensions and a delay value of 8.
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Figure 13: Comparison of DEER’s performance with various dimensions and dropping probability
0.2.
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Figure 14: Comparison of DEER’s performance with various dimensions and dropping probability
0.4.

0 2 4
Steps 1e6

0

2000

R
et

ur
n

Ant

0 2 4
Steps 1e6

3000

R
et

ur
n

HalfCheetah

0.0 0.5 1.0
Steps 1e6

0

1000

2000

3000

R
et

ur
n

Hopper

0 1
Steps 1e6

50

R
et

ur
n

Swimmer

0 2 4
Steps 1e6

0

2000

4000

R
et

ur
n

Walker2d

0 1
Steps 1e6

20

10

R
et

ur
n

Reacher

dim=128 dim=256 dim=512

Figure 15: Comparison of DEER’s performance with various dimensions and dropping probability
0.6.
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C.3 ABLATION STUDY
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Figure 16: Comparison between DEER and DOLPS with a delay value of 4.
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Figure 17: Comparison between DEER and DOLPS with a delay value of 6.
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C.4 MORE ANALYSIS ON DEER

Content 1: time performance contrast between DEER and other algorithms.

we conducted a comparative analysis of the time and performance of four algorithmsDEER, RLRD,
DATS, and SACAS. Specifically, within the Hopper task, a fixed delay of 4 was established, with
each algorithm undergoing three runs of 1 million environmental steps using different seeds. All
algorithms were executed on the same NVIDIA GeForce RTX 4090 graphics card, and the time and
performance comparison are illustrated in the Table 7.

In comparison to DEER and SACAS, RLRD and DATS incur excessive time consumption (de-
spite RLRD displaying decent final performance). DEER requires more time compared to SACAS,
attributed to both the pretraining duration and the encoding of information states into context rep-
resentation. While DEER performs slightly lower than SACAS in the current settings, Figure 3
demonstrates that DEER surpasses SACAS, especially in the Swimmer task.

Table 7: Comparison of Time and Performance.
Algorithm Time(hour) Scaled Return

DEER 5.771±0.012 0.8±0.11
RLRD 70.67±0.4 0.85±0.05
DATS 81.2±0.087 0.61±0.13

SACAS 5.01±0.078 0.88±0.03

Content 2: comparison between online and offline DEER.

Our comparative experiments were exclusively performed on the Hopper and Walker2d tasks, each
configured with a delay set at 4. The online version of DEER encompasses two primary modules:
an encoder-decoder and a decision-making component. Initially, the encoder-decoder network is
randomly initialized, and training data is gathered during real-time interactions within the environ-
ment. The encoder-decoder is updated every 300,000 steps. Regarding the decision-making aspect,
the SAC framework is employed, wherein the replay buffer stores context representations derived
from the encoder’s information states. The entire training duration extends to 1 million steps. The
comparative results are shown in the following Table 8. Comparing the results in the table, it’s no-
tably clear that the efficacy of offline DEER surpasses that of online DEER. This underscores the
pivotal role played by a stable and well-pretrained encoder in determining the ultimate performance
of the agent.

Table 8: Comparison of Online DEER and Offline DEER.
Version of Deer Online Offline

Hopper 751.75±623.66 2935.62±312
Walker2d 141±159.8 2623.14±542.8

Content 3: comparison with state-of-art in Offline-to-Online RL.

We undertook a comparison between the state-of-the-art algorithms in Offline-to-Online RL, namely,
PEX(Zhang et al., 2023) and DEER. PEX’s core approach involves initially learning a policy from
an offline dataset, utilizing this learned policy as a candidate. Subsequently, another policy takes
charge of further learning. Both policies interact with the environment in an adaptable manner.
While training the offline policy, PEX requires reward information to guide its learning, in addition
to states and actions. In contrast, DEER only relies on states and actions.

Within the MuJoCo environment, we conducted policy training using PEX across three continuous
tasks (Ant, Hopper, and Walker2d), incorporating delays of 1, 2, 4, 6, and 8. Each scenario under-
went experimentation using three different seeds. The offline policy training dataset for PEX aligns
with that of DEER. The comparative experiment results are displayed in the Table 9. Analysis of the
data in the table indicates that the final training outcome of PEX closely resembles that of an agent
employing a random strategy. The subpar performance is likely associated with the utilized offline
dataset, primarily constituted by a significant majority of random trajectories alongside a limited
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number of expert trajectories. This composition within the offline data has resulted in PEX learning
a strategy leaning towards randomness.

Table 9: Comparison of PEX and DEER
Delay 1 2 4 6 8

Algorithm DEER PEX DEER PEX DEER PEX DEER PEX DEER PEX

Ant 4636 165 2903 111 2574 179.9 1653 314 1072 182
Hopper 2484 8.6 3096 6.9 2918 7.7 2565 6.5 2462 7.1

Walker2d 5411 -5.1 4783 -4.8 4119 1.6 3546 -4.8 3074 -4.5

content 4: discussion on the impact of different context representation dimensions on agent
performance.

From our experimental results, mapping the information state to a higher-dimensional context rep-
resentation resulted in better performance of the trained policy in delayed environments. Moreover,
the improvement in performance does not have a direct proportional relationship with the increase in
dimensions. In other words, higher dimensions do not necessarily yield better results. To clarify this
conclusion further, we extended our experiments on the Hopper and Walker2d tasks by encoding the
information state into dimensions similar to the original information state (32 and 64 dimensions)
under a delay of 4. Subsequently, we employed the SAC framework and the same set of parameters
for policy training. The final outcomes of the encoders with different dimensions on the Hopper and
Walker2d tasks are presented in the table below.

Table 10: Comparison of different dimensions.
Dimension 32 64 128 256 512

Hopper 364±19 2497±1012 2994±325 2988±432 2414±562
Walker2d 608±392 728±123 1646±286 2290±969 624±209

Based on the data in the table above, it’s evident that when the dimension of DEER’s pre-trained
encoder is too small, such as setting it to dim=32, the encoder’s capability is too weak to effec-
tively represent delay information within the information state, resulting in decreased performance.
Conversely, when the dimension of DEER’s pre-trained encoder is excessively large, for instance,
with dim=512, although the encoder has numerous parameters and enhanced capabilities, there is a
risk of potential overfitting to the current dataset, leading to decreased performance. Moreover, as
the dimension shifts from 64 to 256, the performance improves for both tasks, indicating that the
representation capability of the context representation indeed influences the final outcome.

Content 5: comparison of different offline datasets.

The reason behind structuring the offline dataset for pre-training the encoder to include a substantial
amount of random trajectories and a few expert trajectories in the delay-free environment is to reflect
a more realistic scenario, where random trajectories are predominant while expert trajectories are
comparatively scarce. To analyze the impact of the offline dataset on the model, we introduced
two additional types of offline datasets in the Hopper and Walker2d tasks, both with a delay of 4:
one composed entirely of random trajectories and the other exclusively of expert trajectories. The
subsequent policy training procedures align with DEER’s methodology. The comparative outcomes
from training with these three distinct offline datasets are presented in the table below.

Table 11: Comparison of different offline datasets
Offline datasets Random Large random and few expert Expert

Tasks
Hopper 2943.56±891.35 2988.32±432.15 3068.09±617.05

Walker2d 405.98±110.6 2289.55±968.70 510.67±95.25
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The experimental results from the Walker2d task in the Table 11 reveal an intriguing aspect: the
quantity of expert trajectories doesn’t directly correlate with superior final results. Essentially, the
efficacy of DEER’s pre-trained encoder seems to hinge closely on the distribution of state transitions
within the provided dataset.

Content 6: a fresh comparison in an alternative scenario of random delays.

The random delay value zt is defined in the following manner:

zt =


dI , with probability1− µ,

zt−1 + 1, with probability µ and zt−1 < dI + dM ,

zt−1, others.

Based on this random delay setting, we compared four algorithms (DEER, RLRD, DATS, SACAS)
in the Hopper and Walker2d tasks, setting dI = 2, dM = 4, and µ = 0.2, 0.4, 0.6. Each algo-
rithm was experimented with three different random seeds for 1 million environment steps in each
environment configuration. The comparative results are shown in Table12 - Table14.

Table 12: Comparison of algorithms in a drop rate of 0.2.
Tasks(µ = 0.2) DEER RLRD DATS SACAS

Hopper 2583.90±915.03 2391.16±473.86 -1064.50±426.87 820.94±15.58
Walker2d 3940.05±1539.67 3013.65±571.69 -1196.97±418.48 670.84±74.90

Table 13: Comparison of algorithms in a drop rate of 0.4.
Tasks(µ = 0.4) DEER RLRD DATS SACAS

Hopper 2542.54±960.73 1609.96±403.12 -754.47±225.30 609.33±15.80
Walker2d 4247.60±1441.24 2062.80±198.73 -1237.48±350.60 518.13±47.12

Table 14: Comparison of algorithms in a drop rate of 0.6.
Tasks(µ = 0.6) DEER RLRD DATS SACAS

Hopper 2129.59±995.17 638.93±230.15 -735.94±197.38 398.93±48.83
Walker2d 2578.52±1614.18 908.23±222.47 -672.75±238.66 360.65±28.46

From the table above, it’s evident that even under the new random delay settings, the performance of
DEER significantly surpasses other algorithms (although there might be instances where it closely
aligns with RLRD scores). This underscores the significance of state representation in decision-
making, further emphasizing that the pre-trained encoder in the DEER algorithm indeed extracts
delay-related information from the information state.

C.5 LIMITATION

The encoder in DEER plays a critical role in extracting informative features from delayed state
and action data, enabling the agent to effectively tackle both constant and random delays issues.
Consequently, the quality of the encoder has a substantial impact on the agents overall performance.

The difference in the number and type of trajectories used to pretrain the encoder, as shown in
Table 5, can be explained as follows: Firstly, the variation in the number of random trajectories
across different tasks is aimed at ensuring that the training set for each task’s encoder contains a
comparable number of transitions to what is required for training the agent to achieve expert-level
performance in an undelayed environment. Moreover, trajectories generated by random policies pri-
marily demonstrate the initial state distribution of the environment and show partial state transition
functions, while expert trajectories exhibit the opposite characteristics. DEER achieves satisfac-
tory performance with just 10 expert trajectories in all tasks apart from the Walker, as shown in
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Table 5. Figure 18 illustrates the performance comparison of DEER in Walker2d with 10 and 60
expert trajectories. It is evident that a greater number of expert trajectories leads to improved final
performance by the agent.

In summary, when using DEER to address a new task with delays, it is advisable to provide the en-
coder with a dataset of transitions that is comparable to the training data used to achieve expert-level
performance in a delay-free environment, in addition to incorporating as many expert trajectories as
possible.
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Figure 18: Comparison of DEER’s performance with different number of expert trajectories in
Walker2d.
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