Under review as a conference paper at ICLR 2026

BUILDING LEARNING CONTEXT FOR AUTONOMOUS
AGENTS THROUGH GENERATIVE OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Building intelligent agents that learn involves designing systems that can evolve
their behavior based on experiences. While early approaches to large language
models (LLMs) agent learning relied mostly on structured memory and in-context
learning, they often led to behavioral instability, poor interpretability, and difficulty
in control. Recent success in generative optimization, where an LLM is used as an
optimizer, has shown the possibility of creating autonomous software agents. By
separating behavior logic (workflow) and how that logic is updated (optimizer), the
agent designer can exhibit more control over the agent. In this work, we show the
surprising fact that the agent learning problem is under-specified with the generative
optimization framework. If we want an agent to learn the right behavior, we must
set up the right context that will induce such behavior. We investigate three types
of software engineering problems that span data science, computer security, game
playing, and question answering. We show that the original generative optimization
framework can only learn robustly under one of the three settings. To address the
issue, we propose to construct a meta-graph through templates to introduce the
right learning context to an LLM optimizer. With this addition, we demonstrate
that defining the right learning context enables agents to discover behaviors aligned
with the designer’s objectives. In particular, we show the first known result of
using generative optimizers to learn executable programs that play Atari games,
where the resulting agents achieve performance comparable to deep reinforcement
learning while requiring 50%-90% less training time.

1 INTRODUCTION

Artificial intelligent agents — computer programs that “operate autonomously, perceive their en-
vironment, persist over time, adapt to changes, create and pursue goals” (Russell & Norvig, 2016)
— have regained significant attention recently, due to the maturation of large language models
(LLMs) (Achiam et al., 2023). The ease of accessing LLMs gave rise to new programming
paradigms, such as language model programs (Khattab et al., 2024) and multi-agent orchestra-
tion frameworks (Wu et al., 2024), all of which leverage calls to LLMs to handle a wide range of
tasks in human society, from computer use (Fourney et al., 2024), and software engineering (Jimenez
et al., 2024), to scientific discovery (Yang et al., 2024b).

Despite these advances, building agents still requires a substantial amount of human engineering.
Often agent developers need to design complex decision rules to orchestrate an agent’s behaviors,
build pipelines to parse information from the environment into the agent’s percepts, and engineer
prompts to control LLMs. However, results in competitive programming (EI-Kishky et al., 2025) have
shown that it is paramount to find a general-purpose method that can scale with compute, rather than
engineering domain-specific solutions (Sutton, 2019). These human-engineered components should
be automatically learned through agent’s experiences, enabling agents that can program themselves
through learning.

Traditional techniques such as reinforcement learning (RL) (Sutton et al., 1998) are general-purpose
algorithms that theoretically can be applied to agent learning. However, since state-of-the-art agents
are made of large language models (LLMs), gradient updates must be performed on LLM weights.
Initial explorations showed promising results (Bai et al., 2025; Guo et al., 2025), although it is unclear
how well the learned LLM weights generalize to out-of-domain tasks, and how many tasks are needed

Under review as a conference paper at ICLR 2026

Workflow Graph Interactive I.earning Graph Batch Learning Graph Episodic Learning Graph

[Code] Query [Code] Rerank
Database _* Results
*
Feedback
wnican LLM () | D) . : 5
[Str] “Generate [sn] T 3
Query" “Summarize"
-

*
Figure 1: A Diagram for An LLM-based System. ' represents a repeated workflow execution graph (we
denote as workflow graph). We use " and to represent trainable parameter nodes (string, code, etc.). The
optimizer ' updates parameter nodes during learning. We show that as agent designer, we can choose to
optimize the parameters under different learning contexts (interactive, batch, and episodic). We show how to
leverage repeatable workflow graphs () can be concatenated to construct an agent learning graph ().

SRoge

to reach a generalist agent, as multi-task learning has always been a challenge in RL (Kirkpatrick
et al., 2017; Taiga et al., 2023).

Recently, there is an emerging end-to-end perspective that instead treats a given software program as
a computational graph and optimizes its parameters (i.e., the human-made decisions discussed above)
via a generalized form of “back-propagation gradient descent” (Cheng et al., 2024b; Yuksekgonul
et al., 2025; Wang et al., 2024b). By using generative models (like LLMs) as optimizers (Pryzant
et al., 2023; Nie et al., 2023; Yang et al., 2024a), this perspective has led to frameworks that can
automatically tune parameters and generate new code in non-differentiable programs, which achieved
promising results in producing distributed systems programs (Wei et al., 2024).

This approach offers several advantages. It enables an agent to adapt to solve tasks through automatic
optimization, directly using rich feedback (such as compilation errors, system reports, and end-user
feedback), a process that traditionally requires manual trial and error. Moreover, by learning, agents
can discover solutions that exceed what human experts can design. We have seen this trend with
deep learning (Silver et al., 2016; Brown & Sandholm, 2019; Mirhoseini et al., 2020; Bellemare
et al., 2020). This perspective turns agent learning into a closed-loop optimization problem by calling
LLMs over multiple iterations to refine the agent. This is in contrast to the predominant use of
LLM-as-agents when the agents change their behaviors based on each query and hope to produce the
correct sequence of actions in one-shot.

Prior works that incorporate environment feedback to change an agent’s behavior have met with
mixed success. While there are very successful applications (Cheng et al., 2024b), limitations have
also been observed: the optimization process can be unstable (Huang et al., 2024) and the self-
improvement phenomenon only persists for a few rounds (Shinn et al., 2023; Madaan et al., 2023).
We argue that this issue arises in part because the problem of agent learning is under-specified with
generative optimization. An agent needs to learn solutions that can generalize different contexts,
while generative optimization defines an optimization problem under a single problem context.

In this paper, we analyze sources of this under-specification issue and propose constructive remedies.
We show that agent learning should not be specified only as an execution (workflow) graph of its own
internal operations, but a meta-graph on a stream of experiences to capture the learning context. We
introduce operators (¢ and =) to insert workflow graphs into a template to construct an agent learning
graph, which correctly specifies the agent’s learning objective and enables generative optimization to
learn parameters effective for the agent designer’s goal. In addition, we discuss how to structure the
agent’s internal workflow to improve optimization results (similar to how architectural choices in
neural networks facilitate better learning outcomes). We note that this factor has been overlooked
in previous attempts to design self-improvement loops (Chen et al., 2023; Huang et al., 2024; Snell
et al., 2024). Finally, we discuss a few choices of enhancing and amplifying feedback for different
stages of the learning process, analogous to reward shaping.

We show that these insights allow us to apply generative optimization to solve a wide range of tasks.
Automatic software engineering, such as creating an agent to write machine learning programs, can
be seen as an interactive learning task. We show that on the MLAgentBench (Huang et al., 2023), we
can learn an agent that can output high-quality models that surpassed 86.6% submissions on Kaggle
leaderboard than the baseline agent, which only surpassed 70.8% submissions. We can also optimize
an LLM based workflow to improve its performance by as much as 14.5% on GSM8K and 65.1% on
BBEH. Finally, we show that we can learn a static Python program that can play Atari games, nearly

Under review as a conference paper at ICLR 2026

matching the performance of Deep RL baselines but with 50%-90% less compute time. All of these
show the versatility of this paradigm and the power of the automatic agent learning process.

2 BACKGROUND AND RELATED WORK

History of Learning Agents The term Al agent has a long history (Genesereth & Nilsson, 1987).
In this paper, we follow Russell & Norvig (2016) and define a learning agent as a program that can
sense percepts, take actions, and adapt with experiences in a digital/physical environment. For an
agent to learn, it implies that the software has components that are modifiable and can influence
its behaviors; these components are called parameters. For example, a tabular agent has a lookup
table as its parameter, and a learning algorithm such as policy iteration or value iteration would be
suitable (Bertsekas, 1987). A deep RL agent has a neural network as its parameter, and learn from
rewards using algorithms like proximal policy optimization (PPO) (Schulman et al., 2017).

Adaptive Workflow Increasingly, intelligent systems are being built with LLMs. For the state-
of-the-art LLM systems (Wang et al., 2024a;c; Fourney et al., 2024), their parameters can be
model weights, or more generally, system prompts, code that pre-processes input, and code that
modifies the returned results from the LLM. Besides the obvious approach of fine-tuning the LLM’s
weights (Scheurer et al., 2023), there isn’t a dominant approach on how to change the system’s
behavior on the fly. Some inference-time learning methods have been introduced, with the prevailing
strategy utilizing databases, referred to as "memories" in RAG (Lewis et al., 2020). Recently, a new
perspective of building intelligent agent emerges, which leverages an LLM’s ability to write coherent
programs to accomplish a purpose (Cheng et al., 2024b; Zhang et al., 2024). This view separates
an LLM agent into two parts: the workflow that represents the behavioral logic of the agent, and an
optimizer that updates such behavioral logic.

Generative Optimization Generative optimization algorithms have been proposed to update an
LLM workflow. They typically use a generative model (like an LLM) as part of its optimizer to
analyze problems and propose updates. A generative optimizer takes as inputs (1) a problem context,
(2) parameters, (3) a computational graph involving the parameters, (4) a feedback signal, and
outputs a parameter value. Several generative optimizer implementations have been proposed, such as
DSPy (Khattab et al., 2024), OptoPrime (Cheng et al., 2024b), TextGrad (Yuksekgonul et al., 2025),
and GASO (Wang et al., 2024b). They differ in how they represent and reason about the graph and
kinds of feedback they can process. For instance, optimizers in DSPy work with scalar feedback,
while OptoPrime/TextGrad/GASO uses any feedback that an LLM can interpret. OptoPrime formats
the entire graph into a single LLM prompt, while TextGrad/GASO processes the graph iteratively.

The Framework of OPTO Recently OPTO (Optimization with Trace Oracle) (Cheng et al., 2024b)
was proposed as a unified math setup for describing iterative generative optimization problems. An
OPTO problem (a generalization of numerical optimization) is described by a tuple (0, w, T"), where
O is the parameter space, w is the problem context and 7 is a Trace Oracle. For a parameter 6 € ©,
the Trace Oracle T returns a tuple (f, g) where g is a computational graph involving § and f is a
feedback signal provided to exactly one node of g (the output node). An autonomous agent that
learns through experience in this setup corresponds to a workflow design and an optimizer that can
update the workflow. We emphasize that a workflow itself is not an autonomous agent, but a workflow
combined with an optimizer that can rewrite its own behavior according to feedback is an agent.

3 BUILDING LEARNING AGENTS WITH GENERATIVE OPTIMIZATION

In agent learning, we wish to optimize an agent’s parameters in a stream of experience. Our approach
takes inspiration from deep learning, which accomplishes machine learning via optimization on
differentiable computational graphs. In deep learning, we specify a neural network architecture
(a computational graph which is parameterized by tensors) and a numerical oracle (e.g., a loss
function to minimize) to provide feedback at the output of the computational graph. Following the
OPTO framework, our approach is built similarly with these two components but using generative
optimization. The main differences are that here differentiability is not required and that the agent
is not limited to learning from numerical feedback only. In the following, we show constructive

Under review as a conference paper at ICLR 2026

templates to define the parameterized computational graph and discuss design principles for the
feedback oracle and the agent’s computational graph.

We demonstrate how computational graphs can naturally describe different agent learning problems.
We suppose that a workflow is given and is represented as a computational graph Wy, where 6 denotes
the parameters. Without loss of generality, we suppose the workflow takes a single input x and
returns a single output y = Wy(z) (z, y can be arrays for modeling multi-input-multi-output cases).
We call Wy the workflow graph. Recall that the workflow here means the full software program,
which internally may be composed of multiple calls to LLMs and decision rules (in other words, with
abuse of notation, the workflow here can represent also an entire multi-agent orchestration (Wu et al.,
2024)). As a result, the workflow graph does not need to be static and it can vary with input or due to
the internal randomness of the workflow.

In contrast to the workflow, we denote the full computational graph that will be presented to the
generative optimizer (i.e., g in OPTO) as Ay, which we call the agent learning graph. The agent
learning graph is composed of the workflow graph and other nodes derived from the learning problem,
such that the learning structure can be captured correctly. Lastly, a feedback oracle maps (x, y) into
feedback f, which can be numerics, texts, images, or structured objects (e.g. a dictionary). We
assume the feedback is not adversarial and contains some information of the agent’s performance.
With these assumptions, an OPTO problem instance can be created where the problem context w can
be fixed to a string such as “Update the parameters to incorporate the feedback.”

Now we discuss how to construct the agent graph for common agent learning problems using
templates to build agent learning graphs, as shown in Fig. 1.

Interactive Learning Template. Here the agent learns on the fly as it interacts with the world (Shalev-
Shwartz et al., 2012). At each time step, it sees an input z, outputs y, receives feedback f, and then
updates its parameter 6. These problems encompass online learning and bandit variants that are
well-studied in the literature. The meta graph here simply shows the input z is transformed by an
operator (i.e., the agent) and then the feedback is provided to y. When the agent graph Ay is inserted
into this template, it yields the workflow graph Wy.

Batch Learning Template. Different from interactive learning, a batch-learning agent learns from

a given dataset D = [(xi, ZL)} ij\; of size N, where x; and z; denote the input and the information
to learn from for the ith data point (Hastie et al., 2009). For example, z; can be the desired agent
output when seeing x; (supervised learning), or it can be a positive-negative pair (preference-based
learning), etc. In batch learning, the agent learns from an oracle that takes (z;, y;, z;) as input (where
y; = Wy(x;)) and provides feedback such as a loss. To handle such a batch problem with the iterative
setup of OPTO, we appeal to the idea of online-to-batch conversion (Shalev-Shwartz et al., 2012) and
mini-batching. As shown in Fig. 1, in each iteration of OPTO, we sample a minibatch and construct
the graph for the sampled batch. We introduce a batchify operator ¢ that concatenates different

inputs. For a minibatch [(wz, 21)] il of size B, we first obtain [(fis gZ)] il, where g; and f; result
from input ;. Suppose o; is the output node of g;. Then we concatenate the outputs from {g;} 2, to

create a new node 6 = &2 | 0; and give the concatenated feedback ®2 , f; to 6.

Episodic Learning Template. Here we adopt a broader definition of RL, which describes the agent
learning in a sequential decision process with feedback of reward signals (Sutton et al., 1998) or richer
signals like natural language (Cheng et al., 2024a; Chen et al., 2024). We consider an episodic setting.
In each iteration, the agent interacts with the environment for multiple steps, receives feedback for
each step (the feedback can be empty), and then updates its parameters at the end of the episode. To
represent this structure as a computational graph, first we describe the interaction process of how
observations and actions are generated. In Fig. 1, this is shown as a chain similar to a Markov decision
process; notice there is an arrow going from action to the next observation via an operator denoted
as =, which captures the causality. Then we apply the batchify operator & on the observations
generated 6 = ®7_; 0;, where T is the episode length, and similarly concatenates the feedback.

Remark. Using the right meta graph for a learning setup is important as it provides the learning
context to the generative optimizer; otherwise objective misalignment can happen. For instance, if we
desire a batch learning solution (i.e. a parameter that works well across a dataset of examples) but use
the meta-graph for online learning in OPTO, we can get sub-par optimization results (for instance,
an unstable parameter that is sensitive to the order in which individual examples are presented).

Under review as a conference paper at ICLR 2026

Similarly, if an agent’s behavior has long-term consequences, then we should only change its behavior
logic after an episode terminates. The separation between behavior logic and when/how to change
them allows us to specify the right learning objective and allow the agent to learn the right behavior.

4 ATARI GAME PLAYING AGENTS THROUGH EPISODIC LEARNING

Game playing has been a central focus in reinforcement learning (Mnih et al., 2013; Silver et al.,
2016; Brown & Sandholm, 2019). Recently, LLMs have demonstrated abilities to play long-horizon
games such as Pokémon Blue (Karten et al., 2025; Anthropic, 2025). However, all of these successes
utilize direct weight updates for the neural network, through training on collected in-game experience
or massive pre-training on tutorials and forum posts. In this section, we want to demonstrate that,
shockingly, with LLM as the optimizer and a correct learning template, we can learn a python
program (not weights) that can play games that were typically mastered by neural networks.

Update — Decld
ecide ecide
Move Shoot | OPS
LM

Update

Obs

Code | Predict Ball

LLM
Optimizer

Reward

Select Action Action

L.LN.I Paddle Target
Optimizer

Reward

L
Optimizer
Select Action Action

Reward

I | LM Agent

Action Obs

Reward

Pong

LLM Agent

Action Obs

Reward

LLM Agent

Obs

Action
Reward

Space Invaders

Figure 2: We show the workflow design of different decision-making program components for each Atari game
agent. The LLM agent receives an object-centric dictionary of information of the game state and uses Python
code to process and output an action.

The Arcade Learning Environment (ALE) of Atari games has remained an important benchmark for
evaluating RL algorithms for training neural network-based policies (Mnih et al., 2013). ALE can
be used to evaluate an RL algorithm in several ways: 1) The algorithm’s learning efficiency both in
terms of number of interactions with the environment and the overall wallclock time (Hessel et al.,
2018); 2) The diverse set of environments allow the evaluation of generalization of learning (Lee
et al., 2022).

Breakout

Pong Space Invaders

300 1200
—— Learned Agent (Multi-Step) —— Learned Agent (Multi-Step)
10 —— Learned Agent (One-Step) —— Learned Agent (One-Step)
1000
200
L 5 v v
S S S 800
1o 600
—— Learned Agent (Multi-Step)
-20 —— Learned Agent (One-Step)
0 400
0 3 6 9 12 15 18 0 5 10 15 20 25 30 0 3 6 9 12 15 18

Optimization Step Optimization Step Optimization Step
Figure 3: Performance of agent under different learning graphs (one-step vs multi-steps) across 5 trials. Episodic
learning template concatenates workflow graph at each step to build an episodic learning graph that correctly

specifies the temporal dependency in the agent’s learning objective.

We use object-centric Atari Environments (OCAtari) (Delfosse et al., 2024) to parse the pixel-based
observation from ALE to object-based representation. OCAtari provides the coordinates, size and
velocity of the object on screen, game termination condition (“lives”), and current reward (see
Figure A.9). We do not perform additional transformations to make the observation more readable.

Workflow Design. The agent is designed slightly differently for each game. The design decision
is driven by a high-level modularization of the decision-making process. Both Pong and Breakout
agents have select_action as the final component. They use predict_ball_trajectory as an
intermediate step, where the prediction is provided to select_action to decide how the paddle can

Under review as a conference paper at ICLR 2026

Pong Breakout Space Invaders
u 14001 44
o «——>o
2He S 400{
(] A
S20(e —n 12001 <5y =
A 2.1X =
191 e 26h 541 1000
300{® N
1X 10X 20X 30X 40X 50X 1X 10X 20X 30X 40X 50X 800 1X 10X 20X 30X 40X 50X
Relative Speed-up Relative Speed-up Relative Speed-up
® Learned Agent (Ours) e DQON ® PPO e C51 Apex-DQN

Figure 4: We show the relative speedup running the generative optimization process compared to traditional
RL methods. Learned Agent result is the highest score it achieved in 5 trials. We report RL results from
an open-source implementation of RL algorithms (Huang et al., 2022b) and publicly available experiment
logs (Huang et al., 2022a). RL algorithms are trained with 8 parallel environment instances. Note that most
recent Deep RL with 32 environment instances can earn score of 450 on Breakout in 33m, see Appendix E.5.
The difference of scores (19-21) in Pong is not a meaningful difference and caused mostly by rounding.

be moved. For Breakout, we introduced a goal prediction component (generate_paddle_target)
to strategically determine where the paddle should go to maximize the reward. For Space Invaders
Agent, we simply have decide_shoot and decide_movement to decompose the decision space of
choosing when to fire and when to move the game avatar.

Learning Graph Design. Due to the length of the context window for the LLM we use, we are only
able to trace a fixed number of temporal steps. The number of steps is determined by the token spent
representing the observation, the complexity of the agent design for the game, and the length of the
solution. The training rollout is 300 steps for Breakout, 400 steps for Pong, and 10 steps for Space
Invaders.

Feedback Design. We notice that only providing feedback based on the reward in the training rollout
leads to performance plateaus, particularly in games where the game mechanism changes based on
player progress. For example, in Breakout, the higher-value bricks in the upper rows deflect the ball
at greater speeds, creating a distribution shift between the training context (primarily lower bricks)
and the evaluation context (including higher bricks). This observation inspires two feedback design
choices: 1) we provide staged feedback to instruct the model to pay attention to different game
mechanisms or share high-level winning strategies; 2) we evaluate the performance of the agent with
longer rollouts (up to 4000 steps) and use that reward as feedback to the generative optimizer.

Results. We find that even with sparse representation of game states and rewards in the form of
trajectories, LLM optimizer (OptoPrime) demonstrate remarkable ability to infer game mechanics
and environmental constraints from traced trajectories. While our approach provides docstrings that
describe high-level game objectives and mechanics, we experiment with deliberately omitting specific
implementation details like exact boundary coordinates or collision physics. Despite this, OptoPrime
consistently infers these crucial details through analysis of the trajectory data. For example, in
Breakout (see an example observation in Figure A.9), OptoPrime identifies the exact positions of the
left wall (z = 9) and right wall (x = 152) by observing ball position and velocity changes across
multiple steps. It correctly implements ball physics calculations including bounce mechanics without
being explicitly told these details. This emergent understanding of game physics and boundaries
demonstrates the LLM’s ability to perform causal inference from sequential observations.

5 DATA SCIENCE AGENT WITH INTERACTIVE LEARNING GRAPH

The interactive learning setup can describe the learning objective for the majority of LLM agent
benchmarks. The hallmark of these benchmarks is that even though an LLM agent needs to take
multiple intermediate steps to complete a task, such step does not cause state transition in the
environment that changes the reward the agent would receive. Even for benchmark that requires the
agent to carry out multiple actions to successfully complete a task, the intermediate actions do not
cause an internal, stateful change in the environment — the reward is often only associated with the
final output of the agent (such as a customer response or an executable code).

Under review as a conference paper at ICLR 2026

MLAgentBench is a benchmark specifically designed to measure the effectiveness of machine learning
agents in automating ML experimentation processes (Huang et al., 2023). There are different designs
of the ML agents. The majority of agents created to solve this task have a primitive self-improvement
loop, where the agent simply looks at its previous output and self-refine (Huang et al., 2023; Wang
et al., 2024c; Chan et al., 2024). All tasks in MLAgentBench involves training a machine learning
model, figuring out preprocessing data, feature selection, choosing hyperparameters of the model,
and deciding training details. We chose two tabular tasks for the purpose of easy experimentation, as
they consume the least amount of compute resources compared to large datasets.

Model

Update Execution
LLM

i D LLM Agent Validation
Optimizer | Code | ‘Traln Model ata i

Model

Accuracy Accuracy

(a) MLAgentBench Learned Agent One-Function Design

Update
Preprocess - Data
Execution
LLM o
Optimizer EEE | Select Features | ([Ensemble Model| LLM Agent

Train Model} | Predict ‘ Model

Accuracy { Code }

(b) MLAgentBench Learned Agent Many-Function Design

Figure 5: Agent Design for MLAgentBench. We can design different agent workflow graphs for the learned
agent to solve the task of training a machine learning model given a dataset.

Workflow Design. We design our agent to have specific components that are changable by the
optimizer. That is, to set up a generative optimization process that is automatic, only with human
engineering focused on the initial configurations. To design the agent’s internal operation, we
experiment with two different kinds of workflow design to highlight the influence of workflow design
on the optimization outcome. One design asks the optimizer to program one code block that does
everything, labeled as “One” in Table 1. The other design properly decomposes the model training
tasks into five steps: preprocess, select_features, create_ensemble_model, train_model,
and predict, labeled as “Many” in Table 1. We illustrate these two choices in Figure 5.

Learning Design. We use the OptoPrime as the generative optimizer (Cheng et al., 2024b). The
entire graph is represented in the LLM context window and the LLM perform parameter update for
all parameters all at once. We perform a train-validation split on the dataset to create a validation
partition and use the task-specific metric on the validation dataset as the optimization objective (i.e.,
maximize accuracy or minimize error). We use the final learned agent’s machine learning model to
produce predictions on the hidden test set and submit to Kaggle website to compare against hidden
ground truth. We do not use the Kaggle test score as the reward signal in the optimization loop.

Feedback Design. We apply fine-grained style feedback to the generative optimizer at different
stages of validation accuracy (see Figure A.1). We additionally experimented with improvement
style feedback where the model fails to train a machine learning model that has a higher validation
accuracy than the previous step, we append an improvement suggestion to the feedback string.

Results. To make the comparison fair, we pre-downloaded the datasets for the Research Agent and
made sure it could produce a machine learning model with valid test submission files for Kaggle
(Huang et al., 2023). We track the average performance of the model produced by the both agents as
well as the best result. After 20 optimization steps, we submit the model with the highest validation
accuracy to the Kaggle competition to get the test score and leaderboard ranking. On both tasks, the
gap between the Research Agent (Huang et al., 2023) and our learned agent is around 11.5%-22.4%
on average, and the best machine learning model produced in the learned agent surpasses 86.6% of
human submissions. Surprisingly, letting the optimizer continuously updating one function (block of
code) is better for Housing Price, but not for Spaceship Titanic. This result highlights the importance
of experimenting with different workflow designs.

Under review as a conference paper at ICLR 2026

Housing Price Spaceship Titanic " 86.6%
RMSE (}) Accuracy (1) 5 80 75 6% ¥
2 ¥ 70.8%
ResearchAgent (Huang et al., 2023) g e

Average — 0.149 78.17 2 60
Best - 0.145 79.84 5
Learned Agent (Ours) i

40
Average One 0.135 79.65 £
Many 0.147 79.69 §

Best One 0.129 80.00 £201
Many 0.141 80.43 ©

0 A
Table 1: MLAgentBench Result. We run both agents 5 Housing Price Spaceship Titanic
times and compute the average and best test score. Single BEE Research Agent BB Learned Agent
and Many refer to a one-function vs many-functions work-
flow design for the agent (Figure 5). Both agents use the

same underlying LLM (Claude Sonnet-3.5-v2). Figure 6: Leaderboard ranking for the best agent

across design choices.

6 LANGUAGE UNDERSTANDING AGENT THROUGH BATCH LEARNING

From document processing to logical deductions, LLM agents are used for general language under-
standing tasks where the agent designer needs to write a pre/post-processing program as well as
instructions/prompts to the LLM API call. The crucial learning context here is to allow the agent
to write one prompt and a fixed program that generalizes to different kinds of questions and tasks.
We explore the effect of setting the right learning context in BigBench Extra Hard (BBEH) (Kazemi
et al., 2025).

Agent Design. We show the workflow design graph in Figure 7. This agent is made of two
components, one is a call lIm function that takes in the task query and a optimizable prompt. The
other is an answer extraction function that parses the return from the LLM call.

Update Answer
| Promptl | Call LLM } Query
LLM Validation
Optimizer LLM Agent
| Code | { Extract Answer Answer
Correctness Execution Correctness

Figure 7: Agent Design for BigBench Extra Hard (BBEH). Note that in here, we only show an interactive
learning setup, where the agent graph only contains one query and receives one correctness feedback. In our
experiment, we insert the execution graph into a template through batchify @ operator to construct a batch
learning graph over multiple queries, answers, and feedbacks.

Learning Design We apply the batch learning template to construct the learning graph for the agent.
In order to apply this template, we sample a batch of inputs from the dataset D. We roll out the
workflow graph on each of the input, and by the end, we concatenate all the workflow graphs together
to form the batch learning graph. We only use 20 example inputs for learning and the rest are holdout
test set for evaluation. Batch learning graph helps agent understand how one shared program and
prompt need to adapt to different kinds of inputs.

Feedback Design We provide feedback as a list of strings that contain whether the workflow’s
response for each input is correct or incorrect and revealing the solution to the optimizer when the
answer is incorrect.

Results. We systematically change the batch learning graph’s size (batch size) during the learning
phase over 20 examples and measure how well the learned prompt and postprocessing code generalize
to the unseen examples in the BBEH set. Surprisingly, even though generally presenting more than
one example at a time (Batch Size > 1) gives better results (see Table 2), it seems that different batch
sizes lead to different performances for different tasks. We also see different patterns of learning
convergence on a S-example validation set that we selected from the 20 examples (Figure 8). Larger

Under review as a conference paper at ICLR 2026

batch sizes allow the agent to learn faster but also plateau more quickly (Geometric Shapes). This
highlights the benefit of constructing learning graphs — it exposes the hyperparameters of learning that
agent designers must decide. We additionally report results on GSM-8K with the learned LangGraph
agent in Section E and Table A.3.

Dyck Languages Geometric Shapes Linguini Causal Understanding
0.3 0.75 0.4
§ ' 0.3
&J 0.2 0.50 0.2
c
o
£0.1 025 0.1
o)
0.0 0.00 0.0
Disambiguation QA Boolean Expressions Movie Recommendation Boardgame QA
g 1.00
20 0.75
1)
<
c0 0.50
k)
30 0.25]
g
0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15
Number of Updates Number of Updates Number of Updates Number of Updates
---- Base Workflow —— batchsize =1 —— batch size = 3 —— batch size =5

Figure 8: Performance of the learned workflow for each task across 3 trials. Each task starts with the same
prompt and answer extraction code. Shaded area shows standard error. The training dataset size is fixed to 15
examples. Validation set has 10 examples.

MiniBatch Size \ Dyck Languages Geometric Shapes Linguini Causal Understanding

Un-Optimized \ 0.114 + 0.007 0.074 +0.003 0.183 +0.010 0.114 +0.005
Batch Size=1 0.183 + 0.049 0.343 +0.039 0.149 + 0.024 0.375 4+ 0.146
Batch Size=3 0.063 +0.010 0.389 + 0.040 0.234 + 0.012 0.408 + 0.097
Batch Size=5 0.190 + 0.031 0.200 =+ 0.099 0.170 + 0.030 0.531 +0.018

Table 2: Holdout Test Set Performance for BBEH tasks. Bold indicates best accuracy per column; standard error
is shown in smaller gray text. The test dataset excludes examples used for train and val, and usually includes 175
examples. The full table for 8 tasks are in Appendix A.2.

7 CONCLUSION AND LIMITATION

We demonstrate generative optimization on computational graph is a powerful new paradigm for agent
learning. We identify common misalignment issues in practice and provide constructive guidelines
to address them. With these insights, we demonstrate successful agent learning results on a wide
range of problems (GSM8K, BBEH, MLAgentBench, and Atari games) across interactive, batch, and
reinforcement learning scenarios. These experimental results push the boundary of problems where
generative optimization has been applied in the literature and provide strong evidence that generative
optimization can be the key to the next breakthrough of agent learning and an effective method to
leverage inference time compute to find optimal solution automatically.

However, we should also highlight that our current results have limitations. Although we solved the
objective misalignment with a principled reductionist approach, our current recommendations on
agent and feedback design are still heuristic-driven. We also notice that the optimization process can
be unstable. The guideline can largely mitigate the issue, but efforts are still required to configure the
initial condition and optimization procedure correctly. All of these warrant future research to explore
paths to create a fully automated, goal-driven, generalist agent.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Iige Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Under review as a conference paper at ICLR 2026

Anthropic. Claude’s extended thinking, February 2025. URL https://www.anthropic.com/news/
visible-extended-thinking. Accessed: 2025-05-31.

Hao Bai, Yifei Zhou, Li Erran Li, Sergey Levine, and Aviral Kumar. Digi-q: Learning g-value
functions for training device-control agents. arXiv preprint arXiv:2502.15760, 2025.

Marc G Bellemare, Salvatore Candido, Pablo Samuel Castro, Jun Gong, Marlos C Machado, Sub-
hodeep Moitra, Sameera S Ponda, and Ziyu Wang. Autonomous navigation of stratospheric
balloons using reinforcement learning. Nature, 588(7836):77-82, 2020.

Dimitri P Bertsekas. Dynamic programming: deterministic and stochastic models. Prentice-Hall,
Inc., 1987.

Noam Brown and Tuomas Sandholm. Superhuman ai for multiplayer poker. Science, 365(6456):
885-890, 2019.

Jun Shern Chan, Neil Chowdhury, Oliver Jaffe, James Aung, Dane Sherburn, Evan Mays, Giulio
Starace, Kevin Liu, Leon Maksin, Tejal Patwardhan, et al. Mle-bench: Evaluating machine learning
agents on machine learning engineering. arXiv preprint arXiv:2410.07095, 2024.

Angelica Chen, Jérémy Scheurer, Jon Ander Campos, Tomasz Korbak, Jun Shern Chan, Samuel R
Bowman, Kyunghyun Cho, and Ethan Perez. Learning from natural language feedback. Transac-
tions on Machine Learning Research, 2024.

Xinyun Chen, Maxwell Lin, Nathanael Schérli, and Denny Zhou. Teaching large language models to
self-debug. arXiv preprint arXiv:2304.05128, 2023.

Ching-An Cheng, Andrey Kolobov, Dipendra Misra, Allen Nie, and Adith Swaminathan. LLF-bench:
Benchmark for interactive learning from language feedback. In ICLR Workshop on Large Language
Model (LLM) Agents, 2024a.

Ching-An Cheng, Allen Nie, and Adith Swaminathan. Trace is the next autodiff: Generative
optimization with rich feedback, execution traces, and LLMs. In NeurIPS, 2024b.

Quentin Delfosse, Jannis Bliiml, Bjarne Gregori, Sebastian Sztwiertnia, and Kristian Kersting.
OCAtari: Object-centric Atari 2600 reinforcement learning environments. Reinforcement Learning
Journal, 1:400-449, 2024.

Ahmed El-Kishky, Alexander Wei, Andre Saraiva, Borys Minaev, Daniel Selsam, David Dohan,
Francis Song, Hunter Lightman, Ignasi Clavera, Jakub Pachocki, et al. Competitive programming
with large reasoning models. arXiv preprint arXiv:2502.06807, 2025.

Adam Fourney, Gagan Bansal, Hussein Mozannar, Cheng Tan, Eduardo Salinas, Friederike Niedtner,
Grace Proebsting, Griffin Bassman, Jack Gerrits, Jacob Alber, et al. Magentic-one: A generalist
multi-agent system for solving complex tasks. arXiv preprint arXiv:2411.04468, 2024.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. In International Conference on Machine
Learning, pp. 10764—-10799. PMLR, 2023a.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. PAL: Program-aided Language Models, January 2023b.

Michael R Genesereth and Nils J Nilsson. Logical foundations of artificial intelligence. Morgan
Kaufmann Publishers Inc., 1987.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In AISTATS, pp. 249-256, 2010.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer, 2 edition, 2009.

10

https://www.anthropic.com/news/visible-extended-thinking
https://www.anthropic.com/news/visible-extended-thinking

Under review as a conference paper at ICLR 2026

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in
deep reinforcement learning. In AAAI, 2018.

Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel, Hado van Hasselt, and
David Silver. Distributed prioritized experience replay. In International Conference on Learning
Representations, 2018. URL https://openreview.net/forum?id=H1Dy---0Z.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
and Denny Zhou. Large language models cannot self-correct reasoning yet. In ICLR, 2024.

Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec. Mlagentbench: Evaluating language agents
on machine learning experimentation. arXiv preprint arXiv:2310.03302, 2023.

Shengyi Huang, Rousslan Fernand Julien Dossa, Antonin Raffin, Anssi Kanervisto, and Weixun
Wang. The 37 implementation details of proximal policy optimization. In ICLR Blog Track, 2022a.
URL https://iclr-blog-track.github.i0/2022/03/25/ppo-implementation-details/.
https://iclr-blog-track.github.i0/2022/03/25/ppo-implementation-details/.

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Kinal
Mehta, and JoAGo GM AraASjo. Cleanrl: High-quality single-file implementations of deep
reinforcement learning algorithms. Journal of Machine Learning Research, 23(274):1-18, 2022b.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In /CLR, 2024.

Seth Karten, Andy Luu Nguyen, and Chi Jin. Pok\’echamp: an expert-level minimax language agent.
arXiv preprint arXiv:2503.04094, 2025.

Mehran Kazemi, Bahare Fatemi, Hritik Bansal, John Palowitch, Chrysovalantis Anastasiou, San-
ket Vaibhav Mehta, Lalit K Jain, Virginia Aglietti, Disha Jindal, Peter Chen, et al. Big-bench extra
hard. arXiv preprint arXiv:2502.19187, 2025.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri Vard-
hamanan A, Saiful Haq, Ashutosh Sharma, Thomas T. Joshi, Hanna Moazam, Heather Miller,
Matei Zaharia, and Christopher Potts. DSPy: Compiling declarative language model calls into
state-of-the-art pipelines. In ICLR, 2024.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
catastrophic forgetting in neural networks. Proceedings of the national academy of sciences, 114
(13):3521-3526, 2017.

LangChain. Langgraph: A low-level orchestration framework for building controllable agents, 2024.
URL https://langchain-ai.github.io/langgraph/.

Kuang-Huei Lee, Ofir Nachum, Mengjiao Sherry Yang, Lisa Lee, Daniel Freeman, Sergio Guadar-
rama, lan Fischer, Winnie Xu, Eric Jang, Henryk Michalewski, et al. Multi-game decision
transformers. Advances in Neural Information Processing Systems, 35:27921-27936, 2022.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rocktischel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. In NeurIPS, pp. 9459-9474, 2020.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine: Iterative
refinement with self-feedback. In NeurIPS, 2023.

Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Jiang, Ebrahim Songhori, Shen Wang, Young-

Joon Lee, Eric Johnson, Omkar Pathak, Sungmin Bae, et al. Chip placement with deep reinforce-
ment learning. arXiv preprint arXiv:2004.10746, 2020.

11

https://openreview.net/forum?id=H1Dy---0Z
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://langchain-ai.github.io/langgraph/

Under review as a conference paper at ICLR 2026

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Allen Nie, Ching-An Cheng, Andrey Kolobov, and Adith Swaminathan. Importance of directional
feedback for LLM-based optimizers. In NeurlPS 2023 Foundation Models for Decision Making
Workshop, 2023.

Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chenguang Zhu, and Michael Zeng. Automatic prompt
optimization with “gradient descent” and beam search. In EMNLP, 2023.

Stuart J Russell and Peter Norvig. Artificial intelligence: a modern approach. Pearson, 2016.

Jérémy Scheurer, Jon Ander Campos, Tomasz Korbak, Jun Shern Chan, Angelica Chen, Kyunghyun
Cho, and Ethan Perez. Training language models with language feedback at scale. arXiv preprint
arXiv:2303.16755, 2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347,2017.

Shai Shalev-Shwartz et al. Online learning and online convex optimization. Foundations and Trends®
in Machine Learning, 4(2):107-194, 2012.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik R Narasimhan, and Shunyu Yao. Reflexion:
language agents with verbal reinforcement learning. In NeurIPS, 2023.

David Silver, Aja Huang, Chris J] Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, loannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484—489, 2016.

Charlie Snell, Jachoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Richard S. Sutton. The bitter lesson, 2019. URL http://www.incompleteideas.net/IncIdeas/
BitterLesson.html.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1. MIT
Press Cambridge, 1998.

Adrien Ali Taiga, Rishabh Agarwal, Jesse Farebrother, Aaron Courville, and Marc G Bellemare.
Investigating multi-task pretraining and generalization in reinforcement learning. In The eleventh
international conference on learning representations, 2023.

Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gianluca De Cola, Tristan Deleu,
Manuel Gouldo, Andreas Kallinteris, Markus Krimmel, Arjun KG, et al. Gymnasium: A standard
interface for reinforcement learning environments. arXiv preprint arXiv:2407.17032, 2024.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
Transactions on Machine Learning Research, 2024a.

Wenyi Wang, Hisham A Alyahya, Dylan R Ashley, Oleg Serikov, Dmitrii Khizbullin, Francesco
Faccio, and Jiirgen Schmidhuber. How to correctly do semantic backpropagation on language-based
agentic systems. arXiv preprint arXiv:2412.03624, 2024b.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, et al. Opendevin: An open platform for ai software
developers as generalist agents. arXiv preprint arXiv:2407.16741, 2024c.

Anjiang Wei, Allen Nie, Thiago SFX Teixeira, Rohan Yadav, Wonchan Lee, Ke Wang, and Alex
Aiken. Improving parallel program performance through dsl-driven code generation with 1lm
optimizers. arXiv preprint arXiv:2410.15625, 2024.

12

http://www.incompleteideas.net/IncIdeas/BitterLesson.html
http://www.incompleteideas.net/IncIdeas/BitterLesson.html

Under review as a conference paper at ICLR 2026

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
Zhang, Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah, Ryen W White, Doug Burger, and
Chi Wang. AutoGen: Enabling next-gen LLM applications via multi-agent conversations. In
COLM, 2024.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun Chen.
Large language models as optimizers. In ICLR, 2024a.

Zonglin Yang, Xinya Du, Junxian Li, Jie Zheng, Soujanya Poria, and Erik Cambria. Large language
models for automated open-domain scientific hypotheses discovery. In ACL, pp. 13545-13565,
2024b.

Mert Yuksekgonul, Federico Bianchi, Joseph Boen, Sheng Liu, Pan Lu, Zhi Huang, Carlos Guestrin,
and James Zou. Optimizing generative ai by backpropagating language model feedback. Nature,
639(8055):609-616, 2025.

Shaokun Zhang, Jieyu Zhang, Jiale Liu, Linxin Song, Chi Wang, Ranjay Krishna, and Qingyun
Wu. Offline training of language model agents with functions as learnable weights. In Forty-first
International Conference on Machine Learning, 2024.

Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc V Le, and Ed H. Chi. Least-to-most prompting enables
complex reasoning in large language models. In /CLR, 2023.

A LARGE LANGUAGE MODEL ACCESS CARD

The experiments were conducted during the period of February 2025 to April 2025. The model
used was Anthropic’s Claude Sonnet 3.5v2, and the exact model name was “anthropic.claude-
3-5-sonnet-20241022-v2:0”. All of the agents, including the baseline agents from other papers
(ResearchAgent (Huang et al., 2023), PAL agent (Gao et al., 2023a), Self-Refine agent (Madaan et al.,
2023)) were all rerun using the same model endpoint as our learned agent during the same period of
time.

B DISCUSSION ON OTHER IMPORTANT FACTORS FOR AGENT LEARNING

B.1 SPECIFYING AGENT BEHAVIOR THROUGH WORKFLOWS

The same agent can be described by different workflow graphs, but these graphs may have different
optimization properties. We discuss factors that affect optimization difficulty.

Modularization. Breaking down the reasoning process from a monolithic block into multiple smaller
blocks has proven useful for complex reasoning tasks (Zhou et al., 2023). It remains an empirical
question to what extent one should modularize, but the guiding principle here is to decompose a
monolithic process into a computational graph with smaller operators.

Parametrization. There are some parts of the workflow that do not need much design exploration.
For example, loading in a text file given a file name would always result in similar code (even
with error handling). Designing an optimizable workflow requires engineers to think carefully and
parametrize the part of their workflow where the optimal solution is not known a priori to them,
where exploring new parameters is valuable.

Initialization. Similar to the research on neural network initialization (e.g. (Glorot & Bengio, 2010)),
the optimizable functions contain initial code and docstrings designated by engineers. We found that
a workflow that involves operators with ambiguous docstrings is difficult to optimize via generative
optimization. We advise using initialization that conveys a clear (desired) behaviors of operators used
in the graph.

B.2 GUIDING AGENT LEARNING PROCESS THROUGH EFFECTIVE FEEDBACK

Prior works have studied the importance of providing feedback to the optimization process (Chen
et al., 2023; Nie et al., 2023; Wei et al., 2024). We highlight and summarize a few useful types of
implementations below.

13

Under review as a conference paper at ICLR 2026

Fine-grained Feedback. The simplest form of feedback is to include the correct/incorrect information
or the numerical reward in text. However, other feedback designs have also proven to be useful.
In Section 4, we show that we can have staged feedback, where a different feedback is used when
the agent reaches different reward regions (Table A.6). This allows flexibility on how to guide
the generative optimizer to search the solution space. Another way is to identify trigger keywords
from environment information (such as a system profiler) and retrieve corresponding pre-written
feedback (Wei et al., 2024).

Suggestive Feedback. The best type of feedback tells the generative optimizer exactly how to change
the parameter or output — it should be actionable. If it is not possible to know this information, a
suggestion should still be made with proper degree of suggestions in the phrasing. Earlier this was
referred to as “directional” feedback (Nie et al., 2023) and later Wei et al. (2024) showed suggestive
feedback allowed the optimizer to find better solutions than explanation-based feedback.

C MLAGENTBENCH DETAILS

C.1 AGENT DESIGN DETAILS

The ML agent shares a similar design for both tasks with modular components for different steps of
the machine learning pipeline.

C.2 FEEDBACK DESIGN DETAILS

We provided task-specific feedback instructions when the agent reaches different performance level.
We show the feedback template in Figure A.1. The {SUGGESTION} block if filled by the suggestive
feedback in Table A.1.

| Epoch {epoch}/20:

3 Accuracy: {val_accuracy:.4f}
4F1: {val_f1:.4f}

5 Precision: {val_precision:.4f}
6 Recall: {val_recall:.4f}.

8 {SUGGESTION?}

Figure A.1: The feedback template used for the ML Agent for Spaceship-Titanic.

Accuracy Suggestive Feedback

Val F1 < 0.5 “Model performance is poor. Try better feature engineering and preprocessing."

0.5 < ValF1 < 0.7 “Model is showing promise but needs improvement. Consider class balancing
techniques."

0.7 < ValF1 < 0.8 “Model is performing well. Fine-tune hyperparameters for further improve-
ments."

Val F1 > 0.8 “Excellent performance! Focus on preventing overfitting."

Table A.1: Staged suggestive feedback for the ML agent at different accuracy levels for the Spaceship-Titanic
task.

C.3 LLM AGENT LEARNING RESULTS

We perform a training and validation split outside of the agent and only pass the training set as input
to the agent. This is due to the fact that generative optimization requires an optimization signal.
Kaggle does not permit more than 5 submissions on the test set per day, therefore, we do not use the
test set as our optimization signal. We randomly split the training data, providing 80% to the agent —

14

Under review as a conference paper at ICLR 2026

—e— Training Accuracy
—a— Validation Accuracy
090+ —— Validation F1
--- Target F1(0.8)

Best F1: 0.8013

- e ¥ ——

Score

0.75 4

2.‘5 5.‘0 7.‘5 lDI.C] 12‘.5 15‘.0 17‘.5 26.0
Optimization Step

Figure A.2: We show the training/validation accuracy and F1 score from machine learning model outputted by
the ML Agent after each optimization step. Note that the machine learning model outputted could be trained
internally for hundreds of epochs. The x-axis describes the number of optimization steps in the generative
optimizer to update the parameter of the ML Agent.

the agent is allowed to further split that data into train and validation. We use the 20% as our test
set to evaluate the agent’s machine learning model’s performance. We show the learning progress
of one trial run in Figure A.2. The x-axis of this figure shows the optimization steps. Although on
a cursory glance, this graph seems to be depicting typical model overfitting behavior as training
accuracy goes up and validation accuracy goes down as optimization continues, it is however not the
case. At each optimization step, the agent is producing a fully trained machine learning model using
the training dataset, with however many numbers of training iterations it chooses. This figure shows
the phenomenon of meta-overfitting, where the generative optimizer updates the agent to choose
hyperparameters, training procedures of the model that overfits the training set, even though the
feedback reward comes purely from the validation performance.

C.4 EFFECT OF WORKFLOW DESIGN

86.6% 80 75.6%
w w

o]
o

70
70,8% 72 0%

[=)]
o

N
o

Outperformed % of Submissions

N
o

OResearch Learned Learned 0 Research Learned Learned

Agent Agent Agent Agent Agent Agent
(One) (Multi) (One) (Multi)
(a) Spaceship Titanic (b) Housing Price

Figure A.3: Leaderboard performance metrics for learned model submissions.

C.5 EXAMPLES OF THE LEARNED ML AGENT
We provide initial code (with docstrings) for each game and the final learned code. For Spaceship-

Titanic Agent, initial code is in Figure A.10, A.11, A.12, A.13, A.14. Some of the functions are not
heavily updated, but we showcase the learned final functions in Figure. Essentially, the generative

15

Under review as a conference paper at ICLR 2026

optimizer chose to tune the numbers (hyperparameters) of machine learning models and ensemble
method.

D BATCH LEARNING AGENT DETAILS

MiniBatch \ Dyck Languages Geometric Shapes Linguini Causal Understanding

Un-Optimized \ 0.114 + 0.007 0.074 + 0.003 0.183 +0.010 0.114 +0.005

Batch=1 0.183 + 0.049 0.343 4+ 0.039 0.149 + 0.024 0.375 +0.146

Batch=3 0.063 4 0.010 0.389 + 0.040 0.234 +0.012 0.408 4+ 0.097

Batch=5 0.190 + 0.031 0.200 + 0.099 0.170 + 0.030 0.531 +0.018
MiniBatch | Disambiguation QA Boolean Expressions ~Movie Recommendation ~ Boardgame QA
Un-Optimized \ 0.358 +0.013 0.076 + 0.009 0.238 + 0.007 0.371 + 0.003
Batch=1 0.537 +0.036 0.177 + 0.005 0.889 + 0.038 0.341 4+ 0.032
Batch=3 0.295 +0.091 0.238 + 0.006 0.683 +0.119 0.278 4 0.009
Batch=5 0.526 + 0.035 0.154 + 0.034 0.810 +0.016 0.276 + 0.007

Table A.2: Performance across tasks and batching strategies. Best test accuracy per task is bolded; standard
error is shown in smaller gray text. For Boardgame QA, we observe meta-overfitting: the learned workflow had
strong validation scores but failed to generalize to test examples. Base model is Claude Sonnet-3.5-v2.

E BATCH LEARNING LANGGRAPH AGENT DETAILS

The emergence of LLM multi-agent frameworks (Wu et al., 2024; LangChain, 2024) allow static
programs to have dynamic behaviors enabled by LLMs. Here we apply generative optimization to
such frameworks to enable an agentic workflow to improve itself.

Agent Design. We used LangGraph (LangChain, 2024) to implement two popular LLM agent
designs. The first one is program-aided language model (PAL) (Gao et al., 2023a). This agent design
consists of two components: first, it tries to produce a Python program conditioned on a prompt and
the input. Then it executes the program to get the final answer. We learn both of these components.
The second agent is a self-refine agent (Madaan et al., 2023), where the agent would use a function to
solve the problem, verify its solution, and if the solution is wrong, it will try to refine the solution
until it passes the verification step.

Learning Design We use LangGraph to build the workflow but use OptoPrime (Cheng et al., 2024b)
as the optimizer to learn all the mentioned modules. At each iteration, execution traces from a
minibatch of examples are captured, evaluated in terms of feedback, and aggregated. Feedback
is concatenated into an aggregated feedback, which is then processed by the optimizer. Before
implementing batch learning, optimizing by example would overfit, leading to over-specialized
improvements that failed to generalize.

Feedback Design We provide feedback as string with templates for both correct and incorrect
responses, revealing the solution to the optimizer when the answer is incorrect.

Results. Empirical results in Table A.3 confirm the efficacy of the generative optimization framework.
We evaluate on GSM8K (Kazemi et al., 2025) and BBEH (Kazemi et al., 2025). For GSMS8K, we use
the same train/validation/test split as used in DSPy (Khattab et al., 2024). For BBEH, we chose two
tasks as representative examples to verify our pipeline. The baselines are both PAL and self-refine
agent implemented with good initial starter code and working prompts. However, the learned agent
(both code and prompts are learned) performs much better on GSMS8K, increasing the performance
from 78.9% to 93.4%. For BBEH, the initial agent was not able to output answers with a valid format
without few-shot examples. In this zero-shot setup, the optimizer is able to find good prompts and
valid code to ensure the produced answer is correct.

16

Under review as a conference paper at ICLR 2026

BBEH
GSMS8K Causal Understanding BoardgameQA
PAL Agent (Gao et al., 2023b) 78.9 5.0 5.0
Learned PAL Agent (Ours) 93.4 42.5 33.0
Self-Refine Agent (Madaan et al., 2023) 78.2 0.0 0.0
Learned Self-Refine Agent (Ours) 86.8 44.0 325

Table A.3: Comparison of baseline LLM agent design and their optimized design on GSM8K and BBEH.

E.1 AGENT DESIGN DETAILS

The PAL (Program-Aided Language Model) agent (Gao et al., 2023a) is designed to have two
functions: parse_problem and execute_code. parse_problem makes a call to the LLM with the
following prompt “Read the problem and output a Python expression to compute the answer and store
it into ‘result’ variable. Problem: {}”. The execute_code uses Python’s “exec” function to execute
the program written by parse_problem. Both functions are updated by the generative optimizer.

The self-refine agent (Madaan et al., 2023) is designed to have three functions: solve_problem,
verify_solution, and refine_solution. All three are LLM calling functions with prompt strings
defined within the function.

* solve_problem: “Solve the following problem step by step and give the final answer: {question}.
Solution:”

* verify_solution: “You are a math expert. Verify the solution below for correctness. Problem:
{question}. Solution and Answer: {solution}. Is the answer correct? If not, explain the error.”

* refine_solution: “The previous answer was found to be incorrect. {verification_feedback}.
Please solve the problem again correctly: {question}. Correct Solution:”

Each function takes the LangGraph’s state dictionary as input and was added as nodes to LangGraph’s
StateGraph for execution. The self-refinement loop is controlled by LangGraph’s conditional routing
strategy.

E.2 FEEDBACK DESIGN DETAILS

The feedback given to the optimizer when the answer is correct

is “ANSWER IS CORRECT/SUCCESS” and when the answer))
is wrong, we reveal the reference solution since there is a train- | —start__
ing phase for the agent: “WRONG ANSWER / FAILED - your ' '
answer: {answer} vs. good answer: {solution}”.

solve

F ATARI GAME DETAILS .
[

F.1 GAME SETUP li
The training configuration is reported in Table A.4 and the _ N verify
environment setup is reported in Table A.5. The Atari Gym [_start__ |
offers many wrappers to help with learning. Atari environments
by default uses frameskip (repeat actions) to reduce the horizon l —
length and use sticky action probability to randomly repeat the refine
previous action with given probability. Both were designed ‘ S |
to enable better training for the deep neural network. In our \
experiment, we found that not using sticky action results in i PR
better optimization of the model. ' caleulate final

We generate data on-the-fly for Atari games using object-centric =~ ———— i

Atari Environments (OCAtari) (Delfosse et al., 2024), a wrap- \
per for the Gymnasium API (Towers et al., 2024) that pro- —t—
vides object-centric representation of the game screen at each —end_) " .__—end—.

(a) PAL (b) Self-refine agent

17
Figure A.4: The LangGraph visualiza-

tion of workflow.

Under review as a conference paper at ICLR 2026

Parameter Value
Environment name {env}-NoFrameskip-v4
Action repeat (frameskip)

Sticky action probability 0.0
Optimization iterations 30

Rollout length 15/300/400 steps
Memory size (optimizer context) 5
Evaluation episode length ~4000 steps
LLM optimizer OptoPrime

LLM Backend Claude-3.5 Sonnet-20241022-v2:0
Access Date 3/20/2025

Table A.4: Atari Gym environment and training configurations

Parameter \ Breakout Pong Space Invaders

Rollout horizon | 300 steps 400 steps 15 steps

Acti LEFT/RIGHT/ UP/DOWN/ LEFT/RIGHT
ction space NOOP NOOP FIRE/NOOP

Env special Auto-fire Fire
. . None
mechanics on life loss cooldown

Table A.5: Atari game-specific experiment configurations

timestep. For instance, for the game Pong, OCAtari returns
the position (x, y), size (width, height), and velocity (dx, dy)
of the player paddle, ball, and enemy paddle. This representa-
tion abstracts away from raw pixel inputs, providing the LLM
optimizer and our agent with structured state information that
facilitates targeted improvements to the agent’s prediction and
action selection. The actual input observation to the agent is
shown in Figure A.9, and an annotated screen through OCAtari
can be seen in Figure A.5, A.6, and A.7.

Pong In Pong, the player controls a paddle on the right side
of the screen to deflect the ball into the enemy’s goal. The player scores a point if the enemy misses
the ball. The game ends when one side scores 21 points.

Breakout In Breakout, the player moves a bottom paddle horizontally to deflect a ball that scores
against brick walls upon contact. The brick wall consists of six rows of different colored bricks, with
higher bricks worth more points. Hitting higher bricks would deflect the ball faster, increasing the
difficulty in catching the ball. The player wins after scoring 864 points. The player loses one life
when failing to catch the ball and the ball moves out of range. The player has five lives in total.

Space Invaders In Breakout, the player moves a bottom paddle horizontally to deflect a ball that
scores against brick walls upon contact. The brick wall consists of six rows of different colored bricks,
with higher bricks worth more points. Hitting higher bricks would deflect the ball faster, increasing
the difficulty in catching the ball. The player wins after scoring 864 points. The player loses one life
when failing to catch the ball and the ball moves out of range. The player has five lives in total.

F.2 FEEDBACK DESIGN DETAILS

We provided game-specific feedback instructions when the agent reaches different reward regions.

18

Under review as a conference paper at ICLR 2026

Raw Game Frame Annotated with State Data
=4 . PR
Ste p. OO
Feward: 0.0

Player

pos=(140,96) |]
vel=(0.0,0.0)

Figure A.5: Pong: An annotated screenshot to show how OCAtari (Delfosse et al., 2024) translates objects
from pixels to obejcts with annotations.

Raw Game Frame Annotated with State Data

Ball

pos=(97,139)
vel=(1.0,1.0)]

Playear

pos=(99,189)
vel=(0.0,0.0) | E=—

Figure A.6: Breakout: An annotated screenshot to show how OCAtari (Delfosse et al., 2024) translates objects
from pixels to obejcts with annotations.

F.3 AGENT DESIGN DETAILS

Pong In order to succeed at Pong, the agent should accurately predict where the ball will intersect
with the player’s paddle plane, accounting for bounces off the top and bottom walls. Thus, we
adapt our base agent architecture to focus on ball trajectory prediction and paddle positioning
(predict_ball_trajectory() and select_action()). We initialize predict_ball_trajectory() to return the current
y coordinate of the ball and select_action() to return a random action of up or pown. In the docstring, we
provide detailed description of the game screen, including screen dimensions and paddle positions.
We show the initialized agent in Figure A.16 and the optimized agent in Figure A.17.

Breakout Breakout has a similar emphasis of considering wall boucing but with a focus on brick tar-
geting. Like Pong, we adapt our base agent architecture to focus on predicting the trajectory of the ball
(predict_ball_trajectory()), but also prioritizing hitting bricks with higher scores (generate_paddle_target())

19

Under review as a conference paper at ICLR 2026

Raw Game Frame Annotated with State Data

(pos=(61,1
vel=(1.0

Figure A.7: Space Invaders: An annotated screenshot to show how OCAtari (Delfosse et al., 2024) translates
objects from pixels to obejcts with annotations.

Performance Level Feedback

High “Good job! You're close to winning the game! You're scoring 20 points against
(Reward > 19) the opponent, only 1 points short of winning."

Medium “Keep it up! You're scoring 12 points against the opponent but you are still 9
(0 < Reward < 19) points from winning the game. Try improving paddle positioning to prevent

opponent scoring."

Low “Your score is —5 points. Try to improve paddle positioning to prevent opponent
(Reward < 0) scoring."

Table A.6: Staged feedback for the Pong agent at different performance levels

and selecting paddle action based on the analysis (select_paddle_action()). We initialize both
predict_ball_trajectory() and generate_paddle_target() to return None, and select_paddle_action() tO move
the paddle Lert or riehT by comparing the paddle location to the target position generated by
generate_paddle_target(), Which is None upon initialization. In the docstring, we describe the game
screen, such as locations of left and right wall, but we leave the exact location out for the LLM to
infer based on the traced trajectory. We also describe the point system of the brick wall and some
generic strategic considerations (without telling the agent how to implement these strategies). We
show the initialized agent in Figure A.18, A.19 and the optimized agent in Figure A.20, A.21.

Space Invaders For Space Invaders, we adapt our base agent architecture to into two tasks of
deciding whether to shoot (decide_shoot()) and deciding where to move (decide_move()), and finally
combining the two decisions in (combine_actions()). We initialize decide_shoot() and decide_movement() tO
return random actions, and combine_actions() map the outputs of the previous two functions to the
correct action. In the docstring, we describe the game setup and the presence of shield objects. We
show the initialized agent in Figure A.22, A.23 and the learned agent in Figure A.24.

F.4 LLM AGENT LEARNING RESULT

20

Under review as a conference paper at ICLR 2026

Performance Level Example Feedback

High "Good job! You're close to winning the game!

(Reward > 300) You’re scoring 320 points against the opponent, try
ensuring you return the ball, only 30 points short of
winning."

Medium "Keep it up! You’re scoring 50 points against the op-

(0 < Reward < 300) ponent but you are still 300 points from winning the

game. Try improving paddle positioning to return
the ball and avoid losing lives."

Low "Your score is -5 points. Try to improve paddle
(Reward < 0) positioning to return the ball and avoid losing lives."

Table A.7: Staged feedback for the Breakout agent at different performance levels

Performance Level Feedback

High "Great job! You’re performing well with an average
(Reward > 1000) score of 1005. Try to score more even more points"
Medium "Good progress! Your average score is 570. Focus
(500 < Reward < 1000) on better timing for shooting and avoiding enemy

projectiles."

Low "Your average score is 270. Try to improve your
(Reward < 500) strategy for shooting aliens and dodging projectiles."

Table A.8: Staged feedback for the Space Invaders agent at different performance levels

F.5 DEEP RL RESULT

Due to a large variation in how people report Atari game results and the fact that many state-of-the-art
deep RL models are not released as open-source, the numbers we reported in Table A.9 are from
CleanRL report (Huang et al., 2022b), the published ICLR blog post (Huang et al., 2022a) and the
experiment log'. In terms of runtime, we directly compute the time from the Weights & Biases
log. For Breakout and Space Invaders, the agent performances were continuously improving, so
we reported the duration of the full experiment run. For Pong, the RL policy plateaued before the
experiment finished, so we found the time step where the policy achieved the highest performance
reliably and computed training time starting from the launch of the experiment to that time step.

It is worth noting that we reporeted the Deep RL results with 8 parallel environment instances in
Table A.9. However, there are faster implementations of Deep RL training on Atari games. For
example, Apex-DQN (Horgan et al., 2018) would train the actor and critic model separately in a
truly asynchronous fashion, resulting in massive reduction of training time. EnvPool is a C++-based
batched environment pool that enabled fast sampling and interaction with the game environment.
All of these changes enabled faster learning. For example, on Breakout, with 32 to 64 parallel
environments, Advantage Actor-Critic (A2C) can learn a high performing policy in 33m 19s.
However, Trace only uses 1 environment instance and has not gone through any special speed-related
algorithm/hardware optimization.

F.6 EXAMPLES OF THE LEARNED ATARI AGENT

We provide initial code (with docstrings) for each game and the final learned code. For Pong Agent,
initial code is in Figure A.16, and final agent in Figure A.17. For Breakout agent, initial code is in

lhttps ://wandb.ai/cleanrl/cleanrl.benchmark/reports/Atari--VmlldzoxMTEXNTI
https://wandb.ai/costa-huang/cleanRL/reports/Breakout-v5--Vml1dzoxNDITMTIx

21

https://wandb.ai/cleanrl/cleanrl.benchmark/reports/Atari--VmlldzoxMTExNTI
https://wandb.ai/costa-huang/cleanRL/reports/Breakout-v5--VmlldzoxNDI1MTIx

Under review as a conference paper at ICLR 2026

Update Action
|Code‘ {PredktBaH‘ Obs
Optimizer gen
| Code | ‘Select Action| Action
Reward Execution Reward
(a) Learned Agent for Pong
Action
Update ’ Code } ‘ Predict Bau} Obs
L.LN.I I Code } ‘ Paddle Target ‘ LLM Agent
Optimizer
Cod Select Acti Action
rovors o o} [t Acon |
(b) Learned Agent for Breakout
Update Action
| Decide Move} | Decide Shoot | Obs
LLM .. LLM Agent Space Invaders
Optimizer
Code| ‘SemctAcﬁon| Action
Reward Reward

(c) Learned Agent for Space Invaders

Figure A.8: Agent Design for Atari Games. We can design different agent workflow graphs for the learned
agent to achieve high scores in three Atari games.

1

2 TracedEnv.step.stepl16 = {

3 ’Player’: {’x’: 99, ’y’: 189, ’w’: 16, ’'h’: 4, ’dx’: @, ’dy’: @}
4 ’Ball’: {"x’: 7, ’y’: 193, ’w’: 2, *h’: 4, ’dx’: -4, ’dy’: 4},
5 CRB’: [{’x’: 8, ’y’: 57, ’w’: 144, ’h’: 6}1,

6 OB’ : [{’x’: 8, ’y’: 63, ’w’: 144, h 631,

7 ’YB’: [{’x’: 8, ’y’: 69, ’w’: 144, 'h’: 63}],

8§ 'GB’: [{’x’: 8, ’y’: 75, ’w’: 144, ’'h’: 63}],

9 AB’: [{’x’: 8, ’y’: 81, ’w’: 144, ’h’: 63}1,

10 ’BB’: [{’x’: 8, ’y’: 87, ’w’: 144, ’h’: 631,

11 >lives’: 5,

12 ’reward’: 0.0

13 }

Figure A.9: Example of a single traced step from Breakout

Figure A.18, A.19 and final agent in Figure A.20, A.21. For Space Invaders agent, initial code is in
Figure A.22, A.23 and the final agent in Figure A.24.

Game Learned Agent DQN (Time) PPO (Time) = Human
Pong 21 (43m) 20 (10h 6m) 19 (2h 24m) 14.59
Breakout 353 (1h3Im) 302 (26h 54m) 443 (3h 8m) 30.47
Space Invaders 1200 (36m) 1383 (26h 52m) 939 (5h 39m) 1668.67

Table A.9: Comparison of Algorithm Performance on Atari Games with Time. Due to high variations of numbers
reported by different papers, we report results from an open-source implementation of RL algorithms (Huang
et al., 2022b) and publicly available experiment logs (Huang et al., 2022a). RL algorithms are trained with 8
parallel environment instances. Our agent is trained on 1 environment instance. Note that highly optimized Deep
RL with 32 environment instances can reach “450 on Breakout in 33m, see Appendix E.5.

22

Under review as a conference paper at ICLR 2026

G LARGE LANGUAGE MODEL USE FOR WRITING

A small amount of paragraphs have been polished by GPT-5. The process is — the author wrote the
sentence or paragraph first and then send into the LLM with the prompt of “Polish the following
writing and correct the grammar mistakes.” LLM was never used to directly produce a paragraph
without an original human-written input. The LLM assistance was only used to enhance the calrity
and readability of the paragraph only.

H EXAMPLES OF LEARNED AGENT

H.1 ML AGENT

H.2 ATARI GAME AGENTS

23

Under review as a conference paper at ICLR 2026

import trace

1

2

3 @trace.model

4 class SpaceshipTitanicPipeline (Module):

6 def __call__(self, x, y=None, test_data=None):
7 processed_data = self.preprocess(x)
8 selected_features = self.select_features(processed_data)

10 if y is not None:
11 ensemble = self.ensemble_model (selected_features, processed_data)

12 model = self.train_model(ensemble, selected_features, processed_data, y)

13 if test_data is not None:

14 processed_test_data = self.preprocess(test_data)

15 filtered_test_data = self.filter_features(selected_features,
processed_test_data)

16 return self.predict(model, filtered_test_data)

17 filtered_data = self.filter_features(selected_features, processed_data)

18 return self.predict(model, filtered_data)

19 else:

20 ensemble = self.ensemble_model (selected_features, processed_data)

21 processed_test_data = self.preprocess(x)

22 filtered_test_data = self.filter_features(selected_features, processed_test_data)

23 model = self.train_model(ensemble, selected_features, processed_data,
pd.Series([False] * len(processed_data)))

24 return self.predict(model, filtered_test_data)

25

26 def filter_features(self, selected_features, data):

27 return datalselected_features]

28

29 @trace.bundle(trainable=True)

30 def preprocess(self, data):

31 mnn

32 Preprocessing Steps (some examples on how you could do this, however you can use
your own method if it works better):

33 1. Missing Value Handling:

34 - Numerical features: Intelligent imputation (median, mean, or 0)

35 - Categorical features: Mode filling or meaningful defaults

36 - Outlier detection and treatment

37

38 2. Feature Engineering:

39 - Passenger ID parsing:

10 * Extract group and individual identifiers

41 * Create group-related features

42 - Cabin information extraction:

43 * Deck identification

44 * Cabin number parsing

45 * Side (port/starboard) classification

46 - Name feature parsing:

47 * Title extraction

48 * Potential family relationship inference

49

50 3. Advanced Feature Creation:

51 - Family size computation

52 - Total and relative spending calculations

53 - Amenity usage patterns

54 - Spatial features (cabin location metrics)

D

56 4. Categorical Variable Handling:

57 - One-hot encoding

58 - Label encoding

59 - Embedding techniques for high-cardinality features

60

61 5. Numerical Feature Transformation:

62 - Scaling (StandardScaler, MinMaxScaler)

63 - Skewness correction (log, square root, Box-Cox)

64 - Normalization techniques

65

66 Args:

67 data (pd.DataFrame): Raw input dataset

68

69 Returns:

70 pd.DataFrame: Preprocessed dataset with engineered features

71 mn

72 return data

Figure A.10: Initial code for Spaceship-Titanic ML Agent (Part 1). Docstrings are generated by ChatGPT and
then edited by humans.

24

Under review as a conference paper at ICLR 2026

| @trace.model

2 class SpaceshipTitanicPipeline (Module):

3 # (continued from above)

4 @trace.bundle(trainable=True)

def select_features(self, processed_data):

noun

v

7 Select the most relevant features for predicting whether passengers were transported.
8
9 Selection Methodology (some examples on how you could do this, however you can use

your own method if it works better):
10 1. Statistical Feature Importance:
11 - Correlation analysis

12 - Mutual information

13 - Chi-squared tests

14 - Model-based feature importance

15

16 2. Feature Weighting Criteria:

17 - Predictive power for transportation status

18 - Domain-specific relevance

19 - Minimal multicollinearity

20 - Computational efficiency

21

22 3. Key Feature Categories:

23 - Demographic Signals

24 - Travel Characteristics

25 - Economic Indicators

26

27 4. Selection Mechanism:

28 - Probabilistic feature selection

29 - Dynamic weight adjustment

30 - Prevent overfitting through selective inclusion

31

32 Args:

33 processed_data (pd.DataFrame): Preprocessed dataset

34

35 Returns:

36 list: Optimally selected feature names with associated weights

37 o

38 all_features_with_weights = {col: 0.5 for col in processed_data.columns}

39

40 available_features = {k: v for k, v in all_features_with_weights.items() if k in
processed_data.columns}

41

42 feature_names = list(available_features.keys())

43 feature_weights = list(available_features.values())

44

45 num_features = min(len(feature_names), int(len(feature_names) * 0.8))

46

47 selected_features = np.random.choice(

48 feature_names,

49 size=num_features,

50 replace=False,

51 p=[w/sum(feature_weights) for w in feature_weights]

52).tolist ()

53

54 selected_features = [f for f in selected_features if f in processed_data.columns]

55

56 return selected_features

Figure A.11: Initial code for Spaceship-Titanic ML Agent (Part 2). Docstrings are generated by ChatGPT and
then edited by humans.

25

Under review as a conference paper at ICLR 2026

| @trace.model
2 class SpaceshipTitanicPipeline(Module):
(continued from above)

4 @trace.bundle(trainable=True)

5 def ensemble_model (self, features, data):

(7 nnn

7 Create an ensemble model for predicting passenger transport status.

8

9 Ensemble Strategy (some examples on how you could do this, however you can use your
own method if it works better):

10 1. Model Diversity:

11 - Tree-based models (Random Forest, Gradient Boosting)

12 - Linear models (Logistic Regression variants)

13 - Support Vector Machines

14 - Probabilistic classifiers

15

16 2. Ensemble Techniques:

17 - Voting, boosting, bagging, stacking

18 - Stacking with meta-learners

19 - Weighted model combination

20 - Regularization-aware model selection

21

22 3. Hyperparameter Optimization:

23 - Cross-validated parameter tuning

24 - Regularization strength balancing

25 - Learning rate and depth control

26 - Subsample and feature sampling strategies

27

28 4. Computational Considerations:

29 - Computational complexity management

30 - Memory-efficient model design

31 - Scalable ensemble construction

32

33 Args:

34 features (list): Selected feature names

35 data (pd.DataFrame): Processed dataset

36

37 Returns:

38 sklearn Classifier: Configured ensemble model ready for training

39 e

40 models = [

41 (’rf’, RandomForestClassifier(n_estimators=150, max_depth=10,
min_samples_split=5, min_samples_leaf=4, max_features=’sqrt’,random_state=42)),

42 (’gbr’, GradientBoostingClassifier(n_estimators=200, learning_rate=0.03,
max_depth=3, subsample=0.8, min_samples_split=5, random_state=42)),

43 (’xgb’, XGBClassifier(n_estimators=200, learning_rate=0.03, max_depth=3,

colsample_bytree=0.6, subsample=0.8, reg_alpha=0.1, reg_lambda=1.0, gamma=1,
random_state=42)),

44 (’lasso’, LogisticRegression(penalty="11’, C=0.1, random_state=42)),

45 (’ridge’, LogisticRegression(penalty=’12’, C=20.0, random_state=42)),

46 (’elastic’, LogisticRegression(penalty="elasticnet’, C=0.1, 1l1_ratio=0.8,
random_state=42))

47]

48

49 ensemble = VotingClassifier(

50 estimators=models,

51 voting=’soft’,

52 weights=[2, 3, 3, 2, 1, 1]

53)

54

55 return

Figure A.12: Initial code for Spaceship-Titanic ML Agent (Part 3). Docstrings are generated by ChatGPT and
then edited by humans.

26

Under review as a conference paper at ICLR 2026

| @trace.model
2 class SpaceshipTitanicPipeline (Module):

3 # (continued from above)

4 @trace.bundle(trainable=True)

5 def train_model (self, ensemble_model, features, data, results):

6 mwn

7 Train machine learning models to predict whether passengers were transported.

8

9 Training Methodology (some examples on how you could do this, however you can use
your own method if it works better):

10 1. Data Preparation:

11 - Feature subset preparation

12 - Cross-validation splitting

13 - Stratified sampling

14

15 2. Class Imbalance Handling:

16 - Weighted loss functions

17 - SMOTE oversampling

18 - Synthetic data generation

19 - Class-aware regularization

20

21 3. Regularization Techniques:

22 - L1/L2 penalty integration

23 - Dropout-like regularization

24 - Early stopping mechanisms

25 - Gradient clipping

26

27 4. Training Optimization:

28 - Adaptive learning rates

29 - Ensemble member performance tracking

30 - Dynamic weight adjustment

31 - Prediction confidence calibration

32

33 Args:

34 ensemble_model: Configured ensemble model

35 features (list): Selected feature names

36 data (pd.DataFrame): Processed training dataset

37 results (pd.Series): Training labels

38

39 Returns:

40 Trained ensemble model optimized for passenger transportation prediction

41 e

42 return

Figure A.13: Initial code for Spaceship-Titanic ML Agent (Part 4). Docstrings are generated by ChatGPT and
then edited by humans.

27

Under review as a conference paper at ICLR 2026

| @trace.model
2 class SpaceshipTitanicPipeline(Module):

3 # (continued from above)

4 @trace.bundle(trainable=True)

5 def predict(self, model, data):

6 o

7 Make predictions on whether passengers were transported.

8

9 Prediction Workflow (some examples on how you could do this, however you can use
your own method if it works better):

10 1. Probabilistic Prediction:

11 - Soft classification probabilities

2 - Confidence-based thresholding

13 - Ensemble prediction aggregation

14

15 2. Post-processing Techniques:

16 - Calibration curves

17 - Probability scaling

18 - Ensemble diversity preservation

19

20 3. Output Formatting:

21 - Binary classification output

22 - Kaggle submission compatibility

23 - Interpretable prediction format

24

25 4. Prediction Quality Assessment:

26 - Uncertainty quantification

27 - Prediction reliability scoring

28 - Anomaly detection

29

30 Args:

31 model (VotingClassifier): Trained ensemble model

32 data (pd.DataFrame): Processed test dataset

33

34 Returns:

35 np.ndarray: Binary predictions for passenger transportation status

36 o

37 predictions = model.predict(data)

38 predictions = np.array(predictions, dtype=bool)

39 return predictions

Figure A.14: Initial code for Spaceship-Titanic ML Agent (Part 5). Docstrings are generated by ChatGPT and
then edited by humans.

28

Under review as a conference paper at ICLR 2026

import trace

1

2

3 @trace.model

4 class SpaceshipTitanicPipeline (Module):
5

@trace.bundle(trainable=True)

7 def preprocess(self, data):

8 """(same as before, skipped to save space)"""”

9 # Create a copy to avoid modifying original data

10 # Handle missing values in numeric columns

11 numeric_columns = ["Age"”, "RoomService"”, "FoodCourt”, "ShoppingMall",

12 "Spa", "VRDeck"]

13 for col in numeric_columns:

14 processed_datalcol] = processed_datalcol].fillna(processed_datalcol].median())

15

16 # Handle boolean/categorical columns

17 processed_datal["”"VIP"] = processed_data["VIP"].fillna(False)

18 processed_datal["CryoSleep”] = processed_datal[”"CryoSleep”].fillna(False)

19

20 # Convert HomePlanet to numeric using label encoding

21 if "HomePlanet” in processed_data.columns:

22 processed_datal["”"HomePlanet”] = processed_data[”HomePlanet"].fillna("Unknown")

23 planet_map = {"Earth”: @, "Europa”: 1, "Mars”: 2, "Unknown": 3}

24 processed_data["”HomePlanet”] = processed_data["HomePlanet"”].map(planet_map)

25

26 # (skipped some code)

27

28 # Age-related features

29 processed_data["”Age"] = processed_data[”Age"].fillna(processed_data["”Age"”].median())

30 processed_data["”AgeGroup”] = pd.qcut(

31 processed_data["Age"], q=6, labels=[0, 1, 2, 3, 4, 5]

32).astype(int)

33

34 # Interaction features

35 processed_data["”"CryoSleepVIP"] = processed_datal["CryoSleep”].astype(int) =*
processed_data["”"VIP"].astype(int)

36 processed_datal["”SpendingPerAge”] = processed_data["TotalSpending”] /
processed_data["Age"”].clip(lower=1)

37 processed_data["HasSpent"] = (processed_data[”"TotalSpending”] > @).astype(int)

38 processed_data["”SpendingVariety"] = (processed_datalspending_columns] >
Q) .sum(axis=1)

39

40 # ... standard scaling, dropping columns, etc.

41

42 # Final check for NaN values

43 processed_data = processed_data.fillna (@)

44 return processed_data

Figure A.15: Final learned code for Spaceship-Titanic ML Agent (Part 1). Docstrings are generated by ChatGPT

and then edited by humans.

29

Under review as a conference paper at ICLR 2026

1
2
3
4

16
17
18
19
2(

21
22
23
24
25

26

[TV NV
D0 =

[TV IRVIRVE
S G B

59

60

import trace

@trace.model
class Policy(Module):
def __call__(self, obs):
predicted_ball_y = self.predict_ball_trajectory(obs)
action = self.select_action(predicted_ball_y, obs)
return action

@trace.bundle(trainable=True)
def predict_ball_trajectory(self, obs):

Predict the y-coordinate where the ball will intersect with the player’s paddle by
calculating its trajectory,

using ball’s (x, y) and (dx, dy) and accounting for bounces off the top and bottom
walls.
Game Setup:

- Screen dimensions: The game screen has boundaries where the ball bounces
- Top boundary: approximately y=30
- Bottom boundary: approximately y=190
- Paddle positions:
- Player paddle: right side of screen (x = 140)
- Enemy paddle: left side of screen (x = 16)

Args:
obs (dict): Dictionary containing object states for "Player”, "Ball”, and
"Enemy” .
Each object has position (x,y), size (w,h), and velocity (dx,dy).
Returns:

float: Predicted y-coordinate where the ball will intersect the player’s paddle
plane.
Returns None if ball position cannot be determined.

if ’Ball’ in obs:
return obs[’Ball’].get("y", None)
return None

@trace.bundle(trainable=True)
def select_action(self, predicted_ball_y, obs):

D)

Select the optimal action to move player paddle by comparing current player position

and predicted_ball_y.

IMPORTANT! Movement Logic:
- If the player paddle’s y position is GREATER than predicted_ball_y: Move DOWN
(action 2)
(because the paddle needs to move downward to meet the ball)

- If the player paddle’s y position is LESS than predicted_ball_y: Move UP (action 3)

(because the paddle needs to move upward to meet the ball)

- If the player paddle is already aligned with predicted_ball_y: NOOP (action 0)
(to stabilize the paddle when it’s in position)

Ensure stable movement to avoid missing the ball when close by.

Args:
predicted_ball_y (float): predicted y coordinate of the ball or None
obs(dict): Dictionary of current game state, mapping keys ("Player”, "Ball",
"Enemy"”) to values (dictionary of keys (’x’, ’y’, ’w’, ’h’, ’dx’, ’dy’) to integer
values)
Returns:

int: @ for NOOP, 2 for DOWN, 3 for UP

if predicted_ball_y is not None and ’Player’ in obs:
return random.choice([2, 31)
return 0

Figure A.16: Initial code for Pong Agent.

30

Under review as a conference paper at ICLR 2026

1 import trace

2

3@trace.model
4 class Policy(Module):

5

16

19
20
21
23
24
25
26
27

29

69

def __call__(self,
predicted_ball
action = self.
return action

@trace.bundle(trai
def predict_ball_t
"""(same as be
if ’Ball’ in o
ball = obs

If ball
if ball.ge

return

Calculat
paddle_x =
ball_x = b
ball_dx =
if ball_dx
return

time_to_pa

Calculat
ball_y = b
ball_dy =

obs):

_y = self.predict_ball_trajectory(obs)

select_action(predicted_ball_y, obs)

nable=True)
rajectory(self, obs):
fore, skipped to save space)
bs:
[’Ball’]
moving away from player, return None
t(’dx’, @) < 0:
None

woan

e time to reach paddle
140

all.get(’x’, Q)

ball.get(’dx’, 0)

ball.get(’y’, None)
ddle = (paddle_x - ball_x) / ball_dx
e predicted y position with improved accuracy

all.get(’y’, 0)
ball.get(’dy’, @)

predicted_y = ball_y + ball_dy * time_to_paddle

Account
num_bounce
while pred
if pre
pr
if pre
pr
num_bo
if num
br

return pre
return None

@trace.bundle(trai
def select_action(
’?’ (same as be

if predicted_b

Calculat
paddle_cen

Increase

base_margi

if ’Ball’
ball_x

for bounces with improved accuracy

s =0

icted_y < 30 or predicted_y > 190:
dicted_y < 30:

edicted_y = 30 + (30 - predicted_y)
dicted_y > 190:

edicted_y = 190 - (predicted_y - 190)
unces += 1

_bounces > 4: # Limit bounce calculations
eak

dicted_y

nable=True)

self, predicted_ball_y, obs):

fore, skipped to save space)’’’

all_y is not None and ’Player’ in obs:

e center of paddle

ter = obs[’Player’][’y’] + obs[’Player’1[’h’1/2

margin and add dynamic adjustment based on ball distance
n =4

in obs:

= obs[’Ball’].get(’x’, 0)

dist_factor = (140 - ball_x) / 140 # Normalized distance factor

margin

Add

if obs
ba
#

= base_margin * (1 + dist_factor) # Larger margin when ball

momentum-based adjustment
[’Ball’].get(’dx’, @) > @:

11_dy = obs[’Ball’].get(’dy’, @)
Scale adjustment based on distance

predicted_ball_y += ball_dy x dist_factor

else:
margin

= base_margin

More aggressive movement thresholds

if paddle_
return
elif paddl
return
return 0
return 0

center > predicted_ball_y + margin:
2 # Move down

e_center < predicted_ball_y - margin:
3 # Move up

Stay in position

is far

Figure A.17: Final learned code for Pong Agent.

31

Under review as a conference paper at ICLR 2026

1 @trace.model
2 class Policy(Module):

3

14
15
16

17
18
19
20
21

22

24
25
26

27
28

29

30
31
32
33

35
36

[T IRV IRVIRVY
ISRV IS

%

59

60

6
62

64
65
66
67
68

def __call__(self, obs):
pre_ball_x = self.predict_ball_trajectory(obs)
target_paddle_pos = self.generate_paddle_target(pre_ball_x, obs)
action = self.select_paddle_action(target_paddle_pos, obs)
return action

@trace.bundle(trainable=True)
def predict_ball_trajectory(self, obs):

Predict the x-coordinate where the ball will intersect with the player’s paddle by
calculating its trajectory,

using ball’s (x, y) and (dx, dy) and accounting for bounces off the right and left
walls.

Game setup:
- Screen dimensions: The game screen has left and right walls and brick wall where
the ball bounces
- Left wall: x=9
- Right wall: x=152
- Paddle positions:
- Player paddle: bottom of screen (y=189)
- Ball speed:
- Ball deflects from higher-scoring bricks would have a higher speed and is harder
to catch.
- The paddle would deflect the ball at different angles depending on where the ball
lands on the paddle

Args:
obs (dict): Dictionary containing object states for "Player”, "Ball"”, and blocks
"{color}B" (color in [R/0/Y/G/A/BI).
Each object has position (x,y), size (w,h), and velocity (dx,dy).
Returns:
float: Predicted x-coordinate where the ball will intersect the player’s paddle
plane.
Returns None if ball position cannot be determined.
if ’Ball’ not in obs:
return None

@trace.bundle(trainable=True)
def generate_paddle_target(self, pre_ball_x, obs):

Calculate the optimal x coordinate to move the paddle to catch the ball (at
predicted_ball_x)

and deflect the ball to hit bricks with higher scores in the brick wall.

Logic:
- Prioritize returning the ball when the ball is coming down (positive dy)
- The brick wall consists of 6 vertically stacked rows from top to bottom:
- Row 1 (top): Red bricks (7 pts)
- Row 2: Orange (7 pts)
- Row 3: Yellow (4 pts)
- Row 4: Green (4 pts)
- Row 5: Aqua (1 pt)
- Row 6 (bottom): Blue (1 pt)
- Strategic considerations:
- Breaking lower bricks can create paths to reach higher-value bricks above
- Creating vertical tunnels through the brick wall is valuable as it allows
the ball to reach and bounce between high-scoring bricks at the top
- Balance between safely returning the ball and creating/utilizing tunnels
to access high-value bricks
- Ball speed increases when hitting higher bricks, making it harder to catch

Args:
pre_ball_x (float): predicted x coordinate of the ball intersecting with the
paddle or None
obs (dict): Dictionary containing object states for "Player”, "Ball"”, and blocks
"{color}B” (color in [R/0/Y/G/A/BI).
Each object has position (x,y), size (w,h), and velocity (dx,dy).
Returns:
float: Predicted x-coordinate to move the paddle to.
Returns None if ball position cannot be determined.
if pre_ball_x is None or ’Ball’ not in obs:
return None
return None

Figure A.18: Initial code for Breakout Agent (Part 1).

32

Under review as a conference paper at ICLR 2026

1
2
3
4

= oW

9
10

5
2

13

14

16
17
18
19
20
21

24

26
27
28
29

30

import trace

@trace.model
class Policy(Module):

(continued from above)

@trace.bundle(trainable=True)
def select_paddle_action(self, target_paddle_pos, obs):

wun

Select the optimal action to move player paddle by comparing current player position

and target_paddle_pos.

Movement Logic:

- If the player paddle’s center position is GREATER than target_paddle_pos: Move

LEFT (action 3)
- If the player paddle’s center position is LESS than target_paddle_pos:
(action 2)

Move RIGHT

- If the player paddle is already aligned with target_paddle_pos: NOOP (action 0)

(to stabilize the paddle when it’s in position)
Ensure stable movement to avoid missing the ball when close by.

Args:

target_paddle_pos (float): predicted x coordinate of the position to best

position the paddle to catch the ball,
and hit the ball to break brick wall.
obs (dict): Dictionary containing object states for "Player"”, "Ball”,
"{color}B"” (color in [R/0/Y/G/A/BI).
Each object has position (x,y), size (w,h), and velocity (dx,dy).
Returns:
int: @ for NOOP, 2 for RIGHT, 3 for LEFT
if target_paddle_pos is None or ’Player’ not in obs:
return 0

paddle = obs[’Player’]
paddle_x = paddle[’x’]
paddle_w = paddle[’w’]
paddle_center = paddle_x + (paddle_w / 2)

Add deadzone to avoid oscillation

deadzone = 2

if abs(paddle_center - target_paddle_pos) < deadzone:
return @ # NOOP if close enough

elif paddle_center > target_paddle_pos:
return 3 # LEFT

else:
return 2 # RIGHT

and blocks

Figure A.19: Initial code for Breakout Agent (Part 2).

33

Under review as a conference paper at ICLR 2026

| @trace.model
2 class Policy(Module):

3

4 def __call__(self, obs):

5 pre_ball_x = self.predict_ball_trajectory(obs)

6 target_paddle_pos = self.generate_paddle_target(pre_ball_x, obs)

7 action = self.select_paddle_action(target_paddle_pos, obs)

8 return action

9

10 @trace.bundle(trainable=True)

11 def predict_ball_trajectory(self, obs):

12 """(same as before, skipped to save space)”"""

13 if pre_ball_x is None or ’Ball’ not in obs or ’Player’ not in obs:
14 return None

15

16 ball = obs[’Ball’]

17 paddle = obs[’Player’]

18

19 # Default to centering paddle on predicted ball position

20 target_x = pre_ball_x

21

22 # Adjust paddle position based on current ball direction and brick locations
23 if ball[’dy’] > @: # Ball moving down

24 if ball[’y’] < 120: # Ball in upper half - aim for tunnels to high bricks
25 # Look for gaps in brick rows to target

26 high_brick_x = None

27 for color in [’RB’, ’OB’]: # Check red and orange rows

28 if color in obs:

29 bricks = obs[color]

30 if len(bricks) > 0:

31 brick = bricks[0]

32 high_brick_x = brick[’x’] + (brick[’w’] / 2)

33 break

34

35 if high_brick_x is not None:

36 # Adjust paddle to deflect ball toward high-value bricks
37 if ball[’x’] < high_brick_x:

38 target_x = pre_ball_x - 4 # Hit ball on right side
39 else:

40 target_x = pre_ball_x + 4 # Hit ball on left side
41

42 # Ensure target is within screen bounds

43 paddle_half_width = paddle[’w’] / 2

44 target_x = max(9 + paddle_half_width, min(152 - paddle_half_width, target_x))
45

46 return target_x

Figure A.20: Learned code for Breakout Agent (Part 1).

34

Under review as a conference paper at ICLR 2026

| @trace.model

2 class Policy(Module):

4 # (continued from above)

5

6 @trace.bundle(trainable=True)

7 def generate_paddle_target(self, pre_ball_x, obs):

8 """(same as before, skipped to save space)"""

9 if ’Ball’ not in obs:

10 return None

11

12 ball = obs[’Ball’]

13 ball_x = ball[’x’]

14 ball_y = ball[’y’]

15 ball_dx = ball[’dx’]

16 ball_dy = ball[’dy’]

17

18 # If ball is not moving, can’t predict

19 if ball_dx == @ and ball_dy ==

20 return None

21

22 # Calculate time to reach paddle

23 paddle_y = 189 # Player paddle y-position

24 if ball_dy != @: # Avoid division by zero

25 time_to_paddle = (paddle_y - ball_y) / ball_dy
26 if time_to_paddle > @: # Only predict if ball is moving toward paddle
27 # Account for wall bounces

28 x = ball_x + (ball_dx * time_to_paddle)

29 num_bounces = @

30 while x < 9 or x > 152:

31 if x < 9:

32 x =9 + (9 - x) # Reflect off left wall
33 if x > 152:

34 X = 152 - (x - 152) # Reflect off right wall
35 num_bounces += 1

36 if num_bounces > 10: # Prevent infinite bounces
37 break

38 return x

39 return None

40

41 @trace.bundle(trainable=True)

42 def select_paddle_action(self, target_paddle_pos, obs):
43 """(same as before, skipped to save space)"""

44 if target_paddle_pos is None or ’Player’ not in obs:
45 return @

46

47 paddle = obs[’Player’]

48 paddle_x = paddle[’x’]

49 paddle_w = paddle[’w’]

50 paddle_center = paddle_x + (paddle_w / 2)

51

52 # Add deadzone to avoid oscillation

53 deadzone = 2

54 if abs(paddle_center - target_paddle_pos) < deadzone:
55 return @ # NOOP if close enough

56 elif paddle_center > target_paddle_pos:

57 return 3 # LEFT

58 elsel:

59 return 2 # RIGHT

Figure A.21: Learned code for Breakout Agent (Part 2).

35

Under review as a conference paper at ICLR 2026

1 @trace.model
2 class Policy(Module):

4 def __call__(self, obs):

5 shoot_decision = self.decide_shoot (obs)

6 move_decision = self.decide_movement (obs)

7 return self.combine_actions(shoot_decision, move_decision)
8

9 @trace.bundle(trainable=True)

10 def decide_shoot(self, obs):
1 o

12 Decide whether to shoot based on enemy positions and existing projectiles.

13

14 Args:

15 obs (dict): Game state observation containing object states for "Player”,
"Shield@”, "Shield1"”, "Alien@"”, "Alienl"”, etc.

16 Each object has position (x,y), size (w,h), and velocity (dx,dy).

17 Player bullets have negative dy velocity and alien bullets have positive dy
velocity

18

19 Strategy tips:

20 - You can only have one missile at a time

21 - Try to shoot when aliens are aligned with your ship

22 - Prioritize shooting at lower aliens as they’re closer to you

23 - Consider the movement of aliens when deciding to shoot

24

25 Returns:

26 bool: True if should shoot, False otherwise

’7’/‘ LR

28

29 # There can only be one player bullet on the field at a time

30 # Check for player bullets (which have negative dy velocity)

31 for key, obj in obs.items():

32 if key.startswith(’Bullet’) and obj.get(’dy’, 0) < 0:

33 return False

34

35 return random.choice([True, Falsel])

36

37 @trace.bundle(trainable=True)

38 def decide_movement (self, obs):

39 ’o

40 Decide movement direction based on enemy positions and projectiles.

41

42 Args:

43 obs (dict): Game state observation containing object states for "Player”,
"Shieldo”, "Shield1", "Alien@"”, "Alienl"”, etc.

44 Each object has position (x,y), size (w,h), and velocity (dx,dy).

45 Player bullets have negative dy velocity and alien bullets have positive dy
velocity

46

47 Strategy tips:

48 - Move to dodge enemy projectiles

49 - Position yourself under aliens to shoot them

50 - Stay away from the edges of the screen

51 - Consider moving toward areas with more aliens to increase score

52

53 Returns:

54 int: -1 for left, 1 for right, @ for no movement

55 v

56

57 player = obs[’Player’]

58

v
°

return random.choice([-1,0,1])

Figure A.22: Initial code for Space Invaders Agent (Part 1).

36

Under review as a conference paper at ICLR 2026

| @trace.model
2 class Policy(Module):

16

28

30
31
32
33
34

36
37

(continued from above)

@trace.bundle(trainable=True)

def

combine_actions(self, shoot, movement):

)

Combine shooting and movement decisions into final action.

Args:
shoot (bool): Whether to shoot
movement (int): Movement direction

Action mapping:

- @: NOOP (no operation)

FIRE (shoot without moving)

RIGHT (move right without shooting)
LEFT (move left without shooting)
RIGHT+FIRE (move right while shooting)
LEFT+FIRE (move left while shooting)

|
a s wN =

Returns:
int: Final action (@: NOOP, 1: FIRE, 2: RIGHT, 3: LEFT, 4: RIGHT+FIRE,

LEFT+FIRE)

)

if shoot and movement > 0:
return 4 # RIGHT+FIRE

elif shoot and movement < 0:
return 5 # LEFT+FIRE

elif shoot:
return 1 # FIRE
elif movement > 0:
return 2 # RIGHT
elif movement < O:

return 3 # LEFT
return @ # NOOP

53

Figure A.23: Initial code for Space Invaders Agent (Part 2).

37

Under review as a conference paper at ICLR 2026

| @trace.model

2 class Policy(Module):

3

4 def __call__(self, obs):

5 shoot_decision = self.decide_shoot (obs)

6 move_decision = self.decide_movement (obs)

7 return self.combine_actions(shoot_decision, move_decision)
8

9 @trace.bundle(trainable=True)

10 def decide_shoot(self, obs):

11 """(same as before , skipped to save space)""”

12

13 # There can only be one player bullet on the field at a time
14 # Check for player bullets (which have negative dy velocity)
15 for key, obj in obs.items():

16 if key.startswith(’Bullet’) and obj.get(’dy’, 0) < 0:
17 return False

18

19 player = obs[’Player’]

20 for key, obj in obs.items():

21 if key.startswith(’Alien’):

22 # Check if alien is aligned with player (within 5 pixels)
23 if abs(obj[’x’] - player[’x’]) < 5:

24 # Prioritize lower aliens (higher y value)
25 if obj[’y’] > 60: # Adjust this threshold as needed
26 return True

27 return False

28

29 @trace.bundle(trainable=True)

30 def decide_movement (self, obs):

31 """ (same as before , skipped to save space)""”

32 player = obs[’Player’]

33 move = @

34 threat_left = 0

35 threat_right = 0@

36 aliens_left = 0@

37 aliens_right = @

38

39 for key, obj in obs.items():

40 if key.startswith(’Alien’):

41 if obj[’x’] < player[’x’]:

42 aliens_left += 1

43 elsel:

44 aliens_right += 1

45 elif key.startswith(’Bullet’) and obj[’dy’] > @: # Enemy bullet
46 if obj[’x’] < player[’x’]:

47 threat_left += 1

48 else:

49 threat_right += 1

50

51 # Move away from threats

52 if threat_left > threat_right:

53 move = 1

54 elif threat_right > threat_left:

55 move = -1

56 # If no immediate threat, move towards more aliens

57 elif aliens_left > aliens_right:

58 move = -1

59 elif aliens_right > aliens_left:

60 move = 1

61

62 return move

63

64 @trace.bundle(trainable=True)

65 def combine_actions(self, shoot, movement):

66 """(same as before , skipped to save space)"""

67 if shoot and movement > 0:

68 return 4 # RIGHT+FIRE

69 elif shoot and movement < 0:

70 return 5 # LEFT+FIRE

71 elif shoot:

72 return 1 # FIRE

73 elif movement > 0:

74 return 2 # RIGHT

75 elif movement < 0:

76 return 3 # LEFT

77 return @ # NOOP

Figure A.24: Learned code for Space Invaders Agent.

38

	Introduction
	Background and Related Work
	Building Learning Agents with Generative Optimization
	Atari Game Playing Agents Through Episodic Learning
	Data Science Agent With Interactive Learning Graph
	Language Understanding Agent Through Batch Learning
	Conclusion and Limitation
	Large Language Model Access Card
	Discussion on Other Important Factors for Agent Learning
	Specifying Agent Behavior Through Workflows
	Guiding Agent Learning Process Through Effective Feedback

	MLAgentBench Details
	Agent Design Details
	Feedback Design Details
	LLM Agent Learning Results
	Effect of Workflow Design
	Examples of the Learned ML Agent

	Batch Learning Agent Details
	Batch Learning LangGraph Agent Details
	Agent Design Details
	Feedback Design Details

	Atari Game Details
	Game setup
	Feedback Design Details
	Agent Design Details
	LLM Agent Learning Result
	Deep RL Result
	Examples of the Learned Atari Agent

	Large Language Model Use for Writing
	Examples of Learned Agent
	ML Agent
	Atari Game Agents

