
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BUILDING LEARNING CONTEXT FOR AUTONOMOUS
AGENTS THROUGH GENERATIVE OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Building intelligent agents that learn involves designing systems that can evolve
their behavior based on experiences. While early approaches to large language
models (LLMs) agent learning relied mostly on structured memory and in-context
learning, they often led to behavioral instability, poor interpretability, and difficulty
in control. Recent success in generative optimization, where an LLM is used as an
optimizer, has shown the possibility of creating autonomous software agents. By
separating behavior logic (workflow) and how that logic is updated (optimizer), the
agent designer can exhibit more control over the agent. In this work, we show the
surprising fact that the agent learning problem is under-specified with the generative
optimization framework. If we want an agent to learn the right behavior, we must
set up the right context that will induce such behavior. We investigate three types
of software engineering problems that span data science, computer security, game
playing, and question answering. We show that the original generative optimization
framework can only learn robustly under one of the three settings. To address the
issue, we propose to construct a meta-graph through templates to introduce the
right learning context to an LLM optimizer. With this addition, we demonstrate
that defining the right learning context enables agents to discover behaviors aligned
with the designer’s objectives. In particular, we show the first known result of
using generative optimizers to learn executable programs that play Atari games,
where the resulting agents achieve performance comparable to deep reinforcement
learning while requiring 50%-90% less training time.

1 INTRODUCTION

Artificial intelligent agents — computer programs that “operate autonomously, perceive their en-
vironment, persist over time, adapt to changes, create and pursue goals” (Russell & Norvig, 2016)
— have regained significant attention recently, due to the maturation of large language models
(LLMs) (Achiam et al., 2023). The ease of accessing LLMs gave rise to new programming
paradigms, such as language model programs (Khattab et al., 2024) and multi-agent orchestra-
tion frameworks (Wu et al., 2024), all of which leverage calls to LLMs to handle a wide range of
tasks in human society, from computer use (Fourney et al., 2024), and software engineering (Jimenez
et al., 2024), to scientific discovery (Yang et al., 2024b).

Despite these advances, building agents still requires a substantial amount of human engineering.
Often agent developers need to design complex decision rules to orchestrate an agent’s behaviors,
build pipelines to parse information from the environment into the agent’s percepts, and engineer
prompts to control LLMs. However, results in competitive programming (El-Kishky et al., 2025) have
shown that it is paramount to find a general-purpose method that can scale with compute, rather than
engineering domain-specific solutions (Sutton, 2019). These human-engineered components should
be automatically learned through agent’s experiences, enabling agents that can program themselves
through learning.

Traditional techniques such as reinforcement learning (RL) (Sutton et al., 1998) are general-purpose
algorithms that theoretically can be applied to agent learning. However, since state-of-the-art agents
are made of large language models (LLMs), gradient updates must be performed on LLM weights.
Initial explorations showed promising results (Bai et al., 2025; Guo et al., 2025), although it is unclear
how well the learned LLM weights generalize to out-of-domain tasks, and how many tasks are needed

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Inputs OutputsLLM Call

[Str] “Generate
Query"

[Code] Query
Database

LLM Call

[Str]
“Summarize"

[Code] Rerank
Results

Feedback

Optimizer

Feedback

Optimizer Optimizer

Feedback

Workflow Graph Interactive Learning Graph Batch Learning Graph Episodic Learning Graph

Figure 1: A Diagram for An LLM-based System. represents a repeated workflow execution graph (we
denote as workflow graph). We use and to represent trainable parameter nodes (string, code, etc.). The
optimizer updates parameter nodes during learning. We show that as agent designer, we can choose to
optimize the parameters under different learning contexts (interactive, batch, and episodic). We show how to
leverage repeatable workflow graphs () can be concatenated to construct an agent learning graph ().

to reach a generalist agent, as multi-task learning has always been a challenge in RL (Kirkpatrick
et al., 2017; Taiga et al., 2023).

Recently, there is an emerging end-to-end perspective that instead treats a given software program as
a computational graph and optimizes its parameters (i.e., the human-made decisions discussed above)
via a generalized form of “back-propagation gradient descent” (Cheng et al., 2024b; Yuksekgonul
et al., 2025; Wang et al., 2024b). By using generative models (like LLMs) as optimizers (Pryzant
et al., 2023; Nie et al., 2023; Yang et al., 2024a), this perspective has led to frameworks that can
automatically tune parameters and generate new code in non-differentiable programs, which achieved
promising results in producing distributed systems programs (Wei et al., 2024).

This approach offers several advantages. It enables an agent to adapt to solve tasks through automatic
optimization, directly using rich feedback (such as compilation errors, system reports, and end-user
feedback), a process that traditionally requires manual trial and error. Moreover, by learning, agents
can discover solutions that exceed what human experts can design. We have seen this trend with
deep learning (Silver et al., 2016; Brown & Sandholm, 2019; Mirhoseini et al., 2020; Bellemare
et al., 2020). This perspective turns agent learning into a closed-loop optimization problem by calling
LLMs over multiple iterations to refine the agent. This is in contrast to the predominant use of
LLM-as-agents when the agents change their behaviors based on each query and hope to produce the
correct sequence of actions in one-shot.

Prior works that incorporate environment feedback to change an agent’s behavior have met with
mixed success. While there are very successful applications (Cheng et al., 2024b), limitations have
also been observed: the optimization process can be unstable (Huang et al., 2024) and the self-
improvement phenomenon only persists for a few rounds (Shinn et al., 2023; Madaan et al., 2023).
We argue that this issue arises in part because the problem of agent learning is under-specified with
generative optimization. An agent needs to learn solutions that can generalize different contexts,
while generative optimization defines an optimization problem under a single problem context.

In this paper, we analyze sources of this under-specification issue and propose constructive remedies.
We show that agent learning should not be specified only as an execution (workflow) graph of its own
internal operations, but a meta-graph on a stream of experiences to capture the learning context. We
introduce operators (⊕ and ⇒) to insert workflow graphs into a template to construct an agent learning
graph, which correctly specifies the agent’s learning objective and enables generative optimization to
learn parameters effective for the agent designer’s goal. In addition, we discuss how to structure the
agent’s internal workflow to improve optimization results (similar to how architectural choices in
neural networks facilitate better learning outcomes). We note that this factor has been overlooked
in previous attempts to design self-improvement loops (Chen et al., 2023; Huang et al., 2024; Snell
et al., 2024). Finally, we discuss a few choices of enhancing and amplifying feedback for different
stages of the learning process, analogous to reward shaping.

We show that these insights allow us to apply generative optimization to solve a wide range of tasks.
Automatic software engineering, such as creating an agent to write machine learning programs, can
be seen as an interactive learning task. We show that on the MLAgentBench (Huang et al., 2023), we
can learn an agent that can output high-quality models that surpassed 86.6% submissions on Kaggle
leaderboard than the baseline agent, which only surpassed 70.8% submissions. We can also optimize
an LLM based workflow to improve its performance by as much as 14.5% on GSM8K and 65.1% on
BBEH. Finally, we show that we can learn a static Python program that can play Atari games, nearly

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

matching the performance of Deep RL baselines but with 50%-90% less compute time. All of these
show the versatility of this paradigm and the power of the automatic agent learning process.

2 BACKGROUND AND RELATED WORK

History of Learning Agents The term AI agent has a long history (Genesereth & Nilsson, 1987).
In this paper, we follow Russell & Norvig (2016) and define a learning agent as a program that can
sense percepts, take actions, and adapt with experiences in a digital/physical environment. For an
agent to learn, it implies that the software has components that are modifiable and can influence
its behaviors; these components are called parameters. For example, a tabular agent has a lookup
table as its parameter, and a learning algorithm such as policy iteration or value iteration would be
suitable (Bertsekas, 1987). A deep RL agent has a neural network as its parameter, and learn from
rewards using algorithms like proximal policy optimization (PPO) (Schulman et al., 2017).

Adaptive Workflow Increasingly, intelligent systems are being built with LLMs. For the state-
of-the-art LLM systems (Wang et al., 2024a;c; Fourney et al., 2024), their parameters can be
model weights, or more generally, system prompts, code that pre-processes input, and code that
modifies the returned results from the LLM. Besides the obvious approach of fine-tuning the LLM’s
weights (Scheurer et al., 2023), there isn’t a dominant approach on how to change the system’s
behavior on the fly. Some inference-time learning methods have been introduced, with the prevailing
strategy utilizing databases, referred to as "memories" in RAG (Lewis et al., 2020). Recently, a new
perspective of building intelligent agent emerges, which leverages an LLM’s ability to write coherent
programs to accomplish a purpose (Cheng et al., 2024b; Zhang et al., 2024). This view separates
an LLM agent into two parts: the workflow that represents the behavioral logic of the agent, and an
optimizer that updates such behavioral logic.

Generative Optimization Generative optimization algorithms have been proposed to update an
LLM workflow. They typically use a generative model (like an LLM) as part of its optimizer to
analyze problems and propose updates. A generative optimizer takes as inputs (1) a problem context,
(2) parameters, (3) a computational graph involving the parameters, (4) a feedback signal, and
outputs a parameter value. Several generative optimizer implementations have been proposed, such as
DSPy (Khattab et al., 2024), OptoPrime (Cheng et al., 2024b), TextGrad (Yuksekgonul et al., 2025),
and GASO (Wang et al., 2024b). They differ in how they represent and reason about the graph and
kinds of feedback they can process. For instance, optimizers in DSPy work with scalar feedback,
while OptoPrime/TextGrad/GASO uses any feedback that an LLM can interpret. OptoPrime formats
the entire graph into a single LLM prompt, while TextGrad/GASO processes the graph iteratively.

The Framework of OPTO Recently OPTO (Optimization with Trace Oracle) (Cheng et al., 2024b)
was proposed as a unified math setup for describing iterative generative optimization problems. An
OPTO problem (a generalization of numerical optimization) is described by a tuple (Θ, ω, T), where
Θ is the parameter space, ω is the problem context and T is a Trace Oracle. For a parameter θ ∈ Θ,
the Trace Oracle T returns a tuple (f, g) where g is a computational graph involving θ and f is a
feedback signal provided to exactly one node of g (the output node). An autonomous agent that
learns through experience in this setup corresponds to a workflow design and an optimizer that can
update the workflow. We emphasize that a workflow itself is not an autonomous agent, but a workflow
combined with an optimizer that can rewrite its own behavior according to feedback is an agent.

3 BUILDING LEARNING AGENTS WITH GENERATIVE OPTIMIZATION

In agent learning, we wish to optimize an agent’s parameters in a stream of experience. Our approach
takes inspiration from deep learning, which accomplishes machine learning via optimization on
differentiable computational graphs. In deep learning, we specify a neural network architecture
(a computational graph which is parameterized by tensors) and a numerical oracle (e.g., a loss
function to minimize) to provide feedback at the output of the computational graph. Following the
OPTO framework, our approach is built similarly with these two components but using generative
optimization. The main differences are that here differentiability is not required and that the agent
is not limited to learning from numerical feedback only. In the following, we show constructive

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

templates to define the parameterized computational graph and discuss design principles for the
feedback oracle and the agent’s computational graph.

We demonstrate how computational graphs can naturally describe different agent learning problems.
We suppose that a workflow is given and is represented as a computational graph Wθ, where θ denotes
the parameters. Without loss of generality, we suppose the workflow takes a single input x and
returns a single output y = Wθ(x) (x, y can be arrays for modeling multi-input-multi-output cases).
We call Wθ the workflow graph. Recall that the workflow here means the full software program,
which internally may be composed of multiple calls to LLMs and decision rules (in other words, with
abuse of notation, the workflow here can represent also an entire multi-agent orchestration (Wu et al.,
2024)). As a result, the workflow graph does not need to be static and it can vary with input or due to
the internal randomness of the workflow.

In contrast to the workflow, we denote the full computational graph that will be presented to the
generative optimizer (i.e., g in OPTO) as Aθ, which we call the agent learning graph. The agent
learning graph is composed of the workflow graph and other nodes derived from the learning problem,
such that the learning structure can be captured correctly. Lastly, a feedback oracle maps (x, y) into
feedback f , which can be numerics, texts, images, or structured objects (e.g. a dictionary). We
assume the feedback is not adversarial and contains some information of the agent’s performance.
With these assumptions, an OPTO problem instance can be created where the problem context ω can
be fixed to a string such as “Update the parameters to incorporate the feedback.”

Now we discuss how to construct the agent graph for common agent learning problems using
templates to build agent learning graphs, as shown in Fig. 1.

Interactive Learning Template. Here the agent learns on the fly as it interacts with the world (Shalev-
Shwartz et al., 2012). At each time step, it sees an input x, outputs y, receives feedback f , and then
updates its parameter θ. These problems encompass online learning and bandit variants that are
well-studied in the literature. The meta graph here simply shows the input x is transformed by an
operator (i.e., the agent) and then the feedback is provided to y. When the agent graph Aθ is inserted
into this template, it yields the workflow graph Wθ.

Batch Learning Template. Different from interactive learning, a batch-learning agent learns from
a given dataset D =

[
(xi, zi)

]N
i=1

of size N , where xi and zi denote the input and the information
to learn from for the ith data point (Hastie et al., 2009). For example, zi can be the desired agent
output when seeing xi (supervised learning), or it can be a positive-negative pair (preference-based
learning), etc. In batch learning, the agent learns from an oracle that takes (xi, yi, zi) as input (where
yi = Wθ(xi)) and provides feedback such as a loss. To handle such a batch problem with the iterative
setup of OPTO, we appeal to the idea of online-to-batch conversion (Shalev-Shwartz et al., 2012) and
mini-batching. As shown in Fig. 1, in each iteration of OPTO, we sample a minibatch and construct
the graph for the sampled batch. We introduce a batchify operator ⊕ that concatenates different
inputs. For a minibatch

[
(xi, zi)

]B
i=1

of size B, we first obtain
[
(fi, gi)

]B
i=1

, where gi and fi result
from input xi. Suppose oi is the output node of gi. Then we concatenate the outputs from {gi}Bi=1 to
create a new node ô = ⊕B

i=1oi and give the concatenated feedback ⊕B
i=1fi to ô.

Episodic Learning Template. Here we adopt a broader definition of RL, which describes the agent
learning in a sequential decision process with feedback of reward signals (Sutton et al., 1998) or richer
signals like natural language (Cheng et al., 2024a; Chen et al., 2024). We consider an episodic setting.
In each iteration, the agent interacts with the environment for multiple steps, receives feedback for
each step (the feedback can be empty), and then updates its parameters at the end of the episode. To
represent this structure as a computational graph, first we describe the interaction process of how
observations and actions are generated. In Fig. 1, this is shown as a chain similar to a Markov decision
process; notice there is an arrow going from action to the next observation via an operator denoted
as ⇒, which captures the causality. Then we apply the batchify operator ⊕ on the observations
generated ô = ⊕T

i=1oi, where T is the episode length, and similarly concatenates the feedback.

Remark. Using the right meta graph for a learning setup is important as it provides the learning
context to the generative optimizer; otherwise objective misalignment can happen. For instance, if we
desire a batch learning solution (i.e. a parameter that works well across a dataset of examples) but use
the meta-graph for online learning in OPTO, we can get sub-par optimization results (for instance,
an unstable parameter that is sensitive to the order in which individual examples are presented).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Similarly, if an agent’s behavior has long-term consequences, then we should only change its behavior
logic after an episode terminates. The separation between behavior logic and when/how to change
them allows us to specify the right learning objective and allow the agent to learn the right behavior.

4 ATARI GAME PLAYING AGENTS THROUGH EPISODIC LEARNING

Game playing has been a central focus in reinforcement learning (Mnih et al., 2013; Silver et al.,
2016; Brown & Sandholm, 2019). Recently, LLMs have demonstrated abilities to play long-horizon
games such as Pokémon Blue (Karten et al., 2025; Anthropic, 2025). However, all of these successes
utilize direct weight updates for the neural network, through training on collected in-game experience
or massive pre-training on tutorials and forum posts. In this section, we want to demonstrate that,
shockingly, with LLM as the optimizer and a correct learning template, we can learn a python
program (not weights) that can play games that were typically mastered by neural networks.

Figure 2: We show the workflow design of different decision-making program components for each Atari game
agent. The LLM agent receives an object-centric dictionary of information of the game state and uses Python
code to process and output an action.

The Arcade Learning Environment (ALE) of Atari games has remained an important benchmark for
evaluating RL algorithms for training neural network-based policies (Mnih et al., 2013). ALE can
be used to evaluate an RL algorithm in several ways: 1) The algorithm’s learning efficiency both in
terms of number of interactions with the environment and the overall wallclock time (Hessel et al.,
2018); 2) The diverse set of environments allow the evaluation of generalization of learning (Lee
et al., 2022).

0 3 6 9 12 15 18
Optimization Step

20

10

0

10

Sc
or

e

Pong

Learned Agent (Multi-Step)
Learned Agent (One-Step)

0 5 10 15 20 25 30
Optimization Step

0

100

200

300

Sc
or

e

Breakout
Learned Agent (Multi-Step)
Learned Agent (One-Step)

0 3 6 9 12 15 18
Optimization Step

400

600

800

1000

1200

Sc
or

e

Space Invaders
Learned Agent (Multi-Step)
Learned Agent (One-Step)

Figure 3: Performance of agent under different learning graphs (one-step vs multi-steps) across 5 trials. Episodic
learning template concatenates workflow graph at each step to build an episodic learning graph that correctly
specifies the temporal dependency in the agent’s learning objective.

We use object-centric Atari Environments (OCAtari) (Delfosse et al., 2024) to parse the pixel-based
observation from ALE to object-based representation. OCAtari provides the coordinates, size and
velocity of the object on screen, game termination condition (“lives”), and current reward (see
Figure A.9). We do not perform additional transformations to make the observation more readable.

Workflow Design. The agent is designed slightly differently for each game. The design decision
is driven by a high-level modularization of the decision-making process. Both Pong and Breakout
agents have select_action as the final component. They use predict_ball_trajectory as an
intermediate step, where the prediction is provided to select_action to decide how the paddle can

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

1X 10X 20X 30X 40X 50X
Relative Speed-up

19

20

21
Sc

or
e 43m

2h 24m

11h 12m

3.3X

Pong

1X 10X 20X 30X 40X 50X
Relative Speed-up

300

400
1h 31m

26h 54m

3h 8m

2.1X

Breakout

1X 10X 20X 30X 40X 50X
Relative Speed-up

800

1000

1200

1400

36m

26h 52m

3h 48m

6.3X

Space Invaders

Learned Agent (Ours) DQN PPO C51 Apex-DQN

Figure 4: We show the relative speedup running the generative optimization process compared to traditional
RL methods. Learned Agent result is the highest score it achieved in 5 trials. We report RL results from
an open-source implementation of RL algorithms (Huang et al., 2022b) and publicly available experiment
logs (Huang et al., 2022a). RL algorithms are trained with 8 parallel environment instances. Note that most
recent Deep RL with 32 environment instances can earn score of 450 on Breakout in 33m, see Appendix F.5.
The difference of scores (19-21) in Pong is not a meaningful difference and caused mostly by rounding.

be moved. For Breakout, we introduced a goal prediction component (generate_paddle_target)
to strategically determine where the paddle should go to maximize the reward. For Space Invaders
Agent, we simply have decide_shoot and decide_movement to decompose the decision space of
choosing when to fire and when to move the game avatar.

Learning Graph Design. Due to the length of the context window for the LLM we use, we are only
able to trace a fixed number of temporal steps. The number of steps is determined by the token spent
representing the observation, the complexity of the agent design for the game, and the length of the
solution. The training rollout is 300 steps for Breakout, 400 steps for Pong, and 10 steps for Space
Invaders.

Feedback Design. We notice that only providing feedback based on the reward in the training rollout
leads to performance plateaus, particularly in games where the game mechanism changes based on
player progress. For example, in Breakout, the higher-value bricks in the upper rows deflect the ball
at greater speeds, creating a distribution shift between the training context (primarily lower bricks)
and the evaluation context (including higher bricks). This observation inspires two feedback design
choices: 1) we provide staged feedback to instruct the model to pay attention to different game
mechanisms or share high-level winning strategies; 2) we evaluate the performance of the agent with
longer rollouts (up to 4000 steps) and use that reward as feedback to the generative optimizer.

Results. We find that even with sparse representation of game states and rewards in the form of
trajectories, LLM optimizer (OptoPrime) demonstrate remarkable ability to infer game mechanics
and environmental constraints from traced trajectories. While our approach provides docstrings that
describe high-level game objectives and mechanics, we experiment with deliberately omitting specific
implementation details like exact boundary coordinates or collision physics. Despite this, OptoPrime
consistently infers these crucial details through analysis of the trajectory data. For example, in
Breakout (see an example observation in Figure A.9), OptoPrime identifies the exact positions of the
left wall (x = 9) and right wall (x = 152) by observing ball position and velocity changes across
multiple steps. It correctly implements ball physics calculations including bounce mechanics without
being explicitly told these details. This emergent understanding of game physics and boundaries
demonstrates the LLM’s ability to perform causal inference from sequential observations.

5 DATA SCIENCE AGENT WITH INTERACTIVE LEARNING GRAPH

The interactive learning setup can describe the learning objective for the majority of LLM agent
benchmarks. The hallmark of these benchmarks is that even though an LLM agent needs to take
multiple intermediate steps to complete a task, such step does not cause state transition in the
environment that changes the reward the agent would receive. Even for benchmark that requires the
agent to carry out multiple actions to successfully complete a task, the intermediate actions do not
cause an internal, stateful change in the environment – the reward is often only associated with the
final output of the agent (such as a customer response or an executable code).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

MLAgentBench is a benchmark specifically designed to measure the effectiveness of machine learning
agents in automating ML experimentation processes (Huang et al., 2023). There are different designs
of the ML agents. The majority of agents created to solve this task have a primitive self-improvement
loop, where the agent simply looks at its previous output and self-refine (Huang et al., 2023; Wang
et al., 2024c; Chan et al., 2024). All tasks in MLAgentBench involves training a machine learning
model, figuring out preprocessing data, feature selection, choosing hyperparameters of the model,
and deciding training details. We chose two tabular tasks for the purpose of easy experimentation, as
they consume the least amount of compute resources compared to large datasets.

(a) MLAgentBench Learned Agent One-Function Design

(b) MLAgentBench Learned Agent Many-Function Design

Figure 5: Agent Design for MLAgentBench. We can design different agent workflow graphs for the learned
agent to solve the task of training a machine learning model given a dataset.

Workflow Design. We design our agent to have specific components that are changable by the
optimizer. That is, to set up a generative optimization process that is automatic, only with human
engineering focused on the initial configurations. To design the agent’s internal operation, we
experiment with two different kinds of workflow design to highlight the influence of workflow design
on the optimization outcome. One design asks the optimizer to program one code block that does
everything, labeled as “One” in Table 1. The other design properly decomposes the model training
tasks into five steps: preprocess, select_features, create_ensemble_model, train_model,
and predict, labeled as “Many” in Table 1. We illustrate these two choices in Figure 5.

Learning Design. We use the OptoPrime as the generative optimizer (Cheng et al., 2024b). The
entire graph is represented in the LLM context window and the LLM perform parameter update for
all parameters all at once. We perform a train-validation split on the dataset to create a validation
partition and use the task-specific metric on the validation dataset as the optimization objective (i.e.,
maximize accuracy or minimize error). We use the final learned agent’s machine learning model to
produce predictions on the hidden test set and submit to Kaggle website to compare against hidden
ground truth. We do not use the Kaggle test score as the reward signal in the optimization loop.

Feedback Design. We apply fine-grained style feedback to the generative optimizer at different
stages of validation accuracy (see Figure A.1). We additionally experimented with improvement
style feedback where the model fails to train a machine learning model that has a higher validation
accuracy than the previous step, we append an improvement suggestion to the feedback string.

Results. To make the comparison fair, we pre-downloaded the datasets for the Research Agent and
made sure it could produce a machine learning model with valid test submission files for Kaggle
(Huang et al., 2023). We track the average performance of the model produced by the both agents as
well as the best result. After 20 optimization steps, we submit the model with the highest validation
accuracy to the Kaggle competition to get the test score and leaderboard ranking. On both tasks, the
gap between the Research Agent (Huang et al., 2023) and our learned agent is around 11.5%-22.4%
on average, and the best machine learning model produced in the learned agent surpasses 86.6% of
human submissions. Surprisingly, letting the optimizer continuously updating one function (block of
code) is better for Housing Price, but not for Spaceship Titanic. This result highlights the importance
of experimenting with different workflow designs.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Housing Price Spaceship Titanic
RMSE (↓) Accuracy (↑)

ResearchAgent (Huang et al., 2023)

Average – 0.149 78.17
Best – 0.145 79.84

Learned Agent (Ours)

Average One 0.135 79.65
Many 0.147 79.69

Best One 0.129 80.00
Many 0.141 80.43

Table 1: MLAgentBench Result. We run both agents 5
times and compute the average and best test score. Single
and Many refer to a one-function vs many-functions work-
flow design for the agent (Figure 5). Both agents use the
same underlying LLM (Claude Sonnet-3.5-v2).

Housing Price Spaceship Titanic0

20

40

60

80

Ou
tp

er
fo

rm
ed

 %
 o

f S
ub

m
iss

io
ns

49.8%

41.7%

70.8%

51.2%

75.6%

64.1%

86.6%

62.7%

Research Agent Learned Agent

Figure 6: Leaderboard ranking for the best agent
across design choices.

6 LANGUAGE UNDERSTANDING AGENT THROUGH BATCH LEARNING

From document processing to logical deductions, LLM agents are used for general language under-
standing tasks where the agent designer needs to write a pre/post-processing program as well as
instructions/prompts to the LLM API call. The crucial learning context here is to allow the agent
to write one prompt and a fixed program that generalizes to different kinds of questions and tasks.
We explore the effect of setting the right learning context in BigBench Extra Hard (BBEH) (Kazemi
et al., 2025).

Agent Design. We show the workflow design graph in Figure 7. This agent is made of two
components, one is a call llm function that takes in the task query and a optimizable prompt. The
other is an answer extraction function that parses the return from the LLM call.

Figure 7: Agent Design for BigBench Extra Hard (BBEH). Note that in here, we only show an interactive
learning setup, where the agent graph only contains one query and receives one correctness feedback. In our
experiment, we insert the execution graph into a template through batchify ⊕ operator to construct a batch
learning graph over multiple queries, answers, and feedbacks.

Learning Design We apply the batch learning template to construct the learning graph for the agent.
In order to apply this template, we sample a batch of inputs from the dataset D. We roll out the
workflow graph on each of the input, and by the end, we concatenate all the workflow graphs together
to form the batch learning graph. We only use 20 example inputs for learning and the rest are holdout
test set for evaluation. Batch learning graph helps agent understand how one shared program and
prompt need to adapt to different kinds of inputs.

Feedback Design We provide feedback as a list of strings that contain whether the workflow’s
response for each input is correct or incorrect and revealing the solution to the optimizer when the
answer is incorrect.

Results. We systematically change the batch learning graph’s size (batch size) during the learning
phase over 20 examples and measure how well the learned prompt and postprocessing code generalize
to the unseen examples in the BBEH set. Surprisingly, even though generally presenting more than
one example at a time (Batch Size > 1) gives better results (see Table 2), it seems that different batch
sizes lead to different performances for different tasks. We also see different patterns of learning
convergence on a 5-example validation set that we selected from the 20 examples (Figure 8). Larger

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

batch sizes allow the agent to learn faster but also plateau more quickly (Geometric Shapes). This
highlights the benefit of constructing learning graphs – it exposes the hyperparameters of learning that
agent designers must decide. We additionally report results on GSM-8K with the learned LangGraph
agent in Section E and Table A.3.

0.0

0.1

0.2

0.3

Va
lid

at
io

n
Ac

cu
ra

cy

Dyck Languages

0.00

0.25

0.50

0.75
Geometric Shapes

0.0

0.1

0.2

0.3
Linguini

0.2

0.3

0.4
Causal Understanding

0 5 10 15
Number of Updates

0.4

0.6

0.8

Va
lid

at
io

n
Ac

cu
ra

cy

Disambiguation QA

0 5 10 15
Number of Updates

0.0

0.2

0.4

0.6
Boolean Expressions

0 5 10 15
Number of Updates

0.25

0.50

0.75

1.00Movie Recommendation

0 5 10 15
Number of Updates

0.25

0.50

0.75

Boardgame QA

Base Workflow batch size = 1 batch size = 3 batch size = 5

Figure 8: Performance of the learned workflow for each task across 3 trials. Each task starts with the same
prompt and answer extraction code. Shaded area shows standard error. The training dataset size is fixed to 15
examples. Validation set has 10 examples.

MiniBatch Size Dyck Languages Geometric Shapes Linguini Causal Understanding

Un-Optimized 0.114 ± 0.007 0.074 ± 0.003 0.183 ± 0.010 0.114 ± 0.005

Batch Size=1 0.183 ± 0.049 0.343 ± 0.039 0.149 ± 0.024 0.375 ± 0.146
Batch Size=3 0.063 ± 0.010 0.389 ± 0.040 0.234 ± 0.012 0.408 ± 0.097
Batch Size=5 0.190 ± 0.031 0.200 ± 0.099 0.170 ± 0.030 0.531 ± 0.018

Table 2: Holdout Test Set Performance for BBEH tasks. Bold indicates best accuracy per column; standard error
is shown in smaller gray text. The test dataset excludes examples used for train and val, and usually includes 175
examples. The full table for 8 tasks are in Appendix A.2.

7 CONCLUSION AND LIMITATION

We demonstrate generative optimization on computational graph is a powerful new paradigm for agent
learning. We identify common misalignment issues in practice and provide constructive guidelines
to address them. With these insights, we demonstrate successful agent learning results on a wide
range of problems (GSM8K, BBEH, MLAgentBench, and Atari games) across interactive, batch, and
reinforcement learning scenarios. These experimental results push the boundary of problems where
generative optimization has been applied in the literature and provide strong evidence that generative
optimization can be the key to the next breakthrough of agent learning and an effective method to
leverage inference time compute to find optimal solution automatically.

However, we should also highlight that our current results have limitations. Although we solved the
objective misalignment with a principled reductionist approach, our current recommendations on
agent and feedback design are still heuristic-driven. We also notice that the optimization process can
be unstable. The guideline can largely mitigate the issue, but efforts are still required to configure the
initial condition and optimization procedure correctly. All of these warrant future research to explore
paths to create a fully automated, goal-driven, generalist agent.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Anthropic. Claude’s extended thinking, February 2025. URL https://www.anthropic.com/news/
visible-extended-thinking. Accessed: 2025-05-31.

Hao Bai, Yifei Zhou, Li Erran Li, Sergey Levine, and Aviral Kumar. Digi-q: Learning q-value
functions for training device-control agents. arXiv preprint arXiv:2502.15760, 2025.

Marc G Bellemare, Salvatore Candido, Pablo Samuel Castro, Jun Gong, Marlos C Machado, Sub-
hodeep Moitra, Sameera S Ponda, and Ziyu Wang. Autonomous navigation of stratospheric
balloons using reinforcement learning. Nature, 588(7836):77–82, 2020.

Dimitri P Bertsekas. Dynamic programming: deterministic and stochastic models. Prentice-Hall,
Inc., 1987.

Noam Brown and Tuomas Sandholm. Superhuman ai for multiplayer poker. Science, 365(6456):
885–890, 2019.

Jun Shern Chan, Neil Chowdhury, Oliver Jaffe, James Aung, Dane Sherburn, Evan Mays, Giulio
Starace, Kevin Liu, Leon Maksin, Tejal Patwardhan, et al. Mle-bench: Evaluating machine learning
agents on machine learning engineering. arXiv preprint arXiv:2410.07095, 2024.

Angelica Chen, Jérémy Scheurer, Jon Ander Campos, Tomasz Korbak, Jun Shern Chan, Samuel R
Bowman, Kyunghyun Cho, and Ethan Perez. Learning from natural language feedback. Transac-
tions on Machine Learning Research, 2024.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models to
self-debug. arXiv preprint arXiv:2304.05128, 2023.

Ching-An Cheng, Andrey Kolobov, Dipendra Misra, Allen Nie, and Adith Swaminathan. LLF-bench:
Benchmark for interactive learning from language feedback. In ICLR Workshop on Large Language
Model (LLM) Agents, 2024a.

Ching-An Cheng, Allen Nie, and Adith Swaminathan. Trace is the next autodiff: Generative
optimization with rich feedback, execution traces, and LLMs. In NeurIPS, 2024b.

Quentin Delfosse, Jannis Blüml, Bjarne Gregori, Sebastian Sztwiertnia, and Kristian Kersting.
OCAtari: Object-centric Atari 2600 reinforcement learning environments. Reinforcement Learning
Journal, 1:400–449, 2024.

Ahmed El-Kishky, Alexander Wei, Andre Saraiva, Borys Minaev, Daniel Selsam, David Dohan,
Francis Song, Hunter Lightman, Ignasi Clavera, Jakub Pachocki, et al. Competitive programming
with large reasoning models. arXiv preprint arXiv:2502.06807, 2025.

Adam Fourney, Gagan Bansal, Hussein Mozannar, Cheng Tan, Eduardo Salinas, Friederike Niedtner,
Grace Proebsting, Griffin Bassman, Jack Gerrits, Jacob Alber, et al. Magentic-one: A generalist
multi-agent system for solving complex tasks. arXiv preprint arXiv:2411.04468, 2024.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. In International Conference on Machine
Learning, pp. 10764–10799. PMLR, 2023a.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. PAL: Program-aided Language Models, January 2023b.

Michael R Genesereth and Nils J Nilsson. Logical foundations of artificial intelligence. Morgan
Kaufmann Publishers Inc., 1987.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In AISTATS, pp. 249–256, 2010.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer, 2 edition, 2009.

10

https://www.anthropic.com/news/visible-extended-thinking
https://www.anthropic.com/news/visible-extended-thinking

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in
deep reinforcement learning. In AAAI, 2018.

Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel, Hado van Hasselt, and
David Silver. Distributed prioritized experience replay. In International Conference on Learning
Representations, 2018. URL https://openreview.net/forum?id=H1Dy---0Z.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
and Denny Zhou. Large language models cannot self-correct reasoning yet. In ICLR, 2024.

Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec. Mlagentbench: Evaluating language agents
on machine learning experimentation. arXiv preprint arXiv:2310.03302, 2023.

Shengyi Huang, Rousslan Fernand Julien Dossa, Antonin Raffin, Anssi Kanervisto, and Weixun
Wang. The 37 implementation details of proximal policy optimization. In ICLR Blog Track, 2022a.
URL https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/.
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/.

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Kinal
Mehta, and JoÃG, o GM AraÃšjo. Cleanrl: High-quality single-file implementations of deep
reinforcement learning algorithms. Journal of Machine Learning Research, 23(274):1–18, 2022b.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In ICLR, 2024.

Seth Karten, Andy Luu Nguyen, and Chi Jin. Pok\’echamp: an expert-level minimax language agent.
arXiv preprint arXiv:2503.04094, 2025.

Mehran Kazemi, Bahare Fatemi, Hritik Bansal, John Palowitch, Chrysovalantis Anastasiou, San-
ket Vaibhav Mehta, Lalit K Jain, Virginia Aglietti, Disha Jindal, Peter Chen, et al. Big-bench extra
hard. arXiv preprint arXiv:2502.19187, 2025.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri Vard-
hamanan A, Saiful Haq, Ashutosh Sharma, Thomas T. Joshi, Hanna Moazam, Heather Miller,
Matei Zaharia, and Christopher Potts. DSPy: Compiling declarative language model calls into
state-of-the-art pipelines. In ICLR, 2024.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
catastrophic forgetting in neural networks. Proceedings of the national academy of sciences, 114
(13):3521–3526, 2017.

LangChain. Langgraph: A low-level orchestration framework for building controllable agents, 2024.
URL https://langchain-ai.github.io/langgraph/.

Kuang-Huei Lee, Ofir Nachum, Mengjiao Sherry Yang, Lisa Lee, Daniel Freeman, Sergio Guadar-
rama, Ian Fischer, Winnie Xu, Eric Jang, Henryk Michalewski, et al. Multi-game decision
transformers. Advances in Neural Information Processing Systems, 35:27921–27936, 2022.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. In NeurIPS, pp. 9459–9474, 2020.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine: Iterative
refinement with self-feedback. In NeurIPS, 2023.

Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Jiang, Ebrahim Songhori, Shen Wang, Young-
Joon Lee, Eric Johnson, Omkar Pathak, Sungmin Bae, et al. Chip placement with deep reinforce-
ment learning. arXiv preprint arXiv:2004.10746, 2020.

11

https://openreview.net/forum?id=H1Dy---0Z
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://langchain-ai.github.io/langgraph/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Allen Nie, Ching-An Cheng, Andrey Kolobov, and Adith Swaminathan. Importance of directional
feedback for LLM-based optimizers. In NeurIPS 2023 Foundation Models for Decision Making
Workshop, 2023.

Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chenguang Zhu, and Michael Zeng. Automatic prompt
optimization with ”gradient descent” and beam search. In EMNLP, 2023.

Stuart J Russell and Peter Norvig. Artificial intelligence: a modern approach. Pearson, 2016.

Jérémy Scheurer, Jon Ander Campos, Tomasz Korbak, Jun Shern Chan, Angelica Chen, Kyunghyun
Cho, and Ethan Perez. Training language models with language feedback at scale. arXiv preprint
arXiv:2303.16755, 2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Shai Shalev-Shwartz et al. Online learning and online convex optimization. Foundations and Trends®
in Machine Learning, 4(2):107–194, 2012.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik R Narasimhan, and Shunyu Yao. Reflexion:
language agents with verbal reinforcement learning. In NeurIPS, 2023.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Richard S. Sutton. The bitter lesson, 2019. URL http://www.incompleteideas.net/IncIdeas/
BitterLesson.html.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1. MIT
Press Cambridge, 1998.

Adrien Ali Taiga, Rishabh Agarwal, Jesse Farebrother, Aaron Courville, and Marc G Bellemare.
Investigating multi-task pretraining and generalization in reinforcement learning. In The eleventh
international conference on learning representations, 2023.

Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gianluca De Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Markus Krimmel, Arjun KG, et al. Gymnasium: A standard
interface for reinforcement learning environments. arXiv preprint arXiv:2407.17032, 2024.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
Transactions on Machine Learning Research, 2024a.

Wenyi Wang, Hisham A Alyahya, Dylan R Ashley, Oleg Serikov, Dmitrii Khizbullin, Francesco
Faccio, and Jürgen Schmidhuber. How to correctly do semantic backpropagation on language-based
agentic systems. arXiv preprint arXiv:2412.03624, 2024b.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, et al. Opendevin: An open platform for ai software
developers as generalist agents. arXiv preprint arXiv:2407.16741, 2024c.

Anjiang Wei, Allen Nie, Thiago SFX Teixeira, Rohan Yadav, Wonchan Lee, Ke Wang, and Alex
Aiken. Improving parallel program performance through dsl-driven code generation with llm
optimizers. arXiv preprint arXiv:2410.15625, 2024.

12

http://www.incompleteideas.net/IncIdeas/BitterLesson.html
http://www.incompleteideas.net/IncIdeas/BitterLesson.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
Zhang, Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah, Ryen W White, Doug Burger, and
Chi Wang. AutoGen: Enabling next-gen LLM applications via multi-agent conversations. In
COLM, 2024.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun Chen.
Large language models as optimizers. In ICLR, 2024a.

Zonglin Yang, Xinya Du, Junxian Li, Jie Zheng, Soujanya Poria, and Erik Cambria. Large language
models for automated open-domain scientific hypotheses discovery. In ACL, pp. 13545–13565,
2024b.

Mert Yuksekgonul, Federico Bianchi, Joseph Boen, Sheng Liu, Pan Lu, Zhi Huang, Carlos Guestrin,
and James Zou. Optimizing generative ai by backpropagating language model feedback. Nature,
639(8055):609–616, 2025.

Shaokun Zhang, Jieyu Zhang, Jiale Liu, Linxin Song, Chi Wang, Ranjay Krishna, and Qingyun
Wu. Offline training of language model agents with functions as learnable weights. In Forty-first
International Conference on Machine Learning, 2024.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc V Le, and Ed H. Chi. Least-to-most prompting enables
complex reasoning in large language models. In ICLR, 2023.

A LARGE LANGUAGE MODEL ACCESS CARD

The experiments were conducted during the period of February 2025 to April 2025. The model
used was Anthropic’s Claude Sonnet 3.5v2, and the exact model name was “anthropic.claude-
3-5-sonnet-20241022-v2:0”. All of the agents, including the baseline agents from other papers
(ResearchAgent (Huang et al., 2023), PAL agent (Gao et al., 2023a), Self-Refine agent (Madaan et al.,
2023)) were all rerun using the same model endpoint as our learned agent during the same period of
time.

B DISCUSSION ON OTHER IMPORTANT FACTORS FOR AGENT LEARNING

B.1 SPECIFYING AGENT BEHAVIOR THROUGH WORKFLOWS

The same agent can be described by different workflow graphs, but these graphs may have different
optimization properties. We discuss factors that affect optimization difficulty.

Modularization. Breaking down the reasoning process from a monolithic block into multiple smaller
blocks has proven useful for complex reasoning tasks (Zhou et al., 2023). It remains an empirical
question to what extent one should modularize, but the guiding principle here is to decompose a
monolithic process into a computational graph with smaller operators.

Parametrization. There are some parts of the workflow that do not need much design exploration.
For example, loading in a text file given a file name would always result in similar code (even
with error handling). Designing an optimizable workflow requires engineers to think carefully and
parametrize the part of their workflow where the optimal solution is not known a priori to them,
where exploring new parameters is valuable.

Initialization. Similar to the research on neural network initialization (e.g. (Glorot & Bengio, 2010)),
the optimizable functions contain initial code and docstrings designated by engineers. We found that
a workflow that involves operators with ambiguous docstrings is difficult to optimize via generative
optimization. We advise using initialization that conveys a clear (desired) behaviors of operators used
in the graph.

B.2 GUIDING AGENT LEARNING PROCESS THROUGH EFFECTIVE FEEDBACK

Prior works have studied the importance of providing feedback to the optimization process (Chen
et al., 2023; Nie et al., 2023; Wei et al., 2024). We highlight and summarize a few useful types of
implementations below.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Fine-grained Feedback. The simplest form of feedback is to include the correct/incorrect information
or the numerical reward in text. However, other feedback designs have also proven to be useful.
In Section 4, we show that we can have staged feedback, where a different feedback is used when
the agent reaches different reward regions (Table A.6). This allows flexibility on how to guide
the generative optimizer to search the solution space. Another way is to identify trigger keywords
from environment information (such as a system profiler) and retrieve corresponding pre-written
feedback (Wei et al., 2024).

Suggestive Feedback. The best type of feedback tells the generative optimizer exactly how to change
the parameter or output – it should be actionable. If it is not possible to know this information, a
suggestion should still be made with proper degree of suggestions in the phrasing. Earlier this was
referred to as “directional” feedback (Nie et al., 2023) and later Wei et al. (2024) showed suggestive
feedback allowed the optimizer to find better solutions than explanation-based feedback.

C MLAGENTBENCH DETAILS

C.1 AGENT DESIGN DETAILS

The ML agent shares a similar design for both tasks with modular components for different steps of
the machine learning pipeline.

C.2 FEEDBACK DESIGN DETAILS

We provided task-specific feedback instructions when the agent reaches different performance level.
We show the feedback template in Figure A.1. The {SUGGESTION} block if filled by the suggestive
feedback in Table A.1.

1 Epoch {epoch }/20:
2
3 Accuracy: {val_accuracy :.4f}
4 F1: {val_f1 :.4f}
5 Precision: {val_precision :.4f}
6 Recall: {val_recall :.4f}.
7
8 {SUGGESTION}

Figure A.1: The feedback template used for the ML Agent for Spaceship-Titanic.

Accuracy Suggestive Feedback

Val F1 < 0.5 “Model performance is poor. Try better feature engineering and preprocessing."

0.5 ≤ Val F1 < 0.7 “Model is showing promise but needs improvement. Consider class balancing
techniques."

0.7 ≤ Val F1 < 0.8 “Model is performing well. Fine-tune hyperparameters for further improve-
ments."

Val F1 ≥ 0.8 “Excellent performance! Focus on preventing overfitting."

Table A.1: Staged suggestive feedback for the ML agent at different accuracy levels for the Spaceship-Titanic
task.

C.3 LLM AGENT LEARNING RESULTS

We perform a training and validation split outside of the agent and only pass the training set as input
to the agent. This is due to the fact that generative optimization requires an optimization signal.
Kaggle does not permit more than 5 submissions on the test set per day, therefore, we do not use the
test set as our optimization signal. We randomly split the training data, providing 80% to the agent –

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure A.2: We show the training/validation accuracy and F1 score from machine learning model outputted by
the ML Agent after each optimization step. Note that the machine learning model outputted could be trained
internally for hundreds of epochs. The x-axis describes the number of optimization steps in the generative
optimizer to update the parameter of the ML Agent.

the agent is allowed to further split that data into train and validation. We use the 20% as our test
set to evaluate the agent’s machine learning model’s performance. We show the learning progress
of one trial run in Figure A.2. The x-axis of this figure shows the optimization steps. Although on
a cursory glance, this graph seems to be depicting typical model overfitting behavior as training
accuracy goes up and validation accuracy goes down as optimization continues, it is however not the
case. At each optimization step, the agent is producing a fully trained machine learning model using
the training dataset, with however many numbers of training iterations it chooses. This figure shows
the phenomenon of meta-overfitting, where the generative optimizer updates the agent to choose
hyperparameters, training procedures of the model that overfits the training set, even though the
feedback reward comes purely from the validation performance.

C.4 EFFECT OF WORKFLOW DESIGN

Research
Agent

Learned
Agent
(One)

Learned
Agent
(Multi)

0

20

40

60

80

Ou
tp

er
fo

rm
ed

 %
 o

f S
ub

m
iss

io
ns

70.8% 72.7%

86.6%

51.2%

61.6% 62.7%

(a) Spaceship Titanic

Research
Agent

Learned
Agent
(One)

Learned
Agent
(Multi)

0

10

20

30

40

50

60

70

80

49.8%

75.6%

54.6%

41.7%

64.1%

43.8%

(b) Housing Price

Figure A.3: Leaderboard performance metrics for learned model submissions.

C.5 EXAMPLES OF THE LEARNED ML AGENT

We provide initial code (with docstrings) for each game and the final learned code. For Spaceship-
Titanic Agent, initial code is in Figure A.10, A.11, A.12, A.13, A.14. Some of the functions are not
heavily updated, but we showcase the learned final functions in Figure. Essentially, the generative

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

optimizer chose to tune the numbers (hyperparameters) of machine learning models and ensemble
method.

D BATCH LEARNING AGENT DETAILS

MiniBatch Dyck Languages Geometric Shapes Linguini Causal Understanding

Un-Optimized 0.114 ± 0.007 0.074 ± 0.003 0.183 ± 0.010 0.114 ± 0.005

Batch=1 0.183 ± 0.049 0.343 ± 0.039 0.149 ± 0.024 0.375 ± 0.146
Batch=3 0.063 ± 0.010 0.389 ± 0.040 0.234 ± 0.012 0.408 ± 0.097
Batch=5 0.190 ± 0.031 0.200 ± 0.099 0.170 ± 0.030 0.531 ± 0.018

MiniBatch Disambiguation QA Boolean Expressions Movie Recommendation Boardgame QA

Un-Optimized 0.358 ± 0.013 0.076 ± 0.009 0.238 ± 0.007 0.371 ± 0.003

Batch=1 0.537 ± 0.036 0.177 ± 0.005 0.889 ± 0.038 0.341 ± 0.032
Batch=3 0.295 ± 0.091 0.238 ± 0.006 0.683 ± 0.119 0.278 ± 0.009
Batch=5 0.526 ± 0.035 0.154 ± 0.034 0.810 ± 0.016 0.276 ± 0.007

Table A.2: Performance across tasks and batching strategies. Best test accuracy per task is bolded; standard
error is shown in smaller gray text. For Boardgame QA, we observe meta-overfitting: the learned workflow had
strong validation scores but failed to generalize to test examples. Base model is Claude Sonnet-3.5-v2.

E BATCH LEARNING LANGGRAPH AGENT DETAILS

The emergence of LLM multi-agent frameworks (Wu et al., 2024; LangChain, 2024) allow static
programs to have dynamic behaviors enabled by LLMs. Here we apply generative optimization to
such frameworks to enable an agentic workflow to improve itself.

Agent Design. We used LangGraph (LangChain, 2024) to implement two popular LLM agent
designs. The first one is program-aided language model (PAL) (Gao et al., 2023a). This agent design
consists of two components: first, it tries to produce a Python program conditioned on a prompt and
the input. Then it executes the program to get the final answer. We learn both of these components.
The second agent is a self-refine agent (Madaan et al., 2023), where the agent would use a function to
solve the problem, verify its solution, and if the solution is wrong, it will try to refine the solution
until it passes the verification step.

Learning Design We use LangGraph to build the workflow but use OptoPrime (Cheng et al., 2024b)
as the optimizer to learn all the mentioned modules. At each iteration, execution traces from a
minibatch of examples are captured, evaluated in terms of feedback, and aggregated. Feedback
is concatenated into an aggregated feedback, which is then processed by the optimizer. Before
implementing batch learning, optimizing by example would overfit, leading to over-specialized
improvements that failed to generalize.

Feedback Design We provide feedback as string with templates for both correct and incorrect
responses, revealing the solution to the optimizer when the answer is incorrect.

Results. Empirical results in Table A.3 confirm the efficacy of the generative optimization framework.
We evaluate on GSM8K (Kazemi et al., 2025) and BBEH (Kazemi et al., 2025). For GSM8K, we use
the same train/validation/test split as used in DSPy (Khattab et al., 2024). For BBEH, we chose two
tasks as representative examples to verify our pipeline. The baselines are both PAL and self-refine
agent implemented with good initial starter code and working prompts. However, the learned agent
(both code and prompts are learned) performs much better on GSM8K, increasing the performance
from 78.9% to 93.4%. For BBEH, the initial agent was not able to output answers with a valid format
without few-shot examples. In this zero-shot setup, the optimizer is able to find good prompts and
valid code to ensure the produced answer is correct.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

BBEH
GSM8K Causal Understanding BoardgameQA

PAL Agent (Gao et al., 2023b) 78.9 5.0 5.0
Learned PAL Agent (Ours) 93.4 42.5 33.0

Self-Refine Agent (Madaan et al., 2023) 78.2 0.0 0.0
Learned Self-Refine Agent (Ours) 86.8 44.0 32.5

Table A.3: Comparison of baseline LLM agent design and their optimized design on GSM8K and BBEH.

E.1 AGENT DESIGN DETAILS

The PAL (Program-Aided Language Model) agent (Gao et al., 2023a) is designed to have two
functions: parse_problem and execute_code. parse_problem makes a call to the LLM with the
following prompt “Read the problem and output a Python expression to compute the answer and store
it into ‘result’ variable. Problem: {}”. The execute_code uses Python’s “exec” function to execute
the program written by parse_problem. Both functions are updated by the generative optimizer.

The self-refine agent (Madaan et al., 2023) is designed to have three functions: solve_problem,
verify_solution, and refine_solution. All three are LLM calling functions with prompt strings
defined within the function.

• solve_problem: “Solve the following problem step by step and give the final answer: {question}.
Solution:”

• verify_solution: “You are a math expert. Verify the solution below for correctness. Problem:
{question}. Solution and Answer: {solution}. Is the answer correct? If not, explain the error.”

• refine_solution: “The previous answer was found to be incorrect. {verification_feedback}.
Please solve the problem again correctly: {question}. Correct Solution:”

Each function takes the LangGraph’s state dictionary as input and was added as nodes to LangGraph’s
StateGraph for execution. The self-refinement loop is controlled by LangGraph’s conditional routing
strategy.

E.2 FEEDBACK DESIGN DETAILS

(a) PAL (b) Self-refine agent

Figure A.4: The LangGraph visualiza-
tion of workflow.

The feedback given to the optimizer when the answer is correct
is “ANSWER IS CORRECT/SUCCESS” and when the answer
is wrong, we reveal the reference solution since there is a train-
ing phase for the agent: “WRONG ANSWER / FAILED - your
answer: {answer} vs. good answer: {solution}”.

F ATARI GAME DETAILS

F.1 GAME SETUP

The training configuration is reported in Table A.4 and the
environment setup is reported in Table A.5. The Atari Gym
offers many wrappers to help with learning. Atari environments
by default uses frameskip (repeat actions) to reduce the horizon
length and use sticky action probability to randomly repeat the
previous action with given probability. Both were designed
to enable better training for the deep neural network. In our
experiment, we found that not using sticky action results in
better optimization of the model.

We generate data on-the-fly for Atari games using object-centric
Atari Environments (OCAtari) (Delfosse et al., 2024), a wrap-
per for the Gymnasium API (Towers et al., 2024) that pro-
vides object-centric representation of the game screen at each

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Parameter Value
Environment name {env}-NoFrameskip-v4
Action repeat (frameskip) 4
Sticky action probability 0.0

Optimization iterations 30
Rollout length 15/300/400 steps
Memory size (optimizer context) 5
Evaluation episode length ∼4000 steps
LLM optimizer OptoPrime
LLM Backend Claude-3.5 Sonnet-20241022-v2:0
Access Date 3/20/2025

Table A.4: Atari Gym environment and training configurations

Parameter Breakout Pong Space Invaders
Rollout horizon 300 steps 400 steps 15 steps

Action space LEFT/RIGHT/
NOOP

UP/DOWN/
NOOP

LEFT/RIGHT
FIRE/NOOP

Env special
mechanics

Auto-fire
on life loss None Fire

cooldown

Table A.5: Atari game-specific experiment configurations

timestep. For instance, for the game Pong, OCAtari returns
the position (x, y), size (width, height), and velocity (dx, dy)
of the player paddle, ball, and enemy paddle. This representa-
tion abstracts away from raw pixel inputs, providing the LLM
optimizer and our agent with structured state information that
facilitates targeted improvements to the agent’s prediction and
action selection. The actual input observation to the agent is
shown in Figure A.9, and an annotated screen through OCAtari
can be seen in Figure A.5, A.6, and A.7.

Pong In Pong, the player controls a paddle on the right side
of the screen to deflect the ball into the enemy’s goal. The player scores a point if the enemy misses
the ball. The game ends when one side scores 21 points.

Breakout In Breakout, the player moves a bottom paddle horizontally to deflect a ball that scores
against brick walls upon contact. The brick wall consists of six rows of different colored bricks, with
higher bricks worth more points. Hitting higher bricks would deflect the ball faster, increasing the
difficulty in catching the ball. The player wins after scoring 864 points. The player loses one life
when failing to catch the ball and the ball moves out of range. The player has five lives in total.

Space Invaders In Breakout, the player moves a bottom paddle horizontally to deflect a ball that
scores against brick walls upon contact. The brick wall consists of six rows of different colored bricks,
with higher bricks worth more points. Hitting higher bricks would deflect the ball faster, increasing
the difficulty in catching the ball. The player wins after scoring 864 points. The player loses one life
when failing to catch the ball and the ball moves out of range. The player has five lives in total.

F.2 FEEDBACK DESIGN DETAILS

We provided game-specific feedback instructions when the agent reaches different reward regions.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure A.5: Pong: An annotated screenshot to show how OCAtari (Delfosse et al., 2024) translates objects
from pixels to obejcts with annotations.

Figure A.6: Breakout: An annotated screenshot to show how OCAtari (Delfosse et al., 2024) translates objects
from pixels to obejcts with annotations.

F.3 AGENT DESIGN DETAILS

Pong In order to succeed at Pong, the agent should accurately predict where the ball will intersect
with the player’s paddle plane, accounting for bounces off the top and bottom walls. Thus, we
adapt our base agent architecture to focus on ball trajectory prediction and paddle positioning
(predict_ball_trajectory() and select_action()). We initialize predict_ball_trajectory() to return the current
y coordinate of the ball and select_action() to return a random action of UP or DOWN. In the docstring, we
provide detailed description of the game screen, including screen dimensions and paddle positions.
We show the initialized agent in Figure A.16 and the optimized agent in Figure A.17.

Breakout Breakout has a similar emphasis of considering wall boucing but with a focus on brick tar-
geting. Like Pong, we adapt our base agent architecture to focus on predicting the trajectory of the ball
(predict_ball_trajectory()), but also prioritizing hitting bricks with higher scores (generate_paddle_target())

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure A.7: Space Invaders: An annotated screenshot to show how OCAtari (Delfosse et al., 2024) translates
objects from pixels to obejcts with annotations.

Performance Level Feedback

High
(Reward ≥ 19)

“Good job! You’re close to winning the game! You’re scoring 20 points against
the opponent, only 1 points short of winning."

Medium
(0 < Reward < 19)

“Keep it up! You’re scoring 12 points against the opponent but you are still 9
points from winning the game. Try improving paddle positioning to prevent
opponent scoring."

Low
(Reward ≤ 0)

“Your score is −5 points. Try to improve paddle positioning to prevent opponent
scoring."

Table A.6: Staged feedback for the Pong agent at different performance levels

and selecting paddle action based on the analysis (select_paddle_action()). We initialize both
predict_ball_trajectory() and generate_paddle_target() to return None, and select_paddle_action() to move
the paddle LEFT or RIGHT by comparing the paddle location to the target position generated by
generate_paddle_target(), which is None upon initialization. In the docstring, we describe the game
screen, such as locations of left and right wall, but we leave the exact location out for the LLM to
infer based on the traced trajectory. We also describe the point system of the brick wall and some
generic strategic considerations (without telling the agent how to implement these strategies). We
show the initialized agent in Figure A.18, A.19 and the optimized agent in Figure A.20, A.21.

Space Invaders For Space Invaders, we adapt our base agent architecture to into two tasks of
deciding whether to shoot (decide_shoot()) and deciding where to move (decide_move()), and finally
combining the two decisions in (combine_actions()). We initialize decide_shoot() and decide_movement() to
return random actions, and combine_actions() map the outputs of the previous two functions to the
correct action. In the docstring, we describe the game setup and the presence of shield objects. We
show the initialized agent in Figure A.22, A.23 and the learned agent in Figure A.24.

F.4 LLM AGENT LEARNING RESULT

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Performance Level Example Feedback

High
(Reward ≥ 300)

"Good job! You’re close to winning the game!
You’re scoring 320 points against the opponent, try
ensuring you return the ball, only 30 points short of
winning."

Medium
(0 < Reward < 300)

"Keep it up! You’re scoring 50 points against the op-
ponent but you are still 300 points from winning the
game. Try improving paddle positioning to return
the ball and avoid losing lives."

Low
(Reward ≤ 0)

"Your score is -5 points. Try to improve paddle
positioning to return the ball and avoid losing lives."

Table A.7: Staged feedback for the Breakout agent at different performance levels

Performance Level Feedback

High
(Reward ≥ 1000)

"Great job! You’re performing well with an average
score of 1005. Try to score more even more points"

Medium
(500 < Reward < 1000)

"Good progress! Your average score is 570. Focus
on better timing for shooting and avoiding enemy
projectiles."

Low
(Reward ≤ 500)

"Your average score is 270. Try to improve your
strategy for shooting aliens and dodging projectiles."

Table A.8: Staged feedback for the Space Invaders agent at different performance levels

F.5 DEEP RL RESULT

Due to a large variation in how people report Atari game results and the fact that many state-of-the-art
deep RL models are not released as open-source, the numbers we reported in Table A.9 are from
CleanRL report (Huang et al., 2022b), the published ICLR blog post (Huang et al., 2022a) and the
experiment log1. In terms of runtime, we directly compute the time from the Weights & Biases
log. For Breakout and Space Invaders, the agent performances were continuously improving, so
we reported the duration of the full experiment run. For Pong, the RL policy plateaued before the
experiment finished, so we found the time step where the policy achieved the highest performance
reliably and computed training time starting from the launch of the experiment to that time step.

It is worth noting that we reporeted the Deep RL results with 8 parallel environment instances in
Table A.9. However, there are faster implementations of Deep RL training on Atari games. For
example, Apex-DQN (Horgan et al., 2018) would train the actor and critic model separately in a
truly asynchronous fashion, resulting in massive reduction of training time. EnvPool is a C++-based
batched environment pool that enabled fast sampling and interaction with the game environment.
All of these changes enabled faster learning. For example, on Breakout, with 32 to 64 parallel
environments, Advantage Actor-Critic (A2C) can learn a high performing policy in 33m 19s2.
However, Trace only uses 1 environment instance and has not gone through any special speed-related
algorithm/hardware optimization.

F.6 EXAMPLES OF THE LEARNED ATARI AGENT

We provide initial code (with docstrings) for each game and the final learned code. For Pong Agent,
initial code is in Figure A.16, and final agent in Figure A.17. For Breakout agent, initial code is in

1https://wandb.ai/cleanrl/cleanrl.benchmark/reports/Atari--VmlldzoxMTExNTI
2https://wandb.ai/costa-huang/cleanRL/reports/Breakout-v5--VmlldzoxNDI1MTIx

21

https://wandb.ai/cleanrl/cleanrl.benchmark/reports/Atari--VmlldzoxMTExNTI
https://wandb.ai/costa-huang/cleanRL/reports/Breakout-v5--VmlldzoxNDI1MTIx

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

(a) Learned Agent for Pong

(b) Learned Agent for Breakout

(c) Learned Agent for Space Invaders

Figure A.8: Agent Design for Atari Games. We can design different agent workflow graphs for the learned
agent to achieve high scores in three Atari games.

1
2 TracedEnv.step.step16 = {
3 ’Player ’: {’x’: 99, ’y’: 189, ’w’: 16, ’h’: 4, ’dx’: 0, ’dy’: 0},
4 ’Ball’: {’x’: 7, ’y’: 193, ’w’: 2, ’h’: 4, ’dx’: -4, ’dy’: 4},
5 ’RB’: [{’x’: 8, ’y’: 57, ’w’: 144, ’h’: 6}],
6 ’OB’: [{’x’: 8, ’y’: 63, ’w’: 144, ’h’: 6}],
7 ’YB’: [{’x’: 8, ’y’: 69, ’w’: 144, ’h’: 6}],
8 ’GB’: [{’x’: 8, ’y’: 75, ’w’: 144, ’h’: 6}],
9 ’AB’: [{’x’: 8, ’y’: 81, ’w’: 144, ’h’: 6}],

10 ’BB’: [{’x’: 8, ’y’: 87, ’w’: 144, ’h’: 6}],
11 ’lives’: 5,
12 ’reward ’: 0.0
13 }

Figure A.9: Example of a single traced step from Breakout

Figure A.18, A.19 and final agent in Figure A.20, A.21. For Space Invaders agent, initial code is in
Figure A.22, A.23 and the final agent in Figure A.24.

Game Learned Agent DQN (Time) PPO (Time) Human

Pong 21 (43m) 20 (10h 6m) 19 (2h 24m) 14.59
Breakout 353 (1h 31m) 302 (26h 54m) 443 (3h 8m) 30.47
Space Invaders 1200 (36m) 1383 (26h 52m) 939 (5h 39m) 1668.67

Table A.9: Comparison of Algorithm Performance on Atari Games with Time. Due to high variations of numbers
reported by different papers, we report results from an open-source implementation of RL algorithms (Huang
et al., 2022b) and publicly available experiment logs (Huang et al., 2022a). RL algorithms are trained with 8
parallel environment instances. Our agent is trained on 1 environment instance. Note that highly optimized Deep
RL with 32 environment instances can reach ˜450 on Breakout in 33m, see Appendix F.5.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

G LARGE LANGUAGE MODEL USE FOR WRITING

A small amount of paragraphs have been polished by GPT-5. The process is – the author wrote the
sentence or paragraph first and then send into the LLM with the prompt of “Polish the following
writing and correct the grammar mistakes.” LLM was never used to directly produce a paragraph
without an original human-written input. The LLM assistance was only used to enhance the calrity
and readability of the paragraph only.

H EXAMPLES OF LEARNED AGENT

H.1 ML AGENT

H.2 ATARI GAME AGENTS

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

1 import trace
2
3 @trace.model
4 class SpaceshipTitanicPipeline(Module):
5
6 def __call__(self , x, y=None , test_data=None):
7 processed_data = self.preprocess(x)
8 selected_features = self.select_features(processed_data)
9

10 if y is not None:
11 ensemble = self.ensemble_model(selected_features , processed_data)
12 model = self.train_model(ensemble , selected_features , processed_data , y)
13 if test_data is not None:
14 processed_test_data = self.preprocess(test_data)
15 filtered_test_data = self.filter_features(selected_features ,

processed_test_data)
16 return self.predict(model , filtered_test_data)
17 filtered_data = self.filter_features(selected_features , processed_data)
18 return self.predict(model , filtered_data)
19 else:
20 ensemble = self.ensemble_model(selected_features , processed_data)
21 processed_test_data = self.preprocess(x)
22 filtered_test_data = self.filter_features(selected_features , processed_test_data)
23 model = self.train_model(ensemble , selected_features , processed_data ,

pd.Series ([False] * len(processed_data)))
24 return self.predict(model , filtered_test_data)
25
26 def filter_features(self , selected_features , data):
27 return data[selected_features]
28
29 @trace.bundle(trainable=True)
30 def preprocess(self , data):
31 """
32 Preprocessing Steps (some examples on how you could do this , however you can use

your own method if it works better):
33 1. Missing Value Handling:
34 - Numerical features: Intelligent imputation (median , mean , or 0)
35 - Categorical features: Mode filling or meaningful defaults
36 - Outlier detection and treatment
37
38 2. Feature Engineering:
39 - Passenger ID parsing:
40 * Extract group and individual identifiers
41 * Create group -related features
42 - Cabin information extraction:
43 * Deck identification
44 * Cabin number parsing
45 * Side (port/starboard) classification
46 - Name feature parsing:
47 * Title extraction
48 * Potential family relationship inference
49
50 3. Advanced Feature Creation:
51 - Family size computation
52 - Total and relative spending calculations
53 - Amenity usage patterns
54 - Spatial features (cabin location metrics)
55
56 4. Categorical Variable Handling:
57 - One -hot encoding
58 - Label encoding
59 - Embedding techniques for high -cardinality features
60
61 5. Numerical Feature Transformation:
62 - Scaling (StandardScaler , MinMaxScaler)
63 - Skewness correction (log , square root , Box -Cox)
64 - Normalization techniques
65
66 Args:
67 data (pd.DataFrame): Raw input dataset
68
69 Returns:
70 pd.DataFrame: Preprocessed dataset with engineered features
71 """
72 return data

Figure A.10: Initial code for Spaceship-Titanic ML Agent (Part 1). Docstrings are generated by ChatGPT and
then edited by humans.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

1 @trace.model
2 class SpaceshipTitanicPipeline(Module):
3 # (continued from above)
4 @trace.bundle(trainable=True)
5 def select_features(self , processed_data):
6 """
7 Select the most relevant features for predicting whether passengers were transported.
8
9 Selection Methodology (some examples on how you could do this , however you can use

your own method if it works better):
10 1. Statistical Feature Importance:
11 - Correlation analysis
12 - Mutual information
13 - Chi -squared tests
14 - Model -based feature importance
15
16 2. Feature Weighting Criteria:
17 - Predictive power for transportation status
18 - Domain -specific relevance
19 - Minimal multicollinearity
20 - Computational efficiency
21
22 3. Key Feature Categories:
23 - Demographic Signals
24 - Travel Characteristics
25 - Economic Indicators
26
27 4. Selection Mechanism:
28 - Probabilistic feature selection
29 - Dynamic weight adjustment
30 - Prevent overfitting through selective inclusion
31
32 Args:
33 processed_data (pd.DataFrame): Preprocessed dataset
34
35 Returns:
36 list: Optimally selected feature names with associated weights
37 """
38 all_features_with_weights = {col: 0.5 for col in processed_data.columns}
39
40 available_features = {k: v for k, v in all_features_with_weights.items() if k in

processed_data.columns}
41
42 feature_names = list(available_features.keys())
43 feature_weights = list(available_features.values ())
44
45 num_features = min(len(feature_names), int(len(feature_names) * 0.8))
46
47 selected_features = np.random.choice(
48 feature_names ,
49 size=num_features ,
50 replace=False ,
51 p=[w/sum(feature_weights) for w in feature_weights]
52).tolist ()
53
54 selected_features = [f for f in selected_features if f in processed_data.columns]
55
56 return selected_features

Figure A.11: Initial code for Spaceship-Titanic ML Agent (Part 2). Docstrings are generated by ChatGPT and
then edited by humans.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

1 @trace.model
2 class SpaceshipTitanicPipeline(Module):
3 # (continued from above)
4 @trace.bundle(trainable=True)
5 def ensemble_model(self , features , data):
6 """
7 Create an ensemble model for predicting passenger transport status.
8
9 Ensemble Strategy (some examples on how you could do this , however you can use your

own method if it works better):
10 1. Model Diversity:
11 - Tree -based models (Random Forest , Gradient Boosting)
12 - Linear models (Logistic Regression variants)
13 - Support Vector Machines
14 - Probabilistic classifiers
15
16 2. Ensemble Techniques:
17 - Voting , boosting , bagging , stacking
18 - Stacking with meta -learners
19 - Weighted model combination
20 - Regularization -aware model selection
21
22 3. Hyperparameter Optimization:
23 - Cross -validated parameter tuning
24 - Regularization strength balancing
25 - Learning rate and depth control
26 - Subsample and feature sampling strategies
27
28 4. Computational Considerations:
29 - Computational complexity management
30 - Memory -efficient model design
31 - Scalable ensemble construction
32
33 Args:
34 features (list): Selected feature names
35 data (pd.DataFrame): Processed dataset
36
37 Returns:
38 sklearn Classifier: Configured ensemble model ready for training
39 """
40 models = [
41 (’rf’, RandomForestClassifier(n_estimators =150, max_depth =10,

min_samples_split =5, min_samples_leaf =4, max_features=’sqrt’,random_state =42)),
42 (’gbr’, GradientBoostingClassifier(n_estimators =200, learning_rate =0.03,

max_depth=3, subsample =0.8, min_samples_split =5, random_state =42)),
43 (’xgb’, XGBClassifier(n_estimators =200, learning_rate =0.03, max_depth=3,

colsample_bytree =0.6, subsample =0.8, reg_alpha =0.1, reg_lambda =1.0, gamma=1,
random_state =42)),

44 (’lasso’, LogisticRegression(penalty=’l1’, C=0.1, random_state =42)),
45 (’ridge’, LogisticRegression(penalty=’l2’, C=20.0, random_state =42)),
46 (’elastic ’, LogisticRegression(penalty=’elasticnet ’, C=0.1, l1_ratio =0.8,

random_state =42))
47]
48
49 ensemble = VotingClassifier(
50 estimators=models ,
51 voting=’soft’,
52 weights =[2, 3, 3, 2, 1, 1]
53)
54
55 return

Figure A.12: Initial code for Spaceship-Titanic ML Agent (Part 3). Docstrings are generated by ChatGPT and
then edited by humans.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

1 @trace.model
2 class SpaceshipTitanicPipeline(Module):
3 # (continued from above)
4 @trace.bundle(trainable=True)
5 def train_model(self , ensemble_model , features , data , results):
6 """
7 Train machine learning models to predict whether passengers were transported.
8
9 Training Methodology (some examples on how you could do this , however you can use

your own method if it works better):
10 1. Data Preparation:
11 - Feature subset preparation
12 - Cross -validation splitting
13 - Stratified sampling
14
15 2. Class Imbalance Handling:
16 - Weighted loss functions
17 - SMOTE oversampling
18 - Synthetic data generation
19 - Class -aware regularization
20
21 3. Regularization Techniques:
22 - L1/L2 penalty integration
23 - Dropout -like regularization
24 - Early stopping mechanisms
25 - Gradient clipping
26
27 4. Training Optimization:
28 - Adaptive learning rates
29 - Ensemble member performance tracking
30 - Dynamic weight adjustment
31 - Prediction confidence calibration
32
33 Args:
34 ensemble_model: Configured ensemble model
35 features (list): Selected feature names
36 data (pd.DataFrame): Processed training dataset
37 results (pd.Series): Training labels
38
39 Returns:
40 Trained ensemble model optimized for passenger transportation prediction
41 """
42 return

Figure A.13: Initial code for Spaceship-Titanic ML Agent (Part 4). Docstrings are generated by ChatGPT and
then edited by humans.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

1 @trace.model
2 class SpaceshipTitanicPipeline(Module):
3 # (continued from above)
4 @trace.bundle(trainable=True)
5 def predict(self , model , data):
6 """
7 Make predictions on whether passengers were transported.
8
9 Prediction Workflow (some examples on how you could do this , however you can use

your own method if it works better):
10 1. Probabilistic Prediction:
11 - Soft classification probabilities
12 - Confidence -based thresholding
13 - Ensemble prediction aggregation
14
15 2. Post -processing Techniques:
16 - Calibration curves
17 - Probability scaling
18 - Ensemble diversity preservation
19
20 3. Output Formatting:
21 - Binary classification output
22 - Kaggle submission compatibility
23 - Interpretable prediction format
24
25 4. Prediction Quality Assessment:
26 - Uncertainty quantification
27 - Prediction reliability scoring
28 - Anomaly detection
29
30 Args:
31 model (VotingClassifier): Trained ensemble model
32 data (pd.DataFrame): Processed test dataset
33
34 Returns:
35 np.ndarray: Binary predictions for passenger transportation status
36 """
37 predictions = model.predict(data)
38 predictions = np.array(predictions , dtype=bool)
39 return predictions

Figure A.14: Initial code for Spaceship-Titanic ML Agent (Part 5). Docstrings are generated by ChatGPT and
then edited by humans.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

1 import trace
2
3 @trace.model
4 class SpaceshipTitanicPipeline(Module):
5
6 @trace.bundle(trainable=True)
7 def preprocess(self , data):
8 """(same as before , skipped to save space)"""
9 # Create a copy to avoid modifying original data

10 # Handle missing values in numeric columns
11 numeric_columns = ["Age", "RoomService", "FoodCourt", "ShoppingMall",
12 "Spa", "VRDeck"]
13 for col in numeric_columns:
14 processed_data[col] = processed_data[col]. fillna(processed_data[col]. median ())
15
16 # Handle boolean/categorical columns
17 processed_data["VIP"] = processed_data["VIP"]. fillna(False)
18 processed_data["CryoSleep"] = processed_data["CryoSleep"]. fillna(False)
19
20 # Convert HomePlanet to numeric using label encoding
21 if "HomePlanet" in processed_data.columns:
22 processed_data["HomePlanet"] = processed_data["HomePlanet"]. fillna("Unknown")
23 planet_map = {"Earth": 0, "Europa": 1, "Mars": 2, "Unknown": 3}
24 processed_data["HomePlanet"] = processed_data["HomePlanet"].map(planet_map)
25
26 # (skipped some code)
27
28 # Age -related features
29 processed_data["Age"] = processed_data["Age"]. fillna(processed_data["Age"]. median ())
30 processed_data["AgeGroup"] = pd.qcut(
31 processed_data["Age"], q=6, labels =[0, 1, 2, 3, 4, 5]
32).astype(int)
33
34 # Interaction features
35 processed_data["CryoSleepVIP"] = processed_data["CryoSleep"]. astype(int) *

processed_data["VIP"]. astype(int)
36 processed_data["SpendingPerAge"] = processed_data["TotalSpending"] /

processed_data["Age"].clip(lower =1)
37 processed_data["HasSpent"] = (processed_data["TotalSpending"] > 0).astype(int)
38 processed_data["SpendingVariety"] = (processed_data[spending_columns] >

0).sum(axis =1)
39
40 # ... standard scaling , dropping columns , etc.
41
42 # Final check for NaN values
43 processed_data = processed_data.fillna (0)
44 return processed_data

Figure A.15: Final learned code for Spaceship-Titanic ML Agent (Part 1). Docstrings are generated by ChatGPT
and then edited by humans.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

1 import trace
2
3 @trace.model
4 class Policy(Module):
5 def __call__(self , obs):
6 predicted_ball_y = self.predict_ball_trajectory(obs)
7 action = self.select_action(predicted_ball_y , obs)
8 return action
9

10 @trace.bundle(trainable=True)
11 def predict_ball_trajectory(self , obs):
12 """
13 Predict the y-coordinate where the ball will intersect with the player ’s paddle by

calculating its trajectory ,
14 using ball’s (x, y) and (dx, dy) and accounting for bounces off the top and bottom

walls.
15
16 Game Setup:
17 - Screen dimensions: The game screen has boundaries where the ball bounces
18 - Top boundary: approximately y=30
19 - Bottom boundary: approximately y=190
20 - Paddle positions:
21 - Player paddle: right side of screen (x = 140)
22 - Enemy paddle: left side of screen (x = 16)
23
24 Args:
25 obs (dict): Dictionary containing object states for "Player", "Ball", and

"Enemy".
26 Each object has position (x,y), size (w,h), and velocity (dx,dy).
27
28 Returns:
29 float: Predicted y-coordinate where the ball will intersect the player ’s paddle

plane.
30 Returns None if ball position cannot be determined.
31
32 """
33 if ’Ball’ in obs:
34 return obs[’Ball’].get("y", None)
35 return None
36
37 @trace.bundle(trainable=True)
38 def select_action(self , predicted_ball_y , obs):
39 ’’’
40 Select the optimal action to move player paddle by comparing current player position

and predicted_ball_y.
41
42 IMPORTANT! Movement Logic:
43 - If the player paddle ’s y position is GREATER than predicted_ball_y: Move DOWN

(action 2)
44 (because the paddle needs to move downward to meet the ball)
45 - If the player paddle ’s y position is LESS than predicted_ball_y: Move UP (action 3)
46 (because the paddle needs to move upward to meet the ball)
47 - If the player paddle is already aligned with predicted_ball_y: NOOP (action 0)
48 (to stabilize the paddle when it’s in position)
49 Ensure stable movement to avoid missing the ball when close by.
50
51 Args:
52 predicted_ball_y (float): predicted y coordinate of the ball or None
53 obs(dict): Dictionary of current game state , mapping keys ("Player", "Ball",

"Enemy") to values (dictionary of keys (’x’, ’y’, ’w’, ’h’, ’dx’, ’dy’) to integer
values)

54 Returns:
55 int: 0 for NOOP , 2 for DOWN , 3 for UP
56 ’’’
57
58 if predicted_ball_y is not None and ’Player ’ in obs:
59 return random.choice ([2, 3])
60 return 0

Figure A.16: Initial code for Pong Agent.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

1 import trace
2
3 @trace.model
4 class Policy(Module):
5 def __call__(self , obs):
6 predicted_ball_y = self.predict_ball_trajectory(obs)
7 action = self.select_action(predicted_ball_y , obs)
8 return action
9

10 @trace.bundle(trainable=True)
11 def predict_ball_trajectory(self , obs):
12 """(same as before , skipped to save space)"""
13 if ’Ball’ in obs:
14 ball = obs[’Ball’]
15 # If ball moving away from player , return None
16 if ball.get(’dx’, 0) < 0:
17 return None
18
19 # Calculate time to reach paddle
20 paddle_x = 140
21 ball_x = ball.get(’x’, 0)
22 ball_dx = ball.get(’dx’, 0)
23 if ball_dx == 0:
24 return ball.get(’y’, None)
25
26 time_to_paddle = (paddle_x - ball_x) / ball_dx
27
28 # Calculate predicted y position with improved accuracy
29 ball_y = ball.get(’y’, 0)
30 ball_dy = ball.get(’dy’, 0)
31 predicted_y = ball_y + ball_dy * time_to_paddle
32
33 # Account for bounces with improved accuracy
34 num_bounces = 0
35 while predicted_y < 30 or predicted_y > 190:
36 if predicted_y < 30:
37 predicted_y = 30 + (30 - predicted_y)
38 if predicted_y > 190:
39 predicted_y = 190 - (predicted_y - 190)
40 num_bounces += 1
41 if num_bounces > 4: # Limit bounce calculations
42 break
43
44 return predicted_y
45 return None
46
47 @trace.bundle(trainable=True)
48 def select_action(self , predicted_ball_y , obs):
49 ’’’(same as before , skipped to save space)’’’
50 if predicted_ball_y is not None and ’Player ’ in obs:
51 # Calculate center of paddle
52 paddle_center = obs[’Player ’][’y’] + obs[’Player ’][’h’]/2
53
54 # Increase margin and add dynamic adjustment based on ball distance
55 base_margin = 4
56 if ’Ball’ in obs:
57 ball_x = obs[’Ball’].get(’x’, 0)
58 dist_factor = (140 - ball_x) / 140 # Normalized distance factor
59 margin = base_margin * (1 + dist_factor) # Larger margin when ball is far
60
61 # Add momentum -based adjustment
62 if obs[’Ball’].get(’dx’, 0) > 0:
63 ball_dy = obs[’Ball’].get(’dy’, 0)
64 # Scale adjustment based on distance
65 predicted_ball_y += ball_dy * dist_factor
66 else:
67 margin = base_margin
68
69 # More aggressive movement thresholds
70 if paddle_center > predicted_ball_y + margin:
71 return 2 # Move down
72 elif paddle_center < predicted_ball_y - margin:
73 return 3 # Move up
74 return 0 # Stay in position
75 return 0

Figure A.17: Final learned code for Pong Agent.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

1 @trace.model
2 class Policy(Module):
3 def __call__(self , obs):
4 pre_ball_x = self.predict_ball_trajectory(obs)
5 target_paddle_pos = self.generate_paddle_target(pre_ball_x , obs)
6 action = self.select_paddle_action(target_paddle_pos , obs)
7 return action
8
9 @trace.bundle(trainable=True)

10 def predict_ball_trajectory(self , obs):
11 """
12 Predict the x-coordinate where the ball will intersect with the player ’s paddle by

calculating its trajectory ,
13 using ball’s (x, y) and (dx, dy) and accounting for bounces off the right and left

walls.
14
15 Game setup:
16 - Screen dimensions: The game screen has left and right walls and brick wall where

the ball bounces
17 - Left wall: x=9
18 - Right wall: x=152
19 - Paddle positions:
20 - Player paddle: bottom of screen (y=189)
21 - Ball speed:
22 - Ball deflects from higher -scoring bricks would have a higher speed and is harder

to catch.
23 - The paddle would deflect the ball at different angles depending on where the ball

lands on the paddle
24
25 Args:
26 obs (dict): Dictionary containing object states for "Player", "Ball", and blocks

"{color}B" (color in [R/O/Y/G/A/B]).
27 Each object has position (x,y), size (w,h), and velocity (dx,dy).
28 Returns:
29 float: Predicted x-coordinate where the ball will intersect the player ’s paddle

plane.
30 Returns None if ball position cannot be determined.
31 """
32 if ’Ball’ not in obs:
33 return None
34
35 @trace.bundle(trainable=True)
36 def generate_paddle_target(self , pre_ball_x , obs):
37 """
38 Calculate the optimal x coordinate to move the paddle to catch the ball (at

predicted_ball_x)
39 and deflect the ball to hit bricks with higher scores in the brick wall.
40
41 Logic:
42 - Prioritize returning the ball when the ball is coming down (positive dy)
43 - The brick wall consists of 6 vertically stacked rows from top to bottom:
44 - Row 1 (top): Red bricks (7 pts)
45 - Row 2: Orange (7 pts)
46 - Row 3: Yellow (4 pts)
47 - Row 4: Green (4 pts)
48 - Row 5: Aqua (1 pt)
49 - Row 6 (bottom): Blue (1 pt)
50 - Strategic considerations:
51 - Breaking lower bricks can create paths to reach higher -value bricks above
52 - Creating vertical tunnels through the brick wall is valuable as it allows
53 the ball to reach and bounce between high -scoring bricks at the top
54 - Balance between safely returning the ball and creating/utilizing tunnels
55 to access high -value bricks
56 - Ball speed increases when hitting higher bricks , making it harder to catch
57
58 Args:
59 pre_ball_x (float): predicted x coordinate of the ball intersecting with the

paddle or None
60 obs (dict): Dictionary containing object states for "Player", "Ball", and blocks

"{color}B" (color in [R/O/Y/G/A/B]).
61 Each object has position (x,y), size (w,h), and velocity (dx,dy).
62 Returns:
63 float: Predicted x-coordinate to move the paddle to.
64 Returns None if ball position cannot be determined.
65 """
66 if pre_ball_x is None or ’Ball’ not in obs:
67 return None
68 return None

Figure A.18: Initial code for Breakout Agent (Part 1).

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

1 import trace
2
3 @trace.model
4 class Policy(Module):
5
6 # (continued from above)
7
8 @trace.bundle(trainable=True)
9 def select_paddle_action(self , target_paddle_pos , obs):

10 """
11 Select the optimal action to move player paddle by comparing current player position

and target_paddle_pos.
12
13 Movement Logic:
14 - If the player paddle ’s center position is GREATER than target_paddle_pos: Move

LEFT (action 3)
15 - If the player paddle ’s center position is LESS than target_paddle_pos: Move RIGHT

(action 2)
16 - If the player paddle is already aligned with target_paddle_pos: NOOP (action 0)
17 (to stabilize the paddle when it’s in position)
18 Ensure stable movement to avoid missing the ball when close by.
19
20 Args:
21 target_paddle_pos (float): predicted x coordinate of the position to best

position the paddle to catch the ball ,
22 and hit the ball to break brick wall.
23 obs (dict): Dictionary containing object states for "Player", "Ball", and blocks

"{color}B" (color in [R/O/Y/G/A/B]).
24 Each object has position (x,y), size (w,h), and velocity (dx,dy).
25 Returns:
26 int: 0 for NOOP , 2 for RIGHT , 3 for LEFT
27 """
28 if target_paddle_pos is None or ’Player ’ not in obs:
29 return 0
30
31 paddle = obs[’Player ’]
32 paddle_x = paddle[’x’]
33 paddle_w = paddle[’w’]
34 paddle_center = paddle_x + (paddle_w / 2)
35
36 # Add deadzone to avoid oscillation
37 deadzone = 2
38 if abs(paddle_center - target_paddle_pos) < deadzone:
39 return 0 # NOOP if close enough
40 elif paddle_center > target_paddle_pos:
41 return 3 # LEFT
42 else:
43 return 2 # RIGHT

Figure A.19: Initial code for Breakout Agent (Part 2).

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

1 @trace.model
2 class Policy(Module):
3
4 def __call__(self , obs):
5 pre_ball_x = self.predict_ball_trajectory(obs)
6 target_paddle_pos = self.generate_paddle_target(pre_ball_x , obs)
7 action = self.select_paddle_action(target_paddle_pos , obs)
8 return action
9

10 @trace.bundle(trainable=True)
11 def predict_ball_trajectory(self , obs):
12 """(same as before , skipped to save space)"""
13 if pre_ball_x is None or ’Ball’ not in obs or ’Player ’ not in obs:
14 return None
15
16 ball = obs[’Ball’]
17 paddle = obs[’Player ’]
18
19 # Default to centering paddle on predicted ball position
20 target_x = pre_ball_x
21
22 # Adjust paddle position based on current ball direction and brick locations
23 if ball[’dy’] > 0: # Ball moving down
24 if ball[’y’] < 120: # Ball in upper half - aim for tunnels to high bricks
25 # Look for gaps in brick rows to target
26 high_brick_x = None
27 for color in [’RB’, ’OB’]: # Check red and orange rows
28 if color in obs:
29 bricks = obs[color]
30 if len(bricks) > 0:
31 brick = bricks [0]
32 high_brick_x = brick[’x’] + (brick[’w’] / 2)
33 break
34
35 if high_brick_x is not None:
36 # Adjust paddle to deflect ball toward high -value bricks
37 if ball[’x’] < high_brick_x:
38 target_x = pre_ball_x - 4 # Hit ball on right side
39 else:
40 target_x = pre_ball_x + 4 # Hit ball on left side
41
42 # Ensure target is within screen bounds
43 paddle_half_width = paddle[’w’] / 2
44 target_x = max(9 + paddle_half_width , min (152 - paddle_half_width , target_x))
45
46 return target_x

Figure A.20: Learned code for Breakout Agent (Part 1).

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

1 @trace.model
2 class Policy(Module):
3
4 # (continued from above)
5
6 @trace.bundle(trainable=True)
7 def generate_paddle_target(self , pre_ball_x , obs):
8 """(same as before , skipped to save space)"""
9 if ’Ball’ not in obs:

10 return None
11
12 ball = obs[’Ball’]
13 ball_x = ball[’x’]
14 ball_y = ball[’y’]
15 ball_dx = ball[’dx’]
16 ball_dy = ball[’dy’]
17
18 # If ball is not moving , can’t predict
19 if ball_dx == 0 and ball_dy == 0:
20 return None
21
22 # Calculate time to reach paddle
23 paddle_y = 189 # Player paddle y-position
24 if ball_dy != 0: # Avoid division by zero
25 time_to_paddle = (paddle_y - ball_y) / ball_dy
26 if time_to_paddle > 0: # Only predict if ball is moving toward paddle
27 # Account for wall bounces
28 x = ball_x + (ball_dx * time_to_paddle)
29 num_bounces = 0
30 while x < 9 or x > 152:
31 if x < 9:
32 x = 9 + (9 - x) # Reflect off left wall
33 if x > 152:
34 x = 152 - (x - 152) # Reflect off right wall
35 num_bounces += 1
36 if num_bounces > 10: # Prevent infinite bounces
37 break
38 return x
39 return None
40
41 @trace.bundle(trainable=True)
42 def select_paddle_action(self , target_paddle_pos , obs):
43 """(same as before , skipped to save space)"""
44 if target_paddle_pos is None or ’Player ’ not in obs:
45 return 0
46
47 paddle = obs[’Player ’]
48 paddle_x = paddle[’x’]
49 paddle_w = paddle[’w’]
50 paddle_center = paddle_x + (paddle_w / 2)
51
52 # Add deadzone to avoid oscillation
53 deadzone = 2
54 if abs(paddle_center - target_paddle_pos) < deadzone:
55 return 0 # NOOP if close enough
56 elif paddle_center > target_paddle_pos:
57 return 3 # LEFT
58 else:
59 return 2 # RIGHT

Figure A.21: Learned code for Breakout Agent (Part 2).

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

1 @trace.model
2 class Policy(Module):
3
4 def __call__(self , obs):
5 shoot_decision = self.decide_shoot(obs)
6 move_decision = self.decide_movement(obs)
7 return self.combine_actions(shoot_decision , move_decision)
8
9 @trace.bundle(trainable=True)

10 def decide_shoot(self , obs):
11 ’’’
12 Decide whether to shoot based on enemy positions and existing projectiles.
13
14 Args:
15 obs (dict): Game state observation containing object states for "Player",

"Shield0", "Shield1", "Alien0", "Alien1", etc.
16 Each object has position (x,y), size (w,h), and velocity (dx,dy).
17 Player bullets have negative dy velocity and alien bullets have positive dy

velocity
18
19 Strategy tips:
20 - You can only have one missile at a time
21 - Try to shoot when aliens are aligned with your ship
22 - Prioritize shooting at lower aliens as they’re closer to you
23 - Consider the movement of aliens when deciding to shoot
24
25 Returns:
26 bool: True if should shoot , False otherwise
27 ’’’
28
29 # There can only be one player bullet on the field at a time
30 # Check for player bullets (which have negative dy velocity)
31 for key , obj in obs.items():
32 if key.startswith(’Bullet ’) and obj.get(’dy’, 0) < 0:
33 return False
34
35 return random.choice ([True , False])
36
37 @trace.bundle(trainable=True)
38 def decide_movement(self , obs):
39 ’’’
40 Decide movement direction based on enemy positions and projectiles.
41
42 Args:
43 obs (dict): Game state observation containing object states for "Player",

"Shield0", "Shield1", "Alien0", "Alien1", etc.
44 Each object has position (x,y), size (w,h), and velocity (dx,dy).
45 Player bullets have negative dy velocity and alien bullets have positive dy

velocity
46
47 Strategy tips:
48 - Move to dodge enemy projectiles
49 - Position yourself under aliens to shoot them
50 - Stay away from the edges of the screen
51 - Consider moving toward areas with more aliens to increase score
52
53 Returns:
54 int: -1 for left , 1 for right , 0 for no movement
55 ’’’
56
57 player = obs[’Player ’]
58
59 return random.choice ([-1,0,1])

Figure A.22: Initial code for Space Invaders Agent (Part 1).

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

1 @trace.model
2 class Policy(Module):
3
4 # (continued from above)
5
6 @trace.bundle(trainable=True)
7 def combine_actions(self , shoot , movement):
8 ’’’
9 Combine shooting and movement decisions into final action.

10
11 Args:
12 shoot (bool): Whether to shoot
13 movement (int): Movement direction
14
15 Action mapping:
16 - 0: NOOP (no operation)
17 - 1: FIRE (shoot without moving)
18 - 2: RIGHT (move right without shooting)
19 - 3: LEFT (move left without shooting)
20 - 4: RIGHT+FIRE (move right while shooting)
21 - 5: LEFT+FIRE (move left while shooting)
22
23 Returns:
24 int: Final action (0: NOOP , 1: FIRE , 2: RIGHT , 3: LEFT , 4: RIGHT+FIRE , 5:

LEFT+FIRE)
25 ’’’
26
27 if shoot and movement > 0:
28 return 4 # RIGHT+FIRE
29 elif shoot and movement < 0:
30 return 5 # LEFT+FIRE
31 elif shoot:
32 return 1 # FIRE
33 elif movement > 0:
34 return 2 # RIGHT
35 elif movement < 0:
36 return 3 # LEFT
37 return 0 # NOOP

Figure A.23: Initial code for Space Invaders Agent (Part 2).

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

1 @trace.model
2 class Policy(Module):
3
4 def __call__(self , obs):
5 shoot_decision = self.decide_shoot(obs)
6 move_decision = self.decide_movement(obs)
7 return self.combine_actions(shoot_decision , move_decision)
8
9 @trace.bundle(trainable=True)

10 def decide_shoot(self , obs):
11 """(same as before , skipped to save space)"""
12
13 # There can only be one player bullet on the field at a time
14 # Check for player bullets (which have negative dy velocity)
15 for key , obj in obs.items():
16 if key.startswith(’Bullet ’) and obj.get(’dy’, 0) < 0:
17 return False
18
19 player = obs[’Player ’]
20 for key , obj in obs.items():
21 if key.startswith(’Alien’):
22 # Check if alien is aligned with player (within 5 pixels)
23 if abs(obj[’x’] - player[’x’]) < 5:
24 # Prioritize lower aliens (higher y value)
25 if obj[’y’] > 60: # Adjust this threshold as needed
26 return True
27 return False
28
29 @trace.bundle(trainable=True)
30 def decide_movement(self , obs):
31 """(same as before , skipped to save space)"""
32 player = obs[’Player ’]
33 move = 0
34 threat_left = 0
35 threat_right = 0
36 aliens_left = 0
37 aliens_right = 0
38
39 for key , obj in obs.items():
40 if key.startswith(’Alien’):
41 if obj[’x’] < player[’x’]:
42 aliens_left += 1
43 else:
44 aliens_right += 1
45 elif key.startswith(’Bullet ’) and obj[’dy’] > 0: # Enemy bullet
46 if obj[’x’] < player[’x’]:
47 threat_left += 1
48 else:
49 threat_right += 1
50
51 # Move away from threats
52 if threat_left > threat_right:
53 move = 1
54 elif threat_right > threat_left:
55 move = -1
56 # If no immediate threat , move towards more aliens
57 elif aliens_left > aliens_right:
58 move = -1
59 elif aliens_right > aliens_left:
60 move = 1
61
62 return move
63
64 @trace.bundle(trainable=True)
65 def combine_actions(self , shoot , movement):
66 """(same as before , skipped to save space)"""
67 if shoot and movement > 0:
68 return 4 # RIGHT+FIRE
69 elif shoot and movement < 0:
70 return 5 # LEFT+FIRE
71 elif shoot:
72 return 1 # FIRE
73 elif movement > 0:
74 return 2 # RIGHT
75 elif movement < 0:
76 return 3 # LEFT
77 return 0 # NOOP

Figure A.24: Learned code for Space Invaders Agent.

38

	Introduction
	Background and Related Work
	Building Learning Agents with Generative Optimization
	Atari Game Playing Agents Through Episodic Learning
	Data Science Agent With Interactive Learning Graph
	Language Understanding Agent Through Batch Learning
	Conclusion and Limitation
	Large Language Model Access Card
	Discussion on Other Important Factors for Agent Learning
	Specifying Agent Behavior Through Workflows
	Guiding Agent Learning Process Through Effective Feedback

	MLAgentBench Details
	Agent Design Details
	Feedback Design Details
	LLM Agent Learning Results
	Effect of Workflow Design
	Examples of the Learned ML Agent

	Batch Learning Agent Details
	Batch Learning LangGraph Agent Details
	Agent Design Details
	Feedback Design Details

	Atari Game Details
	Game setup
	Feedback Design Details
	Agent Design Details
	LLM Agent Learning Result
	Deep RL Result
	Examples of the Learned Atari Agent

	Large Language Model Use for Writing
	Examples of Learned Agent
	ML Agent
	Atari Game Agents

