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ABSTRACT

Multi-view image compression is vital for 3D-related applications. Existing meth-
ods often rely on 2D projection similarities between views to estimate disparity,
performing well with small disparities, such as in stereo images, but struggling
with more complex disparities from wide-baseline setups, common in virtual re-
ality and autonomous driving systems. To overcome this limitation, we propose a
novel approach: learning-based multi-view image compression with 3D Gaussian
geometric priors (3D-GP-LMVIC). Our method leverages 3D Gaussian Splatting
to derive geometric priors of the 3D scene, enabling more accurate disparity esti-
mation between views within the compression model. Additionally, we introduce
a depth map compression model to reduce redundancy in geometric information
across views. A multi-view sequence ordering method is also proposed to en-
hance correlations between adjacent views. Experimental results demonstrate that
3D-GP-LMVIC surpasses both traditional and learning-based methods in perfor-
mance, while maintaining fast encoding and decoding speed. The code is available
at https://anonymous.4open.science/r/3D-GP-LMVIC-8FFA.

1 INTRODUCTIOIN

The rapid advancement of 3D applications has led to an explosion of multi-view image data across
various fields, including virtual reality (VR) (Anthes et al., 2016), augmented reality (AR) (Schmal-
stieg & Hollerer, 2016), visual simultaneous localization and mapping (vSLAM) (Mokssit et al.,
2023), 3D scene understanding (Dai et al., 2017), autonomous driving (Chen et al., 2017), and med-
ical imaging (Hosseinian & Arefi, 2015). In particular, applications like VR and AR, which rely on
high-quality multi-view visual content to create immersive experiences, generate a massive volume
of data that poses significant challenges for storage and transmission. This makes the development
of efficient compression techniques crucial for managing the increasing data demands in these fields.

Current multi-view coding standards, such as H.264-based MVC (Vetro et al., 2011) and H.265-
based MV-HEVC (Hannuksela et al., 2015), have been developed to compress multi-view media by
extending their respective base standards and exploiting redundancies across multiple views. These
standards incorporate inter-view prediction, where blocks in one view are predicted based on cor-
responding blocks in neighboring view. Disparity estimation is employed to calculate positional
differences of objects between views, aiding in the prediction of pixel values. However, these meth-
ods rely on manually designed modules, limiting the system’s ability to fully leverage end-to-end
optimization. Consequently, the spatial correlation among views may not be fully exploited, leading
to suboptimal compression performance.

Learning-based single image compression has seen remarkable advancements (Ballé et al., 2017;
2018; Minnen et al., 2018), inspiring extensions of these methods to multi-view image coding (Deng
et al., 2021; Lei et al., 2022; Zhang et al., 2023; Liu et al., 2024). A central challenge in these ex-
tensions lies in the accurate estimation of disparities across different views. For example, Deng
et al. (2021; 2023) employ a simple 3x3 homography matrix for disparity estimation, which, while
efficient, struggles with complex scene disparities. Alternatively, Ayzik & Avidan (2020); Huang
et al. (2023) utilize patch matching method to align the reference view with the target view. This
approach is effective for horizontal or vertical view shifts but falls short when addressing non-rigid
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deformations caused by view rotations. Similarly, Zhai et al. (2022) assume that disparity occurs
only along the horizontal axis in their stereo matching method, which suffices for stereo images but
is inadequate for more complex view transformations where disparity is not limited to the horizontal
axis. Some methods leverage cross-attention mechanisms for implicit alignment (Wödlinger et al.,
2022; Zhang et al., 2023; Liu et al., 2024). For instance, Zhang et al. (2023) enhance the target
view’s representation by multiplying its query with the reference view’s key and value, effectively
incorporating reference view features into the target view. However, these methods primarily es-
tablish correlations between two views by 2D projection similarities, without considering the 3D
spatial relationships between the views and the captured objects.

In addition, we are impressed by 3D Gaussian Splatting (3D-GS) (Kerbl et al., 2023), a novel tech-
nique for generating 3D representations from multi-view images and synthesizing novel views. This
method achieves remarkable results by representing scenes as mixtures of small, colored Gaussians,
capturing intricate geometric details and continuous depth and texture variations. The probabilistic
nature of Gaussians allows for smooth, accurate modeling of complex surfaces, enabling the creation
of realistic and detailed 3D environments. Additionally, the fast differentiable renderer inherent in
3D Gaussian Splatting ensures efficient real-time inference.

Building on prior investigation, we propose a novel learning-based multi-view image compression
framework with 3D Gaussian geometric priors (3D-GP-LMVIC), which employs 3D-GS as a ge-
ometric prior to guide disparity estimation between views. Specifically, 3D-GS generates a depth
map for each view, providing precise spatial information at the pixel level. This enables accurate
correspondence between views, allowing the compression model to effectively fuse features from
reference views. Due to positional and angular disparities between views, images generally do not
fully overlap, and merging non-overlapping regions may introduce noise. To address this, we design
a mask based on the 3D Gaussian geometric prior to identify overlapping regions, ensuring more
accurate feature fusion. Additionally, since depth maps are required during decoding, we propose
a depth map compression model to efficiently reduce geometric redundancy across views, incorpo-
rating a cross-view depth prediction module to capture inter-view geometric correlations. Finally,
recognizing the importance of field of view (FoV) overlap in redundancy reduction, we introduce a
multi-view sequence ordering method to address the issue of low overlap between adjacent views
in unordered sequences. This method defines a distance measure between view pairs to guide the
ordering of view sequences.

• We propose a learning-based multi-view image compression framework with 3D Gaussian
geometric priors (3D-GP-LMVIC), which utilizes 3D Gaussian geometric priors for pre-
cise disparity estimation between views, thereby enhancing multi-view image compression
efficiency. Additionally, we design a mask based on these priors to identify overlapping
regions between views, effectively guiding the model to retain useful cross-view informa-
tion.

• We also present a depth map compression model aimed at reducing geometric redundancy
across views. Furthermore, a multi-view sequence ordering method is proposed to improve
the correlation between adjacent views.

• Experimental results show that our framework surpasses both traditional and learning-
based multi-view image coding methods in compression efficiency, while also providing
fast encoding and decoding speed. Moreover, our disparity estimation method demon-
strates greater visual accuracy compared to existing two-view disparity estimation meth-
ods.

2 RELATED WORKS

Single Image Coding. Traditional image codecs, such as JPEG (Wallace, 1992), BPG (Bellard,
2014), and VVC (Bross et al., 2021), employ manually designed modules like DCT, block-based
coding, and quadtree plus binary tree partitioning to balance compression and visual quality. These
methods, however, do not achieve end-to-end joint optimization, limiting their performance.

In recent years, learning-based image compression methods have integrated autoencoders with dif-
ferentiable entropy models to enable end-to-end optimization of rate-distortion loss. Early works,
such as Ballé et al. (2017; 2018), introduced generalized divisive normalization (GDN) (Ballé et al.,
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Training Prediction Reference Relationship for Coding

3D-GS

Figure 1: The overall pipeline of 3D-GP-LMVIC

2016) and proposed factorized and hyperprior entropy models. Subsequent research (Minnen et al.,
2018; He et al., 2021; Jiang et al., 2023) incorporated autoregressive structures into entropy models,
resulting in more accurate probability predictions. These advancements have laid the foundation for
learning-based multi-view image coding.

Multi-view Image Coding. Traditional multi-view image codecs, such as MVC (Vetro et al., 2011)
and MV-HEVC (Hannuksela et al., 2015), extend H.264 and H.265, respectively, by incorporat-
ing inter-view correlation modeling to eliminate redundant information between different views.
However, these modules are manually designed, potentially limiting their ability to fully exploit
cross-view information.

Learning-based multi-view image coding primarily focuses on stereo image coding (Deng et al.,
2021; Lei et al., 2022; Wödlinger et al., 2022; Zhai et al., 2022; Deng et al., 2023; Liu et al.,
2024) and distributed image coding (Ayzik & Avidan, 2020; Huang et al., 2023; Zhang et al., 2023).
These methods either rely on finding explicit pixel coordinate correspondences between views or
use attention-based implicit correspondence modeling to capture inter-view correlations. However,
they model inter-view correlations based solely on two-dimensional view images, which may not
fully reflect the correspondences in the original three-dimensional space.

3D Gaussian Splatting. 3D Gaussian Splatting (Kerbl et al., 2023; Hamdi et al., 2024) introduces
a differentiable point-based rendering technique that represents 3D points as Gaussian functions
(mean, variance, opacity, color) and projects these 3D Gaussians onto a view to form an image. This
differentiable point-based rendering function allows for the backward update of the attributes of the
3D Gaussians, ensuring that their geometrical and textural properties match the original 3D scene.
This approach inspired us to utilize 3D Gaussian Splatting to obtain geometric priors of the original
3D scene, aiding in the task of multi-view image compression.

3 PROPOSED METHOD

Figure 1 shows the overall pipeline of 3D-GP-LMVIC. Given a set of multi-view image sequences
X = {x1,x2,x3, · · · ,xN}, a 3D-GS is trained to estimate depth map dn for each image xn. Both
xn and dn are compressed, with the coding reference relationships indicated by black solid arrows
in Figure 1. Prior to compressing the image xn, it is necessary to compress xn−1, dn−1, and dn.
The disparity relationship between the (n− 1)-th and n-th views is inferred from the reconstructed
depth maps d̂n−1 and d̂n. Subsequently, based on the estimated disparity relationship, as well as the
intermediate features and the reconstructed image x̂n−1 obtained during the image decoding process
of the (n− 1)-th view, xn is compressed. When compressing the depth map dn, the model employs
the predicted depth map derived from d̂n−1 as a reference. The same neural network architecture
and model parameters are used consistently across all views for both image compression and depth
map compression. For the initial view lacking reference information, full-zero tensors are provided
as the input reference.

The remainder of this section is structured as follows: Section 3.1 elaborates on the method for
depth map estimation for a given view using the 3D-GS and the estimation of inter-view disparities.
Section 3.2 discusses the compression model for images and depth maps. Section 3.3 introduces
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View n-1 View n

3D World Point

Camera Center Cn-1 Camera Center Cn
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(xn, yn)

(xw, yw, zw)

δn=(xn-1-xn, yn-1-yn)
(xn-1, yn-1)

|CnH|=dn

Figure 2: Illustration of depth-based disparity estimation

a multi-view sequence ordering method designed to ensure sufficient overlap of captured objects
between adjacent views.

3.1 3D-GS BASED DEPTH AND DISPARITY ESTIMATION

For an image xn ∈ RW×H×3 with spatial dimensions W and H , we aim to derive a depth map
dn ∈ RW×H , representing the z-axis coordinates of each pixel’s corresponding scene points in the
camera coordinate system. This depth map facilitates the estimation of disparities between different
views.

In the context of the 3D-GS framework, consider a set of M ordered 3D points projected along a
ray from the camera through a pixel. The rendered pixel color c can be expressed as:

c =

M∑
i=1

Tiαici, with Ti =

i−1∏
j=1

(1− αj). (1)

Here, ci and αi represent the color and opacity (density) of the point, respectively, derived from the
point’s 3D Gaussian properties. The factor Ti denotes the transmittance along the ray, indicating the
fraction of light reaching the camera without being occluded.

In Eq. 1, Ti serves as a weight for the contribution of each point’s color to the pixel’s final color,
diminishing from 1 to 0 as i increases due to cumulative absorption. To estimate the depth of the
pixel d, we use the depth zi of the first point where Ti drops below 0.5, following the median depth
estimation approach outlined in Luiten et al. (2024):

d = zi∗ , where i∗ = min{i | Ti < 0.5}. (2)

It is worth noting that the original 3D-GS (Kerbl et al., 2023) employs a weighted averaging ap-
proach, using Tiαi as the weight for each 3D Gaussian along the ray to compute depth. In con-
trast, alignment experiments in Appendix E demonstrate that the median depth estimation approach
achieves better alignment performance.

Next, we aim to estimate the disparity ∆n ∈ RW×H×2 between views based on the estimated depth
map. This disparity represents the pixel-wise shift of each scene point’s projection across different
views. Disparity estimation captures the geometric relationships between views, facilitating the
modeling of inter-view correlations.

Figure 2 illustrates the depth-based disparity estimation. To estimate the disparity, a pixel (xn, yn)
in the n-th view is back-projected into 3D space using the depth dn to obtain the world coordi-
nates (xw, yw, zw). This 3D world point is then projected into the (n − 1)-th view to obtain the
corresponding pixel coordinates (xn−1, yn−1). The transformations involved are as follows:

4
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Figure 3: The architecture of the proposed image compression model. ’LR’ represents the Leaky
ReLU activation function, ’Q’ denotes the quantization operation, and ’AE’/’AD’ refer to the arith-
metic encoder/decoder, respectively.
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(3)

where K ∈ R3×3 denotes the camera intrinsic matrix, and Vn, Vn−1 ∈ R4×4 are the extrinsic
matrices corresponding to the n-th and (n − 1)-th views, respectively. The camera parameters are
calibrated using SfM (Schonberger & Frahm, 2016). d′n−1 represents the depth of the 3D world
point in the camera coordinate system of the (n− 1)-th view. The resulting disparity δn = (xn−1−
xn, yn−1 − yn) for each pixel is then compiled into the disparity map ∆n.

Finally, we define a mask xn,m ∈ RW×H that identifies whether each pixel in the n-th view maps
to the same 3D world point as the corresponding pixel in the (n − 1)-th view through disparity
estimation. The mask’s criteria are: (1) the projected pixel must reside within the valid image region
in the (n− 1)-th view, (2) the corresponding 3D world point must be in the positive z-half-space of
the (n− 1)-th view’s coordinate system, and (3) no occlusion must exist along the line of sight, i.e.,
d′n−1 from Eq. 3 must be less than the estimated depth along the ray in the (n−1)-th view. This can
be formulated as:

xn,m[i, j] =


1 if 0 < ∆n[i, j, 0] + i+ 0.5 < W

and 0 < ∆n[i, j, 1] + j + 0.5 < H

and 0 < d′
n−1[i, j] < Warp(dn−1,∆n)[i, j],

0 otherwise,

(4)

where d′
n−1 ∈ RW×H represents the tensor containing the depth values d′n−1 for each pixel, and

Warp(·, ·) denotes the warping operation based on the given disparity. Appendix A outlines the
algorithmic process for disparity and mask estimation.

3.2 COMPRESSION FRAMEWORK FOR IMAGES AND DEPTH MAPS

3.2.1 IMAGE COMPRESSION MODEL

As shown in Figure 3, the disparity extractor DISE utilizes reconstructed depth maps d̂n−1 and
d̂n to extract multi-scale disparities and feature masks. The reference feature extractor RFE gen-
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Figure 4: Illustration of the proposed image context transfer module at the i-th scale.

erates multi-scale reference features from the reconstructed image x̂n−1 and intermediate features
{f i

n−1 | i = 1, 2, 3} derived during x̂n−1’s reconstruction. Subsequently, the image encoder IE
and decoder ID incorporate the reference features, aligned using the extracted disparities, into the
backbone network. This process is formalized as:

yn = IE(xn, DISE(d̂n−1, d̂n), RFE(x̂n−1, {f i
n−1 | i = 1, 2, 3})),

ŷn = Q(yn),

x̂n = ID(ŷn, DISE(d̂n−1, d̂n), RFE(x̂n−1, {f i
n−1 | i = 1, 2, 3})).

(5)

For entropy coding, we utilize the hyperprior entropy model (Ballé et al., 2018) and the quadtree
partition-based entropy model (QPEM) (Li et al., 2023). The hyperprior entropy model transforms
yn into a hyperprior representation zn. The quantized hyperprior representation ẑn is then used to
accurately model the probability distribution of ŷn. The conditional probability distribution pŷn|ẑn

is defined as:
pŷn|ẑn

(ŷn|ẑn) ∼ N (µn,σ
2
n). (6)

Additionally, QPEM enhances entropy coding efficiency by introducing diverse spatial contexts
while maintaining high coding speed.

Disparity extractor. As illustrated in Figure 3, we firstly employ the disparity estimation (DPE)
module to derive the disparity map ∆n and the corresponding mask xn,m, following the method
outlined in Section 3.1, using d̂n−1 and d̂n. Subsequently, ∆n undergoes a series of downsampling
operations to produce multi-scale disparity maps {∆i

n | i = 1, 2, 3}, which will facilitate multi-
scale feature alignment. The mask xn,m is further processed by the disparity mask extractor to
extract feature masks {f i

n,m | i = 1, 2, 3, 4}.
Reference feature extractor. The referenc, aiding in the extraction of relevant features.e feature
extractor takes as inputs x̂n−1, {f i

n−1 | i = 1, 2, 3}, and ∆3
n to extract multi-scale reference

features {hi
n−1 | i = 1, 2, 3, 4}, as shown in Figure 3. Specifically, h4

n−1 is derived by aligning
h3
n−1 with ∆3

n and subsequently applying a convolutional layer.

Image context transfer module. To incorporate the reference feature {hi
n−1 | i = 1, 2, 3} obtained

from the (n − 1)-th view into the image backbone encoder and decoder, enhancing feature repre-
sentation, we introduce the image context transfer (ICT) module. As depicted in Figure 4, the input
feature f i∗

n from the backbone network and the aligned feature of hi
n−1 via ∆i

n are concatenated
after a convolutional layer. The concatenated feature is then element-wise multiplied with f i

n,m,
followed by a residual block for feature refinement. Multiplication with the feature masks filters
relevant information from the reference features. The final step involves element-wise addition of
this refined feature to f i∗

n , yielding the output feature f i
n.

3.2.2 DEPTH MAP COMPRESSION MODEL

The compression and decompression of the depth map dn leverage d̂n−1 as a reference. Initially,
d̂n−1 is processed by the depth prediction extractor DEPE, which generates multi-scale depth pre-
diction features and corresponding feature masks. Subsequently, the depth encoder DE and decoder
DD integrate these extracted features and masks into the backbone network. This process is formal-

6
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ized as:
ydn

= DE(dn, DEPE(d̂n−1)),

ŷdn
= Q(ydn

),

d̂n = DD(ŷdn
, DEPE(d̂n−1)).

(7)

The entropy coding scheme incorporates both the hyperprior entropy model and the QPEM. The
latent representation ydn is transformed into a hyperprior representation zdn using the hyperprior
entropy model. Similar to the image compression model, the quantized hyperprior representation
ẑdn

is used to model the probability distribution of ŷdn
. Additional details about the depth map

compression model are provided in Appendix B.

3.2.3 TRAINING LOSS

For each training step, a randomly selected subsequence of length 4 from a multi-view sequence
serves as the training sample. The training loss comprises the distortion losses for both the recon-
structed image and depth map, as well as the estimated compression rates for the encoded image and
depth map, for each view in the training sample:

L =

s+3∑
n=s

wn−s+1

[
λimgD(xn, x̂n) + λdepMSE(dn, d̂n) +R(ŷn) +R(ẑn) +R(ŷdn

) +R(ẑdn
)
]
,

(8)

where D(·, ·) denotes the distortion, MSE(·, ·) represents the mean squared error (MSE), and R(·)
indicates the estimated compression rates. The hyperparameters λimg and λdep control the contribu-
tions of the image and depth map distortion losses, respectively. The weights {wi | i = 1, 2, 3, 4},
as referenced from Li et al. (2023), adjust the influence of each view on the overall training loss.

3.3 MULTI-VIEW SEQUENCE ORDERING

Given the significant impact of FoV overlap between adjacent views on inter-view correlations,
we propose a multi-view sequence ordering method to alleviate the issue of insufficient overlap
in unordered sequences. We define a distance metric to evaluate inter-view overlap and employ a
greedy algorithm to find an improved sequence.

In Eq. 3, if Vn−1V
−1
n = I , then (xn, yn) = (xn−1, yn−1). This indicates that each pixel in the n-th

view lies within the valid image area of the (n − 1)-th view, indicating high overlap. Thus, for any
two views i and j, we measure overlap by the proximity of ViV

−1
j to the identity matrix:

DV(i, j) = ∥ViV
−1
j − I∥. (9)

Appendix C demonstrates thatDV(i, j) is a distance metric for both the 2-norm and Frobenius norm.
The Frobenius norm is utilized in our experiments. After determining pairwise distances, a greedy
algorithm is employed, starting from an initial sequence with only one view, iteratively selecting the
view closest to the last view in the sequence.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate our model on three multi-view image datasets: Tanks&Temples (Knapitsch
et al., 2017), Mip-NeRF 360 (Barron et al., 2022), and Deep Blending (Hedman et al., 2018). These
datasets feature a wide variety of indoor and outdoor scenes, each containing dozens to over a
thousand images captured from different views. Further details on the datasets are provided in
Appendix D.

Benchmarks. We compare our approach against several baselines, including traditional multi-view
codec: MV-HEVC (Hannuksela et al., 2015); learning-based multi-view image codecs: two variants

7
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Figure 5: Rate-distortion curves of the proposed method compared with baselines.

Table 1: BDBR comparison of different methods relative to MV-HEVC.

Methods Tanks&Temples Mip-NeRF 360 Deep Blending

PSNR MS-SSIM PSNR MS-SSIM PSNR MS-SSIM

HAC 636.81% 350.72% 374.20% 294.42% 673.57% 418.85%
HESIC 12.66% -26.29% 28.41% -6.18% 85.38% 3.91%

HESIC+ -4.85% -30.42% 9.48% -5.11% 32.5% -19.14%
MASIC -12.57% -34.19% 3.26% -9.11% 43.6% -9.33%
SASIC 3.39% -18.59% 2.40% -3.70% 24.64% -9.48%

LDMIC-Fast -8.56% -27.76% 1.72% -6.21% 24.25% -23.31%
LDMIC -16.27% -44.33% -13.12% -25.39% 16.88% -41.94%

BiSIC-Fast -26.59% -42.93% -20.61% -23.23% -8.24% -41.80%
BiSIC -30.89% -49.96% -29.87% -30.75% -15.46% -48.47%

3D-GP-LMVIC -47.48% -63.69% -34.69% -40.25% -27.31% -54.15%

of HESIC (Deng et al., 2021), MASIC (Deng et al., 2023), SASIC (Wödlinger et al., 2022), two
variants of LDMIC (Zhang et al., 2023), and two variants of BiSIC (Liu et al., 2024); as well as the
3D-GS compression method: HAC (Chen et al., 2024). Further details on the baseline configurations
are provided in Appendix D.

Metrics. Image reconstruction quality is measured using peak signal-to-noise ratio (PSNR) and
multi-scale structural similarity index (MS-SSIM) (Wang et al., 2003). Bitrate is expressed in bits
per pixel (bpp). In addition to plotting RD curves, the Bjøntegaard Delta bitrate (BDBR) is calcu-
lated to quantify the average bitrate savings across varying reconstruction qualities. Lower BDBR
values indicate better performance.

Implementation Details. The model was trained using five different configurations of (λimg, λdep):
((256, 64), (512, 128), (1024, 128), (2048, 128), (4096, 128)) when the image distortion loss is
MSE, and ((8, 64), (16, 128), (32, 128), (64, 128), (128, 128)) when using MS-SSIM. The weights
wi for four consecutive views were set to (0.5, 1.2, 0.5, 0.9). The model was trained for 300 epochs
with an initial learning rate of 10−4, which was progressively decayed by a factor of 0.5 every 60
epochs.

4.2 EXPERIMENTAL RESULTS

Coding performance. Figure 5 presents the rate-distortion curves of the compared methods,
while Table 1 summarizes the BDBR of each codec relative to MV-HEVC. Across the three
datasets, the proposed 3D-GP-LMVIC consistently outperforms the baselines in both PSNR and
MS-SSIM, demonstrating its effectiveness in reducing inter-view redundancy. For instance, on
the Tanks&Temples dataset, 3D-GP-LMVIC achieves a BDBR reduction of 16.59% for PSNR and
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Figure 6: Visual Comparison of LDMIC, BiSIC, and 3D-GP-LMVIC on the Tanks&Temples
Dataset. Compression performance is reported as bpp/PSNR/MS-SSIM.

13.73% for MS-SSIM compared to BiSIC. The BDBR of HAC is relatively higher, likely due to the
inclusion of 3D scene information in addition to 2D image representations. Appendix F provides
supplementary experiments on coding performance.

Visualization. In Figure 6, we present examples from the Tanks&Temples dataset to visually com-
pare the performance of LDMIC, BiSIC, and 3D-GP-LMVIC. The results demonstrate that 3D-GP-
LMVIC preserves more texture details and achieves higher reconstruction quality for elements like
branches, humans, and text, while consuming fewer bits.

Encoding and decoding time comparison. Table 2 presents the encoding and decoding runtimes
of six learning-based image codecs, evaluated on a platform equipped with an Intel(R) Xeon(R)
Gold 6330 CPU @ 2.00GHz and an NVIDIA RTX A6000 GPU. The neural network components
of the codecs were executed on the GPU, while the entropy coding was handled by the CPU. 3D-
GP-LMVIC achieved encoding and decoding times of 0.19s and 0.18s, respectively, making it one
of the faster methods. This speed can be attributed to its relatively simple network structure and the
QPEM, which balances coding speed and compression efficiency. Both SASIC and LDMIC-Fast
showed fast runtimes due to their use of highly parallelizable hyperprior and checkerboard entropy
models, respectively. Besides, HESIC+, MASIC, and LDMIC utilized autoregressive entropy mod-
els, resulting in comparatively slower runtimes.
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Table 2: Average encoding and decoding runtime of learning-based codecs on Tanks&Temples (im-
age resolution: 978× 546).

Operation Codecs

HESIC+ MASIC SASIC LDMIC-Fast LDMIC 3D-GP-LMVIC

Encoding 4.35s 4.38s 0.06s 0.11s 4.24s 0.19s
Decoding 10.73s 10.78s 0.09s 0.09s 10.63s 0.18s
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Figure 7: Rate-distortion curves of different ablation baselines on the Tanks&Temples dataset.

4.3 ABLATION STUDY

Codec components. To assess the contribution of codec components, we performed ablation experi-
ments on the Tanks&Temples dataset. The rate-distortion curves are shown in Figure 7. Specifically,
we evaluated the following baselines: (1) Separate: encoding and decoding without cross-view in-
formation; (2) Concatenation: direct feature concatenation from reference view without alignment;
(3) W/O Mask: removal of both image and depth mask; (4) W/O Dep.Pred: excluding depth predic-
tion in the depth map compression model. These baselines resulted in bitrate increases of 41.07%
(44.24%), 42.75% (47.52%), 7.19% (8.47%), and 8.03% (8.02%) for PSNR (MS-SSIM), respec-
tively, compared to the proposed method. The experimental results validate the effectiveness of the
proposed components. Appendix E provides further analysis on alignment.

Multi-view sequence ordering. As illustrated in Figure 7, we evaluated two baselines to assess the
effectiveness of the proposed multi-view sequence ordering method: (1) Sort: sequences are ordered
using the proposed method; (2) Random: sequences are randomly ordered. The Random baseline led
to a 42.4% (50.64%) increase in bitrate for PSNR (MS-SSIM) compared to Sort. Furthermore, Sort
exhibited only a 3.76% (2.97%) bitrate increase for PSNR (MS-SSIM) compared to the manually
sorted sequences in the Tanks&Temples dataset. These results demonstrate the effectiveness of the
proposed ordering method for unsorted multi-view sequences, achieving performance close to that
of manual sorting.

5 CONCLUSION

In this paper, we present 3D-GP-LMVIC, a novel learning-based multi-view image coding frame-
work incorporating 3D Gaussian geometric priors. This framework exploits these geometric priors
to estimate complex disparities and masks between views for effectively utilizing reference view
information in the compression process. Additionally, we propose a depth map compression model
designed to compactly and accurately represent the geometry of each view, incorporating a cross-
view depth prediction module to capture inter-view geometric correlations. Moreover, we introduce
a multi-view sequence ordering method for unordered sequences, enhancing the overlap between
adjacent views by defining an inter-view distance measure to guide the sequence ordering. Exper-
imental results confirm that 3D-GP-LMVIC surpasses existing learning-based coding schemes in
compression efficiency while maintaining competitive coding speed.
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APPENDIX

A DISPARITY AND MASK ESTIMATION ALGORITHM

Algorithm 1: Disparity and Mask Estimation
Input : 3D-GS-based depth estimation function GSDE, camera intrinsic matrix K, camera

extrinsic matrices Vn and Vn−1

Output: Disparity map ∆n, mask xn,m
1 dn ← GSDE(K,Vn);
2 dn−1← GSDE(K,Vn−1);
3 ∆n,d

′
n−1← DisparityEstimation(dn,K, Vn, Vn−1);

4 xn,m ←MaskEstimation(∆n,d
′
n−1,dn−1);
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Figure 8: The architecture of the proposed depth map compression model. ’LR’ represents the
Leaky ReLU activation function, ’Q’ denotes the quantization operation, and ’AE’/’AD’ refer to the
arithmetic encoder/decoder, respectively.

B SUPPLEMENTARY INFORMATION FOR THE DEPTH MAP COMPRESSION
MODEL

As illustrated in Figure 8, during the compression and decompression of dn, d̂n−1 is initially pro-
cessed by the depth prediction extractor, which extracts multi-scale depth prediction features and
associated feature masks. These extracted features and masks are then integrated into the depth
backbone encoder and decoder via the depth context integration (DCI) module. Detailed explana-
tions of the depth prediction extractor and the DCI module are provided in the subsequent content.

Depth prediction extractor. As illustrated in Figure 8, we first utilize the proposed cross-view
depth prediction (CVDP) module to predict the depth map dn,p ∈ RW×H and the associated mask
dn,m ∈ RW×H for the n-th view, based on d̂n−1. Specifically, for each pixel (xn−1, yn−1) in the
(n− 1)-th view and its corresponding reconstructed depth d̂n−1, the CVDP module determines the
corresponding pixel coordinates (xn, yn) and the depth prediction d′n in the n-th view using the
method described in Eq. 3. The depth at the nearest grid point (⌊xn − 0.5⌉, ⌊yn − 0.5⌉) is then set
to d′n:

dn,p[⌊xn − 0.5⌉, ⌊yn − 0.5⌉] = d′n. (10)

This cross-view depth prediction is applied to each pixel in the (n − 1)-th view to construct dn,p.
If multiple pixel coordinates map to the same grid point, the depth prediction for that point is set
to the minimum of these predicted depths. Additionally, if a grid point has no corresponding pixel
coordinates, its depth prediction value is set to 0. The mask dn,m indicates whether each grid point
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has at least one corresponding pixel coordinate, with values set to 1 where a correspondence exists
and 0 otherwise.

Subsequently, dn,p is input into the depth prediction feature extractor to obtain multi-scale depth
prediction features {gi

n,p | i = 1, 2, 3, 4}. Concurrently, the mask dn,m is processed by the depth
mask extractor to derive the associated multi-scale feature masks {gi

n,m | i = 1, 2, 3, 4}.

Depth Context Integration Module. Each DCI module integrates the input features gi∗

n from
the backbone network with gi

n,p through channel-wise concatenation, followed by element-wise
multiplication with gi

n,m to produce the output feature gi
n:

gi
n = (gi∗

n ⊕ gi
n,p)⊙ gi

n,m, (11)

where ⊕ denotes channel-wise concatenation and ⊙ denotes element-wise multiplication.

C PROOF OF DV(i, j) AS A DISTANCE MEASURE FOR 2-NORM AND
FROBENIUS NORM

C.1 PROOF FOR 2-NORM

C.1.1 DEFINITION

Definition 1. For u = (A,B) and v = (C,D), where A,C ∈ Rn×m and B,D ∈ Rn×l, we
define (u, v)2 = ∥ACT + BDT ∥2. For any scalar α, αu = (αA,αB). Additionally, u + v =
(A+ C,B +D).

C.1.2 LEMMA

Lemma 1. For any u = (A,B) and v = (C,D) as defined in Definition 1, the following inequality
holds:

(u, v)2 ≤
√
(u, u)2(v, v)2

Proof. For any real number t, we have:

(u+ tv, u+ tv)2 = ∥(A+ tC)(A+ tC)T + (B + tD)(B + tD)T ∥2
≤ ∥AAT +BBT ∥2 + t∥ACT +BDT ∥2 + t∥CAT +DBT ∥2 + t2∥CCT +DDT ∥2
= (u, u)2 + t(u, v)2 + t(v, u)2 + t2(v, v)2

= (u, u)2 + 2t(u, v)2 + t2(v, v)2

The right-hand side of the last equation can be viewed as a quadratic expression in t and is greater
than or equal to (u+tv, u+tv)2, which is non-negative. Therefore, the discriminant of this quadratic
must be non-positive:

(2(u, v)2)
2 − 4(u, u)2(v, v)2 ≤ 0

Thus, we obtain:
(u, v)2 ≤

√
(u, u)2(v, v)2

C.1.3 THEOREM

Theorem 1. DV(i, j) = ∥ViV
−1
j − I∥2 is a distance metric.

Proof. We need to prove thatDV(i, j) satisfies non-negativity, symmetry, and the triangle inequality.

Non-negativity: Since DV(i, j) is a norm, it is non-negative. Additionally, as the extrinsic matrices
for different views are distinct, Vi ̸= Vj for i ̸= j. DV(i, j) = 0 if and only if ViV

−1
j − I = 0,

which holds only when Vi = Vj , i.e., i = j.
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Symmetry: The extrinsic matrix Vi can be represented as Vi =

(
Ri ti
0 1

)
, where Ri ∈ R3×3 is a

rotation matrix 1 and ti ∈ R3×1 is a translation vector. We have:

DV(i, j) = ∥ViV
−1
j − I∥2

=

∥∥∥∥(Ri ti
0 1

)(
RT

j −RT
j tj

0 1

)
− I

∥∥∥∥
2

=

∥∥∥∥(RiR
T
j − I −RiR

T
j tj + ti

0 0

)∥∥∥∥
2

=

∥∥∥∥∥
(
RiR

T
j − I −RiR

T
j tj + ti

0 0

)(
RiR

T
j − I −RiR

T
j tj + ti

0 0

)T
∥∥∥∥∥

1
2

2

=
∥∥2I −RjR

T
i −RiR

T
j +RiR

T
j tjt

T
j RjR

T
i − tit

T
j RjR

T
i −RiR

T
j tjt

T
i + tit

T
i

∥∥ 1
2

2

=
∥∥RjR

T
i (2I −RjR

T
i −RiR

T
j +RiR

T
j tjt

T
j RjR

T
i − tit

T
j RjR

T
i −RiR

T
j tjt

T
i + tit

T
i )RiR

T
j

∥∥ 1
2

2

=
∥∥2I −RjR

T
i −RiR

T
j + tjt

T
j −RjR

T
i tit

T
j − tjt

T
i RiR

T
j +RjR

T
i tit

T
i RiR

T
j

∥∥ 1
2

2

= DV(j, i)

The fourth equality follows from the fact that for any matrix A, ∥A∥2 = ∥AAT ∥
1
2
2 . The sixth

equality is due to the orthogonality of Ri and Rj , and the invariance of the 2-norm under orthogonal
transformations. The final equality holds because interchanging the indices i and j in the expression
on the right-hand side of the fifth equality leads to the same expression as DV(j, i), which matches
the right-hand side of the seventh equality.

Triangle inequality: For views i, j, and k, define Ai,j = RT
j − RT

i , Bi,j = −RT
j tj + RT

i ti, and
similarly for Aj,k, Bj,k, Ak,i, Bk,i. Let uj,k = (Aj,k, Bj,k) and uk,i = (Ak,i, Bk,i). Starting from
the fourth equation in the symmetry proof, we proceed as follows:

DV(i, j) =

∥∥∥∥∥
(
RiR

T
j − I −RiR

T
j tj + ti

0 0

)(
RiR

T
j − I −RiR

T
j tj + ti

0 0

)T
∥∥∥∥∥

1
2

2

=
∥∥(RiR

T
j − I)(RiR

T
j − I)T + (−RiR

T
j tj + ti)(−RiR

T
j tj + ti)

T
∥∥ 1

2

2

=
∥∥RT

i

(
(RiR

T
j − I)(RiR

T
j − I)T + (−RiR

T
j tj + ti)(−RiR

T
j tj + ti)

T
)
Ri

∥∥ 1
2

2

=
∥∥(RT

j −RT
i )(R

T
j −RT

i )
T + (−RT

j tj +RT
i ti)(−RT

j tj +RT
i ti)

T
∥∥ 1

2

2

=
∥∥Ai,jA

T
i,j +Bi,jB

T
i,j

∥∥ 1
2

2

=
∥∥(Aj,k +Ak,i)(Aj,k +Ak,i)

T + (Bj,k +Bk,i)(Bj,k +Bk,i)
T
∥∥ 1

2

2

=
∥∥Aj,kA

T
j,k +Bj,kB

T
j,k +Ak,iA

T
k,i +Bk,iB

T
k,i +Aj,kA

T
k,i +Bj,kB

T
k,i +Ak,iA

T
j,k +Bk,iB

T
j,k

∥∥ 1
2

2

≤
(
∥Aj,kA

T
j,k +Bj,kB

T
j,k∥2 + ∥Ak,iA

T
k,i +Bk,iB

T
k,i∥2 + 2∥Aj,kA

T
k,i +Bj,kB

T
k,i∥2

) 1
2

=
(
DV(j, k)

2 +DV(k, i)
2 + 2(uj,k, uk,i)2

) 1
2

≤
(
DV(j, k)

2 +DV(k, i)
2 + 2

√
(uj,k, uj,k)2(uk,i, uk,i)2

) 1
2

=
(
DV(j, k)

2 +DV(k, i)
2 + 2DV(j, k)DV(k, i)

) 1
2

= DV(j, k) +DV(k, i)

1A rotation matrix is an orthogonal matrix, meaning its inverse is equal to its transpose.
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The second inequality follows from Lemma 1.

C.2 PROOF FOR FROBENIUS NORM

C.2.1 DEFINITION

Definition 2. For u = (A,B) and v = (C,D) as defined in Definition 1, we define (u, v)F =
tr
(
ACT +BDT

)
.

C.2.2 LEMMA

Lemma 2. For u and v as defined in Definition 2, the following inequality holds:

(u, v)F ≤
√

(u, u)F (v, v)F .

Proof. The method of proof is analogous to that used in Lemma 1. By leveraging the properties of
the trace and following a similar reasoning process, the result is derived.

C.2.3 THEOREM

Theorem 2. DV(i, j) = ∥ViV
−1
j − I∥F is a distance metric.

Proof. We need to prove thatDV(i, j) satisfies non-negativity, symmetry, and the triangle inequality.

Non-negativity: The proof follows a similar approach to that of Theorem 1, so we omit the details
here.

Symmetry:

DV(i, j) = ∥ViV
−1
j − I∥F

=

∥∥∥∥(Ri ti
0 1

)(
RT

j −RT
j tj

0 1

)
− I

∥∥∥∥
F

=

∥∥∥∥(RiR
T
j − I −RiR

T
j tj + ti

0 0

)∥∥∥∥
F

= tr

((
RiR

T
j − I −RiR

T
j tj + ti

0 0

)(
RiR

T
j − I −RiR

T
j tj + ti

0 0

)T
) 1

2

= tr
(
2I −RjR

T
i −RiR

T
j +RiR

T
j tjt

T
j RjR

T
i − tit

T
j RjR

T
i −RiR

T
j tjt

T
i + tit

T
i

) 1
2

=
(
tr(2I)− tr(RjR

T
i )− tr(RiR

T
j ) + tr(RiR

T
j tjt

T
j RjR

T
i )− tr(tit

T
j RjR

T
i )− tr(RiR

T
j tjt

T
i ) + tr(tit

T
i )
) 1

2

=
(
tr(2I)− tr(RjR

T
i )− tr(RiR

T
j ) + tr(tjt

T
j )− tr(RT

i tit
T
j Rj)− tr(RT

j tjt
T
i Ri) + tr(tit

T
i )
) 1

2

=
(
tr(2I)− tr(RiR

T
j )− tr(RjR

T
i ) + tr(tit

T
i )− tr(RT

j tjt
T
i Ri)− tr(RT

i tit
T
j Rj) + tr(tjt

T
j )
) 1

2

= DV(j, i)

The fourth equality holds because, for any matrix A, we have ∥A∥F = tr(AAT )
1
2 . The sixth

equality is a result of the linearity of the trace operator. The seventh equality follows from the cyclic
property of the trace, for instance, tr(RiR

T
j tjt

T
j RjR

T
i ) = tr(tjt

T
j RjR

T
i RiR

T
j ) = tr(tjt

T
j ).

Triangle Inequality: For views i, j, and k, we follow the same definitions of Ai,j , Bi,j , Aj,k, Bj,k,
Ak,i, Bk,i, uj,k, and uk,i as in the proof of the triangle inequality in Theorem 1. Starting from the
fourth equality in the proof of symmetry, we have:

DV(i, j) = tr

((
RiR

T
j − I −RiR

T
j tj + ti

0 0

)(
RiR

T
j − I −RiR

T
j tj + ti

0 0

)T
) 1

2

= tr
(
(RiR

T
j − I)(RiR

T
j − I)T + (−RiR

T
j tj + ti)(−RiR

T
j tj + ti)

T
) 1

2

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

= tr
(
RT

i

(
(RiR

T
j − I)(RiR

T
j − I)T + (−RiR

T
j tj + ti)(−RiR

T
j tj + ti)

T
)
Ri

) 1
2

= tr
(
(RT

j −RT
i )(R

T
j −RT

i )
T + (−RT

j tj +RT
i ti)(−RT

j tj +RT
i ti)

T
) 1

2

= tr
(
Ai,jA

T
i,j +Bi,jB

T
i,j

) 1
2

= tr
(
(Aj,k +Ak,i)(Aj,k +Ak,i)

T + (Bj,k +Bk,i)(Bj,k +Bk,i)
T
) 1

2

= tr
(
Aj,kA

T
j,k +Bj,kB

T
j,k +Ak,iA

T
k,i +Bk,iB

T
k,i +Aj,kA

T
k,i +Bj,kB

T
k,i +Ak,iA

T
j,k +Bk,iB

T
j,k

) 1
2

=
(
tr
(
Aj,kA

T
j,k +Bj,kB

T
j,k

)
+ tr

(
Ak,iA

T
k,i +Bk,iB

T
k,i

)
+ 2tr

(
Aj,kA

T
k,i +Bj,kB

T
k,i

)) 1
2

=
(
DV(j, k)

2 +DV(k, i)
2 + 2(uj,k, uk,i)F

) 1
2

≤
(
DV(j, k)

2 +DV(k, i)
2 + 2

√
(uj,k, uj,k)F (uk,i, uk,i)F

) 1
2

=
(
DV(j, k)

2 +DV(k, i)
2 + 2DV(j, k)DV(k, i)

) 1
2

= DV(j, k) +DV(k, i)

The third equality holds because the trace is invariant under similarity transformations.

D EXPERIMENTAL DETAILS

Datasets. Our evaluation is conducted on three multi-view image datasets: Tanks&Temples, Mip-
NeRF 360, and Deep Blending. Tanks&Temples consists of 21 diverse indoor and outdoor scenes,
ranging from sculptures and large vehicles to complex large-scale environments, with intricate ge-
ometry and varied lighting conditions. Mip-NeRF 360 includes 9 scenes—5 outdoor and 4 in-
door—captured in unbounded settings, allowing for 360-degree camera rotations and capturing con-
tent at varying distances. From the Deep Blending dataset, we selected 9 representative scenes that
span indoor, outdoor, vegetation-rich, and nighttime environments. For all datasets, 90% of the
images in each scene were allocated for training, with the remaining 10% used for testing.

Benchmarks. We assess the coding performance of MV-HEVC using the HTM-16.3 software2.
The learning-based multi-view image codecs used as baselines, along with our proposed method, are
trained under the same conditions on a shared training set and evaluated on a common test set. For
the 3D Gaussian Splatting compression method (HAC), we train the 3D Gaussian representations
on each scene’s test data and measure the reconstruction quality of the rendered images. The bpp is
determined by dividing the size of the compressed 3D Gaussian file by the total number of pixels in
the test images.

Implementation Details. We utilize the Adam optimizer for training with a batch size of 2. To
facilitate data augmentation and optimize memory usage, each image is randomly cropped to 256×
256. Correspondingly, the principal point in the intrinsic matrix K is adjusted to reflect the new
crop. The intrinsic matrix K is given by:

K =

(
fx 0 cx
0 fy cy
0 0 1

)
,

where fx and fy represent the focal lengths along the x and y axes, respectively, and cx and cy are
the principal point coordinates. If the top-left corner of the crop is located at (px, py) in the original
image, the updated intrinsic matrix K ′ becomes:

K ′ =

(
fx 0 cx − px
0 fy cy − py
0 0 1

)
.

2https://vcgit.hhi.fraunhofer.de/jvet/HTM/-/tags
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Table 3: Average alignment quality (PSNR, MS-SSIM) and runtime of different alignment methods
on the Train scene of the Tanks&Temples dataset.

Metrics Methods

HT PM SPyNet PWC-Net FlowFormer++ 3D-GP-A (original) 3D-GP-A

PSNR 15.16 17.94 16.12 17.59 18.08 17.36 18.14
MS-SSIM 0.5435 0.7633 0.6289 0.7707 0.7863 0.7410 0.8053

Runtime 43ms 207ms 7ms 11ms 836ms 26ms 14ms

Reference View

Target View

HT
12.82/0.6065

PWC-Net
9.65/0.2840

PM
10.05/0.4078

FlowFormer++
13.94/0.7216

SPyNet
10.25/0.1990

3D-GP-A
13.94/0.7217

Figure 9: Visual comparison of different alignment methods on an adjacent view pair in the Train
scene of the Tanks&Temples dataset. Alignment quality is reported as PSNR/MS-SSIM.

Ablation study details. To implement Separate, we set the reference view images, predicted depth
maps, and masks to full-zero tensors, with λdep set to zero. In Concatenation, alignment operations
in the ICT modules are removed. For W/O Mask, we eliminate all mask-related multiplications in
the ICT and DCI modules. In W/O Dep.Pred, the predicted depth maps are replaced with full-zero
tensors. For both Sort and Random, sequences in the training and test sets are reordered accordingly.

E ALIGNMENT EXPERIMENTS

To evaluate the effectiveness of the proposed 3D Gaussian geometric priors-based alignment method
(3D-GP-A), we conducted alignment experiments on the Train scene from the Tanks&Temples
dataset. The baselines for comparison include alignment methods commonly used in learning-based
multi-view image codecs, such as homography transformation (HT) (Deng et al., 2021) and patch
matching (PM) (Huang et al., 2023), optical flow estimation methods, including SPyNet (Ranjan &
Black, 2017), PWC-Net (Sun et al., 2018), and FlowFormer++ (Shi et al., 2023), as well as a depth
map estimation method based on the original 3D-GS (Kerbl et al., 2023). Alignment quality was as-
sessed by computing PSNR and MS-SSIM between the aligned reference view images and the target
view images. Table 3 summarizes the average alignment quality and runtime for each method. The
proposed 3D-GP-A method outperformed the baselines in both PSNR and MS-SSIM, indicating its
effectiveness in capturing complex disparities between views while maintaining competitive runtime
performance. Figure 9 provides visual comparisons, demonstrating that 3D-GP-A achieves closer
alignment with the target view images. However, in the magnified red box, two iron bars appear,
while only the left bar exists in the target view. This ghosting effect occurs because the train’s outer
shell behind the right bar in the target view is occluded in the reference view, causing misalignment.
The mask xn,m in Eq. 4 can indicate occluded regions. Figure 10 shows visual examples of 3D-GP-
A along with the corresponding masks. Notably, ghosting artifacts due to occlusion, such as those
involving the iron bars and the edge of the train shell, are effectively identified by the mask, aiding
the codec in filtering out irrelevant information when merging features from the reference view.
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Reference View Target View 3D-GP-A Mask

Figure 10: Visual examples of 3D-GP-A and the mask from Eq. 4.

Table 4: BDBR of 3D-GP-LMVIC relative to HEVC.

Methods Tanks&Temples Mip-NeRF 360 Deep Blending

PSNR MS-SSIM PSNR MS-SSIM PSNR MS-SSIM

3D-GP-LMVIC -20.69% -40.75% -14.48% -22.06% -17.29% -43.06%

F SUPPLEMENTARY CODING PERFORMANCE

We present a supplementary comparison of the coding performance between the proposed 3D-GP-
LMVIC and the HEVC video coding standard. The multi-view sequences are treated as a single
video and compressed using HEVC with the lowdelay P configuration and YUV444 input format.
HEVC’s coding efficiency is evaluated using the HM-18.0 software3. Table 4 reports the BDBR
of 3D-GP-LMVIC relative to HEVC. On the three datasets, 3D-GP-LMVIC consistently surpasses
HEVC in both PSNR and MS-SSIM, demonstrating its effectiveness in reducing inter-view redun-
dancy in multi-view sequences.

3https://vcgit.hhi.fraunhofer.de/jvet/HM/-/tags
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