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ABSTRACT

Maximum Inner Product Search (MIPS) is essential for machine learning and informa-
tion retrieval, particularly in applications that operate on high-dimensional data, such as
recommender systems and retrieval-augmented generation (RAG), using inner product or
cosine similarity. While numerous techniques have been developed for efficient MIPS,
their performance often suffers due to a limited understanding of the geometric proper-
ties of Inner Product (IP) space. Many approaches reduce MIPS to Nearest Neighbor
Search (NNS) through nonlinear transformations, which rely on strong assumptions and
can hinder performance. To address these limitations, we propose a novel approach that
directly leverages the geometry of IP space. We focus on a class of special vectors called
dominators and introduce the Monotonic Relative Dominator Graph (MRDG), an IP-
space-native, sparse, and strong-connected graph designed for efficient MIPS, offering
solid theoretical foundations. To ensure scalability, we further introduce the Approximate
Relative Dominator Graph (ARDG), which retains MRDG’s benefits while significantly
reducing indexing complexity. Extensive experiments on 8 public datasets demonstrate
that ARDG achieves a 30% average speedup in search at high precision and reduces index
size by 2× compared to state-of-the-art graph-based methods.

1 INTRODUCTION

Maximum Inner Product Search (MIPS) is foundational in machine learning and information retrieval (Lewis
et al., 2020; Seo et al., 2019), especially with the rise of high-dimensional representations based on in-
ner product or cosine similarity. Applications such as recommendation systems (Xu et al., 2018), query-
answering chatbots (Ahmad et al., 2019), multi-modal retrieval (Wang et al., 2024), and Retrieval Aug-
mented Generation (RAG) (Asai et al., 2023) depend on efficiently searching large vector databases to find
items that maximize similarity with a query vector. Fast and accurate MIPS leaves more time for complex
model inference, thereby enhancing both system performance and user experience.

Despite numerous methods developed for MIPS (Morozov & Babenko, 2018; Guo et al., 2020; Zhao et al.,
2023; Guo et al., 2016; Liu et al., 2020), the geometric properties of the inner product space require further
exploration. This lack of geometric theoretical support has led most existing approaches (Zhao et al., 2023;
Zhou et al., 2019; Shrivastava & Li, 2014) to reduce MIPS to the nearest neighbor search (NNS) problem in
a transformed space, allowing established advanced NNS methods to address the MIPS problem. However,
this reduction is typically achieved through nonlinear transformations, such as the Möbius Transformation
(Zhou et al., 2019) or XBOX Transformation (Zhao et al., 2023). These transformations often impose strong
theoretical assumptions, introduce data distortion, and struggle with data updates (Morozov & Babenko,
2018), leading to compromised efficiency and scalability, particularly in high-dimensional settings.

To tackle these challenges, we propose a novel approach that leverages the intrinsic geometry of the IP
space without transforming it into a metric space. Our key insight is to identify a set of vectors termed
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self-dominators, which dominate their respective partitions of space by maintaining a higher inner product
with vectors in their subspace than outside ones. Thereby, self-dominators are strong candidates for MIPS
solutions when the query resides within their dominating regions. We propose an efficient method to identify
self-dominators and subsequently build the Monotonic Relative Dominator Graph (MRDG), an IP-space-
native structure optimized for MIPS. MRDG effectively navigates queries towards self-dominators while
enforcing sparse connections between these dominators. Despite its sparsity, we prove the reachability and
search complexity on the MRDG. Using a common greedy search algorithm (Algorithm 1), the expected
length of a query’s search path is (ρn)1/d log ρn

d∆(ρn) + o(1), where ρ represents the density of self-dominators
and ∆ indicates data density (Fu et al., 2019), and n denotes the number of high-dimensional vectors. Both
factors can be considered approximately constant as the data scale n increases.

Although MRDG is theoretically appealing, its indexing complexity of O(dn2) makes it impractical for
large-scale, high-dimensional datasets. To overcome this limitation, we introduce the Approximate Rela-
tive Dominator Graph (ARDG), which retains the theoretical strengths of MRDG while improving scala-
bility. We achieve this by balancing the locality, connectivity, and sparsity of the graph structure. Specifi-
cally, ARDG identifies approximate self-dominators with high accuracy and introduces a hyperparameter to
balance the connectivity and sparsity during IP-specialized edge pruning.

Our contributions are as follows: (1) Deep Exploitation of IP-Naive Geometry: To the best of our knowl-
edge, we are the first to investigate the specialized geometric properties in IP space for graph-based MIPS,
providing strong theoretical guarantees on graph connectivity and MIPS efficiency through the proposed
MRDG. (2) Introduction of ARDG: a scalable and efficient approximation of MRDG, tailored for large-
scale MIPS applications. (3) Extensive Empirical Validation: We validate our approach through compre-
hensive experiments on 8 public datasets varying in cardinality, dimensionality, and modality, demonstrating
the theoretical robustness and practical superiority of ARDG. Our method achieves an average 30% speedup
over state-of-the-art techniques at the same high precision, with a 2× reduction in graph sizes.

2 PRELIMINARIES

Notations. Let Rd denote d-dimensional real coordinate space. {·} is use to denote sets. Let D =
{x1, . . . , xn} ⊂ Rd represent a vector dataset with n points. A query vector is denoted by q ∈ Rd. ⟨x, y⟩
denotes the inner product (IP) between vector x and y. ∥x∥ gives the Euclidean norm of vector x, and the
Euclidean distance between vectors x and y is denoted as ∥x − y∥. The Voronoi cell under IP similarity
associated with vector x is represented as Vx. A graph is defined as G = (V, E), where V is the node set and
E is the edge set. We use sup(S) to denote the supremum of a set S. O(·) and o(·) denote the big O and
small o notations, respectively.

Problem Definition. The Maximum Inner Product Search (MIPS) problem is defined as follows: Given a
query vector q ∈ Rd and a datasetD = {x1, x2, ..., xn}, the goal is to find the vector x∗ ∈ D that maximizes
the inner product with the query: x∗ = argmaxx∈D⟨q, x⟩.
Similarly, the Nearest Neighbor Search (NNS) problem is defined as finding the vector x∗ ∈ D that is
closest to the query q typically under the Euclidean distance: x∗ = argminx∈D∥q − x∥.
Challenges in MIPS and Prior Work. Although the MIPS and NNS problems appear similar, the ap-
proaches to solve each are not directly interchangeable. This is because IP is not a typical metric that
accept properties like the triangle inequality, which are fundamental to many NNS algorithms. Methods
designed for the NNS problem leverage the triangle inequality to efficiently prune the search space (Malkov
& Yashunin, 2018; Tian et al., 2023; Babenko & Lempitsky, 2014; Ram & Gray, 2012; Fu et al., 2019),
thereby improving performance. Due to the lack of well-explored geometry favoring search in IP space,
most researchers turn to reduce the MIPS problem to an NNS problem and focus on the approximate MIPS
problem (Zhao et al., 2023; Zhou et al., 2019; Shrivastava & Li, 2014; Yan et al., 2018; Li et al., 2018).
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This relaxed problem allows for an acceptable loss in accuracy in exchange for faster query processing or
to accommodate transformations into metric spaces. The approximate MIPS problem is defined as follows:
Given a query q ∈ Rd, a dataset D ⊂ Rd, and an approximation ratio ϵ ∈ (0, 1), let p∗ ∈ D be the exact
MIPS solution for q. The goal is to find a vector p ∈ D satisfying: ⟨p, q⟩ ≥ ϵ · ⟨p∗, q⟩.

Figure 1: Illustrations of IP geometry concepts, simulated on small toy 2D data. (a) IP-Voronoi cells (open
hyper-cones) with associated dominators. (b) ip-NSW Graph. (c) A sparse Naive Dominator Graph (refer
to Section 3.1) . (d) MRDG formed through Definition 5. (e) Simpler illustration of self-dominators. (f)
Showcase of out-dominators dominating vacant regions. (g) Showcase of ordinary points residing in self-
dominators’ Voronoiip cells. (h) Valid dominating region of dominators—capped hyper-cones.

Transformation-Based Methods. To address the approximate MIPS problem, several transformations have
been proposed to map IP space into Euclidean space, enabling the use of NNS algorithms. Two commonly
used transformations are the Möbius transformation and the XBOX transformation. The Möbius trans-
formation normalizes each vector p ∈ Rd to p/∥p∥2. The XBOX transformation applies an asymmetric
mapping: query q is mapped to q′ = [q; 0], while base vector p is mapped to p′ = [p;

√
M2 − |p|2], where

[; ] denotes vector concatenation. Both transformations introduce non-linear distortions that can affect the
data structure (Morozov & Babenko, 2018; Zhao et al., 2023; Zhou et al., 2019). In particular, the XBOX
transformation faces challenges with data updates. The hyperparameter M must be chosen carefully based
on the norm distribution. A small M cause inflexibility in data updates when the new added vector’ norm
exceed M , while a large M increases distortion by overly influencing the transformed vector norms.

Graph-Based MIPS. Graph-based approaches for MIPS have gained attention as a promising research
direction. These methods (Morozov & Babenko, 2018; Tan et al., 2021) are primarily developed from the
Delaunay graph in IP space, which serves as a dual structure to the Voronoi cell set under the IP similarity.
Similar to the Voronoi cells in Euclidean space, the Voronoi cell in IP space is defined as:

Definition 1 (IP-Voronoi Cell). The Voronoiip cell Vx associated with a vector x ∈ D is defined as:
Vx = {y ∈ Rd | ⟨y, x⟩ > ⟨y, z⟩,∀z ∈ D, z ̸= x}.

3
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Definition 2 (Generalized IP-Delaunay Graph). Given a dataset D ⊂ Rd, the generalized IP-Delaunay
Graph G is constructed by connecting any two nodes xi and xj with a bi-directional edge if their corre-
sponding Voronoiip cells Vxi and Vxj are adjacent in Rd, or xi is contained in Vxj .

Algorithm 1: GREEDY SEARCH FOR GRAPHS

Data: Dataset D, Graph G, query q, candidate
set size ls, result set size k. similarity
function s(, )

Result: Top k result set R.
R← ∅; Q← ∅;
P ← random sample ls nodes from G;
for each node p in P do

Q.add(p,s(p, q));
Q.make max heap(); R.init min heap()
while Q.size() do

p← Q.pop()[0]; R.insert((p, s(p, q)))
if visited(p) then

continue;
Np ← neighbors of p in G
for each node n in Np do

Q.insert((n, s(n, q)));
Q.resize(ls);R.resize(k);

return R

By establishing bidirectional connections within ad-
jacent Voronoi cells, (Morozov & Babenko, 2018)
demonstrated that any two nodes in the IP-Delaunay
Graph (a subset of generalized IP-Delaunnay Graph,
we discuss the difference in Appendix C.1) are reach-
able using a greedy search algorithm (Algorithm 1),
which iteratively selects neighbors maximizing IP
similarity to query q. Although this method is theo-
retically sound, their proposed ip-NSW algorithm be-
comes dense in high-dimensional spaces, where each
node connects to a large portion of the dataset. Figure
1 illustrates the partitioning of space into Voronoiip
cells (sub-figure (a)) and the corresponding ip-NSW
Graph (sub-figure (b)) built on a 2D toy dataset. Va-
cant Voronoiip cells may occur depending on point
positions.

Our Motivation. In this paper, we aim to explore
intrinsic geometric properties of IP space benefiting
MIPS, akin to how triangle inequality benefits NNS
in Euclidean space. We explore a sparse yet effi-
cient graph index for MIPS at scale without relying
on transformations that would distort the topology.

3 THEORETICAL FOUNDATION

In this section, we introduce the concept of dominators under the IP space. By focusing on these dominators,
we can leverage the intrinsic geometry of the IP space to improve search efficiency.

3.1 DOMINATORS AND CONSTRUCTION OF NAIVE DOMINATOR GRAPH

We begin by defining dominators and exploring its properties in the context of IP space:
Definition 3 (Dominator of Voronoi Cell). Followed by Definition 1, the vector x ∈ D associated with
Voronoiip cell Vx is a dominator. Sdom represents dominators in D.

Property 1. The Voronoiip cells associated with the dataset D provide a finite full space coverage of Rd.

Property 2. For any query q ∈ Rd, its MIPS solution lies within the dominator set Sdom ⊂ D.

From Property 1 and 2, we conclude that executing MIPS on the entire dataset D can be reduced to MIPS
on the dominator set Sdom. This insight motivates the construction of a graph structure that focuses mainly
on dominators, given the success of prior graph-based methods (Malkov & Yashunin, 2018; Fu et al., 2019).

Definition 4 (Naive Dominator Graph (NDG)). Given a dataset D ⊂ Rd, a Naive Dominator Graph
(NDG) G can be constructed as follows: For each point xi ∈ D, sort the remaining points in descending
order of ⟨xi, xj⟩ to form a list L(xi). Starting from the beginning of L(xi), evaluate each point xj using
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these conditions: (1): ⟨xj , xj⟩ ≥ ⟨xj , xk⟩ for all k < j. (2) ⟨xk, xk⟩ ≥ ⟨xj , xk⟩ for all 1 < k < j. If xj

satisfies these conditions, add a bi-directional edge (xi, xj) to the graph G.

Theorem 1. Given a datasetD ⊂ Rd, a Naive Dominator Graph (NDG) is: (1) a strongly connected graph;
(2) able to identify Sdom; and (3) containing the fully connected graph of Sdom.

In the proof of Theorem 1 (Appendix B.2), we further distinguish between two types of dominators based on
their relationship to their Voronoiip cells: A self-dominator resides within its own Voronoiip cell, meaning
if for all y ∈ D, ⟨x, x⟩ > ⟨x, y⟩, then x dominates itself and belongs to Vx. An out-dominator does
not reside in its own Voronoiip cell, meaning that ∃y ∈ D such that ⟨x, x⟩ ≤ ⟨x, y⟩, then x is potentially
dominated by y. Theorem 1 identifies dominators and builds a graph linking nodes to these dominators.
Because MIPS solutions reside within the dominator set (Property 2), we can prune the graph by keeping
only one self-dominator neighbor for each ordinary point, resulting in a sparser NDG (Figure 1 (c)).

Moreover, Sub-figures (e) to (h) in Figure 1 illustrate self-dominators, out-dominators, and ordinary points.
We can see that the Voronoiip boundaries are determined by the dominators, while ordinary points do not
contribute to the formation of boundaries. Additionally, a self-dominator dominates a capped hyper-cone
(sub-figure (h)) according to the definition. The cap is part of the surface of a hypersphere centered at x/2
with diameter ∥x∥, due to the condition ⟨x, x⟩ > ⟨y, x⟩, where y is any point potentially dominated by x.
The valid dominating region contains at least one point—the self-dominator itself—while out-dominators
do not reside in their own dominating regions, potentially leading to vacant dominating regions.

With above observations, we are more interested in self-dominators with respect to MIPS for three reasons:

(1) Self-dominators tend to have large norms, as their squared norms exceed the IP values with any other
vectors. Prior studies (Liu et al., 2020; Tan et al., 2019) have also shown MIPS solutions often cluster
around large-norm points theoretically and empirically, making self-dominators strong MIPS candidates. (2)
Using the edge selection from Definition 4, identifying self-dominators is straightforward, ensuring every
point is linked to at least one, ensuring efficient graph traversal via self-dominators. (3) Ordinary points in
out-dominators’ Voronoiip are not MIPS solutions, while out-dominators likely belong to the Voronoiip of
self-dominators. This implies MIPS solutions are concentrated within self-dominators’s Voronoiip cells.

3.2 IMPROVE MIPS EFFICIENCY WITH MONOTONIC RELATIVE DOMINATOR GRAPH

It is practical to assume that queries primarily fall within the union of Voronoiip cells associated with self-
dominators. In modern machine learning, query vectors are often trained to align with the distribution of base
vectors (Bengio et al., 2013; Chen et al., 2020), making them more likely to be near self-dominators, which
dominate larger regions. For these queries, MIPS can be streamlined by focusing solely on self-dominators.
Thus, the search efficiency on a graph built around self-dominators depends on two factors: the density of
self-dominators in the dataset and the efficiency of navigating through them.

To begin, we can estimate the ratio of self-dominators in a dataset as follows:
Theorem 2. Given a dataset D ⊂ Rd where vectors are element-wise i.i.d. and drawn from the standard
Gaussian distribution N (0, 1), the probability that a vector x ∈ D with norm ∥x∥ = r is a self-dominator
is Pdom(x) = Φ(r), where Φ(·) is the cumulative distribution function (CDF) of the standard Gaussian.

Theorem 2 also confirms that self-dominators are predominantly among vectors with large norms. Surpris-
ingly, we can infer from Theorem 2 that if a vector x has a norm larger than 4, it is almost certain to be a
self-dominator. The proportion of such vectors is closely related to the data distribution and the dimension-
ality d. Since the distribution of ∥x∥ follows a chi distribution when the elements of x are i.i.d. samples
from N (0, 1), the number of self-dominators can be estimated by: nP (∥x∥ > r) = n

(
1− γ(d/2,r2/2)

Γ(d/2)

)
,

where γ(·) is the lower incomplete gamma function and Γ(·) is the gamma function.
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Via numerical integration, we can estimate the self-dominator density from the given formula. A visual-
ization of P (∥x∥ > r) is provided in Appendix: In high-dimensional spaces, nearly all vectors become
self-dominators, reflecting the curse of dimensionality. However, this is less problematic for real-world
datasets for two reasons: (1) Real-world data typically lies on low dimensional manifolds (in estimated
dimension d′) with structured, correlated dimensions, making the search difficulty similar to that of i.i.d.
datasets with dimension d′ (Fu et al., 2019). (2) The norms of real-world vectors are usually regularized or
bounded, unlike i.i.d. Gaussian distributions. In our experiments, the 300-d Netflix and 784-d MNIST1M
datasets contain only 3.2% and 6.2% self-dominators respectively, significantly reducing the search space.

Although focusing on self-dominators reduces the candidate set, searching on the graph G from Definition 4
is still inefficient due to its dense connectivity among self-dominators. To address this, we further prune G
using the strategy from Monotonic Relative Neighborhood Graph (MRNG) (Fu et al., 2019):

Definition 5 (MRDG). Given a dominator graph G defined on D ⊂ Rd with dominators identified and
connected using Definition 4, we construct the Monotonic Relative Dominator Graph (MRDG) G∗ by
further pruning each node’s self-dominator neighbors as follows: (1) Sort the self-dominator neighbors of
each node x by their Euclidean distance to x in ascending order to form a list L = {yi}. (2) For each yi+1

in L, prune it if there exists yj with 1 ≤ j ≤ i such that ∥yi+1 − x∥ > ∥yi+1 − yj∥.

Definition 5 can also be viewed as the construction algorithm of MRDG. The strategy used in the definition
efficiently sparsifies the graph while maintaining short paths between nodes, a technique widely used in
Euclidean space for NNS methods like HNSW (Malkov & Yashunin, 2018) and NSG (Fu et al., 2019).
Sub-figure (d) in Figure 1 illustrates the proposed MRDG, which is even sparser than the NDG shown in
sub-figure (c) while still maintaining the necessary connections to fulfill efficient MIPS.

3.3 EFFICIENCY OF EXECUTING MIPS ON MRDG

We now discuss how efficiently MIPS can be performed on an MRDG. A key question arises: How does
pruning based on the Euclidean metric improve search performance under IP similarity? We demonstrate
that for any query q whose MIPS solution is a self-dominator, it can be efficiently retrieved with the widely
used greedy search Algorithm 1 on the MRDG G∗.

Theorem 3. Given a dataset D ⊂ Rd and an MRDG G∗ defined on D, the MIPS solution among self-
dominators for any query q is reachable via Algorithm 1 starting from any node p.

Theorem 3 shows that the proposed MRDG ensures good connectivity and effective coordination with Al-
gorithm 1, inheriting these properties from the MRNG (Fu et al., 2019). Consequently, we can derive the
expected search path length for MIPS on an MRDG based on the theoretical results of MRNG as follows:

Theorem 4. Given a dataset D ⊂ Rd with n points and an MRDG G∗ defined on D, the expected search
path length for MIPS using Algorithm 1 is E[Lpath] =

c(ρn)1/d log(ρn)
d∆(ρn) + o(1) where c absorbs all constants,

ρ is the density of self-dominators inD, and ∆(n) is a very slowly decreasing function of n (Fu et al., 2019).

From Theorem 4, the search path length grows at a rate close to O(log n), enabling fast traversal of the graph.
This allows us to estimate the search complexity of MIPS on an MRDG. According to (Fu et al., 2019), the
maximum out-degree of an MRNG is bounded by a constant R related to the dimensionality d and indepen-
dent of n, so the maximum out-degree of an MRDG is similarly capped. Thus, the search time complexity
on an MRDG is approximately O(Rc(ρn)1/d log ρn

d∆(ρn) ). The growth rate is dominated by (ρn)1/d log ρn, , which
approaches log ρn for small ρ, ensuring efficient amortized search performance, especially when ρ is small.
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4 PRACTICAL APPROXIMATION: ARDG

While MRDG is efficient for MIPS in theory, constructing it for large-scale datasets is impractical due to its
O(dn2) indexing complexity. To address this, we propose the Approximate Relative Dominator Graph
(ARDG), designed to reduce indexing costs. ARDG focuses on Locality, Connectivity, and Sparsity.

4.1 INDEXING METHODOLOGY

Locality is a key principle in proximity graphs for vector-based search under common metrics (Wang et al.,
2021; Jayaram Subramanya et al., 2019). In top-k MIPS, maintaining locality—by connecting neighbors
with the largest IP similarity—enhances retrieval efficiency: If x is the top-1 solution for a query, the re-
maining k − 1 solutions are likely in x’s local neighborhood, allowing the algorithm to focus on the most
relevant areas. To preserve locality and speedup indexing, we use an efficient algorithm to build an approxi-
mate k-MIP graph as the initial structure. Specifically, we use ScaNN to approximately retrieve k neighbors
with the largest IP similarity for each point. These k-MIP neighbors are then used as candidates in further
steps, ensuring good locality in the final ARDG, in line with the requirement of Theorem1.

Connectivity. As per Theorem 1 and the analysis in Section 3.3, it is essential to connect each node to
at least one self-dominator and maintain connectivity among self-dominators. To accurately identify self-
dominators, we apply dominator-oriented edge selection over a broader range of neighbors. Since building a
large k-MIP graph is costly, we first construct a k-MIP graph with a small k ≪ n and enrich the candidates
by including 2-hop neighbors. Self-dominators are then selected from the 2-hop neighbors via Theorem 1.

Algorithm 2: ARDG Indexing
Data: Dataset D, max out-degree R,

integer k, ratio α
Result: ARDG: G
G ← Build k-MIP Graph with ScaNN;
for each point p in D do

Np ← 2-hop neighbors from G;
E1 ← filter Np with Theorem 1;
E2 ← filter Np with Definition 5;
E2 ← E1\E2 ▷ remove duplicates
E1.sort(); ▷ descending in IP dist
E2.sort(); ▷ ascending in L2 dist
E1.resize(αR);
E2.resize((1− α)R);
G ← G ∪ (E1 ∪ E2)

end
return G;

Sparsity. To approximate MRDG, we sparsify the interme-
diate graph using the edge selection strategy in Definition 5.
However, we empirically find this can reduce MIPS efficiency
by weakening connectivity to self-dominators for two reasons:
(1) Self-dominators approximately identified in earlier steps,
called Pseudo Self-Dominators, are selected from limited
neighborhood area and may be dominated by others. (2) The
edge selection strategy in Definition 5 may prune large-norm
self-dominators yet retain small-norm ones due to the triangle
inequality. Executed on limited candidates, it may harm con-
nectivity between non-self-dominators and self-dominators.
To address this, we introduce a parameter α ∈ (0, 1) that con-
trols the fraction of pseudo dominators being further sparsi-
fied. Specifically, α proportion of the pseudo self-dominators
closest to x in IP metric will be retained in the final neighbors
of x, while the rest will be further sparsified, thereby balancing
locality, connectivity, and sparsity.

Empirically, sparsifying the rest 1−α pseudo self-dominators
has negligible impact on search efficiency compared to directly sparsifying the (1− α) 2-hop k-MIP neigh-
bors. This is because: (1) Both methods produce similar filtered neighbor sets. (2) Directly sparsifying
the 2-hop k-MIP neighbors does not harm connectivity and may potentially enhance locality by introducing
additional relevant edges. Therefore, we simplify the process by directly sparsifying the 2-hop k-MIP neigh-
bors to fill the 1− α proportion of nodes in the final neighbor set. Finally, we limited the max out-degree of
ARDG to R for efficient memory utilizing.

The complete indexing algorithm of ARDG is detailed in Algorithm 2.
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4.2 COMPLEXITY ANALYSIS

Indexing Complexity. ARDG indexing involves two stages: constructing the approximate k-MIP graph
and sparsifying it. The k-MIP graph construction, using ScaNN, has an empirical complexity of O(nd log n)
(Guo et al., 2020), where n is the number of data points and d is the dimensionality. Since we set a maximum
degree limit for each point, we can assume each node’s 2-hop neighbors is capped by a constant r, the edge
selection strategy incurs a complexity of O(r2d) per node, leading to O(nr2d) for the dataset. Thus, the
total indexing complexity is O(nd log n + cndr2), where c is a constant. The O(nd log n) term dominates
the growth rate as n increases given r ≪ n.

Search Complexity. As ARDG approximates MRDG, its search complexity is analytically intractable due
to potential effects on dominator accuracy and path length. However, empirical evaluations show that the
search complexity for top-kMIPS solutions on ARDG is only slightly higher than O(d log n), demonstrating
that ARDG closely approximates MRDG while maintaining scalability.

Worst Case Analysis can be found in Appendix.

5 EXPERIMENTS

In this section, we conduct empirical evaluations of our theoretical findings and the proposed ARDG method.
We focus on the following research questions: RQ1: How does ARDG perform in terms of search and
indexing compared to state-of-the-art methods? RQ2: How does the self-dominator ratio affect ARDG’s
performance? RQ3: How scalable is ARDG for large-scale applications? RQ4: How sensitive is ARDG to
parameter variations in indexing and search?

5.1 EXPERIMENT SETUP

Table 1: Dataset Statistics. Ratio represents self dom-
inator ratio.

Dataset Base Size Query Size Dim Ratio
Netflix 17,770 1,000 300 3.2%
MNIST 60,000 10,000 784 5.4%

YahooMuisc 136,736 1,000 300 2%
Music100 1,000,000 10,000 100 29.3%

Text2Image1M 1,000,000 100,000 200 99%
MNIST1M 1,000,000 10,000 784 6.2%
UKBench 1,097,907 1,000 128 97.5%
Deep10M 10,000,000 10,000 96 98%

Datasets. We use eight real-world datasets with
varying cardinality, dimensionality, and modal-
ity to comprehensively evaluate ARDG’s perfor-
mance. The datasets include the following: Netflix,
YahooMusic, and Music100, which are publicly
available datasets collected from large-scale on-
line recommender systems, with vectors generated
via matrix factorization; UKBench and Deep10M,
widely used public image search datasets, where
the vectors encode images into feature space using
deep learning models; and MNIST, a well-known
dataset for handwritten digit recognition. We directly use the flattened grayscale images as vectors since
the flattened format is sufficiently discriminative, and we treat the data as a commonly used representation:
multi-hot vectors. MNIST1M is a large-scale version of MNIST, where new images are generated through
data augmentation (Tan et al., 2021). Finally, Text2Image1M is a cross-modal dataset where the query
vectors encode text and the base vectors encode images using a jointly trained deep learning model. More
details can be found in Table 1.

Baselines. We compare ARDG against several recent advanced methods of varying types. Fargo (Zhao
et al., 2023) is a state-of-the-art LSH method. ScaNN (Guo et al., 2020) is a quantization method that inte-
grates the recent state-of-the-art method SOAR (Sun et al., 2024) to further enhance performance.Möbius
Graph (Zhou et al., 2019) is a graph-based method that reduces MIPS to NNS using the Möbius transfor-
mation. ip-NSW (Morozov & Babenko, 2018), ip-NSW+ (Liu et al., 2020), IPDG (Tan et al., 2019), and
NAPG (Tan et al., 2021) are famous graph-based methods for MIPS in IP-native space.
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Implementation. We use the public implementation of the ScaNN library, written in C, while all other base-
lines are implemented in C++. All experiments are conducted on the same machine, with 48 threads used to
build the indices for all methods. For query execution, we disable additional compiler optimizations that un-
related to the algorithm and use same number of threads to ensure a fair comparison. Each experiment is run
three times, and the average is reported to minimize system variability. For graph based algorithms, we apply
a unified parameter configuration across all datasets, focusing on achieving strong average performance. For
Fargo and ScaNN, we use the recommended parameters from their papers based on the size of dataset. This
setting favors the methods with low parameter sensitivity, which is a valuable feature for users who may not
be familiar with the intricacies of algorithm tuning. Our codes are available in Supplementary Materials.

Evaluation Protocol. An effective MIPS method should provide fast and accurate query processing while
minimizing indexing resources to allow for efficient system updates. We evaluate the query performance
using the metric Recall vs. Queries Per Second (QPS), which represents the number of queries an algorithm
can process per second at each specified recall@k level. The recall@k is formally defined as: recall@k =
|R∩R′|

|R| = |R∩R′|
k , where R is the truth set of results, and R′ is the set of results returned by the algorithm.

We use k = 100 in this paper. The index size and indexing time are reported to evaluate indexing costs.

Figure 2: Experimental results of query process performance. Upper left is better.

5.2 RESULTS

Query Process. (RQ1 and RQ2) Figure 2 presents the query processing performance of ARDG compared
to the baselines. Fargo and ScaNN (with SOAR) are absent from some figures (e.g., Deep10M) due to
the noticeable gap with graph algorithms on large-scale data. The key findings are as follows: (1) ARDG
consistently outperforms all baselines across all datasets, owing to its strong theoretical foundations. As
a good approximation of MRDG—a sparse, MIPS-oriented graph—ARDG delivers high search efficiency
with solid theoretical guarantees. (2) ARDG demonstrates robust performance across varying cardinality,
dimensionality, and modality, which further reinforces the validity of our theoretical findings. This robust-
ness makes ARDG a versatile method for a wide range of real-world applications. (3) For RQ2, ARDG
achieves particularly large improvements over other methods on datasets with a lower self-dominator ratio
(ρ). For example, it outperforms Möbius Graph on MNIST1M (ρ = 6.2) with a speedup of nearly 50% at
recall@100 = 0.99. On datasets like Text2Image1M (ρ = 0.99), the speedup is smaller but still significant at

9
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17% over second-best ip-NSW with a recall of 0.99, which aligns with our theoretical analysis in Section 3.
(4) Even on datasets with small ρ, ARDG continues to outperform the baselines by a moderate margin. This
is because ARDG sparsifies connections among self-dominators while maintaining greedy-reachability, as
outlined in Definition 5 and Theorem 3. (5) IPDG lags behind all graph-based methods and is absent from the
figures due to inefficient edge selection among random neighbors, leading to too many isolated sub-graphs,
unlike ARDG, which maintains global connectivity (see Appendix D.7). (6) Lastly, all other graph-based
baselines, except ARDG, encounter precision bottlenecks on certain datasets. This happens because ARDG
emphasizes global connectivity in its indexing process, whereas others may suffer from multiple isolated
sub-graphs within their graphs.

Indexing (RQ1). Appendix D.2 summarizes the indexing statistics. Fargo and ScaNN are the fastest in
indexing, with 10× to 100× speedup over graph-based methods due to their simpler algorithms and near
O(nd) growth rate. However, their search performance lags far behind, especially on large-scale datasets,
where search speed is critical for user experience. Among graph-based methods, Möbius Graph and ARDG
are the fastest, with similar indexing times, while ip-NSW+ is the slowest. Fargo has the smallest index
size, thanks to its compact hashing tables. Although ScaNN is a quantization method, its index size is
comparable to graph-based methods due to the additional structures needed for efficient retrieval. ARDG
has the smallest index size among graph-based methods, roughly 2× smaller than others, due to its sparsity.
Appendix D.3 demonstrates that ARDG achieves can index a dataset as large as Deep10M (10 million
data points) in approximately one hour. These results underscore ARDG’s memory efficiency and cost-
effectiveness, offering superior search performance while optimizing space usage.

Scalability (RQ3). Appendix D.3 shows ARDG exhibits a near O(log n) growth rate for top-1 MIPS, and
between O(log n) and O(n1/20 log n) for top-100 MIPS. This aligns with the analysis in Section 3.3 and
4.2, further confirming ARDG as an effective approximation of MRDG.

Parameter Sensitivity (RQ4). In our empirical study (see Appendix D.5), we examine the relationship
between ARDG’s search performance and key indexing parameters: k (for the k-MIP graph), max out-
degree R, and balance factor α. We find that increasing k improves search performance due to broader
neighborhood coverage, but the gains quickly plateau as a small k = 200 is sufficient to identify enough
self-dominators for connectivity. The performance curve for R is concave, with an optimal value that is easy
to determine, though the performance is not highly sensitive to R. The parameter α, which balances locality
and connectivity, affects search efficiency differently: lower α improves top-1 MIPS but reduces top-100
MIPS efficiency. This is because lower α emphasizes transitions among self-dominators, reducing local
neighborhood connectivity, confirming that top-1 MIPS solutions mostly fall within the self-dominator set,
while top-100 MIPS solutions may include out-dominators and ordinary points (Section 3). We recommend
using k = 200, R = 48, and α = 0.5 by default for its robust performance across eight diverse datasets.

Detailed Data and More Experimental Evaluations are given in the Appendix due to space limitation.

6 CONCLUSION

This paper investigate the geometric properties that enhance similarity search in inner product space, estab-
lishing robust theoretical foundations. Our framework deepens the understanding of the topology underlying
this widely used similarity measure, with implications that extend beyond information retrieval. To facil-
itate practical applications, we introduce ARDG, a novel graph-based MIPS method that approximates its
theoretical counterpart, MRDG. ARDG achieves an optimal balance between locality, connectivity, and
sparsity, consistently outperforming state-of-the-art methods across 8 real-world datasets. Extensive ex-
periments demonstrate the efficiency, robustness, and scalability of ARDG, achieving a remarkable 30%
average speedup over the second-best competitor, a 2× reduction in graph size, and moderate indexing time.
Additionally, our experimental results provide valuable insights into the structure of inner product space.
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A RELATED WORKS

Inner Product is crucial in AI and machine learning applications such as representation learning (Wang
et al., 2024), classification (Yu et al., 2014), clustering (Fujiwara et al., 2023), language modeling (Asai
et al., 2023), knowledge graphs (Xu et al., 2020), computer vision (Radford et al., 2021), and recommender
systems (Huang et al., 2020). Efficient MIPS is particularly essential for reducing system latency and im-
proving user experience in emerging RAG applications. MIPS methods are generally categorized into Lo-
cality Sensitive Hashing (LSH), tree-, quantization-, and graph-based approaches:

LSH-based methods: Traditional LSH, originally designed for Euclidean space, is adapted for MIPS us-
ing transformations such as L2 (Shrivastava & Li, 2014), Correlation (Shrivastava & Li, 2015), and XBOX
(Bachrach et al., 2014). Range-LSH (Yan et al., 2018) is the first to observe that MIPS results cluster around
large-norm vectors. Simple-LSH (Neyshabur & Srebro, 2015) introduce a symmetric LSH that enjoys strong
guarantees. Fargo (Zhao et al., 2023) represents the recent state-of-the-art. Tree-based methods: Early
MIPS approaches favored tree structures but struggled with high dimensionality. ProMIPS (Song et al.,
2021) addresses this by projecting vectors into a lower-dimensional space, though information loss remains
a challenge. LRUS-CoverTree (Ma et al., 2024) improves on this but faces difficulties with negative inner
product values. Quantization-based methods: NEQ (Dai et al., 2020) quantizes the norms of items in a
dataset explicitly to reduce errors in norm. ScaNN (Guo et al., 2020) integrates ”VQ-PQ” with anisotropic
quantization loss, while SOAR (Sun et al., 2024) employs an orthogonality-amplified residual loss, achiev-
ing state-of-the-art performance and is integrated into the ScaNN library. Graph-based methods: Proven
effective for NNS, graph-based methods have been adapted for MIPS. ip-NSW (Morozov & Babenko, 2018)
first uses IP-Voronoi cell and constructs approximate Delaunay graphs using the inner product similarity. ip-
NSW+ improve its graph quality by adding an angular proximity graph, while Möbius-Graph employs a
Möbius transformation to perform greedy search on a transformed graph. IPDG (Tan et al., 2019) focuses
on identifying extreme points and uses a heuristic pruning strategy for top-1 MIPS. NAPG (Tan et al.,
2021) introduces a non-continuous inner product-based metric, α⟨x, y⟩, with α varying based on the norm
of neighbors. They modify ip-NSW using this new metric and claim state-of-the-art performance among
graph-based methods.

Comparison between IPDG and our work. IPDG (Tan et al., 2019) defines extreme points as those domi-
nating non-empty Voronoiip cells, a concept intermediate between the out-dominator and self-dominator in
our framework. In our definition (Section 3), Voronoiip cells dominated by self-dominators are never empty,
whereas out-dominators may dominate empty Voronoiip cells, as demonstrated in Figure 1. IPDG uses a
heuristic edge pruning strategy where a neighbor xj is retained if ⟨xj , xj⟩ > ⟨xi, xj⟩ for all neighbor xi

inserted before xj . This differs from our strategy (Theorem 1), which also requires that ⟨xi, xi⟩ > ⟨xi, xj⟩
for all xi, providing stronger guarantees. From our perspective, IPDG’s approach may incorrectly link out-
dominators and even ordinary points as neighbors, resulting in a dense graph that contradicts their goal
of connecting only ”extreme points”. Furthermore, IPDG does not provide a theoretical analysis for this
heuristic. In contrast, ARDG inherits the theoretical guarantees of MRDG by approximating it, not only
through the edge pruning strategy in Theorem 1 to identify self-dominators, but also by sparsifying con-
nections among self-dominators using Definition 5, resulting in much sparser graphs with solid theoretical
foundations.

B PROOF OF THEOREMS

To avoid ambiguity when ⟨y, xi⟩ = ⟨y, xj⟩, we assign y to the Voronoiip cell of xi if i < j. This convention
is omitted in all later proofs for simplicity.
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B.1 PROPERTIES OF DOMINATORS

Proof. For any query q ∈ Rd, there exists some xi ∈ D such that ⟨q, xi⟩ is maximized, i.e., ⟨q, xi⟩ > ⟨q, xj⟩
for all xj ∈ D with j ̸= i. By Definition 3, xi is the dominator of its Voronoiip cell V xi and is also the
MIPS solution for q. Thus, Proposition 2 holds.

Since the inner product ⟨q, xi⟩ is a continuous function and each xi is fixed, every point q ∈ Rd belongs to
at least one Voronoiip cell V xi. Therefore, the Voronoiip cells associated with D fully cover Rd. Given that
D is finite, the set of Voronoiip cells is also finite, proving Proposition 1.

B.2 PROOF OF THEOREM 1

Proof. Consider a point xi ∈ D and the sorted list L(xi) = [y1, y2, . . . , ym]. By definition, we have
⟨y1, xi⟩ > ⟨yj , xi⟩ for all j with j > 1. Therefore, xi lies within the Voronoiip cell dominated by y1,
making xi directly connected to y1, the dominator of this cell.

For any remaining point yj satisfying the two conditions in L(xi) \ y1, the conditions ensure that:

1. For any pair of yj and yk with k < j, we have ⟨yj , yj⟩ ≥ ⟨yj , yk⟩.

2. For any pair of yj and yl with l > j, we have ⟨yj , yj⟩ ≥ ⟨yj , yl⟩.

This confirms that the point z maximizing ⟨z, yj⟩, for z ∈ D, is yj itself. Hence, yj does not belong to any
other Voronoiip cell associated with any z ̸= yj , affirming yj as a dominator, dominating at least itself.

In conclusion, base on these rules, each point xi ∈ D is linked to a closest dominator y1 which dominates at
least one node xi, and meanwhile xi is connected to all dominators which at least dominating itself, ensuring
that all points are connected to at least one dominator, and dominators are interconnected via the dominators
which dominates themselves. Furthermore, since each node is connected to a dominator, and dominators
form a fully connected graph, we can conclude that NDG is a strongly connected graph.

B.3 PROOF OF THEOREM 2

Proof. By definition, x of norm r is a self-dominator with the probability:

Pdom(x) = P (⟨x, x⟩ > ⟨x, y⟩ | ∥x∥ = r) (1)

Given ∥x∥ = r, ⟨x, x⟩ = r2 is deterministic. Since y is independent of x and its elements are i.i.d.,
conditioned on ∥x∥ = r, the inner product ⟨x, y⟩ becomes a linear combination of d independent standard
Gaussian and follows:

⟨x, y⟩ | ∥x∥ = r ∼ N (0, r2) (2)

By plugging in and rearranging, equation (1) becomes:

Pdom(x) = P

(
⟨x, y⟩
r

< r | ∥x∥ = r

)
(3)

Since by standardizing, Z = ⟨x,y⟩
r ∼ N (0, 1), we have:
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Pdom(x) = P (Z < r) = Φ(r) (4)

where Φ(·) is the CDF of the standard Gaussian distribution.

B.4 PROOF OF THEOREM 3

Proof. Assume the MIPS solution of q is r∗. r∗ is the nearest neighbor solution of q if and only if the
condition below holds:

∥r∗ − q∥ < ∥r − q∥, ∀r ∈ D, r ̸= r∗

By simplifying and rearranging, we rewrite the condition as:

r∗2 − r2 < 2(⟨r∗, q⟩ − ⟨r, q⟩), ∀r ∈ D, r ̸= r∗

Obviously, this condition does not always hold for any q, but we can introduce a scalar λ to enlarge the right
side of the inequality to make it hold, the solution space of λ can be found by:

r∗2 − r2 < 2λ(⟨r∗, q⟩ − ⟨r, q⟩), ∀r ∈ D, r ̸= r∗

λ > sup

({
r∗2 − r2

2(⟨r∗, q⟩ − ⟨r, q⟩)

})
, ∀r ∈ D, r ̸= r∗,

Where ⟨r∗, q⟩ > ⟨r∗, q⟩,∀r ∈ D, r ̸= r∗ always holds because r∗ is the MIPS solution of q, allowing us to
calculate the lower bound of λ as above. By rearranging, this new inequality actually ensures that:

∥r∗ − λq∥ < ∥r − λq∥, ∀r ∈ D, r ̸= r∗

This result means search for the nearest neighbor of λq is equivalent to the search for the maximum inner
product solution of q when a proper λ is chosen. Since the dataset D is finite, the lower bound of λ can
always be found.

Here, we equate the search target for the nearest neighbor of λq with the MIPS solution of q. Similarly, we
can force each step of the nearest neighbor search towards λq being aligned with the MIPS for q, just by
solving each local problem with above procedure and work out a new lower bound of λ’s solution space.
In other words, by selecting any λ greater than this new lower bound, we can ensure these two types of
search choose the same neighbor at each step and arrive at the same solution r∗, such that this neighbor both
minimise the Euclidean distance to λq and maximise the inner product with q. Thus, we also align the search
paths of both metric under the greedy mechanism of Algorithm 1.

Given that MRNG ensures a greedy-achievable search path with Algorithm 1 from any start node p to r∗

under the Euclidean metric (Fu et al., 2019), the r∗ is also greedy-achievable under the IP metric due to
above alignment.

Notably, this proof also show that we do not need to work out the real bound for λ in practice when IP
metric is used to execute the MIPS. In other words, we can also use Euclidean metric to search for the MIPS
solution of q by searchng for the nearest neighbor solution of λq given a large enough λ is set.

B.5 PROOF OF THEOREM 4

Proof. By Definition 5, G∗ includes an MRNG upon self-dominators. Moreover, each non-self-dominator
node is connected to at least one self-dominator, requiring at most o(1) steps for any node to reach the
self-dominator node.
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Figure 3: An illustration of how Pdom(x) changes with x’s norm r.

Once stepping on a self-dominator node, the greedy search behaves like a search on an MRNG defined solely
on self-dominators. According to (Fu et al., 2019), the expected path length between nodes in an MRNG
is cm1/d logm

d∆(m) with m nodes in the graph, where c absorbs constants. In the MRDG case, m = ρn is the
number of self-dominators, where ρ is the density of self-dominators. Therefore, the total expected search
path length is:

E[Path Length] =
c(ρn)1/d log(ρn)

d∆(ρn)
+ o(1) (5)

where ∆(n) is a slowly decreasing function of n and empirically remains nearly constant as n grows (Fu
et al., 2019).

C THEORETICAL VALIDATIONS AND IN-DEPTH ANALYSIS

C.1 IP-DELAUNAY GRAPH AND GENERALIZED IP-DELAUNAY GRAPH

Regarding the definition of the IP-Delaunay graph, there is currently no standardized consensus in the aca-
demic community. The definition provided by iP-NSW (Morozov & Babenko, 2018) is tailored for the top-1
MIPS problem and proves that greedy search in any graph containing an IP-Delaunay graph (as per their
definition) as a subgraph always converges to the exact solution of the MIPS problem. However, unlike the
Delaunay graph in Euclidean space, their IP-Delaunay graph is not a globally connected graph. Thus, their
definition does not extend to the top-k MIPS problem, which is crucial in current retrieval scenarios. There-
fore, we have defined an IP-Delaunay graph that can query the top-k MIPS by building a strong connected
graph. To clarify, we have renamed it the Generalized IP-Delaunay Graph.

C.2 VISUALIZATION OF RATIO OF SELF-DOMINATORS

Figure 3 illustrates the likelihood of a vector becoming a self-dominator as its norm increases. When the
norm reaches 4, the probability approaches 1, indicating that a vector is almost certain to be a self-dominator
when its norm exceeds 4.

Additionally, we can estimate the proportion of self-dominators by analyzing the likelihood that a vector’s
norm exceeds 4, as shown in Figure 3. The figure reveals that almost all vectors have a norm greater than
4 when the dimension surpasses 40 for i.i.d. Gaussian vectors. While this may seem discouraging, most
real-world datasets typically reside on manifolds with much lower intrinsic dimensions. Furthermore, the
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average norm of real-world data is often not as large as that of i.i.d. multivariate Gaussian vectors, such as
embeddings learned with L2 regularization.

C.3 THE RATIO OF SELF-DOMINATORS OF THE DATASETS USED IN OUR EXPERIMENTS

Table 2 presents the density of Self-Dominators across the eight datasets used in our experiments. Notably,
five of these datasets exhibit a self-dominator density below 30%. As shown in Figure Figure 2. ARDG
demonstrates a larger improvement on these datasets, highlighting its effectiveness when the self-dominator
ratio is relatively low.

Table 2: Self-dominator ratio on eight real-world datasets.

Datasets Netflix YahooMusic MNIST UKBench Music100 Text2Image1M MNIST1M Deep10M
Self dominator ratio 3.2% 2% 5.4% 97.5% 29.3% 99% 6.2% 98%

An interesting observation is that the density of self-dominators gradually decreases as the dataset size
increases, eventually stabilizing for large scales. This suggests that real-world data possesses inherent struc-
ture, which becomes more pronounced as data density increases. The decline in self-dominator density
can be attributed to the fact that most points begin to fill the inner structure of the data manifold, while
self-dominators are often located near the edges of the minimal convex hull that encloses the dataset. This
behavior aligns with the intuition that as datasets grow, more points occupy the core of the structure, leaving
fewer points as self-dominators near the boundary.

Figure 4: Self Dominator Ratio versus four million scale datasets.

D EXPERIMENTAL DETAILS

D.1 DATASET DETAILS

Netflix consists of embeddings extracted from a popular video recommender APP with Matrix Factor-
ization (MF) (Salakhutdinov & Mnih, 2007). The dataset link is https://github.com/xinyandai/similarity-
search/tree/mipsex/data/netflix.

MNIST is an well-known image collection of handwritten digits. We flatten the images as multi-hot repre-
sentations (28 x 28 x 1), derived from https://yann.lecun.com/exdb/mnist/.

YahooMusic is a popular recommendation dataset uses alternating least squares for matrix factorization to
obtain user and item embeddings, with item embeddings serving as dataset items and user embeddings as
queries. The dataset link is https://www.cse.cuhk.edu.hk/systems/hash/gqr/dataset/yahoomusic.tar.gz

19

https://github.com/xinyandai/similarity-search/tree/mipsex/data/netflix
https://github.com/xinyandai/similarity-search/tree/mipsex/data/netflix
https://yann.lecun.com/exdb/mnist/
https://www.cse.cuhk.edu.hk/systems/hash/gqr/dataset/yahoomusic.tar.gz


893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939

Under review as a conference paper at ICLR 2025

Music100 is an audio dataset constructed from music recommender system, using IALS factorization (Hu
et al., 2008) on the user-item ranking matrix to generate 100-dimensional embeddings. The dataset link is
https://github.com/stanis-morozov/ip-nsw.

UKBench is a widely used public image search dataset for the established MIPS benchmark. The dataset
link is https://www.cse.cuhk.edu.hk/systems/hash/gqr/dataset/ukbench.tar.gz.

Text2Image1M contains data from both textual and visual modalities, which is common for typical cross-
modal retrieval tasks, where database and query vectors can potentially have different distributions in
shared representation space. the database consists of image embeddings produced by the Se-ResNext-101
model, and queries are textual embeddings produced by a variant of the DSSM model. The dataset link is
https://research.yandex.com/blog/benchmarks-for-billion-scale-similarity-search.

MNIST1M is a large-scale version of MNIST, where new images are generated through data augmentation.
We use the infinite MNIST project to generate the dataset https://leon.bottou.org/projects/infimnist.

Deep10M consists of 10M image embeddings produced as the outputs from the last fully-connected
layer of the GoogLeNet model, which was pretrained on the Imagenet classification task. The em-
beddings are then compressed by PCA to 96 dimensions and l2-normalized. The dataset link is
https://research.yandex.com/blog/benchmarks-for-billion-scale-similarity-search

D.2 INDEXING PERFORMANCE

The indexing time and resulting index sizes for all methods across the eight datasets are summarized in
Table 3. These metrics highlight key trade-offs between indexing speed and memory efficiency. While some
methods, like Fargo and ScaNN, demonstrate faster indexing times due to simpler algorithmic structures
(near O(nd) complexity), they compromise significantly on search performance, especially for large-scale
datasets. In contrast, graph-based methods, including ARDG, exhibit longer indexing times but offer supe-
rior search accuracy and scalability. Notably, ARDG achieves a balance between speed and memory usage,
outperforming most other graph-based methods in both indexing time and index size. Its sparse structure
results in an index size approximately 2× smaller than competitors, such as ip-NSW and ip-NSW+, making
it both memory-efficient and highly effective for large datasets. These results underscore ARDG’s cost-
effectiveness, delivering top-tier search performance with relatively low memory and indexing overhead.

Table 3: Indexing time and sizes of different methods across eight datasets.

Datasets Fargo ScaNN ip-NSW ip-NSW+ Möbius-Graph NAPG IPDG ARDG

Netflix Index Size 2 (MB) 8 (MB) 7 (MB) 6 (MB) 5 (MB) 7 (MB) 7 (MB) 3 (MB)
Indexing Time 2 (s) 4 (s) 12 (s) 10 (s) 3 (s) 15 (s) 94 (s) 10 (s)

MNIST Index Size 18 (MB) 60 (MB) 23 (MB) 28 (MB) 16 (MB) 23 (MB) 20 (MB) 12 (MB)
Indexing Time 3 (s) 33 (s) 30 (s) 41 (s) 32 (s) 54 (s) 492 45 (s)

YahooMusic Index Size 27 (MB) 174 (MB) 53 (MB) 87 (MB) 53 (MB) 54 (MB) 53 (MB) 27 (MB)
Indexing Time 2 (s) 23(s) 38 (s) 55 (s) 17 (s) 40 (s) 447 (s) 37 (s)

UKBench Index Size 38 (MB) 1205 (MB) 423 (MB) 767 (MB) 423 (MB) 423 (MB) 423 (MB) 213 (MB)
Indexing Time 4 (s) 98 (s) 296 (s) 600 (s) 87 (s) 405 (s) 1648 (s) 220 (s)

Music100 Index Size 40 (MB) 566 (MB) 386 (MB) 466 (MB) 363 (MB) 401 (MB) 566 (MB) 195 (MB)
Indexing Time 7 (s) 30 (s) 258 (s) 1075 (s) 207 (s) 326 (s) 1700(s) 107 (s)

Text2Image1M Index Size 46 (MB) 760 (MB) 385 (MB) 466 (MB) 385 (MB) 385 (MB) 408 (MB) 196 (MB)
Indexing Time 11 (s) 120 (s) 539 (s) 1160 (s) 436 (s) 550 (s) 1969 (s) 280 (s)

MNIST1M Index Size 52 (MB) 1006 (MB) 402 (MB) 682 (MB) 389 (MB) 430 (MB) 389 (MB) 204(MB)
Indexing Time 12 (s) 360 (s) 1860 (s) 3320 (s) 302 (s) 2544 (s) 6682 (s) 459 (s)

Deep10M Index Size 343 (MB) 7428 (MB) 3850 (MB) 4659 (MB) 3850 (MB) 3850 (MB) 3850 (MB) 1946 (MB)
Indexing Time 47 (s) 448 (s) 4383 (s) 9602 (s) 4658 (s) 5872 (s) 16830 (s) 3789 (s)
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Table 4: The indexing performance over various data scales on Deep10M.

Dataset Scale Indexing Time Index Size

Deep100K 29 (s) 20 (MB)
Deep1M 340 (s) 195 (MB)
Deep10M 3789 (s) 1946 (MB)

D.3 SCALABILITY EXPERIMENTS

Scalability in MIPS methods encompasses two key aspects: scalability with the dataset size n and scalability
with the required number of solutions k. Figure 5 demonstrates ARDG’s scalability with n, showing a near
O(log n) growth rate for search performance, which is highly efficient for large-scale datasets. Table 4
further highlights the indexing scalability, with ARDG maintaining a near O(nd log n) growth rate during
the indexing process, aligned with our analysis in Section 4.2. Impressively, ARDG can index a dataset as
large as Deep10M (10 million data points) in approximately one hour, showcasing its practical efficiency in
handling large datasets. Additionally, Figure 7 illustrates ARDG’s scalability with respect to the required
solution quantity k, revealing a near-linear O(k) growth rate for recall@k. This growth rate is manageable
due to the relatively small overhead, with the recall@100 on Deep10M requiring only 0.4 ms per query.
These results emphasize ARDG’s ability to efficiently scale both in terms of dataset size and the number of
required solutions, making it a robust choice for large-scale applications.

Figure 5: Query time versus data scale on Deep10M dataset at 98% recall for top-1 and top-k MIPS.

D.4 WORST CASE ANALYSIS IN TIME COMPLEXITY

Consider a scenario in very high-dimensional spaces where all data points lie on a great circle (the inter-
section of a hyperplane passing through the origin and a hypersphere centered at the origin). In this case,
each point on this curve becomes a self-dominator, dominating only itself. When sparsifying the graph,
both MRDG and ARDG will, with high probability, link each node to only its two adjacent neighbors on
the curve. Consequently ARDG will fail to accelerate search on such data, resulting in a linear search
complexity of O(nd). Additionally, constructing the ARDG incurs an approximate indexing complexity
of O(n2d log n), since ARDG relies on other MIPS methods to construct the base k-MIP graph. In this
scenario, all other MIPS methods also fail to accelerate MIPS on this data. However, such extreme cases
hardly occur in practice.
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D.5 PARAMETER SENSITIVITY

The left of Figure 6 illustrates how the search performance for both top-1 MIPS and top-100 MIPS varies
with the balancing factor α. This parameter effectively balances the trade-off between locality and global
connectivity, ensuring that both types of searches are optimized. As α decreases, the algorithm improves
transitions to self-dominators (benefiting top-1 MIPS), while lower values of α enhance local neighborhood
connectivity, which is crucial for top-100 MIPS.

The right of Figure 6 highlights that increasing the parameter k for the initial k-MIP graph improves search
performance. However, this improvement quickly plateaus, indicating that only a moderately large k (k =
200) is needed to capture sufficient local structure for efficient search. This suggests that excessively large
values of k offer diminishing returns, allowing for an optimal balance between search performance and
indexing cost.

Finally, Figure 8 demonstrates that the maximum out-degree R plays a pivotal role in search efficiency.
The results reveal a concave curve, indicating the existence of an optimal value for R. Fortunately, finding
this optimal value is straightforward, as search performance is relatively stable and smooth near the optimal
point. This further underscores ARDG’s ability to achieve efficient search with minimal tuning.

Figure 6: Query time versus different balancing factor α (Left) and k-MIP graph (Right).
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Figure 7: The query time of various k of recall
on Netflix, MNIST and Music100 at 99% recall. Figure 8: The query time versus different out degree R.

D.6 EXPERIMENTS ON COUNTING DISTANCE COMPUTATIONS

While the primary experiments use query execution time as the evaluation metric to ensure fair comparisons
with hashing and quantization-based methods, the number of Distance Computations (DC) is the most in-
formative metric for evaluating graph-based methods. This is because DC predominantly determines the
search efficiency of graph-based methods and shields interference of system factors, particularly in high-
dimensional spaces. A lower number of DCs implies faster graph traversal and reduced computational
overhead per step. As shown in Figure 9, ARDG significantly outperforms other methods in terms of DCs,
further validating the efficiency of its design and the soundness of our theoretical findings. This reduc-
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tion in DC confirms that ARDG’s sparse yet well-connected structure allows for efficient navigation while
minimizing redundant computations.

Figure 9: Experimental results of Distance Computation on eight datasets. Lower right is better.

D.7 SEPARATE VIEW OF METHODS ABSENT FROM MAIN EXPERIMENTAL RESULTS

Figure 10 presents the performance of methods that lag behind the top-tier approaches in our main experi-
mental results. These methods, including Fargo and ScaNN, often exhibit performance bottlenecks due to
limitations in their indexing or search algorithms. While they may perform adequately in smaller datasets
or lower dimensions, they struggle with scalability in high-dimensional and large-scale datasets. The sepa-
rate view highlights their inability to compete with graph-based methods like ARDG, especially in terms of
precision and recall under higher-dimensional conditions.

Figure 11 illustrates the query performance of IPDG, which suffers due to its graph’s poor connectivity, re-
sulting in weaker performance across various datasets. This highlights the superior scalability and efficiency
of ARDG compared to other graph methods.
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Figure 10: Separate View of Fargo and ScaNN from Main Results. Upper left is better.

Figure 11: Separate View of IPDG from Main Results.
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