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Abstract: Imitation learning (IL) aims to enable robots to perform tasks au-1

tonomously by observing a few human demonstrations. Recently, a variant of IL,2

called In-Context IL, utilized off-the-shelf large language models (LLMs) as in-3

stant policies that understand the context from a few given demonstrations to per-4

form a new task, rather than explicitly updating network models with large-scale5

demonstrations. However, its reliability in the robotics domain is undermined by6

hallucination issues such as LLM-based instant policy, which occasionally gener-7

ates poor trajectories that deviate from the given demonstrations. To alleviate this8

problem, we propose a new robust in-context imitation learning algorithm called9

the robust instant policy (RIP), which utilizes a Student’s t-regression model to be10

robust against the hallucinated trajectories of instant policies to allow reliable tra-11

jectory generation. Specifically, RIP generates several candidate robot trajectories12

to complete a given task from an LLM and aggregates them using the Student’s t-13

distribution, which is beneficial for ignoring outliers (i.e., hallucinations); thereby,14

a robust trajectory against hallucinations is generated. Our experiments, con-15

ducted in both simulated and real-world environments, show that RIP significantly16

outperforms state-of-the-art IL methods, with at least 26% improvement in task17

success rates, particularly in low-data scenarios for everyday tasks. Video results18

available at https://sites.google.com/view/robustinstantpolicy.19

Keywords: Imitation Learning, In-Context Imitation Learning20

1 INTRODUCTION21

Imitation learning (IL) is a promising technique for learning policies to automate robot manipulation22

by observing human demonstrations [1]. It has shown considerable success in a wide range of23

applications with large datasets and highly expressive policy models [2, 3, 4]. However, despite24

its capabilities, it remains limited because it requires thousands of demonstrations and/or long-term25

model weight tuning to be applied to new tasks or environments. This motivates a more efficient26

paradigm for learning an instant policy that can be immediately adapted and deployed to new tasks27

while minimizing costs.28

A previous study attempted to achieve this by in-context imitation learning (ICIL), in which a large29

transformer model trained on a variety of datasets can be immediately generalized to a new task30

by providing a few demonstrations of the new task as a context without updating the model [5].31

Although this technique is based on findings in the language and visual domains [6], where sufficient32

large-scale data are available, the amount of data in the robotics domain remains insufficient for33

widespread applications. In contrast, keypoint action tokens (KAT) translate robot trajectory data34

into keypoint-based text, enabling the off-the-shelf large language model (LLM) to be reused as an35

instant policy [7], which has shown comparable task achievement to state-of-the-art IL methods by36

using fewer than 10 human demonstrations of a new task without updating the model.37
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Although the LLM is a useful tool for instant robotic agents, it faces the inherent issue of hallu-38

cinations , where its responses may be out of a given context and lack accuracy [8]. Specifically,39

this issue is critical in the robotics domain, where even a small loss of precision in robot trajectory40

generation owing to hallucinations can lead to task failure. Although several methods have been41

proposed to mitigate these hallucinations, they mainly focus on discrete language data [9] and are42

unsuitable for continuous robot trajectory data. Thus, an approach that uses continuous robot data43

is required to enhance the robustness of LLM-based instant robot policies.44

Human Demonstrations

Instant Policy Execution
Hallucinated trajectory

Trajectory generated by
Robust Instant Policy

Figure 1: Robust instant policy (RIP) for a robotic banana-
picking task. Given a few human demonstrations, LLM-based
instant policy can capture the task’s context and generate tra-
jectories such as demonstrations, but some may deviate from
demonstrations (red) owing to LLM’s hallucinations. In con-
trast, RIP generates a robust trajectory (blue) to hallucinations
using a Student’s t-regression model that averages trajectories
of the instant policy while ignoring hallucinations.

Therefore, this study proposes a novel robust45

ICIL method that generates a robust trajectory46

against hallucinations of LLM through stochas-47

tic treatment (Fig. 1): the robust instant policy48

(RIP). In RIP, a few demonstration trajectories49

of a robot for a new task are fed into an instant50

policy by following a prior LLM-based method51

(i.e., KAT [7]) to generate the robot trajectory52

for completing a given task. This process is per-53

formed iteratively to gather multiple response54

trajectories. The robust trajectory is captured55

from the set of response trajectories by using56

the Student’s t-regression model [10], which is57

a well-established model for ignoring outliers58

(i.e., hallucinations). RIP minimizes hallucina-59

tions, thereby enabling a reliable robot agent60

with a robust trajectory. Validation in both61

simulated and real-world environments demon-62

strates that RIP significantly outperforms state-63

of-the-art imitation learning (IL) methods, particularly in low-data scenarios for everyday tasks.64

2 RELATED WORKS65

2.1 Imitation Learning from Human Demonstration66

IL is a promising approach in which robots learn to perform tasks autonomously by observing hu-67

man demonstrations rather than relying on manual engineering. Recent advances in deep learning68

architectures have enabled the imitation of a broader range of complex human behaviors. For exam-69

ple, highly expressive architectures such as energy-based models [11] and diffusion models [12] can70

efficiently learn probabilistic human behaviors, including discontinuities and multioptimality. Fur-71

thermore, training a transformer-based architecture on large and diverse datasets containing various72

tasks has been shown to lead to generalizable policies for multiple tasks [2, 3, 4]. However, even73

when training expressive policy models on extensive datasets, these policies often require additional74

demonstration data and sophisticated fine-tuning to adapt to new tasks and environments.75

2.2 In-context Imitation Learning for Instant Policy76

ICIL is a notable paradigm that enables robotic policies to adapt instantly to new tasks using a few77

human demonstrations without explicit policy updates. To this end, deep learning methods, such as78

contrastive learning, can train a robot to identify similarities between tasks, enabling it to control a79

robot for test tasks based on similar training tasks [13]. Furthermore, the transformer architecture80

enables similarity matching based on a self-attention mechanism, which led to the proposal of a81

more concise and highly capable ICIL approach [5]. However, these approaches are effective for82

tasks similar to those they are trained on; thus, they require sufficient data to cover a vast range of83

tasks, which is still lacking in the robotics domain. The KAT method addresses this problem by84

converting robotic data into text, enabling off-the-shelf LLMs [14] to be reused as policies, yielding85

performance comparable to advanced IL methods with fewer than 10 demonstrations [7]. Despite86

their effectiveness, LLMs face the issue of hallucinations [8], where they occasionally provide re-87

sponses that do not fit the given context, and LLM-based KAT is also vulnerable to this.88
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2.3 Mitigating Hallucination in Large Language Models89

Numerous studies have been conducted to mitigate these hallucinations in LLM. Two main streams90

of research include the following: estimating the uncertainty of LLM predictions by designing ex-91

plicit probabilistic models [15] and estimating the implicit confidence from LLM responses [16].92

The estimation of the implicit confidence from LLM responses is based on the fact that sampled93

responses are likely to be consistent if the LLM knows a given question, whereas hallucinated re-94

sponses diverge and contradict each other. This is implemented in a sampling-based approach that95

assigns a high confidence score to consistent text tokens among the responses sampled from the96

LLM, and has become more widespread because of its flexibility for diverse applications [17, 9]97

and statistical guarantees [18]. However, in robotics, most research has focused primarily on dis-98

crete language data [9], which poses challenges in applying these techniques to continuous robot99

trajectory data. To address this problem, this study proposed an approach that employs a Student’s100

t-regression model [10] to extract reliable trajectories from the continuous robot trajectory data gen-101

erated by LLM and investigated its effectiveness on the ICIL of robotics.102

3 FORMULATION103

In this paper, we consider an ICIL scenario in which a human expert provides a few demonstrations104

of task execution, and a robot immediately imitates these demonstrations to autonomously perform105

the new task. The expert demonstrations are represented as D = {di}Ii=0, where I is the total num-106

ber of demonstration episodes, and each demonstration di consists of a sequence of observations oi107

received by the robot and a sequence of desired actions ai that the robot should exhibit to complete108

the task. The objective of ICIL is to develop an instant policy Φ(D, o′) → â that effectively gener-109

alizes the expert policies implicitly expressed in D, enabling appropriate actions â to be predicted110

based on new observations o′.111

3.1 Leveraging Large Language Models as an Instant Policy112

A key feature of the ICIL is that it does not require additional updates to the policy model parameters.113

Although certain approaches explicitly train a specific model based on robot data to achieve this114

feature, KAT show that off-the-shelf LLMs can function as instant policies without fine-tuning [7].115

Following this notion, this study was formulated based on the LLM-based approach as follows:116

At the beginning of each episode, the robot captures an RGB-D image observation oi. During117

demonstration di, the robot collects observations oi along with a set of action trajectories {ait}Tt=1118

of length T . When executing an instant policy, the robot records a new observation o′ and infers119

a series of actions ξ̂ = {ât}Tt=1 that replicate the expert behavior observed in the demonstration120

dataset D.121

To accelerate the inference capability of LLMs, 3D keypoints-based observation and action space122

are introduced: 3D visual keypoints extracted from complex RGB-D images as observation and123

triplet 3D points that can describe the robot’s end-effector posture as action.124

To extract 3D visual keypoints based on semantic and geometric similarities, a state-of-the-art vision125

transformer model called DINO [19] is used, and the process is as follows:126

(i) Extracting DINO descriptors from RGB-D image oi in each demonstration yields zi ∈127

RN×6528, with N as the number of patches in each image; that is, each descriptor contains128

informative features of the patch.129

(ii) Extracting K descriptors for each image that are most similar to other images by comparing130

descriptors between images via a nearest neighbor search algorithm [20], from which K131

2D keypoints are calculated.132

(iii) Projecting each 2D keypoints into 3D space by using the depth of each image and known133

camera intrinsic parameters yields V ∈ {Vi}Ii=0, where Vi = {vk}Kk=1 is a set of visual 3D134

keypoints vk of each image.135

For a new observation o′, we also extract the DINO descriptors z′. We then find the K nearest136

neighbors for each descriptor in V and extract the corresponding visual 3D keypoint V ′.137
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Figure 2: Overview of RIP in a banana-picking task. The input of the initial image and output of the robotic gripper’s
trajectory are collected through human demonstrations. From the demonstration dataset, contextual text data is tokenized:
the visual 3D keypoints with semantic and geometric similarities are extracted from image inputs, and the action trajectory
consists of a 3D triplet representing the gripper’s posture. The LLM-based instant policy is fed the context data and new
image keypoints, sampling the action trajectories multiple times. Using the Student’s t-regression model, a robust trajectory
is captured from the set of sampled action trajectories, and the robot performs the task following that reliable trajectory.

In addition, the action sequence is defined by the trajectory of the robot’s end-effector poses. Each138

unique pose of the robot end-effector is defined by a triplet of 3D points (τ it = [pit,0, p
i
t,1, p

i
t,2]) that139

represent the x, y, z positions of the gripper and both fingertips when the gripper is open. The state140

of the gripper is represented by the variable git, where git = 0 indicates that the gripper is open and141

git = 1 indicates that it is closed. Therefore, action is defined as ait = [τ it , g
i
t] ∈ R10, and all action142

sequences in demonstration is defined as A = {ξi}Ii=1, where ξi = {ait}Tt=1. We note that all the143

3D coordinates are within the world frame.144

At the deployment phase, the text token consisting of a context [V,A] and a new visual 3D keypoint145

V ′ is input into the LLM, and LLM generates a new trajectory of the desired end-effector motion146

to complete a task as an instant policy as follows: ΦKAT([V,A], V ′) → ξ̂, where ξ̂ = {ât}Tt=1. For147

further details, please refer to [7].148

Although this instant policy performs favorably compared with other IL approaches, its applicability149

is not yet stable because of the LLM’s hallucinations, which generate action sequences that are150

considerably different from those inherent in demonstrations D. To overcome this drawback, in the151

next section, we present a novel approach that captures the uncertainty from an instant policy ΦKAT152

and ignores hallucinations for robust applications.153

4 ROBUST INSTANT POLICY154

In this section, we introduce a novel stochastic approach for enhancing the robustness of LLM-based155

instant policy. We start from the simple notion that if the LLM-based policy knows a given task,156

the sampled trajectories are consistent, whereas the hallucinated trajectories diverge from each other.157

Thus, hallucinated trajectories can be recognized as outliers that deviate from a consistent trajectory.158

Therefore, we propose RIP that utilizes the Student’s t-regression model [10] that excels at ignoring159

these outliers and generates a reliable robot trajectory to complete tasks (Fig. 2).160

Initially, a set of action trajectories A′ = {ξ̂q}Qq=1 is generated by querying the instant policy Q161

times using the same text token (i.e., context [V,A] and a new observation V ′). Notably, in practice,162

this process is concurrent to avoid computational complexity as Q increases. The length of each163

trajectory can also vary; therefore, the time step t is normalized to the maximum length of each164

trajectory T to align the generated trajectories based on the start and end of the episode, similar to165

a previous study [21]. For simplicity without loss of generality, all trajectories have the same length166

T , and the one-dimensional action ât ∈ ât is used in the subsequent formalization.167

Given a set of trajectories A′ involving hallucinations, the aim is to train an action estimator to168

approximate a consistent trajectory. To this end, we employ the Student’s t-regression model [10] as169

our action estimator, which is known to enable considerable robustness to outliers than the standard170

Gaussian distribution [22]. Specifically, our action estimator is defined as Sθ(ât|t; ν), which outputs171
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the Student’s t-distribution with a mean network µθ and variance network σ2
θ for a given time step t172

with parameter θ:173

Sθ(ât|t; ν) =
Γ((ν + 1)/2)

Γ(ν/2)
√
νπσ2

θ(t)

{
1 +

(ât − µθ(t))
2

νσ2
θ(t)

}−(ν+1)/2

, (1)

where Γ(·) is the gamma function and ν is the degree of freedom with a positive real value. ν is a174

hyperparameter that regulates the sensitivity to outliers. As it approaches infinity (i.e., ν →∞), the175

distribution resembles a normal Gaussian distribution. Please see details on [22].176

Subsequently, to capture Student’s t-distribution of action trajectories, the loss of the action estimator177

is defined as a negative log-likelihood:178

L(Sθ|A′) =

Q∑
q=1

T∑
t=1

− logSθ(âqt |t; ν). (2)

Therefore, our objective function is to train the parameter θ of the action estimator by minimizing179

the expected loss along the action trajectories A′ derived from an instant policy.180

θ̂ = argmin
θ

EA′∼ΦKAT [L(Sθ|A′)]. (3)

Finally, using the learned action estimator Sθ̂, a consistent trajectory is extracted from a set of action181

trajectories A′. This calculation is performed over time steps using the mean of the learned action182

estimator: ξ̂RIP = {µθ̂(t)}
T
t=1. A summary of RIP is presented in Algorithm 1.183

Algorithm 1: Robust instant policy (RIP)
Input : Instant policy ΦKAT, number of queries Q, context [V,A], new observation V ′

Output: Robust action trajectory ξ̂RIP
1 for q = 1 to Q do
2 Get actions from an instant policy of KAT: ξ̂q ∼ ΦKAT([V,A], V ′) ;
3 Aggregate action trajectories: A′ ← A′ ∪ ξ̂q;
4 end
5 Learn the action estimator parameter θ̂ by Eq. (3);
6 Get the consistent trajectory ξ̂RIP

5 EVALUATION184

In this study, a novel robust ICIL approach called RIP was proposed to obtain robust instant robot185

policies that are immediately applicable to novel tasks. Therefore, our evaluation was conducted us-186

ing simulated and real-world experiments to answer two main questions: 1) How is RIP comparable187

to state-of-the-art IL approaches? 2) What is the optimal RIP design for maximizing performance?188

5.1 Evaluation Setting189

5.1.1 Environments and Tasks190

To evaluate the RIP, as shown in Fig. 3, a set of 10 daily tasks was defined for simulated and real-191

world environments as follows:192

Simulation environment was implemented based on the Maniskill3 benchmark [23]. The initial193

RGB-D image of the top view was captured using the built-in Maniskill3 RGB-D camera at the194

start of each episode. A human provides task demonstrations for a Universal Robotics UR5e 6DOF195

robot equipped with a Robotiq Hand-E gripper, using a leader-follower teleoperation system called196

GELLO [24]. These are recorded at 55Hz, but will be 5.5Hz during the test phase to ensure stability.197

Given demonstrations, the aim is to obtain an instant robotic agent that performs the following tasks:198

199
• Pick Banana: A task where a robot picks a banana from a table. A banana is placed200

randomly; a robot needs to reach it precisely to pick it up.201
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Simulation Pick Banana Push Cube Turn FaucetOpen Drawer Close Cabinet

Pick Banana Hang Cup Upright Sweep Pick & PlaceReal

Figure 3: Environments and Tasks. In both simulated and real-world environments, human demonstrations are collected
with leader-follower robot systems, where the movements of a directly human-controlled leader robot are followed by a
follower robot with a similar embodiment. Under these robotic environments, RIP and baseline IL methods were evaluated
for their capability on 10 everyday manipulation tasks.

• Push Cube: A task where a robot pushes a cube to the goal position. A cube is placed202

randomly; a robot agent’s nonprehensile capability is evaluated.203

• Open Drawer: A task where a robot pulls a handle to open a drawer. A drawer is placed204

randomly; a robot needs to pull a handle correctly to open it.205

• Close Cabinet: A task where a robot pushes a cabinet door to close it. A cabinet is randomly206

placed, and a robot needs to push the door in the correct orientation to close it.207

• Turn Faucet: A task where a robot turns the faucet. A faucet is placed randomly; a robot208

needs to turn it in the correct orientation.209

Real-world environment was built on the ALOHA [25] robotic system that also employed leader-210

follower teleoperation with two 6DOF robot arms. Demonstrations are recorded at 10Hz, but will211

be 1Hz during the test phase to ensure stability. An Intel RealSense D415 camera was mounted on212

top of the table to capture an RGB-D image at the start of each episode. Given the demonstrations,213

the aim is to obtain an instant robotic agent that performs the following tasks:214

• Pick Banana: Same as simulation.215

• Hang: A task where a robot grabs a clothes hanger, reaches, and hangs it on a horizontal216

stand. A stand is placed randomly; a robot needs to bring a hanger and release it to the217

correct position.218

• Put Cup Upright: A task where a robot picks up a horizontally placed cup and places it219

upright on the table. A cup is placed randomly; a robot needs to grasp and rotate a cup220

precisely.221

• Sweep: A task where a robot grabs a brush and sweeps an object into a dustpan. A dust222

object is placed randomly; a robot needs to sweep it with a brush while touching the table.223

• Pick-and-Place: A task where a robot picks up a bottle and places it in a red bowl. A bowl224

and a bottle are placed randomly; a robot needs to pick a bottle and put it in a red bowl225

precisely.226 Simulation Real
Close Cabinet Turn Faucet Pick & Place Sweep

Se
en

Un
se
en

Figure 4: Objects used to evaluate the general-
izability of unseen objects during training.

Inspired by [7], to evaluate the generalizability of objects227

unseen during training, the following four tasks also test228

unseen objects in the demonstration: close a cabinet and229

turn a faucet in a simulation and sweep and pick-and-230

place in a real-world environment. Specific objects are231

described in Fig. 4.232

5.1.2 Comparison Methods233

In this evaluation, we compared our method (RIP) with other IL methods, including the following:234
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Figure 5: Evaluation Results: (a) Qualitative analysis comparing trajectories generated by LLM-based instant policies
(e.g., RIP, RIPGauss and KAT) on push cube simulation tasks. Note that only the trajectory of the gripper position is repre-
sented for intuitive analysis. (b) Quantitative analysis comparing the success rate of RIP and baselines regarding the number
of demonstrations. All results represent the mean (line) and standard deviation (shaded) of the success rate on all the simula-
tion tasks. The success rate of each method, except KAT, was measured over 10 test executions. For KAT, all five trajectories
generated for RIP from one initial image were tested, i.e., 50 test executions.

• Diffusion Policy (DP) [12]: A state-of-the-art IL algorithm that demonstrated superior235

learning efficiency and generality compared to several previous IL methods.236

• Keypoint Action Tokens (KAT) [7]: A state-of-the-art in-context IL algorithm that intro-237

duces an LLM as an instant policy by introducing the keypoint-based observation-action238

space described in §3.1.239

• KAT-DP [7]: An IL algorithm that combines KAT and DP on [7]. Utilizing the keypoint240

representation of KAT for the observation-action space instead of the raw image input from241

the original DP resulted in performance comparable to KAT [7].242

• RIP with Gaussian (RIPGauss): A baseline for ablation studies in RIP; it uses a normal243

Gaussian distribution (i.e., N (ât|µθ(t), σ
2
θ(t))) instead of the Student’s t-distribution.244

Notably, the keypoint-based method extracts K = 10 keypoints from observations recorded at the245

beginning of the episode as described in §3.1. All the LLM-based methods use GPT 4o [14] as an246

instant policy model. RIP uses a fixed number of degrees, ν = 1.5, and a query count of Q = 5.247

These hyperparameters are chosen to improve the success rate, which is analyzed in §5.2.2. See §A248

for detailed setting of 3D keypoints extraction and RIP model (Sθ).249

5.1.3 Downsampling Action Demonstration Dataset250

In practice, the redundant action trajectory length T degrades the performance of LLM-based instant251

policies [7]. KAT employs an approach that uniformly down-samples data from a dataset collected252

at a high frequency to obtain a length of 20–30. However, this downsampling may omit the key steps253

of the demonstration. In particular, in tasks involving grasping or releasing, downsampling reduces254

the gripper-action precision of the demonstration. To alleviate this, we first mask the time steps of255

the start and end of episodes as well as the gripper actions |git+1 − git| = 1 when it is activated to256

open or close, and we uniformly sample the actions between these masked data to achieve a length257

of approximately 30. This downsampling was applied to all comparison methods. This technique258

improved the performance of our method (RIP) in tasks involving gripper actions. The analysis is259

described in §5.2.2.260

5.2 Results261

5.2.1 How does RIP comparable to state-of-the-art imitation learning approaches?262

Qualitative and quantitative analyses were conducted to answer this question.263

Qualitative Results: The results of the qualitative analysis comparing the trajectories generated by264

LLM-based instant policies (RIP, RIPGauss, and KAT) are shown in Fig. 5a. Most of the trajectories265

generated by KAT accomplished this task by capturing the context provided by human demonstra-266

tions. However, one outlier was significantly different from the others, and the robot failed the task,267

which could be attributed to hallucinations of the LLM. In the case of RIPGauss, averaging over the268
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Methods Simulation Tasks Success Rate [%] Real-world Tasks Success Rate [%] Avg. [%]
Pick

Banana
Push
Cube

Open
Drawer

Close
Cabinet

Turn
Faucet

Pick
Banana

Hang Sweep Pick &
Place

Cup
Upright

DP 40 30 60 100 70 60 30 40 10 60 50∗∗ ± 24
KAT-DP 60 40 20 70 60 100 50 20 30 70 52∗ ± 24
KAT 48 74 42 90 78 80 50 10 30 40 54∗ ± 24
RIPGauss (Ours) 40 70 50 90 90 70 60 60 40 70 64± 17
RIP (Ours) 60 100 70 100 90 100 90 70 50 70 80± 17

Table 1: Quantitative Results: Comparing the success rate with 10 demonstrations between RIP and baseline methods
for each task. The success rate of each method, except KAT in simulation, is measured over 10 test executions. For KAT
in simulation, all five trajectories generated for RIP from one initial image are tested, i.e., 50 test executions. For each task
result, the one in bold is the best. Average shows the mean and standard deviation of the results, our method is significantly
better than task results marked ∗ or ∗∗ (t-test, p < 5e−2 and p < 5e−3, respectively).

(a) (b) (c)
Figure 6: Design Analysis of RIP: RIP has three main design elements (Q, ν, and downsampling). (a) and (b): Success
rate comparison of RIP for different Q = {2, 3, 5, 10}, v = {1.25, 1.5,∞}, where ∞ is the same as RIPGasuss. The results
present the mean and standard deviation of the success rates obtained by testing the RIP with 20 demonstrations 10 times for
each simulated task. (c): Success rate comparison of RIP without and with grasping-action-based downsampling, represented
as Normal and g-based, respectively. The results present the mean and standard deviation of the success rates obtained by
testing the RIP with 10 demonstrations 10 times for each task.

trajectories of the KAT, the effect of this outlier cannot be ignored. It generates a trajectory close269

to the hallucinated trajectory, that is, the X trajectory of RIPGauss is 14 cm less than that of RIP at270

the final step. This deviation caused the robot to fail to reach the cube, resulting in task failure. By271

contrast, RIP can average the trajectories while ignoring the outliers owing to hallucinations and272

succeeds in the task.273

Quantitative Results: The results of the quantitative analysis comparing the policy success rates of274

each method are presented in TABLE 1 and Fig. 5b.275

TABLE 1 lists the policy success rate for each comparison method in a learning scenario where only276

a limited number of demonstrations (I = 10) is provided for each manipulation task. Although the277

LLM-based instant policy methods (KAT, RIPGauss, and RIP) do not require additional training after278

receiving demonstrations, their average performance outperforms that of the other baseline methods279

(DP and KAT-DP), which require extra training for each task. Notably, the RIP method achieved a280

significant improvement in the performance for KAT, with a 26% increase, and showed the best re-281

sults across all tasks. Furthermore, there is a 16% improvement compared with our ablation method282

(RIPGauss), which aligns with the qualitative results and validates the effectiveness of our Student’s283

t-based design.284

In addition, Fig. 5b shows the quantitative results of simulation tasks that investigate the policy285

success rate for each comparison method over a wider range of demonstration amounts. The results286

indicate that up to 10 demonstrations, the LLM-based instant policy method outperformed the other287

baseline methods. This finding supports the notion that instant policies can yield higher success288

rates than state-of-the-art IL approaches, without the need for additional training. However, LLM-289

based instant policies that lack robustness against hallucinations were surpassed by other baseline290

methods when the number of demonstrations reached 20 and failed to achieve a success rate above291

70%. In contrast, our approach (RIP) consistently demonstrated a superior probability of success292

across all demonstration amounts. Overall, both the qualitative and quantitative results show that293

our approach (RIP) is more effective than other state-of-the-art IL methods, particularly in scenarios294

where the number of demonstrations is limited.295

5.2.2 What is the optimal design of RIP to maximize performance?296

To investigate this question, we conducted a quantitative analysis of three key factors in RIP design:297

the number of queries (Q), degrees of freedom (ν), and downsampling methods. The results are298

presented in Fig. 6.299

8



Fig. 6a displays a comparison of the success rate of RIP with varying numbers of queries (Q). RIP300

must extract a robust trajectory from a set containing a sufficient number of reliable trajectories. For301

Q = {2}, reliable trajectories may not be obtained sufficiently, making RIP vulnerable to halluci-302

nations, and its success rate is similar to that of KAT. By contrast, for Q ≥ 3, the RIP success rate303

increases with an increase in Q, peaking at Q = 5. After this point, performance stabilizes, showing304

no significant improvements; thus, Q = 5 was used in §5.2.1.305

Fig. 6b shows the quantitative analysis of the success rate of RIP for different degrees of freedom306

(ν). In RIP, the degree of freedom ν can be interpreted as the level of tolerance of the hallucinated307

trajectories. When ν = ∞, equivalent to RIPGauss as described in §4, the success rate is the lowest308

because it is not sufficiently robust against hallucinated trajectories. As ν decreased, the success rate309

increased until ν = 1.5. We used ν = 1.5 in §5.2.1 because this setting achieved the highest success310

rate.311

Fig. 6c shows the quantitative analysis of the success rate of RIP according to the downsampling312

method discussed in §5.1.3. For this evaluation, we focused on tasks in which gripper actions were313

essential (Simulation: Pick banana; Real: Pick banana, hang, pick-and-place, and cup upright). The314

use of RIP with gripper-action-based downsampling (success rate: 74%) increased the success rate315

by 22% compared with the method that employs normal downsampling (success rate: 52%). This316

outcome supports our assertion that the data triggering the gripper action may be omitted during317

the normal downsampling process. Such omissions can lead to less accurate demonstrations and318

decrease the reliability of instant policies.319

6 DISCUSSION320

Our experiments demonstrate that the proposed method (RIP) significantly enhances the robustness321

of ICIL, resulting in a reliable robotic instant policy. Although this study assumed that demonstra-322

tors consistently choose a single optimal behavior, in practice, demonstrators often choose multiple323

optimal behaviors, and certain research attempted to address this challenge in IL [26]. Our RIP324

model currently cannot capture this complexity. Thus, one important direction for future work is to325

introduce a Student’s t-mixture model that can capture multiple optimal trajectories while providing326

robustness to outliers [27].327

Additionally, although our method (RIP) can generate a hallucination-robust trajectory using the328

Student’s t-regression model, it does not explicitly recognize hallucinations. Therefore, the under-329

lying causes of the hallucinations remain unclear. Future work will be directed at identifying the330

causes of hallucinations in robotic instant policies by introducing an approach for recognizing hal-331

lucinations through an explicit LLM probabilistic model [15].332

In addition, although the computational complexity remains constant regardless of the number of re-333

peated queries (i.e., Q) owing to parallelization, current LLMs using transformer architectures still334

require an output computational complexity of O(l2) for prompts of length l [28]. This limitation335

indicates that current transformer-based LLMs are unsuitable for scenarios that require online con-336

trol. Therefore, our future work will focus on introducing alternative architectures [29] that exhibit337

comparable performance but lower complexity.338

7 CONCLUSION339

This study introduced RIP, a novel ICIL algorithm that leverages stochastic treatment to provide340

a reliable instant policy for robotic manipulation tasks. RIP uses a Student’s t-regression model341

for robustness against the hallucinated trajectories of LLM-based instant policies and captures a342

reliable trajectory. Our findings demonstrate that robustification achieves state-of-the-art results in343

IL for various daily tasks. The design selection analysis reveals the factors that determine the optimal344

performance of the proposed method. These results show that the RIP allows for a reliable instant345

robot agent, particularly in scenarios where data are often scarce, such as those in the actual robotics346

domain.347
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A Additional Details of Extracting Visual Keypoints and Learning RIP425

Parameters of DINO Parameters of RIP
Parameters Sim Real Parameters Sim Real
image
W

100 320 hidden size (64,64) (64,64)

image
H

100 240 ν 1.5 1.5

num pairs 10 10 batch size 64 64
load size 100 240 optimizer Adam Adam
layer 9 9 learning

steps
4e4 1e5

facet key key learning
rate

1e−2 5e−2

bin True True
thresh 0.15 0.15
model type dino vits8 dino vits8
stride 2 4

Table 2: Parameter Setting of DINO and RIP.

As described in §3.1, we utilized the pretrained426

model provided by Amir et al. [19], known427

as DINO [19]. Although certain parameters428

(e.g., image width (W) and height (H)) were429

adjusted, as shown in TABLE 2, this did not430

impact the overall evaluation’s generality, and431

all other parameters remain unchanged from the432

original.433

In addition, the RIP model (i.e., Sθ) is op-434

timized using Eq. (3) with parameter settings435

provided in TABLE 2.436
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