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Abstract

Stationary Distribution Correction Estimation
(DICE) addresses the mismatch between the sta-
tionary distribution induced by a policy and the
target distribution required for reliable off-policy
evaluation (OPE) and policy optimization. DICE-
based offline constrained RL particularly benefits
from the flexibility of DICE, as it simultaneously
maximizes return while estimating costs in of-
fline settings. However, we have observed that
recent approaches designed to enhance the offline
RL performance of the DICE framework inad-
vertently undermine its ability to perform OPE,
making them unsuitable for constrained RL sce-
narios. In this paper, we identify the root cause of
this limitation: their reliance on a semi-gradient
optimization, which solves a fundamentally dif-
ferent optimization problem and results in fail-
ures in cost estimation. Building on these in-
sights, we propose a novel method to enable OPE
and constrained RL through semi-gradient DICE.
Our method ensures accurate cost estimation and
achieves state-of-the-art performance on the of-
fline constrained RL benchmark, DSRL.

1. Introduction
Constrained reinforcement learning (RL) focuses on train-
ing agents to maximize return while adhering to predefined
constraints, typically defined by a cost function. While con-
ventional RL trains agents based on the interactions with
the environment, such interactions in constrained environ-
ments may violate the constraints, which can be unsafe or
prohibitively costly. To avoid the risk of constraint viola-
tions during online interactions, offline constrained RL has
emerged as a practical solution. This approach relies on a
fixed dataset of pre-collected experiences to train agents,
eliminating the need for potentially unsafe online explo-

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

ration during the training process.

Specifically, offline constrained RL aims to maximize the
expected return of a policy while ensuring that predefined
cost constraints are not violated, all within an offline setting.
This requirement makes stationary distribution correction
estimation (DICE) a promising framework, as it leverages
stationary distribution to estimate and optimize the perfor-
mance of a policy under both reward and cost functions si-
multaneously (Polosky et al., 2022; Lee et al., 2021b; Zhang
et al., 2024). However, despite the theoretical soundness,
prior research has largely been limited to finite domains
or has struggled to achieve competitive performance when
extending to continuous domains compared to algorithms
from alternative frameworks.

Fortunately, recent empirical findings in offline RL (Sikchi
et al., 2023; Mao et al., 2024b) indicate that incorporating a
semi-gradient update into the DICE objective significantly
improves training stability and achieves state-of-the-art RL
performance in large and continuous domains. However,
our analysis reveals that applying semi-gradient methods
causes the DICE framework to lose its capability for off-
policy evaluation (OPE), indicating that their effectiveness
in offline RL does not generalize to constrained scenarios.

Although the semi-gradient DICE algorithms were adopted
to stabilize conflicting gradients, inspired by the success of
bootstrapped learning in deep RL algorithms, we discovered
that they inherently solve a completely different optimiza-
tion problem. This divergence leads to a solution with differ-
ent characteristics. In this paper, we show that semi-gradient
DICE algorithms are closely related to behavior-regularized
offline RL and return a policy correction rather than the in-
tended stationary distribution correction. This observation
provides a partial explanation for the success behind the
semi-gradient updates (Section 4).

Building on the analyses, we propose CORSDICE, an of-
fline constrained RL algorithm that recovers a valid sta-
tionary distribution from the optimal policy correction of
SemiDICE, thereby enabling OPE while maintaining the
strong RL performance of semi-gradient DICE (Section 5).
We provide empirical results that support the performance
and validity of our method in offline RL, OPE, and offline
constrained RL (Section 6).
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Semi-gradient DICE for Offline Constrained Reinforcement Learning

2. Preliminary
Markov Decision Process (MDP) We model the envi-
ronment as an infinite-horizon discounted Markov Deci-
sion Process (MDP) (Sutton & Barto, 2018), defined as
M := ⟨S,A, T, r, p0, γ⟩, where S is a set of states s, A is
a set of actions a, T : S ×A→ ∆(S) is a transition distri-
bution, r : S ×A→ R is a reward function, p0 : ∆(S) is a
distribution over initial states s0, and γ ∈ [0, 1) is a discount
factor. A policy π : S → ∆(A) defines a distribution over
actions that the agent selects given a state.

Given a policy π, its stationary distribution is defined as
dπ(s, a) := (1 − γ)

∑∞
t=0 γ

tPr(st = s, at = a|π). This
measures the probability of encountering a state-action pair
(s, a), when following policy π in the discounted MDP M.
The stationary distributions satisfy the single-step trans-
posed Bellman recurrence: dπ(s, a) = (1 − γ)p0(s)π(a |
s) + γπ(a | s)(T∗d)(s), where (T∗d)(s) :=

∑
s̄,ā T (s |

s̄, ā)d(s̄, ā). The expected discounted sum of rewards, or
the value ρ(π) of a policy π can be evaluated using its
corresponding stationary distribution dπ: ρ(π) := (1 −
γ)Eπ [

∑∞
t=0 γ

tr(st, at)] = E(s,a)∼dπ [r(s, a)].

OptiDICE In Lee et al. (2021a), f -divergence regular-
ization between the stationary distribution d of the trained
policy π and the stationary distribution dD of the dataset pol-
icy πD is added to the objective to address the distribution
shift issue in the offline RL.

max
d≥0

∑
s,a

d(s, a)r(s, a)− αDf (d||dD) (1a)

s.t.
∑
a

d(s, a) = (1− γ)p0(s) + γ(T∗d)(s), ∀s (1b)

where Df (d||dD) := E(s,a)∼dD
[
f
( d(s,a)
dD(s,a)

)]
denotes f -

divergence. The solution d∗ to this problem is the stationary
distribution of the policy π∗ that maximizes the objective
while adhering to Bellman flow constraints (1b).

OptiDICE (Lee et al., 2021a) is derived from the Lagrangian
dual of (1) adopting the Lagrange multiplier ν(s) for (1b):

min
ν

max
w≥0

L(w, ν) := (1− γ)Es0∼p0 [ν(s0)]

+ E(s,a)∼dD [−αf(w(s, a)) + w(s, a)eν(s, a)] (2)

where d is replaced with the stationary distribution correc-
tion w(s, a) := d(s,a)

dD(s,a) to accommodate the offline dataset
and eν(s, a) := r(s, a) + γEs′ [ν(s′)]− ν(s) (derivation in
Appendix A.1). Substituting w with its closed-form solution
w∗
ν(s, a) = max

(
0, (f ′)−1

( eν(s,a)
α

))
gives:

min
ν

(1− γ)Es0∼p0 [ν(s0)] + αEdD
[
f∗0
( eν(s,a)

α

)]
(3)

where f∗0 (y) := maxx≥0 xy−f(x) is a convex conjugate of
f in R+. A notable benefit of optimizing the stationary dis-

tribution correction is its applicability to OPE for any reward
function, expressed as ρ̂(π) = E(s,a)∼dD [w

∗
ν∗(s, a)r(s, a)].

After obtaining the solution ν∗, we need to extract
a policy π∗ that induces the stationary distribution
w∗
ν∗(s, a)dD(s, a). When we cannot do it analytically (e.g.,

continuous action space), assuming a parameterized policy
πθ, we adopt weighted behavior cloning by minimizing:

min
πθ

−E(s,a)∼dD [w
∗
ν∗(s, a) log πθ(a|s)] (4)

Despite its elegant formulation, OptiDICE’s performance in
large and continuous domains falls short compared to other
value-based offline RL algorithms (Mao et al., 2024b).

Semi-gradient optimization To improve the perfor-
mance of OptiDICE, semi-gradient variants have been ex-
plored (Sikchi et al., 2023; Mao et al., 2024b). Since
the residual eν(s, a) in (3) closely resembles the well-
established Bellman error minimization framework (Sutton
& Barto, 2018), incorporating semi-gradient optimization
appears to be a natural extension, drawing inspiration from
the success of fitted Q-iteration (Ernst et al., 2005).

Prior semi-gradient methods (Sikchi et al., 2023; Mao et al.,
2024b) have involved three modifications: (1) partially or
entirely omitting the gradient from the next state ν(s′) in
eν(s, a), (2) replacing the initial state distribution, p0(s)
with the dataset distribution,1 and (3) introducing a tempera-
ture hyperparameter β to balance loss terms while removing
α. While (3) is widely adopted, it is primarily a design
choice and not directly tied to the core semi-gradient opti-
mization process.

To isolate and simplify the analysis of semi-gradient opti-
mization, we adopt a semi-gradient DICE algorithm that in-
corporates only modifications (1) and (2), entirely omitting
the gradient of ν(s′) and replacing the initial state distribu-
tion with dD. The resulting objectives are as follows:

min
ν

E(s,a)∼dD
[
ν(s) + αf∗0

(Q(s,a)−ν(s)
α

)]
(5)

min
Q

E(s,a,s′)∼dD [(r(s, a) + γν(s′)−Q(s, a)2] (6)

Note that we have adopted a new function approximator
Q, which aligns the above problem with the semi-gradient
optimization of (3) whenQ is an exact optimum. Moreover,
this adoption removes the bias introduced by estimating the
expectation within a convex function in (3) using finite sam-
ples, a limitation that renders OptiDICE biased in stochastic
environments (Lee et al., 2021a; Kim et al., 2024a). We
refer to this algorithm as SemiDICE throughout the paper
(details in Appendix B).

1Interestingly, when the dataset distribution satisfies Bellman
flow constraint (i.e., corresponds to dD) modification (2) theoreti-
cally has no effect under a semi-gradient update that entirely omits
the gradient of ν(s′) (see Appendix B).
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Semi-gradient DICE for Offline Constrained Reinforcement Learning

Based on the semi-gradient optimization of DICE, Sikchi
et al. (2023); Mao et al. (2024b) achieved state-of-the-art
performance at the time of their publication. Similarly,
our empirical results confirm that SemiDICE demonstrates
strong offline RL performance, exhibiting behavior consis-
tent with those previous studies.

3. Constrained RL with DICE
In this section, we revisit the extension of the OptiDICE
algorithm to constrained RL problems and explore the feasi-
bility of extending SemiDICE using a similar approach.

Constrained RL The constrained RL (Altman, 1999)
aims to obtain a policy that maximizes an expected return
while satisfying cost constraints defined by a cost function
c : S×A→ R and a cost thresholdClim ∈ R. The objective
can be formulated as:

max
π

Eπ

[ ∞∑
t=0

γtr(st, at)
]

s.t. Eπ

[ ∞∑
t=0

γtc(st, at) ≤ Clim

]
(7)

COptiDICE The convenience of OPE using stationary
distributions naturally extends to estimating the discounted
sum of costs. In Lee et al. (2021b), the constrained extension
of OptiDICE solves Eq. (1) with the inclusion of additional
constraints:∑

s,a

d(s, a)c(s, a) ≤ (1− γ)Clim =: C̃lim. (8)

To satisfy the constraint, COptiDICE formulates the La-
grangian dual by adopting Lagrangian multiplier λ for the
cost constraint Eq. (8):

min
ν,λ≥0

max
w≥0

L(w, ν)− λEdD [w(s, a)c(s, a)− C̃lim])

where d is replaced with w as in Eq. (2). Similar to Op-
tiDICE, we can solve for the closed-form solution of w and
substitute it in to get training objective of ν:

min
ν

(1− γ)Es0∼p0 [ν(s0)] + αEdD
[
f∗0
( eν,λ(s,a)

α

)]
min
λ≥0

λ
(
C̃lim − E(s,a)∼dD [w

∗
ν,λ(s, a)c(s, a)]

)
w∗
ν,λ(s, a) = max

(
0, (f ′)

−1 ( eν,λ(s,a)
α

))
where eν,λ(s, a) := r(s, a)−λc(s, a)+γEs′ [ν(s′)]− ν(s)
(derivation in Appendix A.2). Looking at how eν,λ dif-
fers from previous eν , we can interpret this algorithm
as solving OptiDICE with a penalized reward function,
r(s, a) − λc(s, a), where λ is adjusted based on the cost
constraint: it increases when the constraint is violated and
decreases otherwise.

Constrained SemiDICE As COptiDICE naturally ex-
tends OptiDICE to constrained RL, it initially appears feasi-
ble to extend SemiDICE in a similar manner to formulate a
constrained SemiDICE, potentially enhancing performance
in constrained RL problems. Naively applying the modifica-
tions introduced in SemiDICE to COptiDICE results in the
following:

min
ν

EdD

[
ν(s) + αf∗

0 (
Q(s,a)−ν(s)

α
)
]

(9)

min
Q

EdD

[
(r(s, a)− λc(s, a) + γν(s′)−Q(s, a))2

]
(10)

min
λ≥0

λ
(
C̃lim − E(s,a)∼dD [w

∗
ν,λ(s, a)c(s, a)]

)
(11)

where w∗
ν,λ(s, a) = max

(
0, (f ′)−1

(Q(s,a)−ν(s)
α

))
.

However, as will be described in Section 4 and Table 1, this
naive constrained SemiDICE completely fails to satisfy the
cost constraint due to its inability to perform OPE correctly:
SemiDICE estimates policy corrections rather than station-
ary distribution corrections, making EdD [w∗

ν,λ(s, a)c(s, a)]
no longer a valid cost estimate. In the following sections,
we analyze the root cause of this inability to conduct OPE
and propose a method to address this issue.

4. Demystifying SemiDICE
In this section, we discuss various characteristics of the
SemiDICE algorithm that deepen our understanding of semi-
gradient optimization within the DICE framework.

Solution of SemiDICE We show that the correction
w(s, a) obtained by solving SemiDICE is not a stationary
distribution correction, but rather a policy correction.

Proposition 4.1 (Solution characteristics of SemiDICE).
The correction w∗(s, a) obtained by the optimal ν∗ =

argminν EdD
[
ν(s) + αf∗0 (

Q(s,a)−ν(s)
α )

]
,

w∗(s, a) = max
(
0, (f ′)−1

(Q(s,a)−ν∗(s)
α

))
, (12)

violates the Bellman flow constraint (1b) but satisfies the fol-
lowing conditions for w∗(s, a) to act as a policy correction
(Proof in Appendix B.1):∑

a

w∗(s, a)πD(a|s) = 1, w∗(s, a) ≥ 0, ∀s, a. (13)

Proposition 4.1 explains the failure of the naive constrained
SemiDICE as w(s, a) no longer converges to a stationary
distribution correction under semi-gradient optimization,
and resulting policy correction is incapable of performing
OPE. The semi-gradient update has caused ν to lose its
role as Lagrangian multiplier that ensures the satisfaction
of Bellman flow constraints (1b). Similarly, other DICE al-
gorithms employing semi-gradient optimization also fail to

3
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converge to stationary distribution corrections, instead con-
verging to constant multiples of policy corrections (Sikchi
et al., 2023) or somewhere in-between two corrections (Mao
et al., 2024b) (Appendices B.1 and B.2). For policy extrac-
tion, since weighted behavior cloning (Eq. (4)) minimizes
KL
( w(s,a)dD(s,a)∑

a w(s,a)dD(s,a)

∥∥πθ(a|s)), it remains effective regard-
less of the solution characteristics and has been success-
fully applied in previous studies. As w∗(s, a) computed by
SemiDICE (Eq. (12)) represents the policy correction, we
will denote it as w(a|s) in later sections.

Connections to behavior-regularized offline RL While
we have identified that SemiDICE results in a policy cor-
rection, it remains unclear what specific problem it ad-
dresses. We now provide an explanation of the problem
that SemiDICE solves. Building upon the findings of prior
works (Xu et al., 2022; Sikchi et al., 2023), we demonstrate
that SemiDICE, SQL (Xu et al., 2022) and XQL (Garg et al.,
2023) solve behavior-regularized MDP introduced in offline
RL (Xu et al., 2022) with different approximations.

We begin with the behavior-regularized MDP (Xu et al.,
2022; Geist et al., 2019), where reward is penalized by the
f -divergence between the dataset policy πD and policy π.
However, we reverse the divergence to get the corresponding
f -divergence regularization between π and πD:

max
π

Eπ
[ ∞∑
t=0

γt
(
r(st, at)− απD(at|st)

π(at|st) f
( π(at|st)
πD(at|st)

))]
.

Note that this still qualifies as a behavior-regularized MDP,
as xf(1/x) satisfies the necessary conditions for an f -
divergence. The policy evaluation operator of the regu-
larized MDP is given by,

(T π
f Q)(s, a) := r(s, a) + γEs′∼T (·|s,a)[V (s′)]

where V (s) := Ea∼π
[
Q(s, a)− απD(a|s)

π(a|s) f
(
π(a|s)
πD(a|s)

)]
.

Proposition 4.2. In the behavior-regularized MDP, the opti-
mal value functions V ∗(s), Q∗(s, a) and the optimal policy
correction π∗(a|s)

πD(a|s) of the regularized MDP are given by
(Proof in Appendix C.2):

U∗(s) = argmin
U(s)

U(s) + Ea∼πD
[
αf∗(Q

∗(s,a)−U(s)
α )

]
V ∗(s) = U∗(s) + Ea∼πD

[
αf∗(Q

∗(s,a)−U∗(s)
α )

]
Q∗(s, a) = r(s, a) + γEs′∼T [V ∗(s′)]

π∗(a|s)
πD(a|s) = max

(
0, (f ′)−1

(Q∗(s,a)−U∗(s)
α

))
From this, we can observe that SemiDICE is equivalent
to a behavior-regularized RL that approximates V ∗(s) of
the regularized MDP with U∗(s), while SQL approximates
V ∗(s) with U∗(s) + α when f(x) = x2 − x, and XQL is
a special case without any approximation in V ∗(s) when
f(x) = x log x (details in Appendix C).

Advantage of semi-gradient update With the character-
istics of SemiDICE clarified, we now offer an additional
explanation for why SemiDICE generally outperforms Op-
tiDICE in large, continuous domains. Beyond the stabiliza-
tion of updates, which previous studies have identified as a
key factor for improvement (Sikchi et al., 2023; Mao et al.,
2024b), our analysis reveals an alternative perspective.

A key issue with OptiDICE arises because, as the policy
is optimized, the support of both the policy and the states
it visits tends to shrink. Depending on f -divergence, there
often exist a state s such that dπ∗(s, a) = 0 for all a, which
implies that π∗(a|s) is undefined for that state, even if s
appears in the dataset. This sparsity problem gets worse as
the state space gets larger. On the other hand, even when us-
ing the same f -divergence that can induce sparse solutions,
semi-gradient-based DICE methods yield a sparse optimal
policy (similar to Xu et al. 2022) rather than a sparse opti-
mal state-action stationary distribution, allowing them to
avoid issues caused by state distribution sparsity.

In response to such worst-case scenarios where dπ∗(s, a) =
w∗(s, a) = 0, previously proposed DICE algorithms ei-
ther resort to a uniform random policy (for finite action
space; Zhan et al. 2022; Ozdaglar et al. 2023; Zhang et al.
2024) or refrain from updating the policy for the correspond-
ing state s (see Eq. (4)), resulting in data inefficiency. In
contrast, SemiDICE, which is guaranteed to output policy
corrections, eliminates this issue and avoids the data ineffi-
ciency caused by state sparsity.

Corollary 4.3 (SemiDICE avoiding sparsity problem). Let
w∗ be the correction (Eq. (12)) optimized by running
SemiDICE. There is no state s where w∗(s, a) = 0 ∀a.
(Proof in Appendix C.3)

5. CORSDICE: semi-gradient DICE for offline
constrained RL

In this section, we fix the off-policy cost evaluation in
Eq. (11) of constrained SemiDICE, building on the finding
from the previous section that the solution of SemiDICE
is a policy correction. Let the policy correction found
by SemiDICE (Eq. (12)) be defined as w(a|s) = πw(a|s)

πD(a|s) ,
where πw is the policy we get when we extract policy from
the solution of SemiDICE. To enable OPE with respect to
w(a|s), we need to compute the state stationary distribution
correction w(s) := dw(s)

dD(s) = w(s,a)
w(a|s) , where dw(s) is the

state stationary distribution induced by πw. If we can suc-
cessfully compute w(s), off-policy cost evaluation becomes
possible with w(s)w(a|s), allowing us to optimize λ using
the following:

min
λ≥0

λ
(
C̃lim − E(s,a)∼dD [w(s)w(a|s)c(s, a)]︸ ︷︷ ︸

=E(s,a)∼dπ [c(s,a)]

)
. (14)

4
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5.1. State stationary distribution extraction

To compute the state stationary distribution correction
w(s) given the policy correction w(a|s) obtained from
SemiDICE, we introduce the following novel optimization
problem:

max
w(s)≥0

−
∑
s

dD(s)f (w(s)) (15a)

s.t. w(s)dD(s) = (1− γ)p0(s) + γ(T∗dw)(s) ∀s (15b)

where (T∗dw)(s) :=
∑
s̄,ā T (s | s̄, ā)w(s̄)w(ā|s̄)dD(s̄, ā).

Note that the |S| constraints (15b) in this problem uniquely
determine w(s), regardless of the objective, making the
problem over-constrained. However, incorporating the
f -divergence minimization objective between dw(s) and
dD(s) (15a) adds convexity to the optimization, facilitating
efficient sample-based optimization, similar to the dual of
Q-LP and related algorithms (Nachum & Dai, 2020).

The Lagrangian dual of the problem, with Lagrange multipli-
ers µ(s) for the constraint (15b), is given as (Full derivation
in Appendix D):

max
w(s)≥0

min
µ(s)

(1− γ)Es0∼p0 [µ(s0)] (16)

+ E(s,a)∼dD [w(s)w(a|s)eµ(s, a)− f (w(s))] ,

where eµ(s, a) = γ
∑
s′ T (s

′|s, a)µ(s′)− µ(s). We obtain
a closed-form solution of w∗(s) by reversing the optimiza-
tion order based on strong duality of Eq. (15):

w∗(s) = max(0, (f ′)−1(Ea∼πD [w(a|s)eµ(s, a)])). (17)

Substituting w∗(s) into Eq. (16) results in the following:

min
µ

Lext(µ) :=(1− γ)Es0∼p0 [µ(s0)] (18)

+ Es∼dD [f∗0 (Ea∼πD [w(a|s)eµ(s, a)])] .

However, sample-based optimization of Lext poses a chal-
lenge due to the presence of expectations over the transition
T and the dataset policy πD within the convex function
f∗0 (x). Unlike previous algorithms, which are biased only
in the presence of stochastic transitions (Lee et al., 2021a;b),
the common stochasticity in the dataset policy introduces
significant bias when these expectations are estimated using
a single sample.

Bias reduction for sample-based optimization To ad-
dress the issue, we propose a simple bias reduction tech-
nique by incorporating an additional function approximator,
A(s), to estimate the expectation inside f∗0 (·). We then
decompose the µ optimization of (18) into the following
optimizations on A and µ, which share the same optimal

Algorithm 1 CORSDICE
Input: Dataset D, Initial state dataset p0, α
Parameter: ψ, ϕ, ξ, ζ, θ, λ
Output: A policy πθ

Let t = 0
Initialize parameters
for t = 1, 2, . . . , N do

Sample from (s, a, r, c, s′) ∼ D, s0 ∼ µ0

# SemiDICE for penalized reward r(s, a)− λc(s, a)

Update νψ , Qϕ using (9), (10) given λ
# Estimating state distribution correction w(s)

w(a|s) := max
(
0, (f ′)−1

(Qϕ(s,a)−νψ(s)
α

))
Update Aξ, µζ using (19a), (19b) given w(a|s)
w(s) := max

(
0, (f ′)−1 (Aξ(s))

)
# Updating the cost Lagrange multiplier
Update λ using (14) given w(s), w(a|s)
# Policy extraction step
Update πθ using (4) given w(a|s)

end for

solution of µ:

min
A

E(s,a,s′)∼dD

[(
A(s)− w(a|s)êµ(s, s′)

)2]
(19a)

min
µ

L̃ext(µ) := (1− γ)Es0∼p0 [µ(s0)] (19b)

+ E(s,a,s′)∼dD [(f∗0 )
′(A(s))w(a|s)êµ(s, s′)] ,

where êµ(s, s′) = γµ(s′)− µ(s).

Proposition 5.1. Minimization of the objectives in (19)
results in the same optimal µ∗ as in (18). (Proof in Ap-
pendix D)

In L̃ext(µ), the expectations are moved outside the nonlinear
function, enabling an unbiased sample-based estimation.
In practice, A(s) is parameterized and estimated using a
neural network. While function approximation errors may
introduce some additional bias, our empirical observations
suggest that this bias is significantly smaller than the bias
introduced by relying on the naive single-sample estimator
for evaluating Lext(µ). After the optimizations on (19) are
complete, the state stationary distribution correction w(s) is
naturally computed as w(s) = max(0, (f ′)−1(A∗(s))).

5.2. CORSDICE: putting things together

By optimizing Eq. (19a-19b), we obtain the stationary dis-
tribution correction w(s)w(a|s) corresponds to the policy
optimized by SemiDICE, enabling accurate off-policy cost
evaluation for Eq. (14). We present Constrained Offline
RL via Semi-gradient stationary DIstribution Correction
Estimation (CORSDICE), which alternates SemiDICE and
off-policy cost evaluation through stationary distribution
extraction in each iteration. SemiDICE optimizes the policy
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Figure 1. Return (Left), Bellman flow constraint violation (Middle), and policy correction constraint violation (Right). Results are
averaged over 300 runs. The hyperparameters α (SemiDICE, SQL, XQL, OptiDICE) and β (f -DVL and ODICE) determine the degree of
f -divergence regularization, where the regularization becomes stronger as α increases and β decreases. The performance of XQL for
small α values is omitted due to numerical stability issues.

correction for the penalized reward signal r(s, a)−λc(s, a),
and λ is updated based on the off-policy cost evaluation.
Algorithm 1 outlines the complete set of learning objectives
for CORSDICE.

6. Experiment
We conduct three experiments to empirically validate our
findings and showcase the performance of CORSDICE.

6.1. Examining algorithm characteristics

We evaluate offline RL algorithms on a randomly gener-
ated finite MDP experiment (Laroche et al., 2019; Lee
et al., 2020) (details in Appendix F.1). We compare four
DICE-based RL algorithms (OptiDICE, SemiDICE, f-
DVL, ODICE), two behvaior-regularized RL algorithms
(SQL, XQL), and Extraction, an application of the state
stationary distribution extraction method to SemiDICE.

We analyze the algorithms across three aspects, visualized in
Figure 1: left, policy performance ρ(π); middle, violation
of the Bellman flow constraint (violB.F.); and right, violation
of the policy correction constraint (violP.C.). Violations are
quantified using the L1-norm:

violB.F. =
∑
s

|(1− γ)p0(s) + γ(T∗dw)(s)− (B∗dw)(s)| ,

violP.C. =
∑
s

∣∣∣∑
a

w(s, a)πD(a|s)− 1
∣∣∣.

Reward performance The reward performance of all of-
fline RL algorithms initially improves as α increases (as β
decreases), but then declines as α becomes large (when β
is small) due to stronger conservatism shifting the policy
toward suboptimal datasets. In tabular domains, when hy-
perparameters are properly tuned, performance differences
among full-gradient (OptiDICE), semi-gradient (SemiDICE,

Table 1. RMSE of OPE for SemiDICE policies trained on a sub-
set of the D4RL (Fu et al., 2020) dataset (more results in Ap-
pendix H.2).

ALGORITHM HOPPER HALFCHEETAH WALKER2D

SEMIDICE 90.62 87.58 111.63
EXTRACTION (OURS) 20.70 26.44 9.20
DUALDICE 58.08 162.81 20.53
IHOPE 78.61 57.92 90.01

f-DVL), and orthogonal-gradient (ODICE) are not signif-
icant. However, the benefits of semi-gradient optimiza-
tion over full-gradient optimization become more evident in
large and continuous domain experiments leading to signifi-
cant difference in returns (see Appendix F.2).

Solution characteristics Our primary focus in this ex-
periment is to assess whether semi-gradient DICE methods
produce policy corrections rather than stationary distribution
corrections (Proposition 4.1). Figure 1-Middle shows that
only OptiDICE and Extraction satisfy the Bellman-flow
constraint (zero violation). In contrast, SemiDICE, SQL,
XQL, and f-DVL (β = 0.5) yield policy corrections in-
stead of stationary distribution corrections (Figure 1-Right).
These empirical results align with our theoretical findings:
(1) SemiDICE outputs policy corrections, (2) SemiDICE is
closely related to behavior-regularized RL algorithms, and
(3) Extraction produces stationary distribution corrections
from the policy corrections provided by SemiDICE.

6.2. Experiments on Off-Policy Evaluation

In this experiment, we estimate the returns of offline RL
policies pre-trained with SemiDICE on three D4RL (Fu
et al., 2020) benchmarks. Table 1 presents RMSE between
the estimated and the average discounted returns.

We compare four algorithms: SemiDICE, which directly

6
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Table 2. Normalized DSRL (Liu et al., 2024) benchmark results, averaged over 5 seeds and 20 episodes. Gray: Unsafe agents, Bold: Safe
agents with normalized costs below 1.0, Blue: Safe agents achieving the highest normalized return.

TASK
BC-ALL BC-SAFE BCQ-LAG BEAR-LAG CPQ COPTIDICE CORSDICE (OURS)

REWARD ↑ COST ↓ REWARD ↑ COST ↓ REWARD ↑ COST ↓ REWARD ↑ COST ↓ REWARD ↑ COST ↓ REWARD ↑ COST ↓ REWARD ↑ COST ↓
POINTBUTTON1 0.14 1.01 0.06 0.60 0.38 2.69 0.60 3.47 0.70 4.07 0.15 1.00 0.22 0.94
POINTBUTTON2 0.26 1.62 0.16 1.02 0.45 2.78 0.65 3.63 0.64 3.30 0.26 1.61 0.13 0.98
POINTCIRCLE1 0.78 4.80 0.41 0.20 0.83 4.65 0.34 2.31 0.54 0.29 0.80 4.00 0.43 0.93
POINTCIRCLE2 0.67 4.89 0.47 0.96 0.65 3.77 0.26 3.84 0.32 1.18 0.64 4.18 0.49 0.75
POINTGOAL1 0.64 0.93 0.42 0.35 0.72 1.02 0.77 1.18 0.44 0.62 0.63 0.96 0.75 0.89
POINTGOAL2 0.53 2.00 0.27 0.76 0.74 3.72 0.84 3.94 0.50 1.26 0.55 2.08 0.37 0.85
POINTPUSH1 0.23 0.88 0.16 0.52 0.36 1.08 0.44 1.01 0.26 1.27 0.24 0.74 0.27 0.81
POINTPUSH2 0.14 1.21 0.12 0.59 0.25 1.51 0.27 1.81 0.14 1.55 0.15 0.86 0.18 0.07

CARBUTTON1 0.16 1.73 0.05 0.50 0.44 7.50 0.53 7.49 0.53 8.26 0.00 1.40 0.09 0.48
CARBUTTON2 -0.13 1.78 0.03 0.67 0.53 6.12 0.60 6.24 0.61 5.03 -0.04 1.23 0.06 0.71
CARCIRCLE1 0.72 5.32 0.30 1.32 0.76 4.95 0.81 6.78 0.03 2.41 0.71 4.91 -0.05 0.64
CARCIRCLE2 0.69 6.42 0.40 2.19 0.69 6.18 0.83 10.45 0.52 0.41 0.68 6.00 0.33 0.78
CARGOAL1 0.40 0.54 0.29 0.39 0.50 0.95 0.71 1.29 0.81 0.94 0.51 0.82 0.53 0.79
CARGOAL2 0.28 1.06 0.16 0.49 0.69 3.51 0.83 3.74 0.88 4.26 0.33 1.24 0.39 0.99
CARPUSH1 0.22 0.56 0.18 0.46 0.36 0.73 0.43 0.83 0.15 1.33 0.22 0.56 0.22 0.71
CARPUSH2 0.12 1.49 0.05 0.40 0.38 2.68 0.35 2.78 0.29 3.62 0.13 1.15 0.15 0.91

SWIMMERVEL 0.47 1.05 0.47 0.31 0.28 2.35 0.17 0.84 0.59 3.18 0.56 0.64 0.09 0.38
HOPPERVEL 0.85 3.78 0.61 2.11 0.46 2.18 -0.01 0.0 0.46 3.08 0.86 1.60 0.80 0.41

HALFCHEETAHVEL 0.89 2.57 0.88 0.13 0.90 1.16 0.03 0.01 0.32 0.95 0.96 0.24 0.95 0.30
WALKER2DVEL 0.81 1.19 0.79 0.00 0.64 2.53 0.01 0.00 0.00 0.02 0.80 0.87 0.80 0.02

ANTVEL 0.98 4.73 0.97 0.36 0.66 4.03 0.32 0.12 -0.14 0.04 1.01 1.24 0.98 0.23

SAFETYGYM AVERAGE 0.47 2.36 0.35 0.68 0.56 3.15 0.47 2.94 0.41 2.19 0.48 1.78 0.40 0.71

BALLRUN 0.43 1.10 0.25 1.15 0.96 2.49 0.02 1.56 0.64 2.70 -0.01 0.00 0.25 0.99
CARRUN 0.97 0.15 0.97 0.12 0.96 0.32 -0.54 0.37 0.89 0.41 0.30 0.01 0.97 0.55

DRONERUN 0.56 1.73 0.43 1.14 0.58 1.96 -0.18 5.40 0.40 1.40 0.59 1.42 0.48 0.97
ANTRUN 0.73 1.55 0.69 0.95 0.63 0.92 0.27 0.25 0.19 0.43 0.73 1.35 0.66 0.51

BALLCIRCLE 0.72 1.13 0.40 0.55 0.87 1.52 0.31 1.54 0.74 0.75 0.78 1.18 0.56 0.64
CARCIRCLE 0.72 1.11 0.18 1.11 0.65 2.48 0.15 2.5 0.70 0.66 0.76 1.28 0.34 0.64

DRONECIRCLE 0.68 1.17 0.55 0.42 0.50 0.24 -0.11 0.35 -0.11 1.31 0.84 1.16 0.55 0.77
ANTCIRCLE 0.71 2.83 0.48 1.26 0.84 4.29 0.22 0.52 0.00 0.00 0.74 5.39 0.53 0.88

BULLETGYM AVERAGE 0.69 1.35 0.49 0.84 0.75 1.78 0.02 1.56 0.43 0.96 0.59 1.47 0.54 0.77

EASYSPARSE 0.27 0.32 0.32 0.06 1.37 3.10 -0.03 0.05 -0.23 0.17 0.91 2.64 0.54 0.85
EASYMEAN 0.51 1.45 0.25 0.00 1.31 2.67 -0.03 0.07 -0.06 0.02 0.75 2.67 0.49 0.91
EASYDENSE 0.64 2.21 0.22 0.01 1.02 1.99 0.09 0.46 -0.06 0.02 0.70 1.13 0.52 0.94

MEDIUMSPARSE 0.81 1.15 0.74 0.14 0.77 0.72 -0.03 0.02 -0.08 0.01 0.83 1.51 0.99 0.94
MEDIUMMEAN 0.77 1.37 0.72 0.25 2.03 2.60 -0.02 0.03 -0.08 0.02 0.92 1.89 0.96 0.76
MEDIUMDENSE 0.81 1.26 0.82 0.82 2.20 2.79 0.06 0.16 -0.07 0.00 0.73 0.89 0.98 0.83

HARDSPARSE 0.46 2.07 0.37 0.19 1.15 2.78 0.01 0.28 -0.04 0.01 0.56 1.64 0.41 0.84
HARDMEAN 0.36 1.14 0.32 0.08 0.94 2.18 0.00 0.11 -0.05 0.01 0.64 1.14 0.42 0.83
HARDDENSE 0.40 1.70 0.29 0.10 1.19 3.00 0.00 0.05 -0.04 0.00 0.51 0.72 0.27 0.59

METADRIVE AVERAGE 0.56 1.41 0.45 0.18 1.33 2.43 0.01 0.14 -0.08 0.03 0.73 1.58 0.62 0.85

uses the policy correction w(a|s) as a stationary distribution
correction, i.e., ρ(πw) = EdD [w(a|s)r(s, a)]; Extraction,
which employs the extracted stationary distribution correc-
tion, i.e., ρ(πw) = EdD [w(s)w(a|s)r(s, a)], IHOPE (Liu
et al., 2018), which extracts a stationary distribution from
the policy correction while incorporating a discriminator
function that adversarially maximizes Bellman-flow con-
straint violations; and DualDICE (Nachum et al., 2019), a
representative Q-LP-based OPE algorithm.2

The results in Table 1 show that SemiDICE consistently
underperforms, confirming that the policy correction alone
is unsuitable for OPE. In contrast, Extraction successfully
derives a valid stationary distribution, outperforming the
baselines. Compared to the extensively studied Q-LP-based
OPE algorithms (e.g., DualDICE), our extraction algorithm
benefits from in-sample learning, avoiding the risk of eval-
uating OOD next actions using the function approximator
being trained.

2Notably, our approach based on the policy correction slightly
deviates from conventional OPE settings (Nachum et al., 2019;
Yang et al., 2020), which typically assume direct access to the
policy π(a|s). This requires us to extract policy first to apply
conventional OPE algorithms.

While IHOPE also computes the marginalized correction
using the policy correction, its reliance on a min-max opti-
mization framework reduces training stability. In contrast,
our algorithm is based on a single convex optimization, en-
suring greater stability and superior estimation performance.

6.3. Experiments on offline constrained RL

Setup Our main offline constrained RL experiment fol-
lows the DSRL (Liu et al., 2024) benchmark, comparing
algorithm performance across three different environments:
Safety-Gymnasium (Marchesini et al., 2021; Ji et al., 2023),
Bullet Safety Gym (Gronauer, 2022), and MetaDrive (Li
et al., 2022). We compare our CORSDICE with: BC-
All, which imitates the entire dataset, BC-Safe, which
imitates only safe trajectories, BCQ-Lag, a constrained
variant of BCQ (Fujimoto et al., 2019) with a PID con-
troller (Stooke et al., 2020), BEAR-Lag, a constrained vari-
ant of BEAR (Kumar et al., 2019) with a PID controller, and
COptiDICE (Lee et al., 2021b) (details in Appendix G).

Results Table 2 summarizes the results. CORSDICE was
the only algorithm to satisfy the cost constraints across
all environments, outperforming baselines in 27 out of 38
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Table 3. Normalized DSRL (Liu et al., 2024) with advanced function approximators and tighter cost limits. The results of baselines with
asterisk (*) are adopted from FISOR (Zheng et al., 2024). Gray: Unsafe agents, Bold: Safe agents whose normalized costs are below 1.0,
Blue: Safe agents with the highest normalized return.

TASK
D-BC-ALL D-BC-SAFE CDT* TREBI* FISOR* D-CORSDICE (OURS)

REWARD ↑ COST ↓ REWARD ↑ COST ↓ REWARD ↑ COST ↓ REWARD ↑ COST ↓ REWARD ↑ COST ↓ REWARD ↑ COST ↓
CARBUTTON1 0.15 14.50 0.03 5.25 0.17 7.05 0.07 3.75 -0.02 0.26 -0.02 0.90
CARBUTTON2 0.11 5.32 -0.02 1.12 0.23 12.87 -0.03 0.97 0.01 0.58 0.04 0.75

CARPUSH1 0.21 3.66 0.15 1.34 0.27 2.12 0.26 1.03 0.28 0.28 0.24 0.50
CARPUSH2 0.11 2.96 0.05 0.93 0.16 4.60 0.12 2.65 0.14 0.89 0.05 0.77
CARGOAL1 0.40 4.22 0.23 1.03 0.60 3.15 0.41 1.16 0.49 0.83 0.28 0.62
CARGOAL2 0.34 3.67 0.15 2.35 0.45 6.05 0.13 1.16 0.06 0.33 0.11 0.59

ANTVEL 0.98 33.12 0.68 2.16 0.98 0.91 0.31 0.00 0.89 0.00 0.91 0.58
HALFCHEETAHVEL 0.93 18.73 0.73 0.25 0.97 0.55 0.87 0.23 0.89 0.00 0.87 0.02

SWIMMERVEL 0.45 15.08 0.45 0.82 0.67 1.47 0.42 0.31 -0.04 0.00 0.12 0.84

SAFETYGYM AVERAGE 0.41 11.25 0.27 1.69 0.50 4.31 0.28 1.36 0.30 0.35 0.29 0.62

ANTRUN 0.80 17.31 0.61 1.51 0.70 1.88 0.63 5.43 0.45 0.03 0.63 0.84
BALLRUN 0.53 10.20 0.18 0.89 0.32 0.45 0.29 4.24 0.18 0.00 0.24 0.00
CARRUN 0.90 3.37 0.86 0.44 0.99 1.10 0.97 1.01 0.73 0.14 0.93 0.57

DRONERUN 0.60 12.08 0.48 2.75 0.58 0.30 0.59 1.41 0.30 0.55 0.55 0.32
ANTCIRCLE 0.55 16.89 0.41 6.04 0.48 7.44 0.37 2.50 0.20 0.00 0.34 0.23
BALLCIRCLE 0.73 8.76 0.13 0.28 0.68 2.10 0.63 1.89 0.34 0.00 0.40 0.26
CARCIRCLE 0.33 10.19 0.23 1.07 0.71 2.19 0.49 0.73 0.40 0.11 0.21 0.68

DRONECIRCLE 0.71 9.46 0.42 0.60 0.55 1.29 0.54 2.36 0.48 0.00 0.43 0.00

BULLETGYM AVERAGE 0.64 11.03 0.42 1.70 0.63 2.09 0.56 2.45 0.39 0.10 0.47 0.36

EASYSPARSE 0.67 7.64 0.36 0.00 0.05 0.10 0.26 6.22 0.34 0.00 0.58 0.44
EASYMEAN 0.63 7.64 0.35 0.00 0.27 0.24 0.19 4.85 0.38 0.25 0.48 0.09
EASYDENSE 0.54 5.84 0.33 0.00 0.43 2.31 0.26 5.81 0.36 0.25 0.59 0.31

MEDIUMSPARSE 0.82 5.25 0.39 0.00 0.26 2.20 0.06 1.70 0.42 0.22 0.45 0.53
MEDIUMMEAN 0.84 4.63 0.53 0.01 0.28 2.13 0.20 1.90 0.39 0.08 0.45 0.53
MEDIUMDENSE 0.79 4.98 0.35 0.01 0.29 0.77 0.03 1.18 0.49 0.44 0.49 0.03

HARDSPARSE 0.49 7.04 0.36 0.00 0.17 0.47 0.00 0.82 0.30 0.01 0.25 0.18
HARDMEAN 0.51 5.90 0.25 0.00 0.28 3.32 0.16 4.91 0.26 0.09 0.31 0.47
HARDDENSE 0.41 4.75 0.34 0.00 0.24 1.49 0.02 1.21 0.30 0.34 0.21 0.00

METADRIVE AVERAGE 0.63 5.96 0.36 0.00 0.25 1.45 0.13 3.18 0.36 0.25 0.43 0.23

tasks and achieving the highest average performance. Other
baseline methods struggled to balance return maximization
and constraint satisfaction, often violating cost constraints
or yielding suboptimal returns. This success of CORS-
DICE can be attributed to incorporating accurate off-policy
cost evaluation into the state-of-the-art semi-gradient DICE
methods in unconstrained setting. We performed additional
ablation studies on the cost sensitivity in Appendix H.1.

6.3.1. WITH ADVANCED FUNCTION APPROXIMATORS

D-CORSDICE Recent research (Chen et al., 2021;
Hansen-Estruch et al., 2023; Wang et al., 2022) suggests
that using advanced function approximators like transform-
ers (Vaswani, 2017) or diffusion models (Ho et al., 2020;
Song et al., 2020) can enhance offline RL performance.
Here, we extend CORSDICE by guiding a behavior-cloned
diffusion model with our learned policy correction w(a|s),
similar to D-DICE (Mao et al., 2024a), and refer to this
extension as D-CORSDICE (details in Appendix E).

Setup We compare D-CORSDICE with: D-BC-All, a
behavior-cloning diffusion model, D-BC-Safe, diffusion-
based BC model trained on safe trajectories, Con-
strained Decision Transformer (CDT) (Liu et al., 2023),
TREBI (Lin et al., 2023), and FISOR (Zheng et al., 2024).
We strictly follow the experimental setup of Lin et al. (2023),

who uses a single, tighter cost threshold compared to DSRL
benchmark (details in Appendix G).

Results Table 3 summarizes the results. D-CORSDICE
and FISOR were the only ones that consistently satisfied
cost constraints across all tasks. While both performed
comparably in Safety Gymnasium, CORSDICE achieved
superior average performance across all environments.

7. Conclusion
In this paper, we aimed to extend semi-gradient-based DICE
methods, known for their strong performance in offline RL,
to the constrained setting. Yet, our findings revealed that
semi-gradient DICE algorithms are fundamentally unable
to perform policy evaluation, as they produce policy correc-
tions instead of stationary distribution corrections, making
their extension to the constrained setting non-trivial. To
address this limitation, we proposed a method to recover sta-
tionary distribution corrections, and introduced CORSDICE,
a novel offline constrained RL algorithm that outperforms
existing baselines.

While this work focuses specifically on constrained RL prob-
lems, the proposed method can be readily applied to enhance
other DICE-based algorithms for problems requiring OPE,
such as ROI maximization (Kim et al., 2024b).
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Semi-gradient DICE for Offline Constrained Reinforcement Learning

A. OptiDICE and COptiDICE
In this section, we provide full derivation of OptiDICE (Lee et al., 2021a) and COptiDICE (Lee et al., 2021b).

A.1. OptiDICE

We begin with the convex optimization problem (1) OptiDICE solves.

max
d≥0

E(s,a)∼d[r(s, a)]− α
∑
s,a

dD(s, a)f

(
d(s, a)

dD(s, a)

)
s.t. (1− γ)p0(s) =

∑
a

d(s, a)− γ(T∗d)(s) ∀s

where (T∗d)(s) :=
∑
s̄,ā T (s | s̄, ā)d(s̄, ā). For simplicity of derivation, we reformulate the optimization problem in terms

of the stationary distribution correction w(s, a) = d(s, a)/dD(s, a).

max
w≥0

E(s,a)∼dD [w(s, a)r(s, a)]− α
∑
s,a

dD(s, a)f (w(s, a))

s.t. (1− γ)p0(s) =
∑
a

w(s, a)dD(s, a)− γ(T∗dw)(s) ∀s

where (T∗dw)(s) :=
∑
s̄,ā T (s | s̄, ā)w(s̄, ā)dD(s̄, ā).

We obtain Lagrangian dual maxw≥0 minν L(w, ν) of the reformulated problem where ν(s) is a Lagrangian multiplier for
the Bellman flow constraint.

L(w, ν) :=E(s,a)∼dD [w(s, a)r(s, a)− αf (w(s, a))] +
∑
s

ν(s)

(
(1− γ)p0(s) + γ(T∗(dw)(s))−

∑
a

w(s, a)dD(s, a)

)

=E(s,a)∼dD

[
w(s, a)

(
r(s, a) + γ

∑
s′

T (s′|s, a)ν(s′)− ν(s)

)
− αf (w(s, a))

]
+ Es0∼p0 [(1− γ)ν(s0)]

=E(s,a)∼dD [w(s, a)eν(s, a)− αf (w(s, a))] + Es0∼p0 [(1− γ)ν(s0)] (20)

where
∑
s ν(s)(T∗dw)(s) =

∑
s,a w(s, a)dD(s, a)

∑
s′ T (s

′|s, a)ν(s′) and eν(s, a) = r(s, a) + γ
∑
s′ T (s

′|s, a)ν(s′)−
ν(s).

Due to the convexity of the problem, strong duality can be established via Slater’s condition. We follow the assumption
in (Lee et al., 2021a) that all states are reachable within a given MDP. This assumption ensures the strict feasibility of
d(s, a) > 0, ∀s, a, thereby satisfying Slater’s condition. The strong duality allows the optimization order to be switched as
shown below.

max
w≥0

min
ν

L(w, ν) = min
ν

max
w≥0

L(w, ν) (21)

The reordering enables inner maximization over w(s, a), whose optimal solution satisfies ∂L(w,ν)
∂w(s,a) = 0 ∀s, a. Optimal

w∗
ν(s, a) can be expressed in a closed form in terms of ν.

w∗
ν(s, a) = max

(
0, (f ′)−1

(
eν(s, a)

α

))
(22)

When w∗
ν(s, a) is plugged into the dual function (20), ν loss of OptiDICE is expressed as,

min
ν

L(w∗
ν , ν) = Es0∼p0 [(1− γ)ν(s0)] + E(s,a)∼dD [w∗

ν(s, a)eν(s, a)− αf (w∗
ν(s, a))]

= Es0∼p0 [(1− γ)ν(s0)] + αE(s,a)∼dD

[
f∗0

(
eν(s, a)

α

)]
(23)

where f∗0 (y) := maxx≥0 xy − f(x) is a convex conjugate of f in R+.
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Semi-gradient DICE for Offline Constrained Reinforcement Learning

Policy extration After obtaining the solution ν∗, we need to extract a policy π∗ that induces the stationary distribution
w∗
ν∗(s, a)dD(s, a). In finite domains, the policy can be computed by π∗(a|s) = w(s,a)dD(s,a)∑

a w(s,a)dD(s,a) . In continuous domains,
assuming a parameterized policy πθ, we adopt weighted behavior cloning by minimizing:

min
πθ

−E(s,a)∼dD [w
∗
ν∗(s, a) log πθ(a|s)] (24)

A.2. COptiDICE

COptiDICE is a constrained version of OptiDICE, where the following constraint is added to the convex optimization (1):∑
s,a

d(s, a)c(s, a) ≤ (1− γ)Clim =: C̃lim.

This results in COptiDICE solving offline constrained RL problem defined as:

max
w≥0

E(s,a)∼dD [w(s, a)r(s, a)]− α
∑
s,a

dD(s, a)f (w(s, a))

s.t. (1− γ)p0(s) =
∑
a

w(s, a)dD(s, a)− γ(T∗dw)(s) ∀s∑
s,a

w(s, a)dD(s, a)c(s, a) ≤ C̃lim

We follow the approach from Appendix A.1 to derive the loss funtions of COptiDICE. We obtain Lagrangian dual
maxw≥0 minν,λ≥0 L(w, ν, λ) of the reformulated problem where λ is additionally introduced as a Lagrangian multiplier
for the cost constraint.

L(w, ν, λ) :=E(s,a)∼dD [w(s, a)(r(s, a)− λc(s, a)− αf (w(s, a))]

+
∑
s

ν(s)

(
(1− γ)p0(s) + γ(T∗(dw)(s))−

∑
a

w(s, a)dD(s, a)

)
+ λC̃lim (25)

=E(s,a)∼dD [w(s, a)eν,λ(s, a)− αf (w(s, a))] + Es0∼p0 [(1− γ)ν(s0)] + λC̃lim (26)

where eν,λ(s, a) = r(s, a)− λc(s, a) + γ
∑
s′ T (s

′|s, a)ν(s′)− ν(s).

The reordering based on strong duality enables inner maximization overw(s, a), whose optimal solution satisfies ∂L(w,ν,λ)
∂w(s,a) =

0 ∀s, a. Optimal w∗
ν,λ(s, a) can be expressed in a closed form in terms of ν and λ.

w∗
ν,λ(s, a) = max

(
0, (f ′)−1

(
eν,λ(s, a)

α

))
(27)

When w∗
ν,λ(s, a) is plugged into the dual function (26), ν loss and λ loss of COptiDICE can be expressed as,

min
ν

Es0∼p0 [(1− γ)ν(s0)] + E(s,a)∼dD
[
w∗
ν,λ(s, a)eν,λ(s, a)− αf

(
w∗
ν,λ(s, a)

)]
= Es0∼p0 [(1− γ)ν(s0)] + αE(s,a)∼dD

[
f∗0

(
eν,λ(s, a)

α

)]
We derive λ loss from (25) to emphasize its role as a Lagrangian multiplier that ensures the satisfaction of the cost constraint:

min
λ≥0

λ
(
C̃lim − E(s,a)∼dD [w

∗
ν,λ(s, a)c(s, a)]

)
B. SemiDICE
In this section, we derive the semi-gradient variants of OptiDICE (SemiDICE, f-DVL and ODICE) and clarify the
characteristics of their optimal solution. We show that SemiDICE returns a valid policy correction rather than a stationary

13
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Semi-gradient DICE for Offline Constrained Reinforcement Learning

distribution correction, while showing f-DVL and ODICE often violates the validity conditions as a policy correction
and a stationary distribution correction as depicted in Figure 1. This property makes SemiDICE suitable for CORSDICE
framework as it requires a valid policy correction that satisfies

∑
a w(s, a)πD(a|s) = 1. While various semi-gradient losses

such as dual-V and f -DVL were introduced in (Sikchi et al., 2023), we derive SemiDICE due to subtle differences in the
loss functions and derivations.

As mentioned in our paper, prior semi-gradient methods have involved three modifications: (1) partially or entirely omitting
the gradient from next state ν(s′) in eν(s, a), (2) replacing the initial state distribution, p0(s), with the dataset distribution,
and (3) introducing a hyperparameter β to balance loss terms while removing the hyperparameter α. We divide the sections
based on (1) to separately analyze semi-gradient method that (partially/entirely) omits the gradient from next state ν(s′) in
eν(s, a) of ν loss (23) of OptiDICE.

B.1. Semi-gradient DICE algorithms that entirely omit the gradient from the next state

We give two semi-gradient DICE algorithms that entirely omit the gradient from the next state ν(s′): SemiDICE and
f -DVL (Sikchi et al., 2023). They share a common characteristic where the term r(s, a) + γ

∑
s′ T (s

′|s, a)ν(s′) within
eν(s, a) is separately estimated by an additional function approximator Q(s, a) with Q loss given below:

min
Q

E(s,a,s′)∼dD [(Q(s, a)− (r + γν(s′)))2]

where the use of Q(s, a) is enabled as the gradient from the next state ν(s′) is completely ignored.

SemiDICE We first derive our algorithm, SemiDICE, from ν loss of OptiDICE (23). We also provide loss function of
f -DVL for comparison.

LOptiDICE(ν) =
∑
s

(1− γ)p0(s)ν(s) +
∑
s,a

dD(s, a)

[
αf∗0

(
r(s, a) + γ

∑
s′ T (s

′|s, a)ν(s′)− ν(s)

α

)]
(28)

Lf-DVL(ν) =
∑
s,a

dD(s, a) [(1− β)ν(s) + βf∗0 (Q(s, a)− ν(s))] (29)

LSemiDICE(ν) =
∑
s,a

dD(s, a)

[
ν(s) + αf∗0

(
Q(s, a)− ν(s)

α

)]
(30)

In (Sikchi et al., 2023), f -DVL applies the semi-gradient technique to OptiDICE and simply replaces the initial state
distribution p0(s) with the dataset distribution dD(s). However, we propose an alternative interpretation to demonstrate that
the replacement can also be understood as a semi-gradient approach. To establish this, we introduce a minor assumption:
the dataset policy πD(a|s) and the policy being optimized π(a|s) share the same initial state distribution p0(s).

Under this assumption, we can replace (1 − γ)p0(s) with −γ(T∗dD)(s) +
∑
a dD(s, a). This substitution is justified

because the stationary distribution of the dataset policy, dD(s, a), satisfies the Bellman flow constraint as well. Consequently,
we extend this relationship to the equality shown below:

∑
s

(1− γ)p0(s)ν(s) =
∑
s

ν(s)

(
−γ(T∗dD)(s) +

∑
a

dD(s, a)

)
(31)

=
∑
s,a

dD(s, a)

(
−γ
∑
s′

T (s′|s, a)ν(s′) + ν(s)

)
(32)

We apply this relationship to rewrite the Lagrangian dual L(w, ν) (20) of OptiDICE.

max
w≥0

min
ν

L(w, ν) =Es∼p0 [ν(s)] + E(s,a)∼dD [w(s, a)eν(s, a)− αf (w(s, a))]

=E(s,a)∼dD [−γ
∑
s′

T (s′|s, a)ν(s′) + ν(s)] + E(s,a)∼dD [w(s, a)eν(s, a)− αf (w(s, a))]

14



770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Semi-gradient DICE for Offline Constrained Reinforcement Learning

We follow the same derivation from OptiDICE (Appendix A) to obtain the closed from solution of w∗(s, a) that satisfies
∂L(w,ν)
∂w(s,a) = 0. Since the term with initial distribution is independent to the maximization of w(s, a), its closed form solution
is equivalent to that of OptiDICE (22).

w∗
ν(s, a) = max

(
0, (f ′)−1

(
r(s, a) + γ

∑
s′ T (s

′|s, a)ν(s′)− ν(s)

α

))
We use the closed form solution w∗(s, a) to derive ν loss without the initial state distribution p0(s).

min
ν

∑
s,a

dD(s, a)

[
−γ
∑
s′

T (s′|s, a)ν(s′) + ν(s) + αf∗0

(
r(s, a) + γ

∑
s′ T (s

′|s, a)ν(s′)− ν(s)

α

)]
(33)

At this point, we apply the semi-gradient technique to neglect the gradients from ν(s′) and approximate Q(s, a) with
r(s, a) +

∑
s′ T (s

′|s, a)ν(s′). We note that the gradients ν(s′) were ignored both inside and outside the convex function
f∗0 (x).

LSemiDICE(ν) =
∑
s,a

dD(s, a)

[
ν(s) + αf∗0

(
Q(s, a)− ν(s)

α

)]
w∗(s, a) = max

(
0, (f ′)−1

(
Q(s, a)− ν(s)

α

))
The semi-gradient technique causes ν to lose its role as a Lagrangian multiplier that ensures the satisfaction of the Bellman
flow constraints of w∗(s, a)dD(s, a). Proposition 4.1 states that the optimal solution of SemiDICE is a policy correction
rather than a valid stationary distribution correction and we provide its proof in the following paragraph.

Proposition 4.1 The correction w∗(s, a) obtained by the optimal ν∗ = argminν EdD
[
ν(s) + αf∗0 (

Q(s,a)−ν(s)
α )

]
,

w∗(s, a) = max
(
0, (f ′)−1

(Q(s,a)−ν∗(s)
α

))
,

violates the Bellman flow constraint (1b) but satisfies the following conditions for w∗(s, a) to act as a policy correction:∑
a

w∗(s, a)πD(a|s) = 1, w∗(s, a) ≥ 0, ∀s, a.

Proof. The derivative of the ν loss LSemiDICE(ν) w.r.t. ν(s) is given as

∂LSemiDICE(ν)

∂ν(s)
=
∑
a

dD(s, a)

(
1− (f∗0 )

′
(
Q(s, a)− ν(s)

α

))
=
∑
a

dD(s, a)

(
1−max

(
0, (f ′)−1

(
Q(s, a)− ν(s)

α

)))
where (f∗0 )

′(x) = max(0, (f ′)−1(x)).

Due to the convexity of f∗0 (x), optimal w∗(s, a) = max
(
0, (f ′)−1

(
Q(s,a)−ν∗(s)

α

))
obtained from ν∗ that satisfies

∂LSemiDICE(ν)/∂ν = 0 satisfies the equality below.∑
a

dD(s, a) (1− w∗(s, a)) = 0∑
a

w∗(s, a)dD(s, a) =
∑
a

dD(s, a)∑
a

w∗(s, a)πD(a|s) = 1 ∀s

where state stationary distribution dD(s) is divided in each sides and
∑
a πD(a|s) = 1. This indicates that weighted

stationary distribution w∗(s, a)dD(s, a) is not a valid stationary distribution, while w∗(s, a)πD(a|s) is a policy, as its
marginal sum over actions is 1.
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f -DVL Based on the derivation of SemiDICE, we identify the optimal solution of f -DVL. ν loss of f -DVL Lf-DVL, is
simply derived from ν loss of SemiDICE by reweighting the terms with β instead of α. Lf-DVL and its optimal weight
w∗(s, a) is given as,

Lf-DVL(ν) =
∑
s,a

dD(s, a) [(1− β)ν(s) + βf∗0 (Q(s, a)− ν(s))]

w∗
f-DVL(s, a) = max

(
0, (f ′)−1 (Q(s, a)− ν(s))

)
We also show the property of the optimal w∗

f-DVL(s, a) from the derivative of Lf-DVL w.r.t. ν(s) given as,

∂Lf-DVL

∂ν(s)
=
∑
a

dD(s, a) (1− β + β(f∗0 )
′ (Q(s, a)− ν(s)))

=
∑
a

dD(s, a)
(
1− β + βmax

(
0, (f ′)−1 (Q(s, a)− ν(s))

))
=
∑
a

dD(s, a) (1− β + βw∗
f-DVL(s, a))

Optimal correction w∗
f-DVL is obtained from the optimal ν∗ that minimizes Lf-DVL.

β
∑
a

w∗
f-DVL(s, a)dD(s, a) = (1− β)

∑
a

dD(s, a) ∀s

∑
a

w∗
f-DVL(s, a)πD(a|s) =

1− β

β
∀s

This indicates that the weighted stationary distribution wf-DVL(s, a)dD(a, s) is not a valid stationary distribution, whereas
w∗

f-DVL(s, a)πD(a|s) represents a scaled policy. The weight from f -DVL, w∗
f-DVL(s, a), is a valid policy correction only

when λ = 0.5. While the invalidity of f -DVL as a policy correction does not impact its offline RL performance, it affects
our off-policy evaluation method within Section 5 as it requires a valid policy correction. Therefore, we adopt SemiDICE in
our formulation of CORSDICE.

B.2. Semi-gradient DICE algorithms that partially omits the gradient from the next state

We give a semi-gradient DICE algorithm that partially omits the gradient from the next state ν(s′): ODICE (Mao et al.,
2024b). ODICE is an offline RL algorithm built upon f -DVL where the gradient from the next state ν(s′) is projected to be
orthogonal to the gradient from the current state ν(s) rather than completely ignoring it.

ODICE We demonstrate how ODICE is derived by applying the orthogonal gradient approach to the following loss
function similar to ν loss of f -DVL:

min
ν

∑
s,a,s′

dD(s, a, s
′) [(1− β)ν(s) + βf∗0 (eν(s, a, s

′))] (34)

where eν(s, a, s′) = r(s, a) + γν(s′)− ν(s). Assuming ν is parameterized by θ, ODICE addresses the conflict between
two gradients within f∗0 (eνθ (s, a, s

′)): forward gradient gf and backward gradient gb.

gf = −(f∗0 )
′(eνθ (s, a, s

′))∇θνθ(s)

gb = γ(f∗0 )
′(eνθ (s, a, s

′))∇θνθ(s
′)

The paper claims that the backward gradient may cancel out the effect of the forward gradient, leading to a catastrophic
unlearning phenomenon. To address the conflicting gradient issue, the orthogonal gradients are applied to the second term
of (34).

∇θf
∗
0 (eνθ (s, a, s

′)) = gf + gb (35)

∇orthof
∗
0 (eνθ (s, a, s

′)) = gf + η

(
gb −

gTb gf
||gf ||2

gf

)
(36)
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Semi-gradient DICE for Offline Constrained Reinforcement Learning

where backward gradient is projected to be orthogonal to the forward gradient, and η is a hyperparameter that decides how
much the projected gradient is applied. (Mao et al., 2024b) shows that by setting η large enough, orthogonal gradient descent
can converge to the same point when full gradient is applied, the first term is an expectation over dataset distribution not an
expectation over initial state distribution. When (33)

Despite the strong RL performance of ODICE in offline RL, it struggles to converge to a valid stationary distribution
correction or policy correction. We identify three key reasons for this issue:

1. Difficulty in choosing an appropriate η: It is challenging to determine a sufficiently large η that ensures the equal
convergence point of orthogonal and full gradient descent.

2. Bias in the objective function: ODICE is based on the biased objective (34), where the expectation over the transition
probability T appears outside the convex function f∗0 (x). This implies that unless the transition probability is
deterministic for all states and actions, the biased objective cannot be directly related to the DICE objectives, where the
expectation over T inside f∗(x).

3. Mismatch in the gradients: In (34), the first term replaces the initial state distribution p0(s) with the dataset distribution
dD. This substitution can be interpreted as the application of a semi-gradient method, as demonstrated in the derivation
of SemiDICE from (33). Consequently, even if the second term of (34) is updated using its full gradient, neither
convergence to policy correction nor satisfaction of the Bellman flow constraints is guaranteed.

Figure 1 provides empirical evidence that ODICE generally fails to converge to either policy correction or stationary
distribution correction.

C. Relationship with Behavior Regularized MDP
In this section, we illustrate the close relationship between SemiDICE, SQL (Xu et al., 2022), and XQL (Garg et al., 2023),
all of which address the same Behavior Regularized MDP using different approximation methods. We first present the
optimal solution to the Behavior Regularized MDP introduced in (Xu et al., 2022) and elaborate on how practical algorithms
are derived from this solution. While SQL and XQL are restricted to specific f -divergences (Neyman χ2-divergence and
reverse KL divergence), SemiDICE is not limited to a specific f -divergence.

This can be considered an extension of the claim from (Sikchi et al., 2023)—that “XQL is an instance of semi-gradient DICE
with initial state distribution replacement, where the f -divergence is the reverse KL divergence”—though we extend this in a
different manner. Based on Section 4 and Appendix C, we show SemiDICE is an approximation of the behavior-regularized
RL.

C.1. Behavior Regularized MDP

We begin by considering the behavior regularized MDP introduced in (Xu et al., 2022):

max
π

E

[ ∞∑
t=0

γt
(
r(st, at)− αf

(
πD(at|st)
π(at|st)

))]
(37)

where the reward is penalized with the f -divergence between πD(a|s) and π(a|s). In prior works, Neyman χ2-divergence
(SQL) and reverse KL divergence (XQL) between πD(a|s) and π(a|s) were employed. We obtain an equivalent MDP by
replacing f(x) with g(x) = xf(1/x), as follows:

max
π

E

[ ∞∑
t=0

γt
(
r(st, at)− α

πD(at|st)
π(at|st)

f

(
π(at|st)
πD(at|st)

))]
(38)

This results in reversing the order of the f -divergence, where the reward is penalized with the corresponding f -divergence
between π(a|s) and πD(a|s).

Reverse relationship between f -divergences If Df (π||πD) is the f -divergence between π and πD, then Dg(π||πD)
characterized by g(x) = xf(1/x) is also an f -divergence and Df (π||πD) = Dg(πD||π). We first show g(x) is a valid
function for f -divergence if f(x) is valid. We list three properties that f(x) satisfies as a valid function for f -divergence.
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Semi-gradient DICE for Offline Constrained Reinforcement Learning

1. Convexity of f(x) in its domain:

• f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y), with 0 ≤ θ ≤ 1, ∀x, y ∈ dom f

2. f(1) = 0 and strict convexity of f(x) at 1

• If θx+ (1− θ)y = 1, f(1) = f(θx+ (1− θ)y) < θf(x) + (1− θ)f(y), with 0 ≤ θ ≤ 1, ∀x, y ∈ dom f

We show that g(x) = xf(1/x) also satisfies these properties by using the properties of f . We define c = θx+ (1− θ)y.

1. Convexity of g(x) in its domain:

• g(θx+ (1− θ)y) = cf(1/c) = cf( θxc
1
x + (1−θ)y

c
1
y ) ≤ θg(x) + (1− θ)g(y), with 0 ≤ θ ≤ 1, ∀x, y ∈ dom g

2. g(1) = 0 and strict convexity of g(x) at 1

• g(1) = f(1) = 0

• If c = 1, g(1) = f(1) = f( θx1
1
x + (1−θ)y

1
1
y ) < θg(x) + (1− θ)g(y), with 0 ≤ θ ≤ 1, ∀x, y ∈ dom g

As f -divergence characterized by g(x) is a valid f -divergence, we now show their reverse relationship.

Df (π||πD) :=
∑
s,a

πD(a|s)f
(
π(a|s)
πD(a|s)

)
=
∑
s,a

πD(a|s)
π(a|s)
πD(a|s)

f

(
πD(a|s)
π(a|s)

)
= Dg(πD||π)

C.2. Optimal solution of Behavior Regularized MDP

We provide a proof on Proposition 4.2 by deriving the optimal policy π∗(a|s), and its corresponding value functions for our
behavior regularized MDP (38). Following the derivations of (Xu et al., 2022), the policy evaluation operator T π

f of the
behavior regularized MDP is given by,

(T π
f Q)(s, a) := r(s, a) + γEs′∼T (·|s,a)[V (s′)]

V (s) = Ea∼π(·|s)
[
Q(s, a)− α

πD(a|s)
π(a|s) f

(
π(a|s)
πD(a|s)

)]

The policy learning objective can be expressed as maxπ Es∼dD [V (s)], whereD denotes the dataset distribution. Accordingly,
we formulate a convex optimization problem that optimizes policy π by solving maxπ Es∼D[V (s)], given Q(s, a) within
the dataset dD. We add the constraints to ensure the optimized policy π(a|s) is a valid policy.

max
π

∑
s,a

dD(s)π(a|s)Q(s, a)− α
∑
s,a

dD(s)πD(a|s)f
(
π(a|s)
πD(a|s)

)
s.t.

∑
a

π(a|s) = 1 ∀s, a

π(a|s) ≥ 0 ∀s, a

To solve the convex optimization problem, we derive the Lagrangian dual with Lagrangian multiplier U(s) and β(s, a) for
each policy constraints.

max
π

min
U,β≥0

L(π, U, β) =
∑
s,a

dD(s)π(a|s)Q(s, a)− α
∑
s

dD(s)πD(a|s)f
(
π(a|s)
πD(a|s)

)
−
∑
s

dD(s)
∑
a

U(s) (π(a|s)− 1)− β(s, a)π(a|s)
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Semi-gradient DICE for Offline Constrained Reinforcement Learning

The KKT conditions of the problem are as follows,

π∗(a|s) ≥ 0, ∀s, a and
∑
a

π∗(a|s) = 1, ∀s

β∗(s, a) ≥ 0, ∀s, a
β∗(s, a)π∗(a|s) = 0, ∀s, a

Q(s, a)− αf ′
(
π∗(a|s)
πD(a|s)

)
− U∗(s)− β∗(s, a) = 0, ∀s, a (39)

Due to the sationarity condition (39), the optimal policy correction w∗(a|s) given U∗(s) is

π∗(a|s) = max

(
0, (f ′)−1

(
Q(s, a)− U∗(s)

α

))
πD(a|s), ∀s, a (40)

We emphasize that the optimality of U∗(s) is independent to the optimality of Q(s, a). Even if Q(s, a) is not equivalent
to the optimal Q∗(s, a) of (38), π∗(a|s) derived from U∗(s) is still a valid policy correction, due to the role of U(s) as
Lagrangian multiplier.

To formulate a loss function solely on U(s), we switch the order of optimization based on strong duality
(maxπminU,β≥0 L(π, U, β) = minU,β≥0 maxπ L(π, U, β)). Slater’s condition for the strong duality is easily satis-
fied as there exists a policy that satisfies π(a|s) > 0,∀s, a. We then insert the optimal solutions π∗(a|s) and β∗(s, a) into
L(π, U, β) which results in:

min
U

L(π∗, U, β∗) =
∑
s

dD(s)

[
U(s) +

∑
a

π∗(a|s)(Q(s, a)− U(s))− α
∑
a

πD(a|s)f
(
π∗(a|s)
πD(a|s)

)]

= E(s,a)∼dD

[
U(s) + αf∗0

(
Q(s, a)− U(s)

α

)]
(41)

The optimal Lagrangian dual L(π∗, U∗, β∗) is equivalent to the optimal solution V ∗(s) = maxπ Es∼D[V (s)] given Q(s, a).

V ∗(s) = U∗(s) + Ea∼πD(·|s)

[
αf∗0

(Q(s, a)− U∗(s)

α

)]
, ∀s

Proposition 4.2 Therefore, in the behavior regularized MDP (38), the optimal value functions Q∗(s, a) and V ∗(s) and its
corresponding optimal policy π∗ satisfy the following optimality conditions for all states and actions.

U∗(s) = argmin
U(s)

U(s) + Ea∼πD(·|s)

[
αf∗0 (

Q∗(s, a)− U(s)

α
)

]
(42a)

V ∗(s) = U∗(s) + Ea∼πD(·|s)

[
αf∗0 (

Q∗(s, a)− U∗(s)

α
)

]
(42b)

Q∗(s, a) = r(s, a) + γEs′∼T (·|s,a)[V
∗(s′)] (42c)

π∗(a|s) = max

(
0, (f ′)−1

(
Q∗(s, a)− U∗(s)

α

))
πD(a|s) (42d)

We now demonstrate how the optimal solution of the behavior regularized MDP (42) is approximated by SemiDICE and
SQL. We also demonstrate a special case, XQL, that does not require any approximation.

Approximation in SemiDICE We show that SemiDICE approximates the optimal solution of the behavior-regularized
MDP (42) by eliminating V and approximating V ∗ with U∗, i.e., V ∗(s) ≈ U∗(s). To elaborate, we give the loss functions
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and the optimal policy of SemiDICE.

min
ν

E(s,a)∼dD

[
ν(s) + αf∗0

(
Q∗(s, a)− ν(s)

α

)]
(43a)

min
Q

E(s,a)∼dD

[
(r(s, a) + γν(s′)−Q(s, a))

2
]

(43b)

π∗(a|s) = max

(
0, (f ′)−1

(
Q∗(s, a)− ν∗(s)

α

))
πD(a|s) (43c)

where U∗ of the behavior regularized MDP (42a) and ν∗(s) of (43a) are equivalent as they converge to same value given
Q(s, a). SemiDICE omits the computation of V (42b) and uses only ν to update Q, which is equivalent to approximating
Ea∼πD(·|s)

[
αf∗0 (

Q∗(s,a)−U∗(s)
α )

]
with 0. This indicates that optimal Q∗(s, a) of SemiDICE is an approximation of optimal

Q∗(s, a) of behavior regularized MDP. However, we emphasize that (43c) is still a valid policy correction as optimization
on ν acted equivalently to the Lagrangian multiplier U that ensures the satisfaction of policy constraints.

Approximation in SQL We show that SQL approximates the optimal solution of the behavior-regularized MDP (42) by
eliminating U and approximating U∗ with V ∗, i.e., U∗(s) ≈ V ∗(s) − α. Before describing the approximation, we first
apply the f -divergence used in SQL to the behavior regularized MDP (42): Neyman χ2-divergence between πD(a|s) and
π(a|s) (g(x) = 1/x+ 1), which is equivalent to χ2-divergence between π(a|s) and πD(a|s) (f(x) = x2 − x).

π∗(a|s) = max

(
0,

1

2
+
Q∗(s, a)− U∗(s)

2α

)
πD(a|s) (44a)

U∗(s) = argmin
U(s)

U(s) + Ea∼πD(·|s)

[
αmax

(
0,

1

2
+
Q∗(s, a)− U(s)

2α

)(
1

2
+
Q∗(s, a)− U(s)

2α

)]
(44b)

V ∗(s) = U∗(s) + Ea∼πD(·|s)

[
αmax

(
0,

1

2
+
Q∗(s, a)− U∗(s)

2α

)(
1

2
+
Q∗(s, a)− U∗(s)

2α

)]
(44c)

Q∗(s, a) = r(s, a) + γEs′∼T (·|s,a)[V
∗(s′)] (44d)

where f∗0 (y) = max
(
0, 1+y2

) (
1+y
2

)
. By applying (44a) to (44c), the following equality is satisfied:

V ∗(s) = U∗(s) + αEa∼πD(·|s)

[(
π∗(a|s)
πD(a|s)

)2
]
≈ U∗(s) + α

where the second term is approximated to α in SQL. The approximation leads to the replacement of U(s) within (44b) with
V (s)− α, which leads to the loss functions and the optimal policy of SQL given by:

min
V

E(s,a)∼dD

[
V (s) + αmax

(
0, 1 +

Q∗(s, a)− V (s)

2α

)(
1 +

Q∗(s, a)− V (s)

2α

)]
min
Q

E(s,a)∼dD

[
(r(s, a) + γν(s′)−Q(s, a))

2
]

π∗(a|s) = max

(
0, 1 +

Q∗(s, a)− V ∗(s)

2α

)
πD(a|s)

However, the approximation causes V (s) of SQL to converge to U∗(s) + α from U∗(s) (44b), rather than V ∗(s) (44c). We
introduce two special cases where the equality between U∗(s) + α = V ∗(s) is satisfied.

Special case in XQL We show that XQL converges to the optimal solution of the behavior-regularized MDP with
reverse KL divergence betweeen πD and π (g(x) = − log x), which is equivalent to KL-divergence between π and πD
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(f(x) = x log x). We apply the f -divergence to the behavior regularized MDP (42):

π∗(a|s) = exp

(
Q∗(s, a)− U∗(s)

α
− 1

)
πD(a|s) (45a)

U∗(s) = argmin
U(s)

U(s) + Ea∼πD(·|s)

[
α exp

(
Q∗(s, a)− U(s)

α
− 1

)]
(45b)

V ∗(s) = U∗(s) + Ea∼πD(·|s)

[
α exp

(
Q∗(s, a)− U∗(s)

α
− 1

)]
(45c)

Q∗(s, a) = r(s, a) + γEs′∼T (·|s,a)[V
∗(s′)] (45d)

where f∗0 (y) = exp (y − 1). By applying (45a) to (45c), the following equality is satisfied:

V ∗(s) = U∗(s) + αEa∼πD(·|s)

[
π∗(a|s)
πD(a|s)

]
= U∗(s) + α

where the approximations of the previous algorithms are not required. The loss functions and the optimal policy of XQL are
obtained by substituting U(s) with V (s)− α:

min
V

E(s,a)∼dD

[
V (s) + α exp

(
Q(s, a)− V (s)

α

)]
min
Q

E(s,a)∼dD

[
(r(s, a) + γν(s′)−Q(s, a))

2
]

π∗(a|s) = exp

(
Q∗(s, a)− V ∗(s)

α

)
πD(a|s)

While XQL solves the behvaior regularized MDP with no approximation, the exponential term within V loss makes the
algorithm prone to divergence. While the instability can be avoided by adopting high α, the regularization becomes to strong
and causes its performance of π to be bound to πD.

C.3. Proof on SemiDICE avoiding the sparsity problem

We show SemiDICE and other behavior-regularized does not suffer from the sparsity problem OptiDICE suffers by providing
the proof below:

Corollary 4.3 Let w∗ be the correction optimized by running SemiDICE. There is no state s where w∗(s, a) = 0 ∀a.

Proof. Assume there exists a state s whose w∗(s, a) = 0 ∀a. The assumption contradicts
∑
a w

∗(s, a)πD(a|s) = 1 ∀a as∑
a w

∗(s, a)πD(a|s) = 0 in the state s, therefore SemiDICE does not suffer from the sparsity problem.

D. State stationary distribution extraction
In this section, we provide a detailed derivation on state stationary extraction (Extraction), where we obtain state stationary
distribution correction w(s) induced by policy correction w(a|s). After obtaining w(s), stationary distribution d(s, a) =
w(s)w(a|s)dD(s, a) can be utilized for off-policy cost evaluation in offline constrained RL.

E(s,a)∼d[c(s, a)] = E(s,a)∼dD [w(s)w(a|s)c(s, a)]

We formulate a novel convex optimization problem whose optimal solution corresponds to the state stationary distribution
ratio, w(s). We assume that the policy correction, w(a|s), is given:

max
w(s)≥0

−
∑
s

dD(s)f (w(s)) (46a)

s.t. w(s)dD(s) = (1− γ)p0(s) + γ(T∗dw)(s) ∀s (46b)

where (T∗dw)(s) :=
∑
s̄,ā T (s | s̄, ā)w(s̄)w(ā|s̄)dD(s̄, ā).
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Regardless of the objective, the |S| Bellman flow constraints in the problem is sufficient to uniquely determine w(s).
However, the f -divergence between w(s)dD(s) and dD(s) introduces convexity into optimization, enabling the application
of convex optimization and efficient sample-based optimization.

The Lagrangian dual of the problem, with Lagrange multipliers µ(s) for the constraint (46b), is given as:

max
w(s)≥0

min
µ

L(w, µ) := −
∑
s

dD(s)f (w(s)) +
∑
s

µ(s) ((1− γ)p0(s) + γ(T∗dw)(s)− w(s)dD(s))

=
∑
s

(1− γ)p0(s)µ(s) +
∑
s,a

dD(s, a)

(
w(s)w(a|s)

(
γ
∑
s′

T (s′|s, a)µ(s′)− µ(s)

)
− f(w(s))

)
(47)

= (1− γ)Es0∼p0 [µ(s0)] + E(s,a)∼dD [w(s)w(a|s)eµ(s, a)− f (w(s))] (48)

where eµ(s, a) = γ
∑
s′ T (s

′|s, a)µ(s′)− µ(s), and (47) is derived by using the following equality:∑
s

µ(s)(T∗dw)(s)) =
∑
s

µ(s)
∑
s̄,ā

T (s|s̄, ā)w(s̄)w(ā|s̄)dD(s̄, ā)

=
∑
s′

µ(s′)
∑
s,a

T (s′|s, a)w(s)w(a|s)dD(s, a)

=
∑
s,a

w(s)w(a|s)dD(s, a)
∑
s′

T (s′|s, a)µ(s′)

Following the assumption of OptiDICE, the strong duality holds by satisfying Slater’s condition, which enables the
optimization order to be switched as shown below:

max
w(s)≥0

min
µ

L(w, µ) = min
µ

max
w≥0

L(w, µ)

The reordering enables inner maximization over w(s), whose optimal solution satisfies ∂L(w,µ)
∂w(s) = 0 ∀s. Optimal w∗

µ(s) can
be expressed in a closed form in terms of µ.

w∗
µ(s) = max(0, (f ′)−1(Ea∼πD [w(a|s)eµ(s, a)])) (49)

When w∗
µ(s) is plugged into the dual function (48), µ loss of Extraction is expressed as,

min
µ

Lext(µ) := (1− γ)Es0∼p0 [µ(s0)] + Es∼dD [f∗0 (Ea∼πD [w(a|s)eµ(s, a)])] (50)

However, sample-based optimization on minµ Lext(µ) is challenging due to the existence of expectations over the transition
probability T within eµ(s, a) and the dataset policy πD inside the convex function f∗0 (x). Using a naive single-sample
estimate such as E(s,a,s′)∼dD [f∗0 (w(a|s) (γµ(s′)− µ(s)))] results in significant bias.

To circumvent this bias issue, we propose a simple bias reduction technique by incorporating an additional function
approximator, A(s), to estimate the expectation inside f∗0 (·). We then decompose the µ optimization of (50) into the
following optimizations on A and µ, which share the same optimal solution of µ:

min
A

E(s,a,s′)∼dD

[(
A(s)− w(a|s)êµ(s, s′)

)2]
(51a)

min
µ

L̃ext(µ) := (1− γ)Es0∼p0 [µ(s0)] + E(s,a,s′)∼dD [(f∗0 )
′(A(s))w(a|s)êµ(s, s′)] , (51b)

where êµ(s, s′) = γµ(s′)− µ(s).

Proposition 5.1 Minimization of the objectives in (50) results in the same optimal µ∗ as in (51).
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Proof. We show optimal A∗(s) of (51a) given µ.

A∗(s) = E(a,s′)∼dD [w(a|s) (êµ(s, s′))]
= Ea∼πD [w(a|s)Es′∼T [êµ(s, s

′)]]

= Ea∼πD [w(a|s)eµ(s, a)], ∀s

For simplicity in expression, we assume µ(s) is parameterized by θ. We show the gradient of Lext(µθ) and L̃ext(µθ) are the
same given A∗(s) = Ea∼πD [w(a|s)eµθ (s, a)].

∂

∂θ
Lext(µθ) =

∂

∂θ
L̃ext(µθ)

We compare the gradients of the second term of Lext(µθ) and L̃ext(µθ)

∂

∂θ
(Es∼dD [f∗0 (Ea∼πD [w(a|s)eµθ (s, a)])]) = Es∼dD

[
(f∗0 )

′(A∗(s))
∂Kµθ (s)

∂θ

]
= Es∼dD

[
(f∗0 )

′(A∗(s))Ea∼πD
[
w(a|s)∂(γµθ(s

′)− µθ(s))

∂θ

]]
= E(s,a)∼dD

[
(f∗0 )

′(A∗(s))w(a|s)∂(γµθ(s
′)− µθ(s))

∂θ

]
=

∂

∂θ

(
E(s,a)∼dD [(f∗0 )

′(A∗(s))w(a|s)êµθ (s, s′)]
)

where Kµθ (s) = E(a,s′)∼dD [w(a|s) (γµθ(s′)− µθ(s))], and ∂Kµθ (s)

∂θ = E(a,s′)∼dD

[
w(a|s)∂(γµθ(s

′)−µθ(s))
∂θ

]
. The equiva-

lence leads to ∂
∂θ L̃ext(µθ) =

∂
∂θLext(µθ). Therefore, minimization of (50) results in the same optimal µ∗ as in (51).

After the optimization on A and µ, the state stationary distribution correction w(s), corresponding to policy correction
w(a|s), is obtained by substituting A∗(s) into (49),

w(s) = max
(
0, (f ′)−1(A∗(s))

)
, ∀s

E. D-CORSDICE
In Section 6.3.1, we introduced an extended verion of CORSDICE, which utilizes diffusion (Ho et al., 2020; Yang et al.,
2020)-based policy to compare against other baselines that adopts advanced function approximators for actor. While the
most of implementation follows that of D-DICE (Mao et al., 2024a), we re-state the objective function and architectural
choices for the completeness.

The main contribution of D-DICE was to introduce two way of utilizing a diffusion model in DICE framework, namely
guide and select. Given the pre-trained behavior cloning diffusion model, guide method, as the name suggests, guides the
denoising process of stochastic differential equation (SDE)-based diffusion models with the learned correction w(a0 | s):

∇at log πt(at | s) = ∇at log π
D
t (at | s) + τ · ∇at logEa0∼πD(a0|at,s)[w(a0 | s)]

where τ is a hyperparameter for scaling the guidance score, πD is a behavior cloned model, and t is a timestep of denoising
process, not MDP. Note that the compared to Eq. (6) in (Mao et al., 2024a), the stationary distribution correction is
replaced with the policy correction. This is because, while D-DICE stated using stationary distribution correction to guide
the diffusion model, what actually used was the policy correction, as they are using semi-gradient DICE methods and
semi-gradient DICE methods extract policy correction 4.1. However, this error does not invalidate the original D-DICE, as
the relationship π∗(a | s) = w(a | s)πD(a | s), still holds.

In select period, with the guided sampling, we sample multiple actions for a given state. Then, utilizing a learned Q function
from semi-gradient DICE method, we can choose a greedy action that maximizes Q-value. Two methods combined, they
are called guide-then-select method, and we adopted this method accordingly.
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E.1. Choice of f -divergence

As stated in D-DICE (Mao et al., 2024a), the choice of f -divergence affects the stability of training diffusion model. We
used Soft-χ2 divergence, introduced in OptiDICE (Lee et al., 2021a) and defined as:

fsoft-χ2(x) :=

{
1
2 (x− 1)2 x ≥ 1

x log x− x+ 1 0 ≤ x < 1

D-DICE used slightly different version of f , where x ≥ 1 part is replaced with (x− 1)2. Since the difference was minor,
we used the Soft-χ2 as we did in the non-diffusion CORSDICE experiment.

E.2. Choice of Diffusion Model

We used SDE-based diffusion model (Yang et al., 2020), where the forward process is defined as:

dx = f(x, t)dt+ g(t)dw

where x0 ∼ p0 and w is a Brownian motion. (Yang et al., 2020) demonstrated that given an arbitrary drift coefficient
f(·, t) : Rd → R and a diffusion coefficient g(·) : R → R, there exists an corresponding reverse process of generating
samples from the noisy data.

While the choice of drift and diffusion coefficients can be arbitrary, we adopt the Variance Preserving (VP) SDE proposed
in (Yang et al., 2020) with the linear noise scheduling, given by:

dx = −1

2
β(t)xdt+

√
β(t)dw

β(t) = βmin + t(βmax − βmin)

For the choice of hyperparameters and network architecutres, please refer to Appendix G.

F. Details of Section 6.1
F.1. Finite MDP experiment

We validate our algorithm SemiDICE and Extraction by following the experimental protocol of (Laroche et al., 2019; Lee
et al., 2020). We repeat the experiment for 300 times and average the reults. In each run, an MDP with |S| = 30, |A| =
4, γ = 0.95 is randomly generated. Initial probability p0(s) is set to be deterministic for a fixed state. We set there are four
possible next states for each state-action pairs, and generate transition probability T (s′|s, a) from Dirichlet distribution
[p(s1|s, a), p(s2|s, a), p(s3|s, a), p(s4|s, a)] ∼ Dir(1, 1, 1, 1) for every state-action pairs (s, a). The reward of 1 is given to
a state a single goal state that minimizes the optimal state value at the initial state; other states have zero rewards.

Assuming an offline setting, the dataset policy πD(a|s) is obtained by the mixture of optimal policy π∗ of the gen-
erated MDP and uniformly random policy πunif, where πD(a|s) = 0.5π∗(a|s) + 0.5πunif(a|s) ∀s, a. Then 30 tra-
jectories are collected using the generated MDP and the dataset policy πD(a|s). Finally, we construct MLE MDP
M̂ = ⟨S,A, Tmle, r, p0, γ⟩ using the offline dataset, then test the following algorithms: four DICE-based RL algo-
rithms (OptiDICE, SemiDICE, f-DVL, ODICE), two behvaior-regularized RL algorithms (SQL, XQL), and Extraction,
which applies the state stationary distribution extraction method to SemiDICE. We test the four algorithms (OptiDICE,
SemiDICE,SQL, XQL) over 6 different α ∈ {0.0001, 0.001, 0.01, 0.1, 1.0, 10.0} and two algorithms (f-DVL, ODICE)
over 6 different β ∈ {0.1, 0.3, 0.5, 0.7, 0.9, 0.99}. Additional hyperparameter for ODICE is set to η = 1.0. We note Ex-
traction does not require any hyperparameters. For the choice of f -divergence, we adopt χ2-divergence (f(x) = 1

2 (x−1)2)
for SemiDICE and KL-divergence(f(x) = x log x) for state stationary distribution extraction. We note that state stationary
distribution extraction returns the same w(s) regardless of the choice of the f -divergence.

Offline RL policies from different algorithms are evaluated in three criteria, policy performance ρ(π), violation of the
Bellman flow constraint, and violation of the policy correction constraint. Policy performance ρ(π) is a return collected by
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actually running the offline RL policy on the generated MDP. The violations are quantified using the L1-norm:

violB. F. =
∑
s

|(1− γ)p0(s) + γ(T∗dw)(s)− (B∗dw)(s)| ,

violP. C. =
∑
s

∣∣∣∑
a

w(s, a)πD(a|s)− 1
∣∣∣.

F.2. Offline RL performance in continuous domain

In this paper, we have described the close relationship between SemiDICE, semi-gradient DICE algorithms (f-DVL,
ODICE), and behavior-regularized RL algorithms (SQL). We demonstrate that their similarities are also reflected in their
practical performance, as they achieve comparable results in continuous domains. We also present the results of OptiDICE,
which shows limited performance compared to the recent semi-gradient DICE mdthods. We evaluate the performance of the
algorithms on D4RL benchmarks (Fu et al., 2020), with fixed hyperparameters as α = 1 and β = 0.5.

Task SemiDICE f-DVL ODICE SQL OptiDICE
hopper-medium 66.2 63.0 86.1 74.5 46.4
walker2d-medium 83.4 80.0 84.9 65.3 68.1
halfcheetah-medium 44.7 47.7 47.4 48.7 45.8
hopper-medium-replay 73.8 90.7 99.9 95.5 20.0
walker2d-medium-replay 55.0 52.1 83.6 38.2 17.9
halfcheetah-medium-replay 41.7 42.9 44.0 44.2 31.7
hopper-medium-expert 110.4 105.8 110.8 106.3 51.3
walker2d-medium-expert 109.0 110.1 110.8 110.2 104.0
halfcheetah-medium-expert 93.03 89.3 93.2 39.3 59.7

G. Experiment Detail in Continuous Domain
G.1. Computational Cost

To enable end-to-end training of CORSDICE and baselines, we implemented them in JAX (Bradbury et al., 2018). Utilizing
automatic vectorization and just-in-time (JIT) compilation, training CORSDICE for 5 seeds and 5 hyperparameter values over
one million gradient update steps took approximately wall-clock time of 5,000 seconds, where the time for training single
agent is approximately 200 seconds on a single RTX 3090 GPU. For D-CORSDICE, the pre-training of diffusion-based BC
agent took about 2,000 seconds on a single RTX 3090 GPU.

G.2. Evaluation Protocol

Following DSRL, we evaluate the models with 3 different cost limits. Returns are normalized by the dataset’s empirical
maximum, and costs by the threshold, where a normalized cost below 1 indicates a safe agent. We increased the training
seeds from 3 to 5 and gradient updates from 105 steps to 106 steps to ensure baseline convergence. As in DSRL, we
prioritize cost-satifying, safe agents over return-maximizing, unsafe ones. We reported the highest return among safe agents,
or if none exist, the return of the least-violating unsafe agents.

For experiments with advanced model, we evaluate algorithms using a single, tighter cost threshold—10 for harder
Safety-Gymansium tasks, and 5 for others—averaging results over 3 seeds and 20 episodes.

Cost Limits Following the process of DSRL (Liu et al., 2024), we evaluated the models with 3 different cost limits.
For Safety-Gymansium (Ji et al., 2023), cost limits of 20, 40, and 80 were used. For other two environments, Bullet-
Gym (Gronauer, 2022) and MetaDrive (Li et al., 2022), we used cost limits of 10, 20 and 40.

Adjustment of Cost Limit While the objective of constrained RL (7) assumes discounted MDP, the actual evaluation is
performed with undiscounted sum of costs. This misalignment between the training objective and the evaluation protocol
can be remedied by adjusting the cost limit accordingly:

Cγ = C̃lim ·
(
1− γH+1

)
H

25



1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429

Semi-gradient DICE for Offline Constrained Reinforcement Learning

where H is the horizon of the episode. The adjusting coefficient can be derived by assuming the cost function is constant,
and this adjustment is also used in DSRL (Liu et al., 2024).

G.3. Hyperparameters

We used tanh-squashed Gaussian distribution to model the actor, and regular linear layers with ReLU activations (except for
the last layer) for critic networks. Following ReBRAC (Tarasov et al., 2024), we utilized Layer Normalization (Ba et al.,
2016) in our critic networks. All networks were trained with Adam (Kingma, 2014) optimizers, with the initial learning rate
was set to 3e−4 and scheduled with cosine decay.

In case of D-CORSDICE, we used U-Net (Ronneberger et al., 2015) to train the score model ϵθ where convolutional layers
are replaced with regular linear layers, a common choice in diffusion-based RL (Hansen-Estruch et al., 2023; Mao et al.,
2024a). For sampling actions, we used DPM-solver (Lu et al., 2022) and their suggested configuration for sampling from
conditional distribution. For training score model, AdamW (Loshchilov & Hutter, 2017) with weight decay of 1e−4 was
used.

We used random search to optimize the hyperparameter for DSRL (Liu et al., 2024) experiment, except for D-CORSDICE
where grid search were used to determine the number of actions sampled during inference and the scale of guidance score.
Common hyperparameters and their search ranges are summarized in Table 4.

Table 4. Hyperparameters for DSRL (Liu et al., 2024) experiments.

HYPERPARAMETERS SAFETYGYM BULLETGYM METADRIVE

DISCOUNT FACTOR γ 0.99 0.99 0.99
BATCH SIZE 256 256 256
SCORE BATCH SIZE 2048 2048 2048
SOFT UPDATE τ 5e−4 5e−4 5e−4

LEARNING RATES 3e−4 3e−4 3e−4

ACTOR HIDDEN DIMS [256, 256] [256, 256] [256, 256]
CRITIC HIDDEN DIMS [256, 256] [256, 256] [256, 256]
VAE HIDDEN DIMS [400, 400] [400, 400] [400, 400]
SCORE RESIDUAL BLOCKS 6 6 6
SCORE TIME EMBEDDING DIMS 32 32 32
SCORE CONDITIONAL EMBEDDING DIMS 128 128 128

DICE α RANGES [0.001, 1.0] ∪ {2.0, 5.0} ∪ [10.0, 50.0]
GUIDANCE SCALE VALUES [1.0, 2.0, 4.0] [1.0, 2.0, 4.0] [1.0, 2.0, 4.0]
NUMBER OF INFERENCE ACTIONS VALUES [1, 32, 64, 128] [1, 32, 64, 128] [1, 32, 64, 128]

H. Additional Experiment Results
H.1. Ablation Studies on the Cost Sensitivity

Effective offline constrained reinforcement learning (RL) should exhibit predictable performance across different cost limits.
Ideally, as the cost limit decreases, the algorithm should utilize fewer costs while maintaining minimal declines in return.
Figure 2 summarizes these results. Our method, CORSDICE, demonstrated this predictable behavior, effectively using
lower costs as the cost limit decreased. In contrast, other baseline methods exhibited inconsistent behavior, sometimes even
incurring higher costs despite stricter cost constraints.

H.2. Additional Experiments on Off-Policy Evaluation

We performed additional experiment to test the off-policy evaluation performance of our extraction method for different
regularization strength α ∈ {1, 2, 5}. The results are summarized in Figure 3. Our extraction method consistently reduces
the RMSE, regardless to the choice of α.
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Figure 2. Ablation on the sensitivity of constrained RL algorithms on 3 different cost limits. While CORSDICE shows consistent and
predictable behaviors, other baselines were inconsistent.

H.3. Learning Curves on Partial Environments

We included the learning curves of CORSDICE, including some of the baselines, to compare the convergence speed and
stability on four environments, summarized in Figure 4.
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Figure 3. Root mean squared error (RMSE) of off-policy evaluation of SemiDICE policy, with different hyperparameters α. Our extraction
method is robust to the choice of α,
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Figure 4. Early learning curves of CORSDICE and baselines on four Safety Gymnasium (Liu et al., 2024) tasks, cost limits set to 40. Our
method, CORSDICE, shows fast and stable convergence.
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