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ABSTRACT

Recent advances in pre-training vision-language models like CLIP (Radford et al.,
2021) have shown great potential in learning transferable visual representations.
Nonetheless, for downstream inference, CLIP-like models suffer from either 1)
degraded accuracy and robustness when inferring by retrieving textual class names
(the zero-shot protocol); or 2) breaking the well-established vision-language
alignment (linear probing). To combine the best of both worlds, we propose
Decomposed Feature Prompting (DeFo). DeFo maintains the dual-model archi-
tecture yet leverages learnable embeddings as textual input and performs classi-
fication with an additional linear layer. As a result, we find DeFo to be able to
extract decomposed visual features with the help of textual prompts and to allow
a scalable size of language inputs. Our empirical study shows DeFo’s significance
in improving the vision-language models. For example, DeFo obtains 73.2% test
accuracy on ImageNet with a ResNet-50 backbone without tuning any pretrained
weights of both the vision and language encoder, outperforming zero-shot CLIP
by a large margin of 15.0%, and outperforming state-of-the-art vision-language
prompt tuning by 7.6%.

1 INTRODUCTION

Language-guided visual pretraining has gained a lot of attention and shows great promise in learning
transferable image representations. By establishing a connection between images and natural lan-
guage, recent vision-language models are able to turn visual inference over a restricted number of
classes into zero-shot open-vocabulary inference (Radford et al., 2021; Jia et al., 2021; Pham et al.,
2021).

One of the recent successes for zero-shot inference is the contrastive language-image pretraining
(CLIP) model (Radford et al., 2021). It uses 400 million image-text pairs to learn an alignment
between visual and textual representations obtained from a vision encoder and a language encoder
respectively. In downstream applications, CLIP-like models (Radford et al., 2021; Jia et al., 2021;
Pham et al., 2021) then perform zero-shot inference by hard-target retrieval, i.e., they directly
compute the distance between a vectorial image representation obtained from the vision encoder,
and representations of text prompts (e.g., “a photo of an airplane” or “a photo of an automobile”)
obtained from the language encoder. The target class (e.g., “airplane” or “automobile”) correspond-
ing to the text prompt with the smallest distance to the vector representing the image constitutes
the zero-shot inference result. When annotations are given, simple linear probing (i.e., removing
the language encoder, fine-tuning of the vision encoder and training of a classifier on top of the
vision encoder) further improves the results (Radford et al., 2021). Moreover, context optimization
(CoOp) (Zhou et al., 2021) replaces the hand-crafted prefix or suffix (e.g., “a photo of a”) of the text
prompts by trainable embedding vectors.

However, the zero-shot CLIP and CoOp infer using hard textual targets, i.e., the class names, which
results in two main challenges. First, class names in text prompts (e.g., “airplane” or “automo-
bile”), as used in zero-shot CLIP and CoOp inference, do not permit to accurately summarize the
semantic information of an image. Therefore, inference is very sensitive to the words chosen for
class names. We refer to this challenge as expressive sensitivity. Empirically, this challenge causes
zero-shot CLIP and CoOp to struggle to achieve as competitive results as linear probing with the
same image encoder when downstream training data is available (e.g., 58.2% accuracy vs. 72.3%
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on ImageNet (Deng et al., 2009)). Moreover, this sensitivity can be observed by modifying class
names. Fore example, for zero-shot inference on CIFAR-10 (Krizhevsky et al., 2009), CLIP ob-
tains an accuracy of 63.7% when the original class names are used. Notably, simply replacing or
extending the class names with suitable synonyms1 (e.g., “plane” and “car” rather than “airplane”
and “automobile”) can improve accuracy to 79.6%, which highlights the challenge of expressive
sensitivity.

Second, despite the fact that hundreds of millions of pretraining samples cover a large number of
concepts that can possibly appear in downstream datasets, zero-shot inference continues to struggle
to recognize rare objects. We refer to this as the conceptual sensitivity. For example, zero-shot
CLIP is only 38.5% accurate when classifying EuroSAT satellite images (Helber et al., 2019), which
is much lower than the result of a supervised ResNet-50 (He et al., 2016) encoder (93.4%). Also,
zero-shot CLIP with a ResNet-50 encoder achieves less than 90% accuracy on MNIST (LeCun,
1998), which can even be outperformed by a simple logistic regression model. While linear probing
is a straightforward way to improve results, removing of the language encoder breaks the vision-
language alignment that is learned from the pretraining data, and therefore degrades few-shot and
transfer learning performance.

In this paper, we propose Decomposed Feature Prompting (DeFo), which turns the hard-target-
retrieval paradigm of CLIP and CoOp into dual-model feature prompting. Specifically, DeFo 1)
provides to the language encoder a set of learnable embedding sequences which are independent of
the hard semantic targets; and 2) performs classification by tuning an additional layer. As a result,
DeFo does not rely on the textual representations of class names being classification targets, which
addresses the issues of expressive sensitivity and conceptual sensitivity. Meanwhile, DeFo main-
tains the dual-model architecture, which enables the model to leverage the language information, so
that few-shot and transfer learning performance can be boosted.

DeFo results show the significance of addressing the sensitivity challenges of CLIP-like models.
For example, with a ResNet-50 backbone, DeFo achieves 73.2% test accuracy on ImageNet without
modifying any pretrained weight of the image and text encoders, outperforming vanilla CLIP by
a large margin of 15.0% and outperforming CoOp by 7.6%. In a variety of visual contexts, DeFo
attains an average accuracy of 79.9% over 11 image classification benchmarks, which is 21.0%
higher than that of zero-shot CLIP and 6.2% higher than CoOp.

2 RELATED WORK

Pretraining-finetuning has long been a dominant paradigm of transfer learning in machine learning,
computer vision, and natural language processing. Generally, pretraining a vision encoder by gener-
ative objectives (Bao et al., 2021; He et al., 2022) or discriminative objectives (He et al., 2020; Chen
et al., 2020; Grill et al., 2020; Caron et al., 2021) at the scale of one to ten million images (Deng
et al., 2009) is sufficient to yield good visual representations and strong predictive performance in
downstream visual tasks. However, without the supervision from other modalities, such pretrained
models require task-specific finetuning (Bao et al., 2021; He et al., 2022; O Pinheiro et al., 2020;
Wang et al., 2022a; Lin et al., 2022a) or linear probing He et al. (2020); Chen et al. (2020) for
reasonably domain-adapted predictions.

The contrastive language-image pretraining (CLIP) (Radford et al., 2021) method instead jointly
pretrains a vision encoder and a text encoder on 400 million curated image-text pairs, with a con-
trastive objective (Gutmann & Hyvärinen, 2010) that matches the visual and textual representations.
In downstream applications, CLIP achieves competitive results in various vision or vision-language
tasks such as image classification (Zhou et al., 2021; Gao et al., 2021), dense prediction (Rao et al.,
2022), video-language tasks (Luo et al., 2021; Lin et al., 2022b; Wang et al., 2022b), image manip-
ulation (Patashnik et al., 2021), and multimedia event extraction (Li et al., 2022).

Following the success of CLIP, the ALIGN (Jia et al., 2021) model leverages a noisy dataset of 1.8
billion image-text pairs to scale up vision-language representation learning, and the BASIC (Pham
et al., 2021) model further scales up this approach in terms of data and model size. Based on the
success of CLIP-like vision-language pretraining, a series of follow-up inference approaches are
proposed to improve classification results. For example, Zhou et al. (2021) propose CoOp to learn

1We use WordNet (Fellbaum, 2010) to find synonyms.
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context information in downstream datasets, and Gao et al. (2021) propose CLIP-Adapter to learn
domain-adaptation for vision-language models. Further, following CoOp, Zhou et al. (2022) propose
CoCoOp to enhance the performance in unseen classes; and similarly, following CLIP-Adapter,
Zhang et al. (2021) propose Tip-Adapter to explore non-parametric adaptation layers. Despite the
progress these methods (Zhou et al., 2021; Gao et al., 2021; Zhou et al., 2022) have achieved in
downstream predictive performance, they do not change CLIP’s inference paradigm of retrieving
class names. Hence, the challenges of expressive sensitivity and conceptual sensitivity remain.

3 METHODOLOGY
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Figure 1: An architectural comparison between our DeFo
and CLIP. “V” and “L” denotes vision and language encoder
respectively and their weights are fixed. DeFo leverages se-
quences of trainable embedding vectors ([vji ]) as textual in-
put and maps decomposed visual features by a linear layer.

As shown in Figure 1, our DeFo fol-
lows the dual-model architecture of
CLIP, i.e., we use a vision encoder
and a language encoder which map
the visual inputs and textual inputs
into the same latent space. However,
in DeFo, the language encoder plays
a different role from that in the zero-
shot CLIP. Specifically, CLIP directly
constructs hard targets for classifica-
tion by feeding the language encoder
with k textual queries (e.g., “a photo
of cat”, “a photo of dog”, . . . ), where
k is the number of classes and each
query corresponds to a specific one.
As explained in Section 1, this in-
ference protocol leads to expressive
sensitivity and conceptual sensitiv-
ity challenges which incurs degrada-
tion of accuracy and robustness.

In contrast, in DeFo, we change the
existing paradigm of hard-target retrieval while maintaining the vision-language encoder architec-
ture to learn decomposed visual features. Specifically, DeFo aims to utilize the language encoder to
construct a projection matrix that maps the visual features from the d-dimensional CLIP latent space
to a new n-dimensional feature space. To this end, we feed the language encoder with n trainable
text queries and then perform classification by an additional linear layer. By jointly tuning both
the text queries and the classification layer, DeFo is able to learn textual prompts of detailed visual
features and a robust feature mapping for classification.

Overall, DeFo has two main benefits compared to CLIP-like models. First, compared with hard-
target-based inference protocols such as the zero-shot CLIP and CoOp (Zhou et al., 2021), DeFo
removes the expressive and conceptual sensitivity challenges which significantly improves accuracy
and robustness of downstream performance (see Table 1 and 4). Next, compared with linear probing
which discards textual information, the optimization of the projection matrix in DeFo is bounded
by the text encoder which results in the need for much fewer training samples to achieve good
performance (see Table 2). Moreover, also note that in DeFo the number of textual queries n is
independent of the number of classes k, so the query size is scalable to fit specific downstream
tasks. Next, we detail the DeFo and compare it to existing methods.

3.1 DUAL-MODEL INFERENCE

As shown in Figure 1, DeFo uses a visual encoder gV : Rw×h×3 → Rd and a language encoder
gL : Rm×de → Rd to extract image and text representations, respectively. For this, the visual inputs
are 3-channel images of shape w × h, and the language inputs are sentences with m words where
each word is embedded into a de-dimensional vector. Both the visual and textual features are then
mapped into a d-dimensional latent space, i.e., we get an image representation vector fI ∈ Rd and
n text representation vectors f1

T ,f
2
T , . . . ,f

n
T ∈ Rd, where n denotes the number of query sentences

used for the encoder gL. By applying the dot product between fI and each of the f i
T (note that both
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fI and f i
T are ℓ2 normalized vectors, i.e., ∥fI∥2 = ∥f i

T ∥2 = 1), we get an n-dimensional vector,
where the i-th element measures the similarity between the image and the i-th text query.

CLIP and CoOp directly use this vector to predict the label of the image, because each text query
in their settings corresponds to a specific class. Formally, CLIP and CoOp have n = k, where k is
the number of classes to be inferred, and the probability of the image belonging to the i-th class is
computed by

pi =
exp(⟨fI ,f

i
T ⟩/τ)∑k

j=1 exp(⟨fI ,f
j
T ⟩/τ)

, (1)

where ⟨·, ·⟩ denotes the dot product and τ is a temperature coefficient.

Instead, DeFo decouples the text queries from specific classes. Specifically, we use a scalable num-
ber of queries, i.e., the number n is not limited to be equal to k, and perform classification by an
additional linear layer that maps the n-dimensional feature vectors to k-dimensional vectors. The
probabilities are then computed by the softmax of the k-dimensional vector. Note that only this
linear classification layer and the textual queries are trainable in DeFo. We fix the weights of both
the text encoder and the image encoder to maintain the vision-language alignment.

3.2 TRAINABLE TEXT EMBEDDINGS

The language encoder gL receives sequences of de-dimensional embedding vectors as input. When
natural language is used, each word in the vocabulary first needs to be encoded into a de-dimensional
embedding. In DeFo, we skip the process of designing hand-crafted prompts with natural language.
Instead, we directly optimize the word embeddings via back-propagation. Specifically, we initialize
n independent sequences of text embeddings where each sequence consists of m de-dimensional
vectors in the form of “[v1] [v2] . . . [vm]”. The total “textual” input of DeFo can be written as
a tensor XL ∈ Rn×m×de . Note that here we assign the same length m to each query for easy
comprehension and implementation. In practice, the design of DeFo’s input is more flexible and the
length of each query is not required to be identical.

By optimizing XL, DeFo makes CLIP-like vision-language models free from both hand-crafted
prompts and annotations such as class names. In this way we address the issues of expressive and
conceptual sensitivity caused by using class names as hard targets.

3.3 COMPARISON TO EXISTING METHODS

As illustrated in Figure 1, zero-shot CLIP has no trainable parameters. The textual queries are com-
posed by a hand-crafted prompt and class names that describe the semantic targets of the categories.
The linear-probing CLIP uses only the vision encoder for classification. Without the assistance of
textual representations, this method has to utilize an additional linear layer to map the visual fea-
tures from the latent space (d-dimensional) to the output space (k-dimensional), which introduces
N = d × k additionally trainable parameters. CoOp (Zhou et al., 2021) mostly follows the archi-
tecture of zero-shot CLIP, yet replaces CLIP’s hand-crafted prompt by a sequence of trainable text
embeddings, with N = k ×m× de learnable parameters for class-specific prompts.

Intuitively, both CoOp and our DeFo use trainable text embeddings as inputs of the language
encoder. Both methods differ in that the number of textual queries n is independent from the
number of classes k for DeFo, and the queries are not composed using class names. Therefore,
DeFo has a scalable size of additionally learnable parameters. Specifically, it introduces in total
N = n × (m × de + k) trainable parameters, which scales linearly with the number of queries n.
For example, with n = 256 and m = 16 in ImageNet (k = 1000), DeFo introduces 2.4M learn-
able parameters while attaining 72.3% accuracy, which outperforms CoOp (65.6%) who has 8.2M
learnable parameters and CLIP-Adapter (63.6%) who has 1M learnable parameters.

In addition, compared to linear probing which directly maps the d-dimensional latent features to out-
put logits, DeFo also uses a linear layer but maps n-dimensional features. In this way, DeFo is able
to first project visual features with the assistance of n textual representation vectors, which provides
DeFo with significantly better few-shot performance and interpretability than linear probing.
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Table 1: Test accuracy on ImageNet (%). Results with † are taken from Zhou et al. (2021), and those
with ‡ are taken from Zhang et al. (2021). Our results are marked in gray . The best results are
bolded. The results without using text encoder are de-emphasized.

Method RN-50 RN-101 ViT-B/32 ViT-B/16
Zero-Shot CLIP (Radford et al., 2021) 58.2 61.5 62.0 66.9
Linear-Probing CLIP 72.8 75.5 76.0 79.5
Prompt Ensembling 60.4† 62.5† 63.7† 68.7†
CoOp (Zhou et al., 2021) 65.6 67.8 68.0 72.4
CoCoOp (Zhou et al., 2022) 65.1 67.1 - -
Target Optimization (our ablation) 71.4 73.2 74.0 78.1
CLIP-Adapter (Gao et al., 2021) 63.6‡ 65.4‡ 66.2‡ 71.1‡
Tip-Adapter (Zhang et al., 2021) 62.0‡ 64.8‡ 65.6‡ 70.8‡
DeFo (ours) 73.2 75.5 76.2 80.2

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

4.1.1 BASELINE MODELS

DeFo is based on CLIP (Radford et al., 2021) for an easy comparison to the other baselines (Zhou
et al., 2021; 2022; Gao et al., 2021). For CLIP, we mainly explore two inference protocols, zero-shot
and linear probing. Zero-shot CLIP requires no extra training data and it infers by directly matching
image representation to the text representation of class names with hand-crafted prompts. Linear-
probing CLIP drops the text encoder and instead attaches a randomly initialized linear layer to the
image encoder, and then tunes only this linear layer with downstream training data for domain-
adapted classification.

CoOp (Zhou et al., 2021) and CLIP-Adapter (Gao et al., 2021) succeed in improving CLIP inference
performance so they serve as the primary baselines to our DeFo. To give more comprehensive
results, we also compare DeFo in ImageNet to the recent baselines of CoCoOp (Zhou et al., 2022)
and Tip-Adapter (Zhang et al., 2021), which are direct extensions for CoOp (Zhou et al., 2021)
and CLIP-Adapter (Gao et al., 2021). Note that we do not expect CoCoOp and Tip-Adapter to
yield better results than their base models CoOp and CLIP-Adapter because they are proposed to
address a different problem (discussed in Section 2). We report the results of Tip-Adapter without its
further fine-tuning (Zhang et al., 2021) and all the baselines follow the pre-processing of CoOp for a
fair comparison. Further, in this paper, we develop another baseline called “Target Optimization”,
which uses learnable embedding vectors as class names combined with a hand-crafted prompt prefix.
Target Optimization can be regarded as an ablated version of DeFo, which helps to understand the
importance of the learnable embeddings.

4.1.2 DATASETS

We follow prior methods to select 11 publicly available datasets, i.e., ImageNet (Deng et al., 2009),
Food101 (Bossard et al., 2014), OxfordPets (Parkhi et al., 2012), Caltech101 (Fei-Fei et al., 2004),
SUN397 (Xiao et al., 2010), UCF101 (Soomro et al., 2012), StanfordCars (Krause et al., 2013),
FGVCAircraft (Maji et al., 2013), DTD (Cimpoi et al., 2014), Flowers102 (Nilsback & Zisserman,
2008), and EuroSAT (Helber et al., 2019). The categories in these 11 datasets include natural objects,
scenes, human actions and fine-grained features such as textures and satellite imagery, which could
cover general semantic targets of visual understanding tasks.

For the domain-generalization study, we also evaluate the models on four ImageNet-variant datasets,
namely, ImageNet-v2 (Recht et al., 2019), ImageNet-Adversarial (Hendrycks et al., 2021b),
ImageNet-Retention (Hendrycks et al., 2021a), and ImageNet-Sketch (Wang et al., 2019). These
four datasets do not have training images and their categories correspond to ImageNet (Deng et al.,
2009). We train on ImageNet and test on these variant datasets to evaluate domain-generalization
performance.
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Table 2: Few-shot accuracy on ImageNet (%). n-shot denotes training with n samples per class. †:
Note that the Zero-Shot CLIP uses no training data of ImageNet. We put this result to the column
“Full” for easy comparison. Our results are marked in gray . The best results are bolded.

Method L Encoder Full 1-shot 2-shot 4-shot 8-shot 16-shot
Zero-Shot CLIP ✓ 58.2† - - - - -
Linear Prob. CLIP ✗ 72.8 23.6 32.2 40.8 48.9 54.3
CoOp ✓ 65.6 59.2 59.4 59.7 61.0 63.3
CoCoOp ✓ 65.1 57.4 57.8 58.2 58.5 59.0
CLIP-Adapter ✓ - 58.2 58.6 59.4 60.4 61.3
Tip-Adapter ✓ - 57.1 57.8 58.6 59.9 61.0
DeFo (ours) ✓ 73.2 59.4 59.7 60.3 61.7 64.0

4.1.3 TECHNICAL DETAILS

The experiments are built upon CLIP pretrained models. During training, the weights of both image
and text encoders are frozen. In this paper, we explore both few-shot and full-dataset training. The
few-shot setting follows CLIP (Radford et al., 2021) and CoOp (Zhou et al., 2021), i.e., training with
1, 2, 4, 8, and 16 samples per class that are randomly selected from the training set. By default, we
use simple data augmentation of random crop and flip, and train with a SGD optimizer with a mini-
batch size of 32, 2e-3 learning rate, 0.9 momentum, and 0.01 weight decay (following CoOp (Zhou
et al., 2021)) for 50 epochs. For full-dataset training on ImageNet, we use a batch size of 256 and
a learning rate of 0.01, which yields similar accuracy to the default setting but significantly reduces
training time.

The number of text queries (n) is naturally fixed to the number of classes (k) for zero-shot CLIP,
CoOp and Target Optimization. We set the length of learnable prompt to 16 words for CoOp,
and set the length of learnable class name to two words for Target Optimization. The query size
of DeFo is scalable in terms of both the length and quantity of text, so we have flexible choices.
We empirically find that a larger query size (the number of text queries n) generally yields better
predictive performance, in particular for large-scale datasets such as ImageNet (Deng et al., 2009).
For example, with a similar number of text queries, i.e., n = 1000 for CLIP and n = 1024 for DeFo,
DeFo outperforms the zero-shot CLIP by 14.1% (top-1 acc.) on ImageNet, while this improvement
can be further boosted to 15.0% by using 2048 queries in DeFo.

When training on full ImageNet, we use n = 2048 text queries and m = 16 words (following
CoOp (Zhou et al., 2021)) to fully exploit its learning capacity. For few-shot training on ImageNet,
we use a smaller query size, i.e., n = 1024 and m = 4, to prevent over-fitting. For the other 10
datasets, the text length is set to 16, and we find that a smaller number of queries could be sufficient
to yield good performance. Specifically, considering the scale of each dataset, we set n = 1024
for SUN397 (Xiao et al., 2010), n = 512 for StanfordCars (Krause et al., 2013), Food101 (Bossard
et al., 2014), and UCF101 (Soomro et al., 2012), n = 256 for Caltech101 (Fei-Fei et al., 2004),
Flowers102 (Nilsback & Zisserman, 2008), and FGVCAircraft (Maji et al., 2013), and n = 128 for
OxfordPets (Parkhi et al., 2012), DTD (Cimpoi et al., 2014), and EuroSAT (Helber et al., 2019).

For CoOp, we follow its default setup to initialize the trainable text embeddings from randomness,
as we find that the random initialization and manual initialization (e.g., initialize from “a photo of
a”) yield almost the same performance. When training on full datasets, this phenomenon also works
for DeFo and Target Optimization, so we randomly initialize the parameters as well. For few-shot
training of DeFo, we initialize the first k text queries by the k class names with random prefix, and
fix the corresponding weights (W ∈ Rk×k) of the classification layer to an identity matrix. In this
way we further reduce the number of trainable parameters and make use of language supervision via
the text encoder, which consequently yields robust performance when training data is limited.

4.2 MAIN RESULTS

4.2.1 COMPARISON ON IMAGENET

We first compare our DeFo with the baselines on ImageNet under both full-dataset training and
few-shot settings. As shown in Table 1, by training on the entire ImageNet data, our method ob-
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Table 3: Domain transfer accuracy on ImageNet variants (%). Our results are marked in gray .

Method L Encoder ImageNet-v2 ImageNet-A ImageNet-R ImageNet-S
Zero-Shot CLIP ✓ 51.5 21.7 56.0 32.9
Lin-Probe CLIP ✗ 52.1 (+0.6) 13.6 (-8.1) 35.5 (-20.5) 21.8 (-11.1)
CoOp ✓ 55.3 (+3.8) 22.4 (+0.7) 55.9 (-0.1) 33.5 (+0.6)
DeFo (ours) ✓ 58.4 (+6.9) 21.7 (+0.0) 55.8 (-0.2) 33.2 (+0.3)

Table 4: Average test accuracy (%) on 11 datasets. Results with † are taken from (Gao et al., 2021).
Our results are marked in gray . The best results are bolded. The results without using text encoder
are de-emphasized.

Method RN-50 RN-101 ViT-B/32 ViT-B/16
Zero-Shot CLIP (Radford et al., 2021) 58.9 59.9 61.6 65.2
Linear-Probing CLIP 79.2 81.9 74.7 80.0
CoOp (Zhou et al., 2021) 73.7 76.2 75.5 79.7
Target Optimization 76.1 78.2 76.3 80.8
CLIP-Adapter (Gao et al., 2021) 74.6† - - -
DeFo (ours) 79.9 82.5 80.8 82.8

tains the highest test accuracy with both ResNet and Vision Transformer backbones. Notably, with
a ResNet-50 image encoder, our DeFo outperforms the zero-shot CLIP by 15.0%. It is also ob-
served that by using better prompts (i.e., Prompt Ensembling and CoOp), the accuracy is improved
by a relatively small margin. This result demonstrates the issues of expressive sensitivity, i.e., the
human-annotated class names cannot define or well describe the semantic information of the images
in each category, even if the prompt has been optimized. Notably, using a simple prompt but opti-
mizing the class names (Target Optimization) yields more competitive performance (e.g., 71.4% vs.
65.6%).

Overall, our DeFo continues to yield superior performance than the baselines for both full-dataset
and few-shot training as shown in Table 2. The linear-probing protocol achieves close accuracy to
DeFo with sufficient training samples (e.g., 72.8% vs. 73.2%). However, its drawback is obvious
when training data is limited. Typically, as reported in Table 2, the linear probing protocol with
one sample per class yields only 23.6% accuracy, which is much lower than that of zero-shot CLIP
(58.2%), CoOp (59.2%), and our DeFo (59.4%).

4.2.2 GENERALIZED PERFORMANCE

We evaluate the domain-transfer performance by 16-shot training on ImageNet and testing on
ImageNet-v2 (Recht et al., 2019), ImageNet-Adversarial (Hendrycks et al., 2021b), ImageNet-
Retention (Hendrycks et al., 2021a), and ImageNet-Sketch (Wang et al., 2019). As shown in Table 3,
compared with the baseline of zero-shot CLIP, DeFo attains 6.9% higher accuracy on ImageNet-v2.
Also, DeFo yields a similar level of transfer performance as zero-shot CLIP and CoOp did on the
other three datasets. In contrast, the linear probing protocol incurs significantly degraded perfor-
mance on ImageNet-A, -R, and -S, as it forgoes assistance of language information.

For a wider range of classification tasks, we further evaluate DeFo on a total of 11 datasets. As
shown in Table 4, our DeFo achieves the highest average test accuracy over the 11 benchmarks
with different image encoders. A specific comparison to CLIP and CoOp on each of the datasets
is also provided in Figure 2. We note that CLIP favors the common and generic objects such as
the images in Food101, OxfordPets, and Caltech101, for which our DeFo outperforms CLIP by
< 10% accuracy and CoOp even fails to improve upon CLIP on Food101. However, when it comes
to fine-grained feature recognition tasks such as classifying the type of aircraft (Maji et al., 2013),
CLIP and CoOp are shown to be very sensitive to the objects. Consequently, DeFo outperforms
CLIP by 25.4% accuracy and outperforms CoOp by 11.2% on this dataset. The different robustness
between CLIP and DeFo on the 11 datasets indicates the issue of sensitivity challenge for CLIP,
and indicates that DeFo successfully addresses this issue by decomposing and then combining the
visual features.
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Figure 2: Accuracy improvements over zero-shot CLIP. On all the 11 classification benchmarks, our
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Learned queries:

“toward - red - [s] - love”
(Caltech-101)

Well-matched images:

“ring - [s] - aboard - [s]”
(Caltech-101)

“an - [s] - stripe - [s]”
(Caltech-101)

“snow - at - [s] - [s]”
(Oxford Pets)

“dogs - [s] - ends - [s]”
(Oxford Pets)

“[s] - sunflowers

- with - [s]”
(Caltech-101)

(a)

(b)

(c)

(d)

(e)

(f)

Learned queries: Well-matched images:

Figure 3: Interpretation (nearest words) of the learned text embeddings of DeFo. We highlight the
key words and replace the symbols and meaningless words by “[s]”. We surprisingly find that our
DeFo is able to learn detailed visual features such as color (a), shape (b), texture (c), and context (d).
Also, DeFo is able to directly learn a precise semantic target (f, sunflower is a category of Caltech-
101) or a generalized semantic target (e).

4.3 INTERPRETATION OF TEXT QUERIES

One benefit of CLIP-like models is that they are able to provide interpretable visual predictions, as
the visual features are highly aligned with the representations of natural language. A simple way
to interpret the learned word embeddings, i.e., the n sequences of m embedding vectors in XL, is
searching the nearest natural words within the vocabulary by measuring their Euclidean distance.
However, as this approach directly maps the continuous embedding vectors into discrete codes of
words, the interpreted sentences do not necessarily “make sense” and may contain meaningless
words or symbols, which is also observed in prior work (Zhou et al., 2021).

Nonetheless, we still find very interesting evidence from the interpretation of DeFo. We observe
that some of the interpreted query sentences include meaningful key words that describe specific
visual features such as color, shape, and texture. As illustrated in Figure 3 (a)-(c), in Caltech-101
dataset (Fei-Fei et al., 2004), DeFo learns the words “red”, “ring”, and “stripe”, while the well-
matched (based on the consine similarity in the latent space) images in the dataset look consistent
with human understanding of these features. For example, DeFo matches the word “red” with the
objects such as a lotus flower and a bird in this color. For the word “ring”, we can find the ring
or circle shapes in the corresponded images. Also, DeFo is able to extract background information
such as “snow” (see Figure 3 (d)). And surprisingly, DeFo sometimes directly learns the semantic
targets that are closely related to the categories of the dataset. For example, it learns the word “dogs”
which is a parent category in OxfordPets (Parkhi et al., 2012), and the word “sunflowers” which is
an exact category in Caltech-101 (Fei-Fei et al., 2004).
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Despite the fact that this interpretation approach is not rigorous enough, because the text features
learned by DeFo possibly exceed the existing vocabulary, it still provides very strong evidence that
DeFo features are meaningful. We hope this result will yield greater insights in a follow-up study
on interpretable vision-language inference.

4.4 ABLATION STUDY

In this section, we present additional results to ablate the gains of DeFo. First, the size of the textual
input, including the number of queries n and the length m of each query sentence, may affect the
performance. We compare the accuracy of a DeFo model with different n and m and summarize
the results in Table 5a and 5b, where we use a ResNet-50 image encoder and train our model on the
entire ImageNet data. As reported in the two tables, a smaller size of textual input slightly reduces
the performance within an acceptable margin. For example, with n = 256 queries it yields 72.5%
accuracy on ImageNet, which is only 0.7% lower than that of the default setup of n = 2048. Also,
using m = 4 words per query yields only 0.5% lower accuracy than that of m = 16, and further
increasing m (e.g., m = 32) cannot obtain clear improvements. These results indicate that DeFo
is robust to its hyper-parameters, and DeFo improvements of accuracy do not rely on large-scale
trainable parameters.

There is another concern that DeFo uses an additional classification layer which introduces n × k
more parameters, where n and k denote the number of queries and classes, respectively. To ablate
the gain of the additional parameters, we add the same layer on top of CLIP and CoOp, and compare
their performance with DeFo. Specifically, we attach a k × k-dimensional linear layer to the logits
of CLIP and CoOp, so their model size is identical to DeFo if we set n = k. We conduct this
experiment on ImageNet as well, and the results are summarized in Table 5c. As is shown, with the
help of the linear layer, the accuracy of CLIP is improved to 62.4%, which is still significantly lower
than that of DeFo. Notably, the “CLIP + linear” model is equivalent to our DeFo model with n = k
and fixing the textual inputs to the queries used in CLIP. This indicates that the classification layer
yields a very limited improvement (< 4%), and the superior performance of DeFo mainly comes
from it learning decomposed features.

Table 5: Ablation studies of DeFo. Our results with default setup are marked in gray .

(a) Accuracy with m=16.

Queries (n) Acc.
256 72.3
512 72.5

1024 72.9
2048 73.2

(b) Accuracy with n=2048.

Length (m) Acc.
2 72.5
4 72.7
8 73.0
16 73.2
32 73.2

(c) Gain of linear layer.

Model Acc.
CLIP 58.2
CLIP + linear 62.0
CoOp 65.6
CoOp + linear 69.8
DeFo (n=1000) 72.9

5 CONCLUSION

In this paper, we identify two main issues of existing vision-language inference protocols, i.e., the
expressive sensitivity and the conceptual sensitivity. To address them, we propose DeFo which main-
tains the dual-model architecture but infers by decomposed visual features. Specifically, it leverages
trainable text prompts and decouples visual features from hard semantic targets. We demonstrate the
significance of DeFo by showing its two benefits. First, DeFo gets rid of the textual descriptions of
class names and instead infers via a linear classifier, which yields superior performance in the full-
dataset scenarios compared with zero-shot CLIP and CoOp. Next, DeFo keeps the language encoder,
which we find is able to bound the projection of visual features and therefore achieves competitive
results in few-shot learning and domain transfer. Overall, DeFo provides a new vision-language
learning and inference paradigm, i.e., prompting the decomposed visual features, which we hope is
of practical importance in fully exploiting the learning capacity of vision-language models.
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