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Abstract

Recent language models exhibit strong reasoning capabilities, yet the influence
of long-context capacity on reasoning remains underexplored. In this work, we
hypothesize that current limitations in reasoning stem, in part, from insufficient
long-context capacity, motivated by empirical observations such as i) higher con-
text window length often leads to stronger reasoning performance, and ii) failed
reasoning cases resemble failed long-context cases. To test this hypothesis, we
examine whether enhancing a model’s long-context ability before Supervised
Fine-Tuning (SFT) leads to improved reasoning performance. Specifically, we
compared models with identical architectures and fine-tuning data but varying
levels of long-context capacity. Our results reveal a consistent trend: models with
stronger long-context capacity achieve significantly higher accuracy on reasoning
benchmarks after SFT. Notably, these gains persist even on tasks with short input
lengths, indicating that long-context training offers generalizable benefits for rea-
soning performance. These findings suggest that long-context modeling is not just
essential for processing lengthy inputs, but also serves as a critical foundation for
reasoning. We advocate for treating long-context capacity as a first-class objective
in the design of future language models. Our code is anonymously available at
https://github.com/uservan/LCTMerge.
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Relation Between Long Context and Reasoning Ability

Figure 1: Impact of long-context capacity on mathematical reasoning. Left: Accuracy (Pass@1)
on MATH500 and AIME datasets for public models with 32k and 128k context lengths, showing
consistent improvements in reasoning performance with longer context windows. The 32k and 128k
LLMs refer to three different public models, as shown in Table 1. Right: Reasoning accuracy versus
RoPE theta values, highlighting a strong correlation between long-context capacity and reasoning
performance. Increasing the RoPE theta value typically extends the effective context window length.
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1 Introduction

Large language models (LLMs) have recently demonstrated impressive reasoning capabilities across
a wide range of benchmarks [1–3]. Despite this progress, the underlying factors that influence such
reasoning abilities remain only partially understood. One particularly underexplored dimension is
long-context ability—the model’s capacity to utilize a longer reasoning path during inference—which
could affect the reasoning performances and the reasoning model fine-tuning.

While prior work has primarily focused on training paradigms and dataset quality to enhance
reasoning [4–6], we hypothesize that a model’s reasoning ability is also fundamentally constrained
by its long-context capacity. This hypothesis is grounded in three empirical observations. First,
models with extended context lengths (e.g., 128k vs. 32k) consistently achieve higher accuracy on
reasoning benchmarks such as MATH500 and AIME, suggesting a direct performance benefit from
stronger long-context modeling (Table 1, Figure 1). Second, case studies reveal that failed generations
often involve extremely long outputs, sometimes truncated at generation limits, and exhibit issues
like repetition or incorrect cross-referencing—failure patterns strongly linked to inadequate long-
context capability (Figure 2, Figure 3). Third, modern reasoning datasets now include many samples
exceeding 8K or even 10K tokens—substantially longer than early CoT data—requiring models to
learn from long, variable-length reasoning sequences (Figure 4). Together, these findings underscore
long-context capacity as a critical factor for reasoning ability, and motivate the central question: Does
improving a model’s long-context ability during pretraining enhance downstream reasoning?

To rigorously investigate this, we conduct a controlled study comparing language models with
identical architectures and fine-tuning data, but varying degrees of long-context pretraining. Our
experimental results reveal a consistent and compelling trend: models with stronger long-context
capabilities consistently outperform their counterparts on reasoning tasks after SFT. Notably, these
improvements extend to reasoning problems with short input lengths, suggesting that long-context
training imparts generalizable cognitive benefits that go beyond simply processing long sequences.
As shown in Figure 1, LLaMA3-8B-Instruct exhibits varying reasoning performance after training
when equipped with different levels of long-context capability. Notably, reasoning ability tends to
increase or decrease in accordance with the strength of the model’s long-context capacity, suggesting
a direct correlation between the model’s reasoning ability and long-context capacity.

Based on our experimental results, we thus propose a Recipe for Reasoning Fine-Tuning,
which advocates for appropriately enhancing a model’s long-context capacity prior to reason-
ing SFT—for instance, by extending its context length to 128K tokens. Applying this recipe to
Qwen2.5-Math-7B-Instruct, we observe substantial improvements: performance on MATH500
increases from an average of 85.04 to 88.70, and on AIME, from 15.00 to 28.00.

2 Motivation: behavioral evidence suggests a connection between long
context and reasoning

In this section, we present a set of empirical observations that suggest a strong behavioral connection
between a model’s long-context capability and its reasoning performance. Through controlled
comparisons, token length analyses, and failure case studies, we observe that LLMs with stronger
long-context abilities not only perform better on reasoning benchmarks but also handle diverse and
extended reasoning sequences more reliably. These findings collectively highlight long-context
modeling as a key factor and component in enabling strong reasoning ability.

2.1 Higher context window length often leads to stronger reasoning performance.

Recent advances in long-context modeling have enabled language models (LLMs) to process sub-
stantially longer sequences. However, it remains unclear whether such long-context capacities yield
tangible benefits for reasoning tasks. In this section, we empirically examine the relationship between
long-context ability and reasoning performance. We collect a set of well-known open-source reason-
ing models fine-tuned from Qwen/Qwen2.5-7B-Instruct. These models are categorized into two
groups based on their long-context capacity: 32k and 128k tokens. We then evaluate and compare
their reasoning performance on two math reasoning benchmarks: MATH500 and AIME.
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The detailed results are reported in Table 1. Figure 1 presents that models with longer context lengths
(128k vs. 32k) consistently achieve higher accuracy on mathematical reasoning benchmarks such
as MATH500 and AIME. This suggests that the ability to encode and maintain longer contextual
dependencies can directly translate into better reasoning capabilities. These results collectively
highlight the importance of effective long-context training—not only for tasks involving long inputs,
but also for general reasoning even when test-time inputs are relatively short.

Table 1: Performance comparison on MATH500 and AIME benchmarks for some popular open-source
reasoning models with different long-context abilities at 32k and 128k context lengths. Reason-
ing models with enhanced long-context capacity (128k) generally exhibit improved performance,
particularly on the AIME benchmark. Averages are reported in the bottom row.
Long Context Ability at 32k MATH500 AIME Long Context Ability at 128k MATH500 AIME

OpenR1-Qwen-7B 90.36 43.11 DeepSeek-R1-Distill-Qwen-7B 91.68 45.56
OpenThinker-7B 86.80 25.78 OpenMath-Nemotron-7B 94.00 74.67

OpenThinker2-7B 90.60 40.22 DeepMath-Zero-7B 83.48 14.67
OpenThinker3-7B 93.72 64.00 AceReason-Nemotron-7B 93.84 62.89

Avg (32k) 90.37 43.28 Avg (128k) 90.75 49.45

Questions: Alice chooses a set A of positive integers. Then 
Bob lists all finite nonempty sets B of positive integers with 
the property that the maximum element of B belongs to A. 
Bob's list has 2024 sets. Find the sum of the elements of A.

Failed Solution: Alright, so I have this problem here: 
Alice chooses a set A of... which has 8 ones.
k=10, 8≠10. 
k=11:2035,9 ones.
k=12:2036,8 ones.
k=13:2037,9 ones. ...

Questions:Three spheres with radii 11, 13, and 19 are mutually 
externally tangent. A plane intersects the spheres in three congruent 
circles centered at A, B, and C, respectively, and the centers of the 
spheres all lie on the same side of this plane. Suppose that 퐴�2 =
56. Find 퐴�2.

Failed Solution: Okay, let me try to work through this 
problem step by step. So...Let’s let’s let’s denote:
Let’s define:
Let’s let’s let’s let’s let’s let’s let’s let’s let’s let’s let’s 
let’s let’s let’s let’s let’s let’s let’s let’s let’s let’s let’s 
let’s let’s let’s let’s let’s let’s let’s let’s ...

Figure 2: Case Study: Repetition Failure. Two failure cases where the model produces clearly
repetitive sentences in its answers. Such repetition is a common symptom of insufficient long-context
capability, leading to strange responses and degraded reasoning quality in extended sequences.

Questions: The expression 2 ∙ 3 ∙ 4 ∙ 5 + 1 is equal to 121, since 
multiplication is carried out before addition. However, we can obtain values 
other than 121 for this expression if we are allowed to change it by inserting 
parentheses. For example, we can obtain 144 by writing ( 2 ∙ (3 ∙ 4)) ∙ (5 +
1) = 144. In total, how many values can be obtained from the expression 2 ∙
3 ∙ 4 ∙ 5 + 1 by inserting parentheses? 

Failed Solution: Okay, so I have this math problem 
here. It's about ... 
1. All multiplications first, then addition: 121.
2. Group 2 * (3 * (4 * (5 + 1))) + 1: 127.
3. Group (2 * (3 * 4)) * (5 + 1): 144.
4. Group 2 * ((3 * (4 * 5)) + 1): 42.
5. Group 2 * ((3 * 4) * (5 + 1)): 144....

Questions: Let �(�) be an odd function, and let g(�)  be an even 
function. �(�(�(�(�(�(�)))))) is even, odd, or neither?

Failed Solution: Alright, so I've got this problem here: ...
2. g(f(x)) =  (−x)² =  x²: even.
3. f(g(f(x))) =  f(x²) =  − x²: which is odd.
4. g(f(g(f(x)))) =  g(−x²) =  (−x²)^2 =  x⁴: even.
5. f(g(f(g(f(x))))) =  f(x⁴) =  − x⁴: which is odd 
6. g(f(g(f(g(f(x)))))) =  g(−x⁴) =  . . .

Figure 3: Case Study: Contextual Reference Failures. Two failure cases where the model makes
incorrect references to expressions introduced earlier in the problem. These errors occur in the later
stages of the response and reflect a typical symptom of insufficient long-context capability.

2.2 Case study: failed reasoning cases resemble failed long-context cases.

We analyze failed cases of reasoning models and long-context inputs, revealing a strong con-
nection between reasoning ability and long-context capacity. Specifically, we examine the
average input lengths of correct and incorrect predictions made by three reasoning mod-
els—DeepSeek-R1-Distill-Qwen-1.5B, 7B, and 14B—on two math benchmarks: MATH500 and
AIME. As shown in Figure 4, incorrect predictions are typically associated with inputs exceeding 10k
tokens, suggesting that these failures may stem from insufficient long-context handling.
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Figure 4: Top: Length distribution of three reasoning datasets. NuminaMath-CoT represents early
chain-of-thought (CoT) data with short sequences, while OpenR1-Math-220K and DeepMath-103K,
generated by DeepSeek-R1, exhibit significantly longer outputs. Bottom-left: Performance of
DeepSeek-Distilled-Qwen-1.5B on the Needle-in-a-Haystack benchmark with 32K context.
Bottom-middle/right: Average output lengths of correct and incorrect generations on AIME and
MATH500 for DeepSeek-Distilled-Qwen-1.5B, 7B, and 14B. Incorrect answers consistently ex-
hibit longer output lengths, indicating potential limitations of long-context ability in reasoning.

To further investigate this hypothesis, we manually inspect a subset of long-output failures and
identify two recurring patterns, repetition and contextual reference failures, due to limited long-
context capability. The first pattern involves excessive repetition, where the model loops over the
same sentence or phrase, failing to advance the solution, as shown in Figure 2. The second pattern
arises in the latter part of the output, where the model incorrectly recalls earlier mathematical
expressions from the problem, leading to flawed reasoning and incorrect conclusions, as shown in
Figure 3. Both failure modes underscore the model’s struggle to maintain coherence and accuracy
over long sequences—a well-known limitation of inadequate long-context capacity that degrades and
distorts in-context learning performance in LLMs.

2.3 Long and variable reasoning data necessitate long-context models.

Current reasoning models are typically fine-tuned on long chain-of-thought (CoT) datasets gener-
ated by large-scale reasoning models. A key characteristic of these models is their tendency to
produce long and variable-length outputs. As a result, the resulting datasets exhibit broad length
distributions, with many examples exceeding 10K tokens—far longer than early CoT-style data.
This necessitates that fine-tuned models be capable of handling such long and diverse sequences.
In Figure 4, we analyze the length distributions of three representative datasets: NuminaMath-CoT,
OpenR1-Math-220K, and DeepMath-103K. NuminaMath-CoT, representing early CoT-style data,
primarily contains samples under 1K tokens. In contrast, OpenR1-Math-220K and DeepMath-103K,
both collected from DeepSeek-R1, contain significantly longer reasoning sequences, with a large
proportion of samples exceeding 4K tokens and some even surpassing 10K tokens, which is totally
different with early CoT datasets like NuminaMath-CoT.

There is a lack of research exploring how such increased sequence lengths interact with or de-
pend on the model’s long-context capability after the release of Deepseek-R1. For instance, if a
model lacks sufficient long-context ability, training on long reasoning sequences may fail to yield
expected improvements—or even negatively impact performance—due to the model’s inability to
effectively utilize the full input. While modern models are advertised to handle long sequences
(e.g., Qwen2.5-1.5B-Instruct supports up to 32K tokens), their effective context length is often
substantially shorter. As shown in Figure 4, we evaluate Qwen2.5-1.5B-Instruct on the Needle-
in-a-Haystack benchmark and observe that the model fails to maintain high accuracy across all cases
in 32k contexts, indicating its limitations in effective long-context processing and long-context ability.
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Table 2: Effective context length and long-context benchmark performance of LLaMA3-8B-Instruct
under different RoPE theta scaling factors. We report the estimated effective context length, Needle-
in-a-Haystack (NIAH) retrieval accuracy at 32k, as well as performance on LongBench and RULER.
Results show that scaling up to RoPE ×16 consistently improves long-context robustness across all
benchmarks, but further scaling (e.g., ×32 and ×64) leads to diminishing or even negative returns.
Notably, the effective length surpasses the maximum sequence length (16k) of the current training
dataset when the factor exceeds 4, which is sufficient for reasoning training.

RoPE theta ×1 ×4 ×8 ×16 ×32 ×64

Effective Context Length 9k 21k 29k 32k 21k 17k
32k NIAH Score 0.00 3.75 58.30 77.05 58.86 35.00
LongBench Score 21.14 39.21 39.78 40.41 38.96 38.01

RULER Score 56.13 69.57 79.62 94.24 88.07 84.98
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Figure 5: Needle-in-a-Haystack Results for LLaMA-3-8B-Instruct. Performance of LLaMA-3-8B-
Instruct on the Needle-in-a-Haystack benchmark with a 32K context under different RoPE theta
scaling factors. RoPE theta x 16 refers to scaling the original RoPE theta by a factor of 16.

3 Empirical analysis: verifying the connection between reasoning and
long-Context ability

In this section, we investigate the connection between a model’s long-context capability and its
reasoning performance. We begin by applying long-context extension strategies to obtain models with
varying levels of long-context ability at 32k tokens. These models are then fine-tuned on different
reasoning datasets using supervised fine-tuning (SFT), allowing us to assess how different context
capacities influence the effectiveness of reasoning training. Next, we further extend the long-context
capability to 128K tokens or beyond, in order to examine whether extreme context lengths can provide
additional gains in reasoning performance. Finally, we introduce a recipe for LLM reasoning training:
extend the long-context ability before reasoning finetuning and conduct an experiment to verify that
this recipe is useful and effective. The overall training pipeline is illustrated in Figure 6.

3.1 Experimental setup

Long context ability extension strategy. We use two strategies to enhance long-context capability.
The first is directly scaling the RoPE theta parameter by different factors, which has been shown
to improve a model’s ability to handle longer sequences [7]. The second leverages model merging:
we merge the target model with another model that possesses stronger long-context capabilities. In
this setting, we carefully control the merge ratio to ensure that the base performance remains nearly
unchanged, allowing us to isolate the effect of long-context enhancement as the only influential factor.

Data processing for reasoning SFT. We utilize the OpenR1-Math-220K dataset [8] and divide it
into two categories based on response length: short samples (responses within 8K tokens) and long
samples (responses ranging from 8K to 16K tokens). For both categories, we sample 20K instances
and perform correctness filtering to ensure that each response is factually accurate and correct. These
two subsets are then used independently to fine-tune models to improve their reasoning ability.
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... Long  Context 
Extention

Reasoning SFT ...

Figure 6: Pipeline for verifying the connection between reasoning and long-context ability. We first
expand the model’s long-context capability to obtain variants with different levels of long-context
capacity. Then, we perform SFT on reasoning datasets to obtain reasoning-enhanced models.

Training details. All models are fine-tuned using four NVIDIA H200 GPUs. We employ the
LLaMAFactory library with a batch size of 32, a learning rate of 1.0× 10−5 and 3 epochs.

Long context evaluation. We adopt the Needle in a Haystack benchmark provided by the OpenCom-
pass framework to access long context ability. For simplicity and robustness, we use the accuracy
on the single-haystack setting as our primary metric: a correct response receives a score of +1, a
repetitive/degenerate answer receives −1, and an incorrect but non-degenerate response receives 0.

Reasoning evaluation. To further evaluate the model’s reasoning ability post-training, we use three
math benchmarks: MATH500, AIME22–24, and GSM8K. Following the evaluation methodology
from DeepSeek-R1, we adopt the pass@1(5) metric, where five responses are generated for each
question and accuracy is computed over all the responses. This provides a more stable estimate of
reasoning performance and abilities of Large Language Models after finetuning with datasets.
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Figure 7: Visualization of the relationship between 32k long-context ability and reasoning perfor-
mance across different model variants of LLaMA-3.1-8B-Instruct on three math benchmarks
(MATH500, AIME22-24, GSM8K). Short and Long refer to performance after fine-tuning on short
and long reasoning datasets. Avg represents the average of the short and long fine-tuned results.

×1 ×4 ×8 ×16 ×32 ×64
RoPE theta (context window length)

9000

10000

11000

12000

13000

Av
g 

Ou
tp

ut
 L

en
gt

h

0

20

40

60

80
Avg Long

(a) MATH500

×1 ×4 ×8 ×16 ×32 ×64
RoPE theta (context window length)

17500

20000

22500

25000

27500

0

20

40

60

80
Short

(b) AIME22-24

×1 ×4 ×8 ×16 ×32 ×64
RoPE theta (context window length)

2000

3000

4000

0

20

40

60

80

Lo
ng

 C
on

te
xt

 A
bi

lit
y

32k Long Context Ability

(c) GSM8K
Figure 8: Visualization of the relationship between 32k long-context ability and average output length
across different model variants of LLaMA-3.1-8B-Instruct on MATH500, AIME22-24, GSM8K.

3.2 How does long-context capacity affect reasoning SFT?

In this experiment, we investigate how different levels of long-context capability affect the perfor-
mance of reasoning SFT (Supervised Finetuing). We use LLaMA3-8B-Instruct as the base model,
which originally supports up to 8K tokens. To obtain models with varying long-context capabilities,
we scale the RoPE theta value by the following different factors: {1, 4, 8, 16, 32, 64}.

First, we evaluate the long-context ability of each variant using the Needle-in-a-Haystack benchmark.
As shown in Figure 5 and Table 2, performance improves as the RoPE theta scaling factor increases
from 1 to 16, reaching peak performance at 16. Beyond this point, further increases in theta lead to
performance degradation. What’s more, when the scaling theta is more than 4, the model’s effective
length is more than 16k, which is enough for the reasoning training for current datasets.
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Table 3: Effect of RoPE theta scaling on long-context and reasoning performance on MATH500.
Evaluation of LLaMA3-8B-Instruct with different RoPE theta scaling factors on the 32K Needle-
in-a-Haystack benchmark. Base refers to the model’s performance before SFT, while Short and
Long denote results after fine-tuning on short and long reasoning datasets, respectively. Avg represents
the average of the Short and Long performances.

RoPE 32k long Acc(%) Average Output Length

theta ctx ability Base Short Long Avg Base Short Long Avg

×1 0 24.40 50.68 58.92 54.80 746 12991 11187 12089
×4 3.75 20.40 52.80 61.16 56.98 754 9047 9949 9498
×8 58.30 18.96 53.12 62.24 57.68 767 8476 9673 9075
×16 77.05 17.28 54.40 64.32 59.36 608 8782 9335 9059
×32 58.86 15.24 53.84 61.96 57.90 490 8489 9526 9007
×64 35.00 14.20 53.28 62.36 57.82 453 8605 9579 9092

Table 4: Cross-domain evaluation of long-context ability on GPQA (science) and Livecode (code).
Task Setting GPQA Accuracy (%) Livecode Accuracy (%)

×1 ×4 ×16 ×1 ×4 ×16

32k NIAH - 0.00 3.75 77.05 0.00 3.75 77.05
Accuracy before training 31.82 31.31 30.81 12.30 10.16 7.45

after training 37.27 39.19 41.92 25.34 27.95 32.27

Next, we perform supervised fine-tuning (SFT) using both short and long reasoning datasets on
models with different RoPE theta settings. The detailed results are summarized in Table 3. In
addition, we plot the relationship between each model’s long-context capability and its reasoning
performance. We also visualize how long-context ability correlates with the average output length.
The results are shown in Figures 7 and 8. We observe that the best reasoning performance across
all three evaluation benchmarks consistently occurs when the RoPE theta scaling factor is set to
16—coinciding with the strongest long-context capability observed in the Needle-in-a-Haystack task.
In contrast, models with suboptimal theta settings exhibit reduced accuracy undergoing the same
SFT procedure. These findings suggest that enhancing long-context processing ability can directly
contribute to improved reasoning performance after reasoning SFT (Supervised Fine-tuning).

Furthermore, we observe that, in general, models fine-tuned on long reasoning datasets outperform
those fine-tuned on short datasets in both MATH500 and AIME. These long-form datasets typically
contain more complex problems and richer intermediate reasoning steps, making them more effective
for improving the model’s reasoning ability. However, in order to benefit from such data, models
must possess sufficiently strong and effective long-context capabilities to process the extended inputs.

3.3 Generality and robustness of long-context gains to reasoning ability

We investigate whether the benefits of stronger long-context ability generalize across tasks, model
families, and input lengths. Our results show that the improvements are not limited to math reasoning.

Cross-domain generalization. We fine-tuned LLaMA3-8B-Instruct models with RoPE scales
×1, ×4, and ×16 on 20k samples from the science and code domains of OpenThoughts3-1.2M.
Evaluations on GPQA and Livecode (Table 4) show that stronger long-context ability consistently
improves accuracy beyond math reasoning.

Across model families. We trained Phi-4 (14B) with the same RoPE settings. Consistent gains on
MATH500 (Table 5) confirm that the benefit is not tied to a specific architecture or scale. The results
of AIME22-24 are in Table 10 and it has the similar performance like MATH500.

Short-input reasoning. On the short-input MMLU-STEM benchmark, models with stronger long-
context ability also achieve higher post-training accuracy (Table 6). This indicates that long-context
training not only preserves but can reinforce reasoning on short-input tasks.
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Table 5: Performance of Phi-4 under different RoPE scales on MATH500.
Model RoPE 32k NIAH (%) MATH500 (before, %) MATH500 (after, %)

Phi-4 ×1 52.27 79.52 88.62
Phi-4 ×4 78.07 77.48 89.14
Phi-4 ×16 84.77 73.20 89.90

Table 6: Effect of long-context ability on short-input reasoning (MMLU-STEM) with LLaMA3-8B.
RoPE Scale 32k NIAH (%) MMLU-STEM (before, %) MMLU-STEM (after, %)

×1 0.00 54.36 71.06
×4 3.75 53.85 73.04
×16 77.05 51.44 74.27

Overall, these results demonstrate that the gains from stronger long-context ability are robust: they
extend beyond math to science and code, hold across LLaMA, Qwen, and Phi model families, and
even benefit short-input reasoning.

3.4 Does extremely long context bring further gains on reasoning SFT?

In previous experiments, we extended models to handle up to 32K tokens and observed notable
improvements in reasoning performance. A natural question arises: can even stronger long-context
capabilities further enhance reasoning, or is there a limit beyond which performance saturates or
even degrades? To explore this, we conduct experiments using models with a context length of 1M
tokens (Qwen2.5-7B-Instruct-1M)—far beyond the typical range of existing reasoning datasets.

We adopt a linear merging strategy to construct models with varying long-context capacities while
minimizing changes to their base ability. Specifically, we merge two models with different context
capabilities at various ratios to obtain models with intermediate long-context strengths. With selected
merge ratio, we ensure that the base capabilities remain largely unchanged, isolating long-context
capacity as the key variable. We apply this strategy to two models: Qwen2.5-7B-Instruct-1M with
long context ability at 1M and Qwen2.5-7B-Instruct with long context ability at 32k.

We first evaluate the merged models on Needle-in-a-Haystack at 32k and find that long-context ability
grows with the merge ratio, but near-perfect scores make it less discriminative (Appendix A). We
therefore adopt more challenging 32k tasks such as Value Tracking and Question Answering, which
better capture effective long-context processing by requiring stronger long-range reasoning.

We fine-tune the merged models on both short and long reasoning datasets, and evaluate on
MATH500, AIME22-24, and GSM8K. We also examine the relationship between effective long-context
ability, reasoning accuracy, and output length (Figures 9 and 10). Results show that moderate merge
ratios (e.g., 0.1, 0.7) yield strong effective long-context ability and high reasoning accuracy, while the
1M model (ratio 1.0) exhibits weaker effective long-context utilization and degraded performance.

3.5 Proposed reasoning recipe: extend context length first

Based on our previous experiments, we propose a training recipe for improving reasoning capabilities
via supervised fine-tuning (SFT): first appropriately enhance the model’s long-context capability, then
apply reasoning-specific SFT. This recipe aims to better prepare the model for long-form reasoning
tasks, where both context length and reasoning complexity are critical. To validate this approach, we
experiment with the Qwen2.5-Math-7B-Instruct model, which demonstrates strong mathematical
performances but has a limited context length of 4k tokens, which is a good example of the recipe.

We enhance its long-context capability by multiplying the RoPE theta value by a scaling factor of
16 and merging the model with Qwen2.5-7B-Instruct-1M using a merge ratio of 0.3. After the
merging step, the long-context ability improves noticeably, as is shown in Appendix A. Subsequently,
we perform SFT using both short and long reasoning datasets, and evaluate the fine-tuned models
on two benchmarks: MATH500 and AIME22-24. As shown in Table 7, across both short and long
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Figure 9: Visualization of the relationship between 32k long-context ability and reasoning per-
formance across different model variants of Qwen2.5-7B-Instruct on MATH500, AIME22-24,
GSM8K. A merge ratio of 0.1 indicates that the long-context variant (Qwen2.5-7B-Instruct-1M)
contributes 10% to the final merged model. Short and Long refer to performance after fine-tuning on
short and long reasoning datasets. Avg represents the average of the short and long fine-tuned results.
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Figure 10: The relationship between 32k long-context ability and average output length across
different model variants of Qwen2.5-7B-Instruct on three math benchmarks.

reasoning datasets, the model variant with RoPE theta scaled by 16 and a merge ratio of 0.3
consistently achieves the highest performance after reasoning SFT on short and long datasets.

4 Related Works

Reasoning models. The release of DeepSeek-R1 [9] has catalyzed widespread interest in open-
source reasoning models [10–12]. Most existing approaches to improving reasoning rely on su-
pervised fine-tuning (SFT) and rule-based reinforcement learning (RL) [13–16]. For instance,
SkyThought [17] and Bespoke [18] fine-tune models using responses generated by larger reason-
ing models such as QwQ-32B [19] and DeepSeek-R1. Other methods like S1 [20] and LIMO [21]
highlight the importance of using compact yet high-quality reasoning samples to improve data effi-
ciency. These efforts have led to the creation of numerous open-source reasoning datasets, including
OpenR1-Math-220K [8], DeepMath-103K [4], OpenThoughts [5], and others [6, 22, 23]. Notable
models trained on these datasets include OpenR1-Qwen-7B and DeepMath-Zero-7B. Subsequent
work [24, 25] has proposed techniques to further optimize SFT and RL pipelines, arguing that struc-
tural aspects of reasoning data (e.g., step-wise decomposition) can be more impactful than content
alone. More recent studies [3, 26–28] aim to improve the alignment and generalization of reasoning
through better data construction, gradient control, and training optimization strategies. Despite these
advances, an important factor remains underexplored: the role of long-context capability in
reasoning. While recent datasets and tasks increasingly involve longer sequences, no existing work
systematically investigates how a model’s ability to process extended contexts affects its reasoning
performance. Our work aims to figure out the relationship between them.

Long-context ability. Closed-source models such as GPT-4 [29], Claude [30], and
Gemini [31] already support context lengths of 128K tokens or more, enabled by ad-
vances in both pre-training and post-training [32–35]. In parallel, open-source mod-
els—including LLaMA [36], Qwen [37, 38], and Phi [39]—have also extended their ca-
pacities, with some reaching 1M tokens, such as Qwen-2.5-7B-Instruct-1M [40] and
LLaMA-3.1-Nemotron-8B-UltraLong-4M-Instruct [41]. To enable long context, several ap-
proaches have been proposed. RoPE-based methods adapt positional encoding for extrapolation
without full retraining, including Position Interpolation [42], NTK Scaling [7], YaRN [43], and SelfEx-
tend [44]. Attention redesigns improve scalability or memory retention, such as StreamingLLM [45],
LM-Infinite [46], Inf-LLM [47], and Landmark Attention [48]. Another direction is input compres-
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Table 7: Validation of the proposed fine-tuning recipe for reasoning. We evaluate the effectiveness
of our proposed training recipe using Qwen2.5-Math-7B-Instruct, a model with an initial long-
context capacity limited to 4K tokens. We first scale its RoPE theta by a factor of 16, and then merge
it with Qwen2.5-7B-Instruct-1M using a merge ratio of 0.3. We observe consistent improvement
in reasoning performance after each step, demonstrating the effectiveness of enhancing long-context
capability prior to reasoning fine-tuning to get a higher reasoning ability.

Operation Acc(%) Avg Output Length

Base Short Long Avg Base Short Long Avg

MATH500

RoPE theta ×1 81.88 86.28 83.80 85.04 2037 1022 2147 1584
RoPE theta ×16 65.16 87.68 88.72 88.20 4579 4213 5789 5501

0.7 × RoPE theta ×16 + 0.3 × 1M-Model 74.12 88.28 89.12 88.70 2228 4948 6515 5731
AIME22-24

RoPE theta ×1 8.44 16.22 13.78 15.00 8257 3463 10418 6940
RoPE theta ×16 3.78 25.78 27.56 26.67 13411 15036 17321 16179

0.7 × RoPE theta ×16 + 0.3 × 1M-Model 7.11 26.67 29.33 28.00 6859 20265 22919 21592
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Figure 11: Comparison of reasoning accuracy across different configurations. Results are reported
on MATH500 (top row) and AIME22-24 (bottom row), with separate evaluation for short, long, and
average context cases. Our proposed recipe (dark blue bar, dashed line) consistently outperforms the
baseline RoPE theta ×1 and the extended-context baseline RoPE theta ×16 , demonstrating
that enhancing long-context capability prior to reasoning fine-tuning yields stable and significant
accuracy improvements, enhancing models’ reasoning ability.

sion, which reduces sequence length by summarization or filtering [49, 50]. Finally, recent work
explores hardware-aligned designs, including sparse attention architectures [51] and MoBA [52].

5 Discussion and Conclusions

Limitations: Our analysis is limited to 7B–8B models and does not cover larger scales. We also
focus on supervised fine-tuning, leaving open how reinforcement learning interacts with long-context
ability. Future work should examine these directions across model families and scales.

This paper investigates the overlooked yet crucial role of long-context capability in reasoning
performance. Through behavioral analysis and controlled experiments, we demonstrate a consistent
correlation between long-context and downstream reasoning ability. Our results show that models
with improved long-context capacity not only perform better on tasks involving lengthy inputs but
also achieve higher reasoning accuracy even on short-form benchmarks. Furthermore, we find that
enhancing long-context ability prior to supervised fine-tuning yields significant gains across multiple
reasoning datasets. Based on these findings, we advocate for a training recipe: first, extend the
model’s long-context ability, then apply reasoning-specific fine-tuning.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: yes, we include the paper’s contributions and scope in the abstract and intro-
duction

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: we add the limitations to the conclusion
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: we include the full set of assumptions and a complete (and correct) proof
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: we include a section about the experimental setup.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: we provide open access to the data and code

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: we include a section about the experimental setup

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: we include a stable metric to get results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification:: we provide sufficient information on the computer resources.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: the research conducted in the paper conform with the NeurIPS Code of Ethics
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: there is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: the paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: the paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: the paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: the paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: we do not involve LLMs to impact the methodology.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Other Results on Different Long-Context Ability

This section provides additional experimental results that complement the main findings by examining
how different levels of long-context ability influence model performance across multiple reasoning
benchmarks. While the main paper focused on reasoning accuracy trends, here we provide a broader
view including auxiliary benchmarks, output length analysis, and merged-model experiments.

Effect of RoPE scaling. We first analyze the impact of varying RoPE θ scaling factors on
LLaMA3-8B-Instruct. As shown in Table 8, models with stronger long-context ability gener-
ally achieve higher reasoning accuracy across MATH500, AIME22-24, and GSM8K. The trend is most
consistent up to RoPE ×16, after which performance begins to plateau or slightly decline, suggesting
diminishing returns when scaling beyond the effective context length of the training data. We also
observe that output length tends to shrink as accuracy improves, consistent with our analysis in
Section 3.2, where correct solutions are typically shorter and more concise.

Table 8: Effect of RoPE θ Scaling on Long-Context and Reasoning Performance. Evaluation
of LLaMA3-8B-Instruct with different RoPE θ scaling factors on the 32K Needle-in-a-Haystack
benchmark. Base refers to the model’s performance before SFT, while Short and Long denote
results after fine-tuning on short and long reasoning datasets, respectively. Avg represents the average
of the Short and Long performances. Length represents the average output length.

RoPE 32k long Acc(%) Length

theta ctx ability Base Short Long Avg Base Short Long Avg

MATH500

×1 0 24.40 50.68 58.92 54.80 746 12991 11187 12089
×4 3.75 20.40 52.80 61.16 56.98 754 9047 9949 9498
×8 58.30 18.96 53.12 62.24 57.68 767 8476 9673 9075
×16 77.05 17.28 54.40 64.32 59.36 608 8782 9335 9059
×32 58.86 15.24 53.84 61.96 57.90 490 8489 9526 9007
×64 35.00 14.20 53.28 62.36 57.82 453 8605 9579 9092

AIME22-24

×1 0 0.22 2.67 3.11 2.89 1895 27482 26706 27094
×4 3.75 0.67 3.78 5.11 4.45 2048 19961 20684 20322
×8 58.30 0.22 2.89 6.89 4.89 1723 17532 17547 17539
×16 77.05 0.22 4.67 6.22 5.45 1617 18339 18015 18177
×32 58.86 0.00 3.56 7.11 5.34 1372 17876 18071 17973
×64 35.00 0.44 3.11 4.67 3.89 1108 17830 18251 18041

GSM8K

×1 0 78.13 84.81 84.64 84.73 195 2244 4769 3506
×4 3.75 75.54 85.64 85.88 85.76 190 1973 4010 2992
×8 58.30 73.03 85.90 85.79 85.85 184 1981 3812 2897
×16 77.05 70.39 85.64 86.38 86.01 182 2019 3936 2977
×32 58.86 66.35 85.41 86.14 85.78 180 2026 4179 3103
×64 35.00 62.21 85.56 85.25 85.41 182 2083 4177 3130

Extremely long context via model merging. To test whether extremely long contexts (e.g., 128k or
1M) provide further gains, we construct merged variants of Qwen2.5-7B-Instruct by combining its
base 32k model with the ultra-long version Qwen2.5-7B-Instruct-1M. By adjusting merge ratios,
we obtain intermediate models with controllable long-context capabilities, while preserving base
reasoning ability. As shown in Figure 9, reasoning performance correlates with effective long-context
strength: models with moderate merge ratios (e.g., 0.1, 0.7) achieve consistently strong accuracy,
whereas the pure 1M model shows weaker effective long-context utilization and degraded reasoning.
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B Other Results on Different Merging Ratios

We further analyze how different merging ratios between base and ultra-long variants affect both
retrieval ability and downstream reasoning. This provides insight into whether extremely long
contexts (e.g., 1M tokens) always yield benefits, or whether moderate ratios strike a better balance
between long-context integration and base reasoning stability.

Table 9: Reasoning Performance After SFT with Different Merge Ratios. Qwen results are based
on merging Qwen2.5-7B-Instruct-1M with Qwen2.5-7B-Instruct. A ratio of 0.1 means that
the long-context (1M) variant contributes 10% to the merged model.

1M Merge 32k long Acc(%) Length

Ratio ctx ability Base Short Long Avg Base Short Long Avg

MATH500

0 78.1 75.00 83.48 84.84 84.16 638 5572 6545 6058
0.1 79.1 74.64 83.56 86.28 84.92 670 5625 6432 6028
0.7 79.5 72.80 83.88 84.88 84.38 630 5812 6563 6187
1.0 77.7 72.16 82.28 83.48 82.88 688 5897 6881 6389

AIME22-24

0 78.1 8.22 17.78 23.33 20.56 1051 19642 18592 19117
0.1 79.1 9.33 19.11 22.89 21.00 1313 19473 18178 18825
0.7 79.5 7.78 19.56 23.56 21.56 1416 20396 18142 19269
1.0 77.7 7.33 16.22 20.00 18.11 1750 20507 18680 19594

GSM8K

0 78.1 90.75 93.19 91.54 92.37 259 1429 3264 2347
0.1 79.1 90.75 93.15 92.16 92.66 252 1472 3197 2334
0.7 79.5 89.1 93.07 92.27 92.67 254 1488 2930 2209
1.0 77.7 89.13 92.84 92.34 92.59 254 1494 2915 2204

Needle-in-a-Haystack (retrieval ability). We first evaluate the merged models on the 32K Needle-
in-a-Haystack benchmark. As shown in Figure 12, long-context ability generally increases with
higher contribution from the 1M-token variant. However, because most models achieve near-perfect
scores, the benchmark does not fully differentiate their effective long-context strength. This motivates
evaluating more challenging reasoning datasets where differences manifest more clearly.

Reasoning benchmarks. We then fine-tune the merged models on both short and long reasoning
datasets and evaluate them on three benchmarks: MATH500, AIME22-24, and GSM8K. Table 9 reports
accuracy and output length. Three key observations emerge: (1) Moderate merge ratios (e.g., 0.1
or 0.7) yield the best overall reasoning performance, consistently outperforming both the base (0)
and fully merged (1.0) variants. (2) Pure 1M models (ratio 1.0) exhibit degraded reasoning accuracy,
despite higher nominal long-context capacity, suggesting weaker effective utilization. (3) Output
lengths tend to shrink as reasoning improves, consistent with the observation that successful reasoning
requires fewer redundant tokens.

C Additional Analysis on Output Length and Context Extension

Why is the output length decreasing with the long context extension? The observed decrease
in output length is actually aligned with the ratio of correct answers. Correct generations tend to
be much shorter and more concise than incorrect ones. With long-context extension, the number of
correct answers increases, thus reducing the overall average output length. This phenomenon has
also been discussed in prior work [53].
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Figure 12: 32K Needle-in-a-Haystack evaluation for different merge ratios. Models with higher
long-context contribution achieve stronger retrieval ability, but performance differences saturate
quickly.

Table 10: Performance of Phi-4 under different RoPE scales on AIME.
Model RoPE 32k NIAH (%) AIME (before, %) AIME (after, %)

Phi-4 ×1 52.27 14.89 47.56
Phi-4 ×4 78.07 13.78 49.45
Phi-4 ×16 84.77 10.22 50.17

To support this explanation, we report the average lengths of correct and incorrect generations
across both short (0–8k) and long (8–16k) training settings for LLaMA3-8B under different RoPE
configurations: RoPE ×1 (8k context) and RoPE ×16 (Extended context)

Table 11: Effect of training length on output length under different RoPE scales.
RoPE Scale Setting Accuracy (%) Avg Length # Correct Avg # Wrong Avg

×1 short 50.68 12991 1267 3189 1233 23145
×1 long 58.92 11187 1473 5928 1027 20999

×16 short 54.40 8782 1360 3906 1140 14921
×16 long 64.32 9335 1608 6063 892 17265

As shown, models with longer context capacity (e.g., RoPE ×16) achieve higher accuracy while
generating shorter outputs on average—primarily because a larger portion of the outputs are correct,
and correct answers are generally shorter.
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