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Abstract
Large Language Models (LLMs) struggle to001
model long input sequences due to high mem-002
ory and runtime costs. Memory-augmented003
models have emerged as a promising solu-004
tion to this problem, but current methods are005
hindered by limited memory capacity and re-006
quire costly re-training to integrate with a007
new LLM. In this work, we introduce an008
associative memory module which can be009
coupled to any pre-trained (frozen) attention-010
based LLM without re-training, enabling ef-011
fective long language modeling. Unlike pre-012
vious methods, our associative memory mod-013
ule consolidates representations of individ-014
ual tokens into a non-parametric distribu-015
tion model, dynamically managed by prop-016
erly balancing the novelty and recency of017
the incoming data. By retrieving informa-018
tion from this consolidated associative memory,019
the base LLM can achieve significant (up to020
29.7% on Arxiv) perplexity reduction in long-021
context language modeling compared to other022
baselines on various standard benchmarks.023
This architecture, which we call CAMELoT024
(Consolidated Associative Memory Enhanced025
Long Transformer1), demonstrates superior026
performance even with a tiny context window027
of 128 tokens.028

1 Introduction029

Humans are exposed to a myriad of events through030

their lives. The human brain effectively processes031

and consolidates events to form memories that ex-032

emplify related events and form the basis for future033

actions, by retaining essential information and dis-034

carding inessential details (Sara, 2000). Associa-035

tive Memory (AM) is a key type of such human-036

like memory systems to store information, with a037

core computation to link (associate) a query with038

representations stored in the memory banks (Will-039

shaw et al., 1969; Hopfield, 1982). Specifically,040

1We will release our codes upon publication to facilitate
future research.
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Figure 1: Consolidated Associative Memory Enhanced
Long Transformer (CAMELOT). Top: Consolidation
of representations in the associative memory (AM) – re-
lated concepts are grouped together and averaged. Bot-
tom: Recency-dependent incorporation of novel con-
cepts – when a new concept is introduced with no close
matches, the oldest slot (since its last update) is replaced
with the new concept.

for any given query, AM selects the consolidated 041

memory slot that best matches the query. The rep- 042

resentations in AM concisely summarize past ex- 043

periences and provide valuable cues for future ac- 044

tions. Recently, there has been growing interest in 045

designing associative memory networks (Krotov 046

and Hopfield, 2016; Ramsauer et al., 2021). Other 047

works investigate memory consolidation in neural 048

networks with various local learning rules (Dudai, 049

2004), which are computationally cheaper than the 050

traditional end-to-end back-propagation for neural 051

networks (Tyulmankov et al., 2021). 052

Concurrently, large language models (LLMs) 053

have demonstrated their potential in various prac- 054

tical NLP applications such as chatbots (OpenAI, 055

2024), text summarization (Radford et al., 2019), 056

and question answering (Chung et al., 2022), etc. 057

A key parameter for LLMs is the input context 058

length L that the models are trained with. Support- 059

ing longer context makes it possible to incorporate 060

richer information and increase LLM performance 061

at inference time (Press et al., 2022). However, the 062

attention mechanism of a pre-trained LLM usually 063
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Figure 2: The general pipeline of our method. Every
layer of the backbone LLM is augmented with an AM
module (we draw AM in the first attention layer here,
just as an example). Keys and values are calculated for
every token, keys are used to search for relevant memo-
rized tokens in the memory bank and return them (Read).
The retrieved memory keys and values are prepended to
the original token keys and values as prefixes. Finally,
the attention operation is applied on the concatenation
of the retrieved and native keys and values (Augment).
After retrieval, the memory state is modified according
to the Write operation, see Figure 3.

scales quadratically (L2) with an increasing num-064

ber of tokens, which makes increasing the context065

length computationally challenging due to substan-066

tial requirements for resources.067

These constraints raise a question: can we068

develop a plug-and-play module for pre-trained069

(frozen) LLMs to handle longer contexts beyond L070

after the training? Importantly, this module should071

be computationally efficient and should not require072

any retraining or fine-tuning of the backbone LLM.073

In this work, we draw inspiration from the hu-074

man memorization mechanism and tackle this ques-075

tion using Associative Memory (AM). We propose076

a plug-and-play AM module that consolidates in-077

dividual tokens based on the novelty and recency078

of the input text (as shown in Figure 1). The con-079

solidated text is modeled as non-parametric dis-080

tributions, with one distribution per key-space for081

each LLM layer. When processing a long text,082

the modes of these distributions are dynamically083

updated as the context window sweeps over time,084

with new modes created for novel information and085

outdated ones replaced. As a result, the module086

consolidates information about the prior context far087

beyond the current context window (of length L).088

The module then retrieves the modes closest to the089

current input and operates the attention computa-090

tion on them. This module can be integrated with091

any pre-trained attention-based LLM, extending its092

context window far beyond L by approximating a093

full-context attention over all past information.094

Our method does not require any re-training, 095

fine-tuning, or learning adaptors between the base 096

LLM and the AM module. We conduct comprehen- 097

sive experiments on long-context language model- 098

ing tasks, demonstrating that this human-like mem- 099

ory design leads to significantly stronger results 100

compared to baselines. For instance, when coupled 101

to a pre-trained LLaMA2, our memory-enhanced 102

network results in significant (up to 29.7% on 103

Arxiv) perplexity reduction in long-context model- 104

ing compared to the base LLM. 105

2 Related Work 106

Memory networks. There is a large body of lit- 107

erature on memory models, e.g. memory networks 108

(Weston et al., 2014), sparse distributed memory 109

(Kanerva, 1988), and associative memory (Koho- 110

nen, 2012). Neuroscience-inspired memory models 111

have also been used for language model augmen- 112

tation (Park and Bak, 2023). Memory augmenta- 113

tion has shown its effectiveness in reinforcement 114

learning (Graves et al., 2016) and recurrent neural 115

networks (Graves et al., 2014). To the best of our 116

knowledge, none of these works enable memory 117

augmentation of LLMs without additional training, 118

as in our approach. 119

Long Context Modeling. Several streams of 120

work aim to enhance the long context capability 121

of LLMs. Long-range self-attention techniques 122

have been proposed to improve the efficiency of 123

transformer models, including low-rank factoriza- 124

tion (Wang et al., 2020), local attention (Ramachan- 125

dran et al., 2019), dilated attention (Ding et al., 126

2023), sparsity (Beltagy et al., 2020; Zaheer et al., 127

2020; Kitaev et al., 2020), and hardware-aware at- 128

tention mechanisms such as FlashAttention (Dao 129

et al., 2022; Dao, 2023). Despite notable progress, 130

these methods struggle to retrieve information in 131

the middle of the input (Liu et al., 2023). They can 132

also be used in tandem with our proposed approach 133

for longer context modeling. 134

Another line of work utilizes state-space mod- 135

els to handle long-range dependencies in sequential 136

data. Mamba (Gu and Dao, 2023), a seminal work 137

in this area, captures long-term dependencies with 138

a selective state-space model, achieving linear train- 139

ing time without the quadratic scaling of traditional 140

attention mechanisms. Jamba (Lieber et al., 2024) 141

improves on this by combining Transformer layers 142

with Mamba layers to train effectively on long con- 143

texts. However, these models require training on 144
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long sequences. While combining AM with state-145

space models is an interesting future direction, our146

focus in this work is on enhancing the long-context147

capability of a Transformer-based LLM after its148

training.149

Memory-augmented language models have150

emerged as a promising approach (Packer et al.,151

2023; Dai et al., 2019; Wu et al., 2022; Tworkowski152

et al., 2023; Weston et al., 2014). In particular, Wu153

et al. (2022) show that a kNN lookup into a mem-154

ory cache bank containing (key, value) pairs of155

individual past inputs can improve language model-156

ing. Tworkowski et al. (2023) further improved this157

approach using contrastive learning. In the same158

vein, Wang et al. (2023) addressed the memory stal-159

eness limitation of these works by training a side160

network model, while keeping the LLM frozen.161

Unlike these methods, our approach relies on con-162

solidated representations of past tokens which are163

dynamically updated, therefore getting rid of the164

limitation of the number of memory slots. More-165

over, different from these approaches, our method166

is training-free (memory updates occur solely at167

runtime), making it easier to integrate our memory168

module into any existing LLM architecture.169

Prompt compression research (Ge et al., 2023;170

Mu et al., 2023; Chevalier et al., 2023) has also171

been explored recently to extend the context length172

in transformer models. These methods operate at173

the input level, while our method consolidates the174

internal representations of the model based on a175

local associative memory update rule. Rae et al.176

(2019b) proposed the Compressive Transformer,177

which compresses past activations of the model178

for long-range sequence modeling. In contrast,179

our proposed approach does not require training or180

additional losses like attention-reconstruction. In181

addition, we offer a novel way to effectively update182

our associative memory representations, balancing183

information about novelty and temporal proximity.184

3 Associative Memory Enabled LLM185

For long document modeling tasks, it is desirable186

to have an architecture capable of efficient usage187

of information that appeared in past contexts. Our188

proposed method is built on three desiderata. First,189

redundant information from the past should be com-190

pressed and stored in the AM block while reduc-191

ing repetitions (consolidation). When the same192

concept appears in the past context multiple times,193

it is wasteful to store each individual instance of194

that concept in a separate memory slot; instead, all 195

those instances should be consolidated and stored 196

only once. Second, novel concepts not encoun- 197

tered by the model in the past must be detected and 198

stored in a new memory slot at their first encounter 199

(novelty). These novel memory slots can be sub- 200

sequently consolidated with the possible future oc- 201

currences of related concepts. Third, in situations 202

when the topic shifts, the model should be able to 203

discard outdated memory slots that are no longer 204

useful, if that is required for the incorporation of 205

additional novel concepts encountered following 206

the topic shift (recency). 207

To achieve these desiderata, we design 208

CAMELOT, a Consolidated Associative Memory 209

Enhanced Long Transformer, consisting of a base 210

language model and a memory module (overall 211

architecture shown in Figure 2). The memory mod- 212

ule is equipped with a Read and Write operation, 213

supporting information retrieval from the memory 214

bank and the update to the memory bank. With the 215

retrieved information, the current context window 216

of LLM is memory-enhanced via the Augment 217

operation. These three desiderata are the founda- 218

tions of CAMELOT. Our method is agnostic to the 219

specific choice of many popular transformer archi- 220

tectures, in the sense that any attention-based LLM 221

can be enhanced with the AM in CAMELOT. 222

3.1 Read Operation 223

When a context window of length L is processed 224

through the LLM, keys and values from every layer 225

(more generally can be an arbitrary subset of lay- 226

ers) are passed to the corresponding AM module 227

(one per memory-augmented layer). AM in each 228

layer consists of M memory slots, enumerated by 229

the index µ = 1, ...,M . Each slot contains two 230

vector variables: memory keys Kmem
µ and mem- 231

ory values V mem
µ , and two integer scalar variables: 232

counts cµ (number of consolidated instances), and 233

age τµ (how old the current slot is since its last 234

update). 235

When a set of keys Ki and values Vi (index 236

i = 1, ..., L enumerates individual tokens from the 237

current context window) is passed to the AM mod- 238

ule to retrieve relevant information, a search func- 239

tion identifies the memory slots with the strongest 240

association (i.e., highest similarity) between the 241

input token key Ki and AM’s memory slot keys 242

{Kmem
µ }: 243

µ̂(i) = argmax
µ

[
sim(Kmem

µ ,Ki)
]

(1) 244
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<latexit sha1_base64="wSdhtTkuSof4fFgINzve5joXeVU=">AAAB9XicbVDLSsNAFL2pr1pfUZduBovgqiQi1WXRjaCLCvYBbVom00k7dDIJMxOlhP6HGxeKuPVf3Pk3TtostPXAwOGce7lnjh9zprTjfFuFldW19Y3iZmlre2d3z94/aKookYQ2SMQj2faxopwJ2tBMc9qOJcWhz2nLH19nfuuRSsUi8aAnMfVCPBQsYARrI/Vue90Q65EfpHLav+vbZafizICWiZuTMuSo9+2v7iAiSUiFJhwr1XGdWHsplpoRTqelbqJojMkYD2nHUIFDqrx0lnqKTowyQEEkzRMazdTfGykOlZqEvpnMMqpFLxP/8zqJDi69lIk40VSQ+aEg4UhHKKsADZikRPOJIZhIZrIiMsISE22KKpkS3MUvL5PmWcWtVqr35+XaVV5HEY7gGE7BhQuowQ3UoQEEJDzDK7xZT9aL9W59zEcLVr5zCH9gff4AoBSSnQ==</latexit>

Kr
L

<latexit sha1_base64="z9a8caS2BUmzzaYHVH3AMV7dzlE=">AAAB9XicbVDLSgMxFL3js9ZX1aWbYBFclRmR6rLoxoWLCvYB7bRk0kwbmkmGJKOUof/hxoUibv0Xd/6NmXYW2nogcDjnXu7JCWLOtHHdb2dldW19Y7OwVdze2d3bLx0cNrVMFKENIrlU7QBrypmgDcMMp+1YURwFnLaC8U3mtx6p0kyKBzOJqR/hoWAhI9hYqdfsdSNsRkGYqmn/rl8quxV3BrRMvJyUIUe9X/rqDiRJIioM4VjrjufGxk+xMoxwOi12E01jTMZ4SDuWChxR7aez1FN0apUBCqWyTxg0U39vpDjSehIFdjLLqBe9TPzP6yQmvPJTJuLEUEHmh8KEIyNRVgEaMEWJ4RNLMFHMZkVkhBUmxhZVtCV4i19eJs3ziletVO8vyrXrvI4CHMMJnIEHl1CDW6hDAwgoeIZXeHOenBfn3fmYj644+c4R/IHz+QOxT5Ko</latexit>

V r
L

<latexit sha1_base64="E1fI3RyupafFRHwyeIKEndptlxc=">AAAB9XicbVDLSgMxFL3js9ZX1aWbYBFclZki1WXRjcsK9gHttGTSTBuaSYYko5Sh/+HGhSJu/Rd3/o2ZdhbaeiBwOOde7skJYs60cd1vZ219Y3Nru7BT3N3bPzgsHR23tEwUoU0iuVSdAGvKmaBNwwynnVhRHAWctoPJbea3H6nSTIoHM42pH+GRYCEj2Fip3+r3ImzGQZiq2aA6KJXdijsHWiVeTsqQozEoffWGkiQRFYZwrHXXc2Pjp1gZRjidFXuJpjEmEzyiXUsFjqj203nqGTq3yhCFUtknDJqrvzdSHGk9jQI7mWXUy14m/ud1ExNe+ykTcWKoIItDYcKRkSirAA2ZosTwqSWYKGazIjLGChNjiyraErzlL6+SVrXi1Sq1+8ty/SavowCncAYX4MEV1OEOGtAEAgqe4RXenCfnxXl3Phaja06+cwJ/4Hz+AInnko4=</latexit>

V r
2

<latexit sha1_base64="1GTLBcDv0odMQyrlivkEZUJnoqg=">AAAB9XicbVDLSgMxFL2pr1pfVZdugkVwVWZEqsuiG5cV7APaacmkmTY0kxmSjFKG/ocbF4q49V/c+Tdm2llo64HA4Zx7uSfHjwXXxnG+UWFtfWNzq7hd2tnd2z8oHx61dJQoypo0EpHq+EQzwSVrGm4E68SKkdAXrO1PbjO//ciU5pF8MNOYeSEZSR5wSoyV+q1+LyRm7Aepmg3cQbniVJ058Cpxc1KBHI1B+as3jGgSMmmoIFp3XSc2XkqU4VSwWamXaBYTOiEj1rVUkpBpL52nnuEzqwxxECn7pMFz9fdGSkKtp6FvJ7OMetnLxP+8bmKCay/lMk4Mk3RxKEgENhHOKsBDrhg1YmoJoYrbrJiOiSLU2KJKtgR3+curpHVRdWvV2v1lpX6T11GEEziFc3DhCupwBw1oAgUFz/AKb+gJvaB39LEYLaB85xj+AH3+AIhjko0=</latexit>

V r
1

keys

values

<latexit sha1_base64="MkCJj1RDvaRmX7eOl5l/9COHmRU=">AAAB9XicbVDLSsNAFL2pr1pfUZduBovgqiRFqsuiG8FNBfuANi2T6aQdOpmEmYlSQv/DjQtF3Pov7vwbJ20W2npg4HDOvdwzx485U9pxvq3C2vrG5lZxu7Szu7d/YB8etVSUSEKbJOKR7PhYUc4EbWqmOe3EkuLQ57TtT24yv/1IpWKReNDTmHohHgkWMIK1kfp3/V6I9dgPUjkbVAd22ak4c6BV4uakDDkaA/urN4xIElKhCcdKdV0n1l6KpWaE01mplygaYzLBI9o1VOCQKi+dp56hM6MMURBJ84RGc/X3RopDpaahbyazjGrZy8T/vG6igysvZSJONBVkcShIONIRyipAQyYp0XxqCCaSmayIjLHERJuiSqYEd/nLq6RVrbi1Su3+oly/zusowgmcwjm4cAl1uIUGNIGAhGd4hTfryXqx3q2PxWjByneO4Q+szx94rJKD</latexit>

Kr
2

<latexit sha1_base64="E1fI3RyupafFRHwyeIKEndptlxc=">AAAB9XicbVDLSgMxFL3js9ZX1aWbYBFclZki1WXRjcsK9gHttGTSTBuaSYYko5Sh/+HGhSJu/Rd3/o2ZdhbaeiBwOOde7skJYs60cd1vZ219Y3Nru7BT3N3bPzgsHR23tEwUoU0iuVSdAGvKmaBNwwynnVhRHAWctoPJbea3H6nSTIoHM42pH+GRYCEj2Fip3+r3ImzGQZiq2aA6KJXdijsHWiVeTsqQozEoffWGkiQRFYZwrHXXc2Pjp1gZRjidFXuJpjEmEzyiXUsFjqj203nqGTq3yhCFUtknDJqrvzdSHGk9jQI7mWXUy14m/ud1ExNe+ykTcWKoIItDYcKRkSirAA2ZosTwqSWYKGazIjLGChNjiyraErzlL6+SVrXi1Sq1+8ty/SavowCncAYX4MEV1OEOGtAEAgqe4RXenCfnxXl3Phaja06+cwJ/4Hz+AInnko4=</latexit>

V r
2

<latexit sha1_base64="1GTLBcDv0odMQyrlivkEZUJnoqg=">AAAB9XicbVDLSgMxFL2pr1pfVZdugkVwVWZEqsuiG5cV7APaacmkmTY0kxmSjFKG/ocbF4q49V/c+Tdm2llo64HA4Zx7uSfHjwXXxnG+UWFtfWNzq7hd2tnd2z8oHx61dJQoypo0EpHq+EQzwSVrGm4E68SKkdAXrO1PbjO//ciU5pF8MNOYeSEZSR5wSoyV+q1+LyRm7Aepmg3cQbniVJ058Cpxc1KBHI1B+as3jGgSMmmoIFp3XSc2XkqU4VSwWamXaBYTOiEj1rVUkpBpL52nnuEzqwxxECn7pMFz9fdGSkKtp6FvJ7OMetnLxP+8bmKCay/lMk4Mk3RxKEgENhHOKsBDrhg1YmoJoYrbrJiOiSLU2KJKtgR3+curpHVRdWvV2v1lpX6T11GEEziFc3DhCupwBw1oAgUFz/AKb+gJvaB39LEYLaB85xj+AH3+AIhjko0=</latexit>

V r
1

<latexit sha1_base64="PW1ypRTuiIZt25/y31iL1MElqHY=">AAAB9XicbVDLSgMxFL3xWeur6tJNsAiuyoxIdVl0I7ipYB/QTksmzbShmcyQZJQy9D/cuFDErf/izr8x085CWw8EDufcyz05fiy4No7zjVZW19Y3Ngtbxe2d3b390sFhU0eJoqxBIxGptk80E1yyhuFGsHasGAl9wVr++CbzW49MaR7JBzOJmReSoeQBp8RYqXfX64bEjPwgVdO+2y+VnYozA14mbk7KkKPeL311BxFNQiYNFUTrjuvExkuJMpwKNi12E81iQsdkyDqWShIy7aWz1FN8apUBDiJlnzR4pv7eSEmo9ST07WSWUS96mfif10lMcOWlXMaJYZLODwWJwCbCWQV4wBWjRkwsIVRxmxXTEVGEGltU0ZbgLn55mTTPK261Ur2/KNeu8zoKcAwncAYuXEINbqEODaCg4Ble4Q09oRf0jj7moyso3zmCP0CfP3cokoI=</latexit>

Kr
1

<latexit sha1_base64="wSdhtTkuSof4fFgINzve5joXeVU=">AAAB9XicbVDLSsNAFL2pr1pfUZduBovgqiQi1WXRjaCLCvYBbVom00k7dDIJMxOlhP6HGxeKuPVf3Pk3TtostPXAwOGce7lnjh9zprTjfFuFldW19Y3iZmlre2d3z94/aKookYQ2SMQj2faxopwJ2tBMc9qOJcWhz2nLH19nfuuRSsUi8aAnMfVCPBQsYARrI/Vue90Q65EfpHLav+vbZafizICWiZuTMuSo9+2v7iAiSUiFJhwr1XGdWHsplpoRTqelbqJojMkYD2nHUIFDqrx0lnqKTowyQEEkzRMazdTfGykOlZqEvpnMMqpFLxP/8zqJDi69lIk40VSQ+aEg4UhHKKsADZikRPOJIZhIZrIiMsISE22KKpkS3MUvL5PmWcWtVqr35+XaVV5HEY7gGE7BhQuowQ3UoQEEJDzDK7xZT9aL9W59zEcLVr5zCH9gff4AoBSSnQ==</latexit>

Kr
L

<latexit sha1_base64="z9a8caS2BUmzzaYHVH3AMV7dzlE=">AAAB9XicbVDLSgMxFL3js9ZX1aWbYBFclRmR6rLoxoWLCvYB7bRk0kwbmkmGJKOUof/hxoUibv0Xd/6NmXYW2nogcDjnXu7JCWLOtHHdb2dldW19Y7OwVdze2d3bLx0cNrVMFKENIrlU7QBrypmgDcMMp+1YURwFnLaC8U3mtx6p0kyKBzOJqR/hoWAhI9hYqdfsdSNsRkGYqmn/rl8quxV3BrRMvJyUIUe9X/rqDiRJIioM4VjrjufGxk+xMoxwOi12E01jTMZ4SDuWChxR7aez1FN0apUBCqWyTxg0U39vpDjSehIFdjLLqBe9TPzP6yQmvPJTJuLEUEHmh8KEIyNRVgEaMEWJ4RNLMFHMZkVkhBUmxhZVtCV4i19eJs3ziletVO8vyrXrvI4CHMMJnIEHl1CDW6hDAwgoeIZXeHOenBfn3fmYj644+c4R/IHz+QOxT5Ko</latexit>

V r
L

<latexit sha1_base64="mY2uz1b7MSHdImdzS4RVR32tU04=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF8FLRfsBbSib7aRdutmE3Y1QQn+CFw+KePUXefPfuG1z0OqDgcd7M8zMCxLBtXHdL6ewsrq2vlHcLG1t7+zulfcPWjpOFcMmi0WsOgHVKLjEpuFGYCdRSKNAYDsYX8/89iMqzWP5YCYJ+hEdSh5yRo2V7m/7Xr9ccavuHOQv8XJSgRyNfvmzN4hZGqE0TFCtu56bGD+jynAmcFrqpRoTysZ0iF1LJY1Q+9n81Ck5scqAhLGyJQ2Zqz8nMhppPYkC2xlRM9LL3kz8z+umJrz0My6T1KBki0VhKoiJyexvMuAKmRETSyhT3N5K2IgqyoxNp2RD8JZf/ktaZ1WvVq3dnVfqV3kcRTiCYzgFDy6gDjfQgCYwGMITvMCrI5xn5815X7QWnHzmEH7B+fgGyqWNfg==</latexit>

K1
<latexit sha1_base64="Dc6IP1FZ7TH4LlBvW99siC0nvEs=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKRI9BL4IeIpoHJEuYnXSSIbOzy8ysEJZ8ghcPinj1i7z5N06SPWhiQUNR1U13VxALro3rfju5ldW19Y38ZmFre2d3r7h/0NBRohjWWSQi1QqoRsEl1g03AluxQhoGApvB6HrqN59QaR7JRzOO0Q/pQPI+Z9RY6eG2e9ctltyyOwNZJl5GSpCh1i1+dXoRS0KUhgmqddtzY+OnVBnOBE4KnURjTNmIDrBtqaQhaj+dnTohJ1bpkX6kbElDZurviZSGWo/DwHaG1Az1ojcV//Paielf+imXcWJQsvmifiKIicj0b9LjCpkRY0soU9zeStiQKsqMTadgQ/AWX14mjbOyVylX7s9L1assjjwcwTGcggcXUIUbqEEdGAzgGV7hzRHOi/PufMxbc042cwh/4Hz+APORjZk=</latexit>

KL
<latexit sha1_base64="kJSHto6wWMuSn0az2L0xgtYCueY=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKewGiR6DXgQvEc0DkiXMTnqTIbOzy8ysEEI+wYsHRbz6Rd78GyfJHjSxoKGo6qa7K0gE18Z1v53c2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDPzW0+oNI/loxkn6Ed0IHnIGTVWerjrVXrFklt25yCrxMtICTLUe8Wvbj9maYTSMEG17nhuYvwJVYYzgdNCN9WYUDaiA+xYKmmE2p/MT52SM6v0SRgrW9KQufp7YkIjrcdRYDsjaoZ62ZuJ/3md1IRX/oTLJDUo2WJRmApiYjL7m/S5QmbE2BLKFLe3EjakijJj0ynYELzll1dJs1L2quXq/UWpdp3FkYcTOIVz8OASanALdWgAgwE8wyu8OcJ5cd6dj0VrzslmjuEPnM8fzCmNfw==</latexit>

K2

<latexit sha1_base64="bQO7FQg1krmFmBKheBLlqxdisVk=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EomXQxsIiovmA5Ah7m7lkyd7esbsnhCM/wcZCEVt/kZ3/xk1yhUYfDDzem2FmXpAIro3rfjmFldW19Y3iZmlre2d3r7x/0NJxqhg2WSxi1QmoRsElNg03AjuJQhoFAtvB+Hrmtx9RaR7LBzNJ0I/oUPKQM2qsdN/q3/bLFbfqzkH+Ei8nFcjR6Jc/e4OYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/NT52SE6sMSBgrW9KQufpzIqOR1pMosJ0RNSO97M3E/7xuasJLP+MySQ1KtlgUpoKYmMz+JgOukBkxsYQyxe2thI2ooszYdEo2BG/55b+kdVb1atXa3XmlfpXHUYQjOIZT8OAC6nADDWgCgyE8wQu8OsJ5dt6c90VrwclnDuEXnI9vBGKNpA==</latexit>

VL
<latexit sha1_base64="kqr8xMaGJ5tXl/9XiIvJWiQOfm8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz00Op7/XLFrbpzkFXi5aQCORr98ldvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JmlQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeO1nXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtOyYbgLb+8SloXVa9Wrd1fVuo3eRxFOIFTOAcPrqAOd9CAJjAYwjO8wpsjnBfn3flYtBacfOYY/sD5/AHbZ42J</latexit>

V1
<latexit sha1_base64="eXhDygiI1degZ3ipq73Zpr5yuCg=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkmR6rHoxWNF+wFtKJvtpF262YTdjVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8O/PbT6g0j+WjmSToR3QoecgZNVZ6aPWr/VLZrbhzkFXi5aQMORr90ldvELM0QmmYoFp3PTcxfkaV4UzgtNhLNSaUjekQu5ZKGqH2s/mpU3JulQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeO1nXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtO0YbgLb+8SlrViler1O4vy/WbPI4CnMIZXIAHV1CHO2hAExgM4Rle4c0Rzovz7nwsWtecfOYE/sD5/AHc642K</latexit>

V2

<latexit sha1_base64="znL4lRJNSZkUMgTO7tyl57UM2Tw="></latexit>Write([K1, ..., KL], [V1, ..., VL], Memory)
for i = 1...L

µ̂(i) = argmax
µ

⇥
sim(Kmem

µ , Ki)
⇤

if sim
�
Kmem

µ̂(i) , Ki

�
> R

Kmem
µ̂(i)  "µ̂(i)Ki + (1� "µ̂(i))K

mem
µ̂(i)

V mem
µ̂(i)  "µ̂(i)Vi + (1� "µ̂(i))V

mem
µ̂(i)

else
rewrite the oldest used slot
with Ki, Vi

return Memory

Figure 3: Every AM module performs read and write operations. The read operation retrieves memorized tokens
most similar to the native keys. The write operation updates the state of the memory by performing consolidation,
which depends on novelty and recency.

The keys and their corresponding values of these245

L strongest-associated memories (Kr and V r) are246

returned for the current L native tokens and passed247

back to the LLM in the form of the key-value cache.248

See details in Figure 3.249

3.2 Augment Operation250

The list of retrieved key-value caches (Kr and251

V r) are passed back to the base LLM and used252

as the prefix context in each respective memory-253

augmented layer. They are prepended to the LLM254

keys and values of current input tokens. Then255

causal attention is performed on the concatenated256

list, which after the augmentation contains 2L keys257

and values (the length of current native context +258

the length of retrieved memories) and L queries259

(current context only), resulting in the augmented260

transformer attention output [a1, · · · , aL]. The at-261

tention output results in augmented hidden states262

[h1, · · · , hL] which are the inputs to the next layer,263

as shown in the following equations and Figure 3:264

[a1, · · · , aL] = Attn(Q,K ′, V ′) (2)265

Q = [Q1, Q2, · · · , QL] (3)266

K ′ = Kr ⊕ [K1, ·,KL], (4)267

V ′ = V r ⊕ [V1, · · · , VL] (5)268

3.3 Write Operation269

The state of AM is updated by the current context270

window according to the Write operation com-271

prised of two parts explained next (see Figure 3 for272

an illustration).273

Consolidation. If the similarity between the cur-274

rent context token key and the strongest-associated275

memorized key is large (i.e., > R, R is a hyper-276

parameter), the concept described by that token277

is declared familiar and, for this reason, its key278

and value are consolidated with the key and value279

stored in that memory slot. Specifically, memory 280

slots are updated according to: 281

Kmem
µ̂(i) ←

Ki + cµ̂(i)K
mem
µ̂(i)

cµ̂(i) + 1
(6) 282

V mem
µ̂(i) ←

Vi + cµ̂(i)V
mem
µ̂(i)

cµ̂(i) + 1
(7) 283

cµ̂(i) ← cµ̂(i) + 1 (8) 284

where cµ tracks the number of instances consoli- 285

dated in slot µ. Thus, the consolidated represen- 286

tations stored in each slot µ are always arithmetic 287

averages of individual instances that went into that 288

slot. By introducing an update rate εµ = 1/(cµ+1), 289

these expressions can be rewritten as incremental 290

modifications to the existing representations stored 291

in the AM, as in Figure 3. 292

Novelty and Recency. If the similarity with the 293

closest memorized key is weak (i.e., < R), the 294

concept is declared novel. In this case, the oldest 295

unused memory slot (the one with maximal age 296

τµ) is replaced with Ki, Vi, and its age is set to 0. 297

After each slot µ̂(i) update, its age statistic τµ̂(i) is 298

set to 0. The ages of all slots that had no matching 299

current context hidden state are incremented by 1. 300

We also provide a probabilistic interpretation for 301

CAMELOT in Section 9.1 302

4 Experiments 303

We evaluate CAMELOT on causal language mod- 304

eling task. We follow the data preprocessing 305

method proposed by Dai et al. (2019) where 306

lengthy documents are segmented into sequential, 307

non-overlapping windows and the LLM processes 308

each window one by one. During this process, we 309

first use the key and value representations of each 310

token to read from the AM and retrieve the rela- 311

tive information, then augment the causal language 312

4



modeling step by treating the returned memory as313

the past caches. Subsequently, the keys and values314

of the current input are integrated into the AM via315

the Write function. We measure the perplexity for316

tokens in each window and calculate their average317

across the entire long context in the end.318

Details. We take the officially released LLaMa2-319

7b from Huggingface Library as the base model in320

CAMELOT. We put memory banks into a single321

NVIDIA-A100 GPU for fast parallel computation.322

We also notice that one can use FAISS (Johnson323

et al., 2017) approximate search, which is a simple324

extension of our framework. After hyper-parameter325

studies (Section 9.2 and Section 9.3), we use cosine326

similarity in CAMELOT and the similarity thresh-327

old R in novelty detection is set to be 0.93. Unless328

specified otherwise, our experimental results are329

reported for CAMELOT with 10k memory slots330

(more experiments on memory size are detailed in331

Section 9.3.3). For more implementation details,332

please refer to Section 9.2.333

4.1 Evaluation Setups334

Datasets We evaluate the long context language335

modeling capabilities of CAMELOT using three336

benchmarks:337

• Wiki-103 (Merity et al., 2016)2, which com-338

prises articles from Wikipedia covering various339

topics with good language quality;340

• Arxiv (Gao et al., 2020)3, a collection of aca-341

demic papers primarily in the fields of Mathe-342

matics, Computer Science, and Physics. This343

dataset is recognized for its high-quality text344

and mathematical content, making it a chal-345

lenging benchmark for long-context language346

modeling;347

• PG-19 (Rae et al., 2019a)4 which includes full-348

length books, offering a standard benchmark349

widely used in long-range natural language350

modeling (Wu et al., 2022; Wang et al., 2023;351

Tworkowski et al., 2023).352

We take the test split of each dataset and report353

its language modeling perplexity.354

2https://blog.salesforceairesearch.com/the-wikitext-long-
term-dependency-language-modeling-dataset/

3Taken from the Pile: https://pile.eleuther.ai/
4https://github.com/google-deepmind/pg19

Baselines. We compare CAMELOT against two 355

notable memory-augmented transformers that have 356

demonstrated effectiveness in long language mod- 357

eling tasks: 358

• Transformer-XL (Dai et al., 2019): This 359

model uses a finetuning-based approach, stor- 360

ing a fixed length of previous input in a cache 361

to enhance the current input. Notably, it does 362

not employ similarity-based retrieval. 363

• Memorizing Transformer (Wu et al., 2022): 364

this model saves past caches in a circular man- 365

ner. Thus older caches are replaced by newer 366

ones as the memory bank fills up (no consoli- 367

dation occurs) and similar caches are retrieved 368

for input augmentation. The official implemen- 369

tation relied on fine-tuning. 370

For a fair comparison, in CAMELOT and the 371

baselines experiments, we used the same LLaMa2- 372

7B backbone (original baselines used weaker back- 373

bones, such as GPT2), and did not use fine-tuning. 374

Ablations To assess the impact of each compo- 375

nent within CAMELOT, we define the following 376

ablation variants: 377

• CAMELOT w/o Read: Instead of retrieving 378

the closest matching memory concept for each 379

token in the current input, a random memory 380

concept is returned. 381

• CAMELOT w/o Recency: If a token’s mode 382

has no close match in memory, it randomly 383

replaces a memory slot rather than the outdated 384

one, ignoring recency. 385

• CAMELOT w/o Novelty. Tokens are con- 386

solidated into their closet slot, regardless of if 387

they are from novel modes. R=-1 in cosine 388

similarity retrieval. 389

• CAMELOT w/o Consolidating. Memory 390

gets updated by token representations based on 391

temporal recency, without consolidating, set- 392

ting R=+1. 393

4.2 Results 394

Figure 4 compares CAMELOT with the baseline 395

models. While memory-augmented methods gener- 396

ally improve upon the base model on test perplexity, 397

our analysis uncovers the following observations 398

in their effectiveness. Transformer-XL shows the 399
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Figure 4: Language Modeling Perplexity (PPL) on wikitext-103, Arxiv, and Pg-19. For wikitext-103, we notice the
maximum length of its documents is smaller than 2k. Therefore, we report results using models whose effective
input length ≤ 2048. A lower PPL indicates better performance.

Models PPL

LLaMa2-7B 7.30

CAMELOT 6.85

CAMELOT w/o Read > 20
CAMELOT w/o Recency 9.25
CAMELOT w/o Novelty 7.23
CAMELOT w/o Consolidation 7.00

Table 1: Ablation Study on PG-19-sampled. We report
the relative performance lost in perplexity (PPL) over
the full CAMELOT.

least improvement, hindered by the lack of rele-400

vance assessment during memory augmentation.401

The Memorizing Transformer, with its capability402

to selectively retrieve relevant information from403

the past, outperforms Transformer-XL. However, it404

lacks memory consolidation, meaning it can only405

hold a finite cache before older memories are over-406

written, limiting its long-term utility.407

By not only selecting relevant past information408

but also employing a novel memory consolida-409

tion process, CAMELOT significantly enhances410

model performance (16.6% on PG-19, and 29.7%411

on Arxiv, and 13.14% on Wikitext-103, relative the412

base model on average), surpassing other memory-413

augmented methods. Remarkably, CAMELOT414

achieves superior performance at shorter input415

lengths, demonstrating its handling of long-range416

dependency regardless of input size. For further417

discussion please see Section 5.1.418

4.3 Ablation Studies419

We evaluate on PG-19 sampled dataset, a subset420

of PG-19 comprising 20% of the books in test set.421

We report test perplexity for each variant with a 422

context length of 2048. 423

Results shown in Table 1 reveal that CAMELOT 424

w/o Read performs significantly worse compared 425

with full model, emphasizing the crucial role of 426

Read function in ensuring semantic relevance. 427

When a random cache is returned in this variant, it 428

might provide limited or even harmful information 429

for current modeling. CAMELOT w/o Recency 430

also shows a notable performance dip over the full 431

CAMELOT model, confirming the essential role 432

of maintaining the proper recency in the memory. 433

Variations in token consolidation and replacement 434

also impact performance, resulting in different per- 435

formance drops compared to the full approach. A 436

larger decrement can be expected if the memory 437

size gets smaller or the modeling corpus gets longer. 438

These findings suggest CAMELOT’s optimal per- 439

formance relies on the combination of relevance, re- 440

cency, novelty, and effective consolidation. Please 441

refer to Section 9.3 to see more discussions on 442

ablation study. 443

5 Further Discussions 444

5.1 CAMELOT Reaches SOTA Earlier 445

This section analyzes CAMELOT’s performance 446

with different input lengths on the PG-19 test set, 447

using 10k memory slots. Results are shown in 448

Figure 5. 449

Unlike models without memory augmentation, 450

CAMELOT demonstrates a relatively consistent 451

performance across different input lengths. This 452

stability can be attributed to the integration of addi- 453

tional knowledge in the AM saved from previous 454

inputs. As CAMELOT accumulates past informa- 455

tion, its visible context range extends beyond the 456
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Figure 5: Test perplexity on PG19 with different input
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current input, allowing an effective modeling of457

long-range dependencies irrespective of the length458

of the current input. In contrast, the model lack-459

ing memory augmentation relies solely on the local460

context of the current input, leading to performance461

fluctuations based on input length.462

CAMELOT maintains its effectiveness even463

with tiny input lengths (e.g., 128, 64, 32), reducing464

the demand on hardware resources such as large465

GPUs. This enables transformers to operate the at-466

tention mechanism with shorter inputs but without467

compromising the quality of language modeling.468

Such an advantage lowers the barriers for deploy-469

ing large language models in environments where470

computational budget is limited.471

5.2 Efficiency Analysis472

Here, we provide a detailed comparison of the ef-473

ficiency of CAMELOT with the base LLM. Con-474

sider the results on PG-19 from Figure 5. The base475

LLM achieves a state-of-the-art (SOTA) perplex-476

ity (PPL) of 7.9 at L = 2048, while CAMELOT477

achieves a lower PPL of 7.3 at L = 128. With478

the same number of heads and token dimensions479

(which is assumed to be the same as the hidden480

dimension in the product of keys and queries) in481

transformer, CAMELOT achieves approximately482

Cbase(L = 2048)/CCAMELOT(L = 128,M =483

10000) ≈ 6.2 reduction in compute cost associ-484

ated with attention and memory search compared485

to the base LLaMa (see Section 10 for details).486

Furthermore, our proposed approach can be made487

even more efficient by utilizing sublinear similarity488

search methods (Douze et al., 2024).489

Frequency

>10K 1K - 10K 100 - 1K <100

LLaMa2-7B 2.75 5.08 9.77 25.96
CAMELoT 2.13 4.11 7.54 19.4

Relative Gain
Over LLaMa2

22.1% 19.3% 22.8% 25.3%

Table 2: Test perplexity broken down by word frequency
buckets.

5.3 CAMELOT Models Infrequent Word 490

Better 491

In this section, we answer the question: which 492

words benefit from long-term knowledge in 493

CAMELOT? Following (Rae et al., 2019b), we 494

categorize test tokens based on their frequency in 495

the training set. The tokens are grouped into differ- 496

ent frequency buckets, and we calculate the average 497

perplexity for each group. 498

Results are shown in Table 2. All tokens gain 499

at least 19% improvements over the base model. 500

Among them, the high frequency tokens (frequency 501

> 10k), which constitute the majority of the test set, 502

exhibit a 22.1% improvement. The largest improve- 503

ment (25.3%) is observed in the group of rare to- 504

kens. This improvement suggests augmenting lan- 505

guage models with mechanisms like CAMELOT 506

can be a viable approach to better address the chal- 507

lenges associated with rare token modeling. 508

5.4 Visualization: What is Stored in AM? 509

This section visualizes the contents in the AM’s 510

memory slots, to provide insights into memory us- 511

age dynamics. Table 3 displays the updates of six 512

slots by processing input tokens over time. 513

First, we identified two key types of memory 514

slots in CAMELOT: 1. Functional Slots that cap- 515

ture lexical, syntactical, or grammatical aspects of 516

tokens, as seen in the top rows of Table 3, related to 517

modeling language structures and rules; and 2. Se- 518

mantic Slots in the bottom rows which capture the 519

semantic essence of inputs. Tokens are assigned 520

to slots based on their functional or semantic rele- 521

vance, aligning with previous findings that embed- 522

dings from different layers or attention heads in 523

Transformer-based models can specialize in differ- 524

ent language aspects (Vig et al., 2019). Each slot 525

has consistent modeling rules. For instance, despite 526

the similar functional purposes, prefix and suffix to- 527

kens are allocated to separate slots. This indicates 528

that CAMELOT can detect subtle nuances. 529
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Slot97: Pronouns Slot110: Prefix Slot103: Suffix

this, he, she, her, I, our, were
had, They, their, they, was
that, is, are, those, there, these

pre, Re, alt, al, be, bel, del, comp, Al,
per,ple, ab, dis, no, non, de, un, im,
bl, bri, Ch, Eng, com, fl, Fr, sal, gen,
str, et, es

atives, ful, ate, ere, ish, ible, ily,
ry, ly, ling, ent, ence, er, ine, ina,
ier, age, ations, ation, ood, inity,
itute

Slot60: States to Civilization Slot394: Masculine to Feminine Slot7275: Num. to Adv.

Minn, Miss, states, Tennessee, PA ,
Minnesota, Lincoln, Pitts, Kingdom,
Phil , Si, prep, DEL, Eng, Montreal ,
British, Franklin, Hill, Rep, Nation ,
country, county, government, civil

boys, editor, Dr, Jack, men, Judge, him ,
work, Chair, politics, religion, justice,
brave, Scott, business, manager ,
secret, ary, she, mother ,

love, house, hand, dress, Virgin

six, four, two, hundred, fifty,
thousand, many, few, several,
every, another, anything,
enough majority, ton, massive
great, remarkable, generally

Table 3: Visualization of the memory updating. We take the AM linked to word embedding layer and log the
memory assignment of each token on PG-19. As discussed in Section 5.4, the original concept, which is written
into memory earlier (we show them in red ), can shift slightly to a related new one (colored in yellow ) during the
consolidation, caused by transition words (colored in orange ) or polysemous words (colored in green ).

Additionally, concept shifts within slots occur530

during consolidation. Examples in the bottom row531

of Table 3 show transitioning from federations to532

civilizations in slot 60, from masculine to feminine533

terms in slot 394, and from specific numbers to534

quantitative adverbs in slot 7275. These changes535

arise from context-dependent updates and the se-536

mantic diversity of words, where transitional to-537

kens like “business, manager, secret, ary” and pol-538

ysemous words like “great” influence the shifts539

in slot focus. We view this concept transitions as540

beneficial, as they facilitate an efficient consolida-541

tion while preserving recency. If these cumulative542

transitions lead to a significant change in the slot’s543

mode, the slot can be replaced by the new token in544

the future rounds, as part of the novelty mechanism.545

6 Conclusion546

We introduce CAMELOT, a Consolidated547

Associative Memory Enhanced Long Transformer,548

to handle long dependency modeling without549

the need for training. CAMELOT has a model-550

agnostic design, allowing seamless integration into551

different language models. Experimental results552

prove its effectiveness, with the long-context553

language modeling perplexity significantly reduced554

(by up to 29.7%), and superior performance is555

consistently obtained even with a tiny input556

window of 128 tokens or less. Future research557

directions connecting AM and LLMs involve558

improving the AM design (e.g., automatically559

learning a Write function) and tackling other560

long context modeling tasks (e.g., long document561

question answering). 562

7 Ethical Considerations 563

In this paper, we design a consolidated AM module 564

to store tokens in long contexts (e.g., long docu- 565

ments). However, a malicious user could use this 566

module to store personal information when pro- 567

cessing human data, posing a risk to user privacy. 568

We argue that LLMs should be audited rather than 569

used as a ‘black box’ when handling human data, 570

to protect privacy and prevent harmful usages. 571

8 Limitations 572

One limitation of this work is that we only experi- 573

ment with LLaMa2-7B, a model commonly used 574

in current research projects. However, our method 575

is model-agnostic and can be easily adapted to any 576

attention-based transformers. In future work, we 577

plan to address this limitation by incorporating a 578

broader range of language models with different 579

model architecture such as state space models. 580

Additionally, our focus is specifically on casual 581

language modeling performance with long contexts, 582

as it is a fundamental task in LLM training and 583

usage. We acknowledge that there are other long- 584

context tasks, such as multi-document question 585

answering and reasoning that could be analyzed. 586

This work aims to provide a novel perspective by 587

enhancing pre-trained LLMs with neuroscience- 588

inspired Associative Memory, offering an initial 589

interdisciplinary exploration of long context mod- 590

eling. In the future, we plan to test our method on 591

a wider range of downstream tasks. 592
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9 Appendix767

9.1 CAMELoT: Probabilistic Interpretation768

The keys and values in AM slots can be viewed as769

modes of a non-parametric Gaussian mixture dis-770

tribution estimation approximating the key-value771

manifold of the past context windows. This mix-772

ture accepts new key-value points from the current773

context via a diagonal kernel of width R̂ (distance774

measure corresponding to similarity R). The means775

(centers) of the modes of the mixture are updated776

according to our online average rules while main-777

taining the needed sufficient statistics (counts) for778

computing the averages in further updates. Re-779

trieving nearest distribution modes to the current780

context hidden states effectively approximates the781

full (long) context attention, at least within the ra-782

dius R̂ from the retrieved mode centers. For the783

tokens whose keys and values are beyond radius784

R̂ of their closest mode, new modes are created785

online, while the oldest modes are evicted, main-786

taining the recency of our distribution estimation787

and its correspondence with the evolving context.788

9.2 Experiment Details789

Environments All transformers-based language790

models are implemented based on the Hugging-791

Face5 libraries (version 4.34.0) or the officially re-792

leased Github Repos. All codes are implemented793

with Python 3.10.12 and PyTorch 2.2.0 with CUDA794

12.1.0. We run experiments with 2 NVIDIA A100795

GPUs, one for language model inference and one796

for hosting the memory banks. Each has memory797

of 80GB.798

Hyper-parameters In CLM tasks, we set batch799

size to be 4. For the similarity hyper-parameter R,800

we conduct a hyper-parameter study on wikitext-801

103 and use R = 0.93 for all experiments. We802

show the study in the next section.803

9.3 More Ablation Studies804

9.3.1 Ablation: Different Choices of R805

We conduct hyper-parameter study for similarity806

threshold R on a subset of Wikitext-103 validation807

set, in which the examples are randomly sampled.808

We take LLaMa2 models with input length to be809

128. The results are shown in Table 4.810

From the results, we notice the best R is 0.93.811

Therefore we use 0.93 in our experiments.812

5https://huggingface.co/models

R Perplexity

R=0.1 PPL=18.72
R=0.2 PPL=18.71
R=0.3 PPL=18.71
R=0.4 PPL=18.69
R=0.5 PPL=18.67
R=0.6 PPL=18.46
R=0.7 PPL=17.35
R=0.8 PPL=15.30
R=0.9 PPL=14.38
R=0.93 PPL=14.30
R=0.95 PPL=14.90

Table 4: Hyper-parameter study for R on the validation
subset of Wikitext-103

Perplexity

CAMELOT + Cosine Similarity 16.96
CAMELOT + Euclidean Similarity 17.45

Table 5: Analysis of similarity function on a subset of
wikitext-103 validation set.

9.3.2 Ablation: Different Choices of 813

Similarity Function in Read Operation 814

We conduct an ablation study on the similarity func- 815

tion in Read operation. Similarly, we randomly 816

sampled a subset data from the validation set of 817

Wikitext-103. We conduct evaluation experiments 818

with cosine similarity and euclidean similarity. We 819

use input window with 128 tokens. Note in this 820

experiment we use LLaMa1-7B. The results are 821

shown in Table 5. We notice cosine similarity gives 822

the best performance and we use cosine similarity 823

in our other experiments. 824

9.3.3 Ablation: Different Memory Sizes 825

Model Input Context Memory Size Perplexity

LLaMa2-7B 512 None 9.84
2048 None 7.88

CAMELoT

512 4096 7.42
2048 4096 7.22
512 10k 7.24

2048 10k 7.10

Table 6: Language Modeling performance on PG19
with different sizes of memory banks and different input
lengths.

In this section, we analyze how the size of the 826

memory bank affects CAMELOT. We compare 827

its performance on the PG-19 dataset using two 828
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configurations: one with 4,096 memory slots and829

another with 10k slots. The findings are presented830

in Table 6.831

With each memory slot designed to hold a832

unique mode of information, increasing the num-833

ber of slots allows CAMELOT to capture a wider834

range of knowledge. As a result, the version with835

10k slots outperforms, showing a notable improve-836

ment in test perplexity – 26.4% for inputs of 512837

length and 9.9% for 2048 length relative to the base838

model.839

However, the 4,096-slot configuration also per-840

forms strongly, with only slightly lower improve-841

ments (24.6% and 8.4%, for the same input lengths)842

than CAMELOT with 10k slots. This good per-843

formance demonstrates that the effectiveness of844

CAMELOT does not solely rely on the quantity of845

data modes it can hold in its memory, but also on846

how it manages and utilizes this data through mech-847

anisms like consolidation and novelty. This balance848

ensures CAMELOT remains effective across vari-849

ous memory sizes and input lengths, maintaining850

stability and efficiency.851

10 Theoretical Calculation for852

Computation Cost853

Suppose we have memory size M in CAMELOT.854

We denote the number of heads in the backbone855

LLM as h, and token dimension per head is d. The856

computation cost for the multi-head self-attention857

of the base transformer with input length L is858

quadratic in the sequence length, linear in token859

dimension and the number of heads. Additionally,860

we include the factor of 2, which accounts for the861

computation of both the attention scores and mul-862

tiplication of those by the value matrix. We retain863

only the terms that are dominant for large L. This864

gives:865

Cbase(L) = 2hL2d (9)866

CAMELOT has the same self-attention cost, and867

the cross attention cost (retrieved tokens effectively868

double L). Additionally, there is a cost associated869

with the search through the memory, which is linear870

in M,L, h, and d.871

CCAMELOT(L,M) = 2hL(L+ L)d+ hdLM
(10)

872
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