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Abstract

Large Language Models (LLMs) struggle to
model long input sequences due to high mem-
ory and runtime costs. Memory-augmented
models have emerged as a promising solu-
tion to this problem, but current methods are
hindered by limited memory capacity and re-
quire costly re-training to integrate with a
new LLM. In this work, we introduce an
associative memory module which can be
coupled to any pre-trained (frozen) attention-
based LLM without re-training, enabling ef-
fective long language modeling. Unlike pre-
vious methods, our associative memory mod-
ule consolidates representations of individ-
ual tokens into a non-parametric distribu-
tion model, dynamically managed by prop-
erly balancing the novelty and recency of
the incoming data. By retrieving informa-
tion from this consolidated associative memory,
the base LLM can achieve significant (up to
29.7% on Arxiv) perplexity reduction in long-
context language modeling compared to other
baselines on various standard benchmarks.
This architecture, which we call CAMELoT
(Consolidated Associative Memory Enhanced
Long Transformer'), demonstrates superior
performance even with a tiny context window
of 128 tokens.

1 Introduction

Humans are exposed to a myriad of events through
their lives. The human brain effectively processes
and consolidates events to form memories that ex-
emplify related events and form the basis for future
actions, by retaining essential information and dis-
carding inessential details (Sara, 2000). Associa-
tive Memory (AM) is a key type of such human-
like memory systems to store information, with a
core computation to link (associate) a query with
representations stored in the memory banks (Will-
shaw et al., 1969; Hopfield, 1982). Specifically,
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Figure 1: Consolidated Associative Memory Enhanced
Long Transformer (CAMELOT). Top: Consolidation
of representations in the associative memory (AM) — re-
lated concepts are grouped together and averaged. Bot-
tom: Recency-dependent incorporation of novel con-
cepts — when a new concept is introduced with no close
matches, the oldest slot (since its last update) is replaced
with the new concept.

for any given query, AM selects the consolidated
memory slot that best matches the query. The rep-
resentations in AM concisely summarize past ex-
periences and provide valuable cues for future ac-
tions. Recently, there has been growing interest in
designing associative memory networks (Krotov
and Hopfield, 2016; Ramsauer et al., 2021). Other
works investigate memory consolidation in neural
networks with various local learning rules (Dudai,
2004), which are computationally cheaper than the
traditional end-to-end back-propagation for neural
networks (Tyulmankov et al., 2021).
Concurrently, large language models (LLMs)
have demonstrated their potential in various prac-
tical NLP applications such as chatbots (OpenAl,
2024), text summarization (Radford et al., 2019),
and question answering (Chung et al., 2022), etc.
A key parameter for LLMs is the input context
length L that the models are trained with. Support-
ing longer context makes it possible to incorporate
richer information and increase LLM performance
at inference time (Press et al., 2022). However, the
attention mechanism of a pre-trained LLM usually
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Figure 2: The general pipeline of our method. Every
layer of the backbone LLM is augmented with an AM
module (we draw AM in the first attention layer here,
just as an example). Keys and values are calculated for
every token, keys are used to search for relevant memo-
rized tokens in the memory bank and return them (Read).
The retrieved memory keys and values are prepended to
the original token keys and values as prefixes. Finally,
the attention operation is applied on the concatenation
of the retrieved and native keys and values (Augment).
After retrieval, the memory state is modified according
to the Write operation, see Figure 3.

scales quadratically (L?) with an increasing num-
ber of tokens, which makes increasing the context
length computationally challenging due to substan-
tial requirements for resources.

These constraints raise a question:
develop a plug-and-play module for pre-trained
(frozen) LLMs to handle longer contexts beyond L
after the training? Importantly, this module should
be computationally efficient and should not require
any retraining or fine-tuning of the backbone LLM.

can we

In this work, we draw inspiration from the hu-
man memorization mechanism and tackle this ques-
tion using Associative Memory (AM). We propose
a plug-and-play AM module that consolidates in-
dividual tokens based on the novelty and recency
of the input text (as shown in Figure 1). The con-
solidated text is modeled as non-parametric dis-
tributions, with one distribution per key-space for
each LLM layer. When processing a long text,
the modes of these distributions are dynamically
updated as the context window sweeps over time,
with new modes created for novel information and
outdated ones replaced. As a result, the module
consolidates information about the prior context far
beyond the current context window (of length L).
The module then retrieves the modes closest to the
current input and operates the attention computa-
tion on them. This module can be integrated with
any pre-trained attention-based LLM, extending its
context window far beyond L by approximating a
full-context attention over all past information.

Our method does not require any re-training,
fine-tuning, or learning adaptors between the base
LLM and the AM module. We conduct comprehen-
sive experiments on long-context language model-
ing tasks, demonstrating that this human-like mem-
ory design leads to significantly stronger results
compared to baselines. For instance, when coupled
to a pre-trained LLaMA?2, our memory-enhanced
network results in significant (up to 29.7% on
Arxiv) perplexity reduction in long-context model-
ing compared to the base LLM.

2 Related Work

Memory networks. There is a large body of lit-
erature on memory models, e.g. memory networks
(Weston et al., 2014), sparse distributed memory
(Kanerva, 1988), and associative memory (Koho-
nen, 2012). Neuroscience-inspired memory models
have also been used for language model augmen-
tation (Park and Bak, 2023). Memory augmenta-
tion has shown its effectiveness in reinforcement
learning (Graves et al., 2016) and recurrent neural
networks (Graves et al., 2014). To the best of our
knowledge, none of these works enable memory
augmentation of LLMs without additional training,
as in our approach.

Long Context Modeling. Several streams of
work aim to enhance the long context capability
of LLMs. Long-range self-attention techniques
have been proposed to improve the efficiency of
transformer models, including low-rank factoriza-
tion (Wang et al., 2020), local attention (Ramachan-
dran et al., 2019), dilated attention (Ding et al.,
2023), sparsity (Beltagy et al., 2020; Zaheer et al.,
2020; Kitaev et al., 2020), and hardware-aware at-
tention mechanisms such as FlashAttention (Dao
et al., 2022; Dao, 2023). Despite notable progress,
these methods struggle to retrieve information in
the middle of the input (Liu et al., 2023). They can
also be used in tandem with our proposed approach
for longer context modeling.

Another line of work utilizes state-space mod-
els to handle long-range dependencies in sequential
data. Mamba (Gu and Dao, 2023), a seminal work
in this area, captures long-term dependencies with
a selective state-space model, achieving linear train-
ing time without the quadratic scaling of traditional
attention mechanisms. Jamba (Lieber et al., 2024)
improves on this by combining Transformer layers
with Mamba layers to train effectively on long con-
texts. However, these models require training on



long sequences. While combining AM with state-
space models is an interesting future direction, our
focus in this work is on enhancing the long-context
capability of a Transformer-based LLM after its
training.

Memory-augmented language models have
emerged as a promising approach (Packer et al.,
2023; Dai etal., 2019; Wu et al., 2022; Tworkowski
et al., 2023; Weston et al., 2014). In particular, Wu
et al. (2022) show that a kNN lookup into a mem-
ory cache bank containing (key, value) pairs of
individual past inputs can improve language model-
ing. Tworkowski et al. (2023) further improved this
approach using contrastive learning. In the same
vein, Wang et al. (2023) addressed the memory stal-
eness limitation of these works by training a side
network model, while keeping the LLM frozen.
Unlike these methods, our approach relies on con-
solidated representations of past tokens which are
dynamically updated, therefore getting rid of the
limitation of the number of memory slots. More-
over, different from these approaches, our method
is training-free (memory updates occur solely at
runtime), making it easier to integrate our memory
module into any existing LLLM architecture.

Prompt compression research (Ge et al., 2023;
Mu et al., 2023; Chevalier et al., 2023) has also
been explored recently to extend the context length
in transformer models. These methods operate at
the input level, while our method consolidates the
internal representations of the model based on a
local associative memory update rule. Rae et al.
(2019b) proposed the Compressive Transformer,
which compresses past activations of the model
for long-range sequence modeling. In contrast,
our proposed approach does not require training or
additional losses like attention-reconstruction. In
addition, we offer a novel way to effectively update
our associative memory representations, balancing
information about novelty and temporal proximity.

3 Associative Memory Enabled LLLM

For long document modeling tasks, it is desirable
to have an architecture capable of efficient usage
of information that appeared in past contexts. Our
proposed method is built on three desiderata. First,
redundant information from the past should be com-
pressed and stored in the AM block while reduc-
ing repetitions (consolidation). When the same
concept appears in the past context multiple times,
it is wasteful to store each individual instance of

that concept in a separate memory slot; instead, all
those instances should be consolidated and stored
only once. Second, novel concepts not encoun-
tered by the model in the past must be detected and
stored in a new memory slot at their first encounter
(novelty). These novel memory slots can be sub-
sequently consolidated with the possible future oc-
currences of related concepts. Third, in situations
when the topic shifts, the model should be able to
discard outdated memory slots that are no longer
useful, if that is required for the incorporation of
additional novel concepts encountered following
the topic shift (recency).

To achieve these desiderata, we design
CAMELOT, a Consolidated Associative Memory
Enhanced Long Transformer, consisting of a base
language model and a memory module (overall
architecture shown in Figure 2). The memory mod-
ule is equipped with a Read and Write operation,
supporting information retrieval from the memory
bank and the update to the memory bank. With the
retrieved information, the current context window
of LLM is memory-enhanced via the Augment
operation. These three desiderata are the founda-
tions of CAMELOT. Our method is agnostic to the
specific choice of many popular transformer archi-
tectures, in the sense that any attention-based LLM
can be enhanced with the AM in CAMELOT.

3.1 Read Operation

When a context window of length L is processed
through the LLM, keys and values from every layer
(more generally can be an arbitrary subset of lay-
ers) are passed to the corresponding AM module
(one per memory-augmented layer). AM in each
layer consists of M memory slots, enumerated by
the index © = 1, ..., M. Each slot contains two
vector variables: memory keys K™ and mem-
ory values V™, and two integer scalar variables:
counts ¢, (number of consolidated instances), and
age 7, (how old the current slot is since its last
update).

When a set of keys K; and values V; (index
1 =1, ..., L enumerates individual tokens from the
current context window) is passed to the AM mod-
ule to retrieve relevant information, a search func-
tion identifies the memory slots with the strongest
association (i.e., highest similarity) between the
input token key K; and AM’s memory slot keys

(i) = argmazx [Sim(K;nem, K)l @
n
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Figure 3: Every AM module performs read and write operations. The read operation retrieves memorized tokens
most similar to the native keys. The write operation updates the state of the memory by performing consolidation,

which depends on novelty and recency.

The keys and their corresponding values of these
L strongest-associated memories (K" and V') are
returned for the current L native tokens and passed
back to the LLM in the form of the key-value cache.
See details in Figure 3.

3.2 Augment Operation

The list of retrieved key-value caches (K™ and
V™) are passed back to the base LLM and used
as the prefix context in each respective memory-
augmented layer. They are prepended to the LLM
keys and values of current input tokens. Then
causal attention is performed on the concatenated
list, which after the augmentation contains 2L keys
and values (the length of current native context +
the length of retrieved memories) and L queries
(current context only), resulting in the augmented
transformer attention output [ay, - - - ,ar]. The at-
tention output results in augmented hidden states
[h1, -+, hr] which are the inputs to the next layer,
as shown in the following equations and Figure 3:

[ai, - ,ar] = Attn(Q, K', V') )
Q=1[Q1,Q2, - ,QL] 3)
K/:Kr@[K1,~,KL], “4)
Vi=Vio Vi, Vi) (5)

3.3 Write Operation

The state of AM is updated by the current context
window according to the Write operation com-
prised of two parts explained next (see Figure 3 for
an illustration).

Consolidation. If the similarity between the cur-
rent context token key and the strongest-associated
memorized key is large (i.e., > R, R is a hyper-
parameter), the concept described by that token
is declared familiar and, for this reason, its key
and value are consolidated with the key and value

stored in that memory slot. Specifically, memory
slots are updated according to:

Ki + cay K™

(i) o + 1 (©6)
V(i) o 1 )
Cagi) < Cgi) +1 ®)

where ¢, tracks the number of instances consoli-
dated in slot p. Thus, the consolidated represen-
tations stored in each slot . are always arithmetic
averages of individual instances that went into that
slot. By introducing an update rate £, = 1/(c,+1),
these expressions can be rewritten as incremental
modifications to the existing representations stored
in the AM, as in Figure 3.

Novelty and Recency. If the similarity with the
closest memorized key is weak (i.e., < R), the
concept is declared novel. In this case, the oldest
unused memory slot (the one with maximal age
7,) is replaced with K, V;, and its age is set to 0.
After each slot /i(7) update, its age statistic 7;;) is
set to 0. The ages of all slots that had no matching
current context hidden state are incremented by 1.
We also provide a probabilistic interpretation for
CAMELOT in Section 9.1

4 Experiments

We evaluate CAMELOT on causal language mod-
eling task. We follow the data preprocessing
method proposed by Dai et al. (2019) where
lengthy documents are segmented into sequential,
non-overlapping windows and the LLM processes
each window one by one. During this process, we
first use the key and value representations of each
token to read from the AM and retrieve the rela-
tive information, then augment the causal language



modeling step by treating the returned memory as
the past caches. Subsequently, the keys and values
of the current input are integrated into the AM via
the Write function. We measure the perplexity for
tokens in each window and calculate their average
across the entire long context in the end.

Details. We take the officially released LLaMa2-
7b from Huggingface Library as the base model in
CAMELOT. We put memory banks into a single
NVIDIA-A100 GPU for fast parallel computation.
We also notice that one can use FAISS (Johnson
et al., 2017) approximate search, which is a simple
extension of our framework. After hyper-parameter
studies (Section 9.2 and Section 9.3), we use cosine
similarity in CAMELOT and the similarity thresh-
old R in novelty detection is set to be 0.93. Unless
specified otherwise, our experimental results are
reported for CAMELOT with 10k memory slots
(more experiments on memory size are detailed in
Section 9.3.3). For more implementation details,
please refer to Section 9.2.

4.1 Evaluation Setups

Datasets We evaluate the long context language
modeling capabilities of CAMELOT using three
benchmarks:

 Wiki-103 (Merity et al., 2016)?, which com-
prises articles from Wikipedia covering various
topics with good language quality;

« Arxiv (Gao et al., 2020)3, a collection of aca-
demic papers primarily in the fields of Mathe-
matics, Computer Science, and Physics. This
dataset is recognized for its high-quality text
and mathematical content, making it a chal-
lenging benchmark for long-context language
modeling;

* PG-19 (Rae et al., 2019a)* which includes full-
length books, offering a standard benchmark
widely used in long-range natural language
modeling (Wu et al., 2022; Wang et al., 2023;
Tworkowski et al., 2023).

We take the test split of each dataset and report
its language modeling perplexity.

Zhttps://blog.salesforceairesearch.com/the-wikitext-long-
term-dependency-language-modeling-dataset/

*Taken from the Pile: https:/pile.eleuther.ai/

*https://github.com/google-deepmind/pg19

Baselines. We compare CAMELOT against two
notable memory-augmented transformers that have
demonstrated effectiveness in long language mod-
eling tasks:

e Transformer-XL (Dai et al.,, 2019): This
model uses a finetuning-based approach, stor-
ing a fixed length of previous input in a cache
to enhance the current input. Notably, it does
not employ similarity-based retrieval.

* Memorizing Transformer (Wu et al., 2022):
this model saves past caches in a circular man-
ner. Thus older caches are replaced by newer
ones as the memory bank fills up (no consoli-
dation occurs) and similar caches are retrieved
for input augmentation. The official implemen-
tation relied on fine-tuning.

For a fair comparison, in CAMELOT and the
baselines experiments, we used the same LLaMa2-
7B backbone (original baselines used weaker back-
bones, such as GPT2), and did not use fine-tuning.

Ablations To assess the impact of each compo-
nent within CAMELOT, we define the following
ablation variants:

* CAMELOT w/o Read: Instead of retrieving
the closest matching memory concept for each
token in the current input, a random memory
concept is returned.

* CAMELOT w/o Recency: If a token’s mode
has no close match in memory, it randomly
replaces a memory slot rather than the outdated
one, ignoring recency.

* CAMELOT w/o Novelty. Tokens are con-
solidated into their closet slot, regardless of if
they are from novel modes. R=-1 in cosine
similarity retrieval.

* CAMELOT w/o Consolidating. Memory
gets updated by token representations based on
temporal recency, without consolidating, set-
ting R=+1.

4.2 Results

Figure 4 compares CAMELOT with the baseline
models. While memory-augmented methods gener-
ally improve upon the base model on test perplexity,
our analysis uncovers the following observations
in their effectiveness. Transformer-XL shows the
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Figure 4: Language Modeling Perplexity (PPL) on wikitext-103, Arxiv, and Pg-19. For wikitext-103, we notice the
maximum length of its documents is smaller than 2k. Therefore, we report results using models whose effective
input length < 2048. A lower PPL indicates better performance.

Models PPL
LLaMa2-7B 7.30
CAMELOT 6.85
CAMELOT w/o Read > 20
CAMELOT w/o Recency 9.25
CAMELOT w/o Novelty 7.23
CAMELOT w/o Consolidation  7.00

Table 1: Ablation Study on PG-19-sampled. We report
the relative performance lost in perplexity (PPL) over
the full CAMELOT.

least improvement, hindered by the lack of rele-
vance assessment during memory augmentation.
The Memorizing Transformer, with its capability
to selectively retrieve relevant information from
the past, outperforms Transformer-XL. However, it
lacks memory consolidation, meaning it can only
hold a finite cache before older memories are over-
written, limiting its long-term utility.

By not only selecting relevant past information
but also employing a novel memory consolida-
tion process, CAMELOT significantly enhances
model performance (16.6% on PG-19, and 29.7%
on Arxiv, and 13.14% on Wikitext-103, relative the
base model on average), surpassing other memory-
augmented methods. Remarkably, CAMELOT
achieves superior performance at shorter input
lengths, demonstrating its handling of long-range
dependency regardless of input size. For further
discussion please see Section 5.1.

4.3 Ablation Studies

We evaluate on PG-19 sampled dataset, a subset
of PG-19 comprising 20% of the books in test set.

We report test perplexity for each variant with a
context length of 2048.

Results shown in Table 1 reveal that CAMELOT
w/o Read performs significantly worse compared
with full model, emphasizing the crucial role of
Read function in ensuring semantic relevance.
When a random cache is returned in this variant, it
might provide limited or even harmful information
for current modeling. CAMELOT w/o Recency
also shows a notable performance dip over the full
CAMELOT model, confirming the essential role
of maintaining the proper recency in the memory.
Variations in token consolidation and replacement
also impact performance, resulting in different per-
formance drops compared to the full approach. A
larger decrement can be expected if the memory
size gets smaller or the modeling corpus gets longer.
These findings suggest CAMELOT’s optimal per-
formance relies on the combination of relevance, re-
cency, novelty, and effective consolidation. Please
refer to Section 9.3 to see more discussions on
ablation study.

5 Further Discussions

5.1 CAMELOT Reaches SOTA Earlier

This section analyzes CAMELOT’s performance
with different input lengths on the PG-19 test set,
using 10k memory slots. Results are shown in
Figure 5.

Unlike models without memory augmentation,
CAMELOT demonstrates a relatively consistent
performance across different input lengths. This
stability can be attributed to the integration of addi-
tional knowledge in the AM saved from previous
inputs. As CAMELOT accumulates past informa-
tion, its visible context range extends beyond the
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Figure 5: Test perplexity on PG19 with different input
lengths.

current input, allowing an effective modeling of
long-range dependencies irrespective of the length
of the current input. In contrast, the model lack-
ing memory augmentation relies solely on the local
context of the current input, leading to performance
fluctuations based on input length.

CAMELOT maintains its effectiveness even
with tiny input lengths (e.g., 128, 64, 32), reducing
the demand on hardware resources such as large
GPUs. This enables transformers to operate the at-
tention mechanism with shorter inputs but without
compromising the quality of language modeling.
Such an advantage lowers the barriers for deploy-
ing large language models in environments where
computational budget is limited.

5.2 Efficiency Analysis

Here, we provide a detailed comparison of the ef-
ficiency of CAMELOT with the base LLM. Con-
sider the results on PG-19 from Figure 5. The base
LLM achieves a state-of-the-art (SOTA) perplex-
ity (PPL) of 7.9 at L. = 2048, while CAMELOT
achieves a lower PPL of 7.3 at L. = 128. With
the same number of heads and token dimensions
(which is assumed to be the same as the hidden
dimension in the product of keys and queries) in
transformer, CAMELOT achieves approximately
Cbase(L = 2048)/CCAMELOT(L = 128, M =
10000) ~ 6.2 reduction in compute cost associ-
ated with attention and memory search compared
to the base LLaMa (see Section 10 for details).
Furthermore, our proposed approach can be made
even more efficient by utilizing sublinear similarity
search methods (Douze et al., 2024).

Frequency

S>I0K  1K-10K 100-1K <100
LLaMa2-7B 275 5.08 977  25.96
CAMELoT  2.13 411 7.54 19.4
Relative Gain =, 0 1930 2080, 253%

Over LLaMa?2

Table 2: Test perplexity broken down by word frequency
buckets.

5.3 CAMELOT Models Infrequent Word
Better

In this section, we answer the question: which
words benefit from long-term knowledge in
CAMELOT? Following (Rae et al., 2019b), we
categorize test tokens based on their frequency in
the training set. The tokens are grouped into differ-
ent frequency buckets, and we calculate the average
perplexity for each group.

Results are shown in Table 2. All tokens gain
at least 19% improvements over the base model.
Among them, the high frequency tokens (frequency
> 10k), which constitute the majority of the test set,
exhibit a 22.1% improvement. The largest improve-
ment (25.3%) is observed in the group of rare to-
kens. This improvement suggests augmenting lan-
guage models with mechanisms like CAMELOT
can be a viable approach to better address the chal-
lenges associated with rare token modeling.

5.4 Visualization: What is Stored in AM?

This section visualizes the contents in the AM’s
memory slots, to provide insights into memory us-
age dynamics. Table 3 displays the updates of six
slots by processing input tokens over time.

First, we identified two key types of memory
slots in CAMELOT: 1. Functional Slots that cap-
ture lexical, syntactical, or grammatical aspects of
tokens, as seen in the top rows of Table 3, related to
modeling language structures and rules; and 2. Se-
mantic Slots in the bottom rows which capture the
semantic essence of inputs. Tokens are assigned
to slots based on their functional or semantic rele-
vance, aligning with previous findings that embed-
dings from different layers or attention heads in
Transformer-based models can specialize in differ-
ent language aspects (Vig et al., 2019). Each slot
has consistent modeling rules. For instance, despite
the similar functional purposes, prefix and suffix to-
kens are allocated to separate slots. This indicates
that CAMELOT can detect subtle nuances.



Slot97: Pronouns

Slot110: Prefix

Slot103: Suffix

this, he, she, her, I, our, were
had, They, their, they, was

that, is, are, those, there, these
str, et, es

pre, Re, alt, al, be, bel, del, comp, Al,
per,ple, ab, dis, no, non, de, un, im,
bl, bri, Ch, Eng, com, fl, Fr, sal, gen,

atives, ful, ate, ere, ish, ible, ily,
ry, ly, ling, ent, ence, er, ine, ina,
ier, age, ations, ation, ood, inity,
itute

Slot60: States to Civilization

Slot394: Masculine to Feminine

Slot7275: Num. to Adv.

Minn, Miss, states, Tennessee, PA ,
Minnesota, Lincoln, Pitts, Kingdom,
Phil , Si, prep, DEL, Eng, Montreal ,
British, Franklin, Hill, |Rep, Nation|,
country, county, government, civil

secret, ary,

boys, editor, Dr, Jack, men, Judge, him ,
work, Chair, politics, religion, justice,
brave, Scott, business, manager ,
she, mother ,

love, house, hand, dress, Virgin

six, four, two, hundred, fifty,
thousand, many, few, several,
every, another, anything,
enough majority, ton, massive
great, remarkable, generally

Table 3: Visualization of the memory updating. We take the AM linked to word embedding layer and log the
memory assignment of each token on PG-19. As discussed in Section 5.4, the original concept, which is written
into memory earlier (we show them in red ), can shift slightly to a related new one (colored in yellow ) during the

consolidation, caused by transition words (colored in [orange|) or polysemous words (colored in 'green ).

Additionally, concept shifts within slots occur
during consolidation. Examples in the bottom row
of Table 3 show transitioning from federations to
civilizations in slot 60, from masculine to feminine
terms in slot 394, and from specific numbers to
quantitative adverbs in slot 7275. These changes
arise from context-dependent updates and the se-
mantic diversity of words, where transitional to-
kens like “business, manager, secret, ary” and pol-
ysemous words like “great” influence the shifts
in slot focus. We view this concept transitions as
beneficial, as they facilitate an efficient consolida-
tion while preserving recency. If these cumulative
transitions lead to a significant change in the slot’s
mode, the slot can be replaced by the new token in
the future rounds, as part of the novelty mechanism.

6 Conclusion

We introduce CAMELOT, a Consolidated
Associative Memory Enhanced Long Transformer,
to handle long dependency modeling without
the need for training. CAMELOT has a model-
agnostic design, allowing seamless integration into
different language models. Experimental results
prove its effectiveness, with the long-context
language modeling perplexity significantly reduced
(by up to 29.7%), and superior performance is
consistently obtained even with a tiny input
window of 128 tokens or less. Future research
directions connecting AM and LLMs involve
improving the AM design (e.g., automatically
learning a Write function) and tackling other
long context modeling tasks (e.g., long document

question answering).

7 Ethical Considerations

In this paper, we design a consolidated AM module
to store tokens in long contexts (e.g., long docu-
ments). However, a malicious user could use this
module to store personal information when pro-
cessing human data, posing a risk to user privacy.
We argue that LLMs should be audited rather than
used as a ‘black box’ when handling human data,
to protect privacy and prevent harmful usages.

8 Limitations

One limitation of this work is that we only experi-
ment with LLaMa2-7B, a model commonly used
in current research projects. However, our method
is model-agnostic and can be easily adapted to any
attention-based transformers. In future work, we
plan to address this limitation by incorporating a
broader range of language models with different
model architecture such as state space models.

Additionally, our focus is specifically on casual
language modeling performance with long contexts,
as it is a fundamental task in LLM training and
usage. We acknowledge that there are other long-
context tasks, such as multi-document question
answering and reasoning that could be analyzed.
This work aims to provide a novel perspective by
enhancing pre-trained LLMs with neuroscience-
inspired Associative Memory, offering an initial
interdisciplinary exploration of long context mod-
eling. In the future, we plan to test our method on
a wider range of downstream tasks.
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9 Appendix
9.1 CAMELoT: Probabilistic Interpretation

The keys and values in AM slots can be viewed as
modes of a non-parametric Gaussian mixture dis-
tribution estimation approximating the key-value
manifold of the past context windows. This mix-
ture accepts new key-value points from the current
context via a diagonal kernel of width R (distance
measure corresponding to similarity ?). The means
(centers) of the modes of the mixture are updated
according to our online average rules while main-
taining the needed sufficient statistics (counts) for
computing the averages in further updates. Re-
trieving nearest distribution modes to the current
context hidden states effectively approximates the
full (long) context attention, at least within the ra-
dius R from the retrieved mode centers. For the
tokens whose keys and values are beyond radius
R of their closest mode, new modes are created
online, while the oldest modes are evicted, main-
taining the recency of our distribution estimation
and its correspondence with the evolving context.

9.2 Experiment Details

Environments All transformers-based language
models are implemented based on the Hugging-
Face’ libraries (version 4.34.0) or the officially re-
leased Github Repos. All codes are implemented
with Python 3.10.12 and PyTorch 2.2.0 with CUDA
12.1.0. We run experiments with 2 NVIDIA A100
GPUs, one for language model inference and one
for hosting the memory banks. Each has memory
of 80GB.

Hyper-parameters In CLM tasks, we set batch
size to be 4. For the similarity hyper-parameter R,
we conduct a hyper-parameter study on wikitext-
103 and use R = 0.93 for all experiments. We
show the study in the next section.

9.3 More Ablation Studies
9.3.1 Ablation: Different Choices of R

We conduct hyper-parameter study for similarity
threshold R on a subset of Wikitext-103 validation
set, in which the examples are randomly sampled.
We take LLaMa2 models with input length to be
128. The results are shown in Table 4.

From the results, we notice the best R is 0.93.
Therefore we use 0.93 in our experiments.

Shttps://huggingface.co/models
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R Perplexity
R=0.1 PPL=18.72
R=0.2 PPL=18.71
R=0.3 PPL=18.71
R=0.4 PPL=18.69
R=0.5 PPL=18.67
R=0.6 PPL=18.46
R=0.7 PPL=17.35
R=0.8 PPL=15.30
R=0.9 PPL=14.38

R=0.93 PPL=14.30
R=0.95 PPL=14.90

Table 4: Hyper-parameter study for R on the validation
subset of Wikitext-103

Perplexity
CAMELOT + Cosine Similarity 16.96
CAMELOT + Euclidean Similarity 17.45

Table 5: Analysis of similarity function on a subset of
wikitext-103 validation set.

9.3.2 Ablation: Different Choices of
Similarity Function in Read Operation

We conduct an ablation study on the similarity func-
tion in Read operation. Similarly, we randomly
sampled a subset data from the validation set of
Wikitext-103. We conduct evaluation experiments
with cosine similarity and euclidean similarity. We
use input window with 128 tokens. Note in this
experiment we use LLaMal-7B. The results are
shown in Table 5. We notice cosine similarity gives
the best performance and we use cosine similarity
in our other experiments.

9.3.3 Ablation: Different Memory Sizes

Model Input Context Memory Size  Perplexity
512 None 9.84
LLaMa2-7B 2048 None 7.88
512 4096 7.42
2048 4096 7.22
CAMELoT 512 10k 7.24
2048 10k 7.10

Table 6: Language Modeling performance on PG19
with different sizes of memory banks and different input
lengths.

In this section, we analyze how the size of the
memory bank affects CAMELOT. We compare
its performance on the PG-19 dataset using two


https://huggingface.co/models

configurations: one with 4,096 memory slots and
another with 10k slots. The findings are presented
in Table 6.

With each memory slot designed to hold a
unique mode of information, increasing the num-
ber of slots allows CAMELOT to capture a wider
range of knowledge. As a result, the version with
10k slots outperforms, showing a notable improve-
ment in test perplexity — 26.4% for inputs of 512
length and 9.9% for 2048 length relative to the base
model.

However, the 4,096-slot configuration also per-
forms strongly, with only slightly lower improve-
ments (24.6% and 8.4%, for the same input lengths)
than CAMELOT with 10k slots. This good per-
formance demonstrates that the effectiveness of
CAMELOT does not solely rely on the quantity of
data modes it can hold in its memory, but also on
how it manages and utilizes this data through mech-
anisms like consolidation and novelty. This balance
ensures CAMELOT remains effective across vari-
ous memory sizes and input lengths, maintaining
stability and efficiency.

10 Theoretical Calculation for
Computation Cost

Suppose we have memory size M in CAMELOT.
We denote the number of heads in the backbone
LLM as h, and token dimension per head is d. The
computation cost for the multi-head self-attention
of the base transformer with input length L is
quadratic in the sequence length, linear in token
dimension and the number of heads. Additionally,
we include the factor of 2, which accounts for the
computation of both the attention scores and mul-
tiplication of those by the value matrix. We retain
only the terms that are dominant for large L. This
gives:

Chase(L) = 2hL%d 9)

CAMELOT has the same self-attention cost, and
the cross attention cost (retrieved tokens effectively
double L). Additionally, there is a cost associated
with the search through the memory, which is linear
in M, L, h, and d.

Ceameror(L, M) = 2hL(L + L)d + hdLM
(10)
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