Controlling Vision—Language—A ction Policies through
Sparse Latent Directions

Momin Ahmad Khan', Novak Boskov?, Fatima Muhammad Anwar', Manzoor Ahmad Khan?

1University of Massachusetts Amherst
2Nokia Bell Labs
{makhan, fanwar}@umass.edu, {novak.boskov, manzoor.a.khan}@nokia-bell-labs.com

Abstract

Vision—language—action (VLA) agents combine perception, language, and control
to perform general-purpose tasks, but their internal decision-making is poorly
understood and hard to steer. This opacity limits trust and safe deployment in
robotics (i.e., embodied Al). In this work, we show that discrete robot actions can
be steered by identifying a small number of meaningful features inside the residual
stream of a VLA policy. Using a Magma-style model with a ConvNeXt vision
encoder and a LLaMA-3-8B-Instruct decoder in the SimplerEnv simulator, we learn
behavior directions from contrastive pairs of inputs that differ only in the target
action (e.g., open vs. close gripper). Specifically, we use a sparse autoencoder
(SAE) fitted to the decoder’s residual stream to construct steering vectors in latent
space, which are then decoded back and applied at inference time. This intervention
reliably shifts the model’s action choice while preserving overall coherence. Our
analysis shows that steering is effective but not perfectly disentangled due to
inadvertent activations of related features during steering. These results provide
the first evidence that latent-space techniques can steer embodied multimodal
policies without retraining. More broadly, this work highlights that mechanistic
interpretability techniques (e.g., SAE) can provide handles to control action-level
behavior of complex agents.

1 Introduction

Interpreting and controlling the behavior of large neural networks is a central challenge in modern
AL [6,[16]. Mechanistic interpretability seeks to go beyond performance metrics by analyzing internal
components, such as attention heads, MLP neurons, and residual streams, to explain how specific
computations and concepts are represented and used [[18]]. This perspective not only improves our
understanding of model internals, but also opens the door to targeted interventions at inference time.

Recent work has shown that models can often be steered by editing their internal representations,
biasing them toward or away from specific behaviors without retraining [2, 21} 13,1419, 5, 3]]. Such
edits are typically derived from contrastive pairs of inputs that differ only in the target property,
yielding directions in representation space that can be added or subtracted from the residual stream
during inference. While this approach has been explored in language models for attributes such as
sentiment or honesty, its potential beyond the text domain (i.e., in embodied Al agents) remains vastly
untested.

In this work, we take a first step toward steering robotic action policies using mechanistic interven-
tions. We focus on vision—language—action (VLA) models such as Magma [23]], which combines
a ConvNeXt [L1] vision encoder with a LLaMA-3-8B-Instruct text decoder to map observations

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Mechanistic Inter-
pretability.

S

a Robot Action Space
V|3|on —» = World Vector Hand Rotation
Encoder s X ~
N4
. >
N a Action iy S
—_ [] Normalize

a
Text a
“put the carrot Encoder a
on the plate” =

Joint Embeddings
Figure 1: Anatomy of a vision-language—action (VLA) policy. Visual and textual inputs are encoded
into joint embeddings, processed by a language model, and mapped to action logits. Action normal-
ization produces the robotic control in the action space of a concrete robot. We are the first to explore
steering in the action space of robotic policies.

and instructions into action logits. We introduce a sparse autoencoder (SAE)-based steering method
that learns behavior-specific directions (e.g., open vs. close gripper) from contrastive robot scenar-
ios. These directions are constructed in the SAE latent space and decoded back into the residual
stream, where they are injected during inference. This minimal edit reliably shifts action selection
while remaining interpretable, providing a practical bridge between mechanistic interpretability and
embodied control.

1. We present the first proof-of-concept application of sparse autoencoder (SAE)—based steering
within the action space of a vision—language—action (VLA) policy.

2. We propose a lightweight pipeline that learns behavior-specific directions (e.g., open vs.
close gripper) from contrastive action pairs in the text decoder and applies them as inference-
time residual edits.

3. Through an empirical case study on Magma [23] in SimplerEnv [9], we demonstrate that
such edits can reliably bias a binary robotic action and reveal key challenges such as co-
activation and disentanglement of latent features, highlighting open directions for future
work on scalable multimodal steering.

2 Background

Residual streams in transformers: In decoder-only transformers, each layer L takes the residual
stream R(F) € R from the previous layer, applies attention and MLP sublayers, and adds the
result back into R) via residual connections [1]]. This residual stream can be interpreted as the
model’s current state of computation: a linear space in which many high-level features are represented
as directions. Probing or editing R(%) at specific tokens allows us to inspect or influence the model’s
intermediate computations.

Feature directions: A feature direction [2] v() € R%ww is a unit vector in the residual space of
layer L that corresponds to a feature or concept. Projecting R(“) onto v(%) yields a scalar activation

sB) = (R L)y,

which measures the strength of that feature at that layer and token. High positive (or negative)
activations often correlate with the presence (or absence) of the feature in the model’s current
computation.

Contrastive steering: One practical way to isolate feature directions is through contrastive pairs
of inputs that differ only in a target property (e.g., honest vs. dishonest answers, open vs. close
gripper) [21}, 13, 2]]. Subtracting their activations cancels out nuisance variation and highlights the
subspace tied to that property. From many such differences, one can extract a low-dimensional axis
(via averaging, PCA, or other methods) that serves as a steering direction v(L). At inference time,
adding or subtracting a scaled version o v(X) to the residual stream biases the model toward or away
from the target property:

R'®) = RW) 4 qo@),

Sparse autoencoders (SAEs): A sparse autoencoder learns an overcomplete, sparsely activated basis
for residual stream activations [24, 12| [7]]. Given R an SAE encoder maps it to a high-dimensional
latent vector z € R%en | where most components are zero for any given input. Each latent dimension
is intended to correspond to a more interpretable “feature neuron.” The decoder reconstructs the
residual stream from these latents. Steering can then be performed in latent space: contrastive pairs
define a vector in z-space, which is added before decoding back to R(%). This enables finer-grained
interventions, since edits can target individual features rather than arbitrary residual directions.

Mechanistic interpretability connection: Both residual-space and SAE-latent steering operate
directly on a model’s internal representations, shedding light on how features are encoded while
enabling intervention [8},[10]. By localizing edits to specific layers, tokens, and features, they bridge
interpretability and control, offering a way to probe and modulate model behavior without retraining.

3 Method

Setup. We use a Magma-style vision—language—action (VLA) policy: a vision encoder produces
embeddings that condition a LLaMA-3B-Instruct backbone. We insert a sparse autoencoder (SAE)
trained on the residual stream at layer 25 from SAE Lens[4]. The SAE encodes each residual vector
R ¢ Rémet jnto a sparse latent (L) g Rmen yig 7 = ReLU(Wepe R + benc), and reconstructs back
to the residual space via R ~ Wyec2 + bgec-

+ ¥
) Transformer Transformer v g Transformer
@ Feature Extractor]
5 |® (Sparse Auto-Encoder) &
|| 2 o aperiom
o (m 1,71, 72, 3, f4, 15... 0 @
7]
Elm E, v < i
‘é a (= | Contrastive Activations Collector | 3 e
c|m E g
@ 2 i £ I
|| & Steering Vector Computation 4 Softmex
c(m o
] N
5 = ¥ 70, A, 27, 13, ", 5 ... fa l
> o 4 5 Distribution
Steering
L | | (Residual i over Dictionary
Transformer Transformer ._| e St |_ N Transformer
Block i Blocki+1 Blockm

Figure 2: Our Inference-time intervention framework. The residual stream is passed through a sparse
autoencoder (SAE) to extract latent features and collect the feature activations of contrastive pairs.
The top three modules in the orange box constitute the pre-inference phase, run offline to prepare
steering vectors. During inference (pink box), the steering vector is injected back into the residual
flow, modulating downstream computation. This layer-agnostic design enables fine-grained and
interpretable control over model outputs.

Contrastive pairs for actions: We collect contrastive pairs (x;, x;) that differ only in the target
action (e.g., “open” vs. “close” gripper) while holding all other inputs constant (similar scene and
prompt). To capture the relevant activations, we run an instrumented version of the model with a
feature extractor that records the residual stream at the action decision step, building contrastive
representations for each pair.

Token selection: We compute the steering direction using the hidden representation at the last
token of the input sequence. This choice follows standard practice in mechanistic steering and
activation-editing literature, where the final token embedding captures the model’s full contextualized
representation of the input and influences the subsequent output generation [19} 20} [17]]. We therefore
did not perform a token-sensitivity analysis, as the last-token representation is commonly used to
define steering vectors that summarize the model’s predicted behavior over the entire sequence.

Steering vector computation: We further process the qualified contrastive pairs by eliminating the
rarely activated features and those that often activate in both z;” and x;". For each pair (z}, z;),

we collect the SAE latents z(X) (z]") and 25 (x;

7), compute their difference Azi(L) =20 (xf) -
2(E)(x;), and average over all pairs:

N
@ _ 1 (L)
Vtatent = N Z Azz : ey
=1

This yields a single steering vector in the SAE latent space that points in the direction of the target
action concept.

Control edit in latent space. At inference time, we hook into the SAE at layer L*, and then:

1. Encode the current residual vector R into latents 2.
2. Apply the edit 2’ = 2z + « ’Ul(atenz (or with a sign flip to bias toward the opposite action).
3. Decode back to residual space via R’ = Wyecz' + byec.

4. Replace the original residual R(") with R’ before passing to the next transformer block.

The scalar « controls edit strength; we sweep it to examine steering magnitude and side effects.

4 Results and Discussion

-
o

[oe]

Experimental Setup

o

We evaluate on SimplerEnv[[9], a simulated environment with
object manipulation tasks. In this section, we use the "put carrot
on plate" task from BridgeDataV2 [22]]. The policy backbone
is a Magma-style architecture composed of a ConvNeXt vision
encoder and a LLaMA-3-8B-Instruct text decoder. As Magma 0 Baseline Steered
backbone consisists of LLaMA, we adopt an existing SAE
from the SAE Lens library[4] that was trained on LLaMA-3-
8B-Instruct. This SAE is designed for the residual stream at the
25th layer of LLaMA, which we align with the corresponding
layer in the Magma text decoder. Thus, we insert the SAE
directly into the text portion of Magma and apply our latent-
space interventions there. We focus on the residual stream at the final action token.

N

N

Open / Closed Gripper Time

Figure 3: Effect of steering robot
arm gripper using open gripper as
the positive behavior (i.e., z;). Y-
axis is the ratio of open to closed
gripper simulation steps.

Steering effectiveness: Figure 3] shows 1.0

that editing in SAE latent space can re- ¢

liably bias the gripper action. By con- E 0.8

structing steering vectors from contrastive £ 4

pairs (e.g., scenes differing only in grip- £

per state) and applying them through SAE 0.4

features, we were able to bias the policy to- =

ward more frequent gripper open. Through 2 %2

this pairing technique we found that fea- 0.0

ture 4909 was one of the dominant feature SF N SIS P O v R 2L I &SP Ay &
for gripper action. Amplifying its direc- PR RSFETTEEF TSN TILE TV

tion in the residual stream has a signifi-

cant effect on the state of the gripper in the Figure 4: Top SAE features sorted by mean activation
robot action space. This demonstrates that difference. Feature 4909 is effective, but additional fea-
sparse autoencoder (SAE) latents provide tures also shift, showing unintended co-activations. We
a workable substrate for controlling vision— color the feature 4909 green to emphasize we inteded
language—action (VLA) agents at inference to steer it. The features in red are the features that are
time, where small, interpretable edits in la- steered unintendedly due to feature entanglement. The
tent space can reliably influence discrete gradient shows a decreasing impact of steering on fea-
robot behaviors without finetuning. tures.

Inadvertent co-activations. While steer-

ing feature 4909 effectively changes the gripper state in the action space, Figure [shows that steering
feature 4909 alone results in many inadvertent co-activations. These co-activations are weaker but
persistent, indicating that SAE-based directions are not perfectly disentangled, making it difficult to
steer one feature in isolation. Dependeing on the context, the inadvertent activations may influence
policy behavior in unintended ways. Therefore, the central challenge is not only identifying useful
features, but also developing methods to mitigate inadvertent co-activations during intervention.

5 Limitations and Conclusion

Limitations and future work: Our study is restricted to simulations, a single binary behavior
(open/close gripper), and SAE models trained on the text-decoder portion of Magma rather than
the full multimodal pipeline. The SAE basis was pre-trained for LLaMA-3 and not optimized
for embodied control, making results sensitive to fit quality, contrastive pair construction, and
intervention layers. Also, we do not provide safety or robustness guarantees. Future work should
focus on improving disentanglement (e.g., orthogonalization or feature-subset selection), improving
SAE reconstruction [15], extending this technique beyond a simulator to an actual robot, and enabling
multi-skill steering.

Conclusion: We introduced a SAE-based steering method to steer robot actions in a multimodal
policy that is generated by the Magma model. By leveraging contrastive pairs to isolate action-specific
latents and decoding these edits back into the residual stream, we shifted gripper open/close decisions
in a controlled way. While unintended co-activations remain a challenge, this work demonstrates
that mechanistic interpretability techniques like SAESs can be repurposed for practical policy steering,
providing a foundation for more interpretable VLA control.

References

[1] An Intuitive Explanation of Sparse Autoencoders for LLM Interpretability — adamkar-
vonen.github.io. https://adamkarvonen.github.io/machine_learning/2024/06/11/
sae-intuitions.html. [Accessed 22-08-2025].

[2] Reza Bayat, Ali Rahimi-Kalahroudi, Mohammad Pezeshki, Sarath Chandar, and Pascal Vincent.
Steering large language model activations in sparse spaces. arXiv preprint arXiv:2503.00177,
2025.

[3] Amrita Bhattacharjee, Shaona Ghosh, Traian Rebedea, and Christopher Parisien. Towards
inference-time category-wise safety steering for large language models. arXiv preprint
arXiv:2410.01174, 2024.

[4] Joseph Bloom, Curt Tigges, Anthony Duong, and David Chanin. Saelens. https://github,
com/jbloomAus/SAELens)| 2024.

[5] Yuanpu Cao, Tianrong Zhang, Bochuan Cao, Ziyi Yin, Lu Lin, Fenglong Ma, and Jinghui Chen.
Personalized steering of large language models: Versatile steering vectors through bi-directional
preference optimization. Advances in Neural Information Processing Systems, 37:49519-49551,
2024.

[6] Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, et al. A mathematical framework for
transformer circuits. Transformer Circuits Thread, 1(1):12, 2021.

[7] Eoin Farrell, Yeu-Tong Lau, and Arthur Conmy. Applying sparse autoencoders to unlearn
knowledge in language models. arXiv preprint arXiv:2410.19278, 2024.

[8] Connor Kissane, Robert Krzyzanowski, Joseph Isaac Bloom, Arthur Conmy, and Neel Nanda.
Interpreting attention layer outputs with sparse autoencoders. arXiv preprint arXiv:2406.17759,
2024.

[9] Xuanlin Li, Kyle Hsu, Jiayuan Gu, Karl Pertsch, Oier Mees, Homer Rich Walke, Chuyuan Fu,
Ishikaa Lunawat, Isabel Sieh, Sean Kirmani, et al. Evaluating real-world robot manipulation
policies in simulation. arXiv preprint arXiv:2405.05941, 2024.

[10] Tom Lieberum, Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Nicolas Sonnerat,
Vikrant Varma, Janos Kramar, Anca Dragan, Rohin Shah, and Neel Nanda. Gemma scope: Open
sparse autoencoders everywhere all at once on gemma 2. arXiv preprint arXiv:2408.05147,
2024.

[11] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining
Xie. A convnet for the 2020s. In 2022 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 11966-11976, 2022.

https://adamkarvonen.github.io/machine_learning/2024/06/11/sae-intuitions.html
https://adamkarvonen.github.io/machine_learning/2024/06/11/sae-intuitions.html
https://github.com/jbloomAus/SAELens
https://github.com/jbloomAus/SAELens

[12] Kyle O’Brien, David Majercak, Xavier Fernandes, Richard Edgar, Blake Bullwinkel, Jingya
Chen, Harsha Nori, Dean Carignan, Eric Horvitz, and Forough Poursabzi-Sangdeh. Steering
language model refusal with sparse autoencoders. arXiv preprint arXiv:2411.11296, 2024.

[13] Nina Panickssery, Nick Gabrieli, Julian Schulz, Meg Tong, Evan Hubinger, and Alexander Matt
Turner. Steering llama 2 via contrastive activation addition. arXiv preprint arXiv:2312.06681,
2023.

[14] Nate Rahn, Pierluca D’Oro, and Marc G Bellemare. Controlling large language model agents
with entropic activation steering. arXiv preprint arXiv:2406.00244, 2024.

[15] Senthooran Rajamanoharan, Tom Lieberum, Nicolas Sonnerat, Arthur Conmy, Vikrant Varma,
Janos Kramdr, and Neel Nanda. Jumping ahead: Improving reconstruction fidelity with jumprelu
sparse autoencoders. arXiv preprint arXiv:2407.14435, 2024.

[16] Tilman Réuker, Anson Ho, Stephen Casper, and Dylan Hadfield-Menell. Toward transparent ai:
A survey on interpreting the inner structures of deep neural networks. In 2023 ieee conference
on secure and trustworthy machine learning (satml), pages 464-483. IEEE, 2023.

[17] Daniel Scalena, Gabriele Sarti, and Malvina Nissim. Multi-property steering of large language
models with dynamic activation composition. arXiv preprint arXiv:2406.17563, 2024.

[18] Lee Sharkey, Bilal Chughtai, Joshua Batson, Jack Lindsey, Jeff Wu, Lucius Bushnaq, Nicholas
Goldowsky-Dill, Stefan Heimersheim, Alejandro Ortega, Joseph Bloom, et al. Open problems
in mechanistic interpretability. arXiv preprint arXiv:2501.16496, 2025.

[19] Alessandro Stolfo, Vidhisha Balachandran, Safoora Yousefi, Eric Horvitz, and Besmira Nushi.
Improving instruction-following in language models through activation steering. arXiv preprint
arXiv:2410.12877, 2024.

[20] Eric Todd, Millicent L. Li, Arnab Sen Sharma, Aaron Mueller, Byron C Wallace, and David Bau.
Function vectors in large language models. arXiv preprint arXiv:2310.15213, 2023.

[21] Alexander Matt Turner, Lisa Thiergart, Gavin Leech, David Udell, Juan J Vazquez, Ulisse Mini,
and Monte MacDiarmid. Activation addition: Steering language models without optimization.
arXiv e-prints, pages arXiv—2308, 2023.

[22] Homer Walke, Kevin Black, Abraham Lee, Moo Jin Kim, Max Du, Chongyi Zheng, Tony Zhao,
Philippe Hansen-Estruch, Quan Vuong, Andre He, Vivek Myers, Kuan Fang, Chelsea Finn, and
Sergey Levine. Bridgedata v2: A dataset for robot learning at scale. In Conference on Robot
Learning (CoRL), 2023.

[23] Jianwei Yang, Reuben Tan, Qianhui Wu, Ruijie Zheng, Baolin Peng, Yongyuan Liang, Yu Gu,
Mu Cai, Seonghyeon Ye, Joel Jang, et al. Magma: A foundation model for multimodal ai
agents. In Proceedings of the Computer Vision and Pattern Recognition Conference, pages
14203-14214, 2025.

[24] Yu Zhao, Alessio Devoto, Giwon Hong, Xiaotang Du, Aryo Pradipta Gema, Hongru Wang,
Xuanli He, Kam-Fai Wong, and Pasquale Minervini. Steering knowledge selection behaviours
in llms via sae-based representation engineering. arXiv preprint arXiv:2410.15999, 2024.

	Introduction
	Background
	Method
	Results and Discussion
	Limitations and Conclusion

