
Under review as a conference paper at ICLR 2022

TRANSFERRING DEXTEROUS MANIPULATION FROM
GPU SIMULATION TO A REMOTE REAL-WORLD
TRIFINGER

Anonymous authors
Paper under double-blind review

ABSTRACT

We present a system for learning a challenging dexterous manipulation task in-
volving moving a cube to an arbitrary 6-DoF pose with only 3-fingers trained with
NVIDIA’s IsaacGym simulator. We show empirical benefits, both in simulation
and sim-to-real transfer, of using keypoints as opposed to position+quaternion
representations for the object pose in 6-DoF for policy observations and in reward
calculation to train a model-free reinforcement learning agent. By utilizing domain
randomization strategies along with the keypoint representation of the pose of the
manipulated object, we achieve a high success rate of 83% on a remote TriFinger
system maintained by the organizers of the Real Robot Challenge. With the aim of
assisting further research in learning in-hand manipulation, we make the codebase
of our system, along with trained checkpoints that come with billions of steps of
experience available, at https://sites.google.com/view/s2r2

1 INTRODUCTION

Through cloud-based robotic systems, Robotics as-a-Service (RaaS) promises to alleviate many of
the upfront requirements to install and maintain robot hardware Kehoe et al. (2015). The advantages
of this model include easier management and scalability, greater flexibility and savings in terms of
compute power and utilities. While RaaS has been proposed for parallel-grid computing on demand,
collective robot learning, and crowd-sourcing access to remote human expertise, a great need for
such a model has emerged in the robotics community during the current pandemic. In this work, we
show how large-scale simulation done on a desktop grade GPU and cloud-based robotics can enable
roboticists to perform research in robotic learning with modest resources. We focus on 6-DoF object
manipulation by using a dexterous multi-finger manipulator as a case study.

Dexterous manipulation requires dealing with high-dimensionality of the system, hybrid dynamics,
and uncertainties about the environment Okamura et al. (2000). Prior work has trained a control
policy for in-hand manipulation of a block with a Shadow Dexterous Hand OpenAI et al. (2018). This
was achieved through scientific compute clusters for distributed training in simulation and access to
specialized hardware (the “cage”) to receive reliable state information during object interaction in the
real-world. While impressive, the requirement of such an exorbitant infrastructure makes this kind of
study typically non-reproducible bordering impractical, hence the paucity of results building upon
this work for further research into learning manipulation.

Contrarily, Wüthrich et al. (2020) designed an open-sourced low-cost robotic platform for dexterous
manipulation called TriFinger. They showed that the robot is suitable for deploying learned policies
due to its hardware robustness and software safety checks. Building upon this work, the authors
organized the ‘Real Robot Challenge (RRC)’ rea (2020), for which they developed a farm of TriFinger
systems. For the challenge the authors provided access to PyBullet simulation of the robot Coumans
et al. (2013). This challenge reinforced the inaccessibility of applying learning-based systems for
such tasks: most competing teams elected to use structured policies with manually tuned high-level
controllers or residual learning on top Funk et al. (2021); Chen et al. (2021); Yoneda et al. (2021).

One of the reasons for the above is the ubiquity of CPU-based simulators Coumans & Bai (2016);
Todorov et al. (2012). Due to its low sample generating rate, it is highly time-consuming to tune and
train a successful policy on PyBullet (a CPU based simulator) for such a complex task. The TriFinger
platform is based on low-cost open-source hardware (Wüthrich et al., 2020). The TriFinger system

1

https://sites.google.com/view/s2r2

Under review as a conference paper at ICLR 2022

Initial Grasp Initial Lifting Reorientation Drop & Regrasp Lift Fine correction

R
ea
lit
y

Si
m
ul
at
io
n

Flick to reorient 2nd reorientation Drop & Regrasp Lift + in-hand
reorientation

Fine correctionInitial Grasp

Time

Figure 1: Top: Our system learns to manipulate a cube to desired 6-DoF goal poses (position+orientation)
entirely in simulation. Training is done on desktop-scale compute using a GPU-based physics engine. Bottom:
We then transfer to a real robot located thousands of kilometers away from where development work is done.

uses a vision-based tracker to triangulate the object pose. The tracker functions at a low frequency
and provides noisy estimates of the cube pose, making reliable policy inference difficult. Lastly,
working on the cloud-based platform Trans-Atlantic with limited access to the hardware slows down
the iteration cycles. While the overall cost of the system is reduced when compared to a high-end
setup like the Shadow Hand used by OpenAI, more noise and delays are present due to the commodity
nature of the hardware. This makes sim-to-real transfer non-trivial.

This effort aims to overcome these limitations through a systems approach to robotics with infras-
tructure around a GPU-accelerated simulator coupled with a remote Trifinger system for successful
sim-to-real transfer of a learned policy, as shown in Figure 1. Using NVIDIA’s IsaacGym Liang
et al. (2018), we train a policy to learn 6-DoF object manipulation successfully in under a day on
a single desktop-grade GPU. While not directly comparable to the Trifinger task, this number is in
contrast to previous efforts with in-hand manipulation, for example, OpenAI’s distributed training
infrastructure, which took several days to learn a robust policy for cube rotation on a large distributed
server involving large CPU and GPU clusters. Additionally, we investigate different object pose
representations for observations and rewards formulation. To allow successful sim-to-real transfer,
we perform domain randomization on various physics properties in the simulator along with different
noise models for observations and actions.

This paper primarily makes robot systems contributions as follows:

1. We provide a framework for learning similar in-hand manipulation tasks with sim-to-real transfer
using far fewer computational resources (1 GPU & CPU) than prior work but that can also benefit
from large scale training.

2. We show the benefits of using keypoints as representations of object pose and in reward computation
with RL algorithms for in-hand manipulation, especially when reposing in SE(3).

3. We demonstrate the ability to learn a challenging 6-DoF manipulation task, re-posing a cube, with
simulation data alone and deploying on a third-party remote physical robot setup.

4. We open-source the software platform to run training in simulation and inference of the resulting
policies for other researchers to build on top of.

2 RELATED WORK

Advances in reinforcement learning (RL) algorithms and computational hardware have enabled rapid
progress in using these algorithms for tasks on real robots. Techniques such as domain randomization
and large-scale training have enabled results across a variety of tasks with sim2real, including in-hand
manipulation (OpenAI et al., 2018; 2019), as well as in legged locomotion (Hwangbo et al., 2019;
Shi et al., 2020). Active identification of system parameters has also been shown to be helpful in the
context of learning manipulation tasks (Chebotar et al., 2019). However, few results have focused on
learning-based control over a full 6-DoF pose in-hand. Furthermore, none of the existing systems for

2

Under review as a conference paper at ICLR 2022

Simulator

Camera Noise Injector
(Delays, frequency,
missed detections)

Observation Randomization

Proprioceptive Noise
Injector

Keypoint Generator

Policy During
Training

1. Single GPU Training

Policy Learning
Algorithm

Priviledged
States

Actor
Gradient

Torque
 Command

2. Upload
Actor Weights

Real Robot

3. Remote Inference on
 Real Robot
blarg

arthur

June 2021

blah
q
q̇
kcurr,1

kcurr,8

ktarget,1

ktarget,8

⌧t

⌧t�1

⌧des

⌧

1

blarg

arthur

June 2021

blah
q
q̇
kcurr,1

kcurr,8

ktarget,1

ktarget,8

⌧t

⌧t�1

⌧des

⌧

1

start end

blarg

arthur

June 2021

blah
q
q̇
kcurr,1

kcurr,8

ktarget,1

ktarget,8

⌧t

⌧t�1

⌧des

⌧
⇡
(t, q)

1

Keypoint Generator

start end

Action Randomization

Torque Noise Injector
Noisy Torque

(With Noise)

(Without Noise)

Keypoint Generator

Camera Pose
Detector

Trained Policy

(Critic)

(Actor)

Torque
 Command

blarg

arthur

June 2021

blah
q
q̇
kcurr,1

kcurr,8

ktarget,1

ktarget,8

⌧t

⌧t�1

⌧des

⌧

1

Domain Randomization:
friction, object mass, object scale

Figure 2: Our system trains using the IsaacGym simulator1(Makoviychuk et al., 2021) on 16,384 environments
in parallel on a single NVIDIA Tesla V100 or RTX 3090 GPU. Inference is then conducted remotely on a
TriFinger robot located across the Atlantic in Germany using the uploaded actor weights. The infrastructure on
which we perform Sim2Real transfer is provided courtesy of the organisers of the Real Robot Challenge (rea,
2020).

training in-hand manipulation at a large scale have been provided in an accessible manner for further
work in robot learning to build on.

The most widely used simulators for robot learning research are MuJoCo Todorov et al. (2012)
and Pybullet Coumans & Bai (2016). While both have proven to be successful for various robotics
locomotion and manipulation tasks, they are often slow for complicated environments and require
CPU clusters putting some limits on their scalability. Brax Freeman et al. (2021), on the other hand,
supports GPU / TPU acceleration, but it comes at the cost of simplified physics simulation assumptions
and simple environments. IsaacGym (Liang et al., 2018) offers high-fidelity physics modelling and
GPU acceleration support. It also supports directly sharing observations and actions through GPU
memory between policy network and the physics engine, massively increasing throughput. Part of
our contribution is to demonstrate the viability of the approach of GPU-based simulation to sim2real
for in-hand manipulation.

3 METHOD

3.1 SIMULATION ENVIRONMENT

We train on the IsaacGym simulator (Liang et al., 2018), a simulation environment tailored towards
allowing policy learning with a high sampling rate (>50K samples/sec in policy inference on Tesla
V100 and around 100K samples/sec on RTX 3090) on a single GPU. This is crucial in our goal
of providing an accessible yet generalisable framework for sim2real with in-hand manipulation.
We simulate the physical system with ∆t = 0.02s, which we found gave a good balance between
simulation fidelity, speed of learning, and ability to learn high frequency motions required in such a
manipulation task.
3.2 REPRESENTATION OF THE CUBE POSE

Our task involves manipulating an object in 6 degrees of freedom. As such, we must represent
this pose in multiple stages of our training pipeline. Prior work has shown the benefits of alternate
representations of spatial rotation when using neural networks (Zhou et al., 2020). We choose to
represent the pose of the object using 8 keypoints sampled in the object’s local space at each vertex of
the cube, klocal,i i = 1, . . . , 8. These locations of the keypoints in the object’s local frame are constant.
We denote the keypoints in the world frame for the current pose of the object, kcurr,i and the goal
pose of the object ktarget,i i = 1, . . . , 8. These are obtained by a straightforward transformation of the

1Available for download at: https://developer.nvidia.com/isaac-gym

3

https://developer.nvidia.com/isaac-gym

Under review as a conference paper at ICLR 2022

OBSERVATION SPACE DEGREES OF FREEDOM

FINGER JOINTS
POSITION 3 FINGERS · 3 JOINTS · 1[R1] = 9
VELOCITY 3 FINGERS · 3 JOINTS · 1[R1] = 9

CUBE POSE KEYPOINTS 8 KEYPOINTS · 3 [R3] = 24
GOAL POSE KEYPOINTS 8 KEYPOINTS · 3 [R3] = 24
LAST ACTION TORQUE 3 FINGERS · 3 JOINTS · 1[R1] = 9

TOTAL 75

(a) Actor Observations

OBSERVATION SPACE DEGREES OF FREEDOM

ACTOR OBSERVATIONS (W/O DR) 75
CUBE VELOCITY 6 [R6]

FINGERTIPS STATE
POSE 3 FINGERS · 7 [R3 × SO(3)] = 21
VELOCITY 3 FINGERS · 6 [R6] = 18
WRENCH 3 FINGERS · 6 [R6] = 18

FINGER JOINTS TORQUE 3 FINGERS · 3 JOINTS · 1[R1] = 9

TOTAL 147

(b) Critic Observations
Table 1: Asymmetric actor-critic to learn dexterous manipulation. While the actor receives noisy observa-
tions, which are added as a part of DR (Section 3.5), the critic receives the same information without any noise
and also has access to certain privileged information from simulator.

klocal,i back into the world frame using the current / goal poses of the object. This results in a set of 8
keypoints in 3-D Euclidean space. When concatenated for policy inference, the set of 8 keypoints
yields a 24-D vector representing an object pose. In Sec. 4.2, we contrast this representation to a
position+quaterinon formulation used in (OpenAI et al., 2018; Liang et al., 2018), finding that it
improves the policy’s success rate. We note as long as we are able to get the pose of the object (eg.
via (Tremblay et al., 2018)), we are able to obtain the 8 keypoints of the bounding box, and that this
does not depend on the object morphology (as shown in Appendix ??).

3.3 OBSERVATION AND ACTION SPACES

The observations of the policy (actor) and value-function (critic) are described in Table 1a and 1b.
We use the representation of cube pose described in the previous Sec 3.2. The action space of our
policy is torque on each of the 9 joints of the robot. The torque on each joint is limited such that it
does not damage the equipment while in operation. A safety damping is applied to the output torques
in simulation to mimic those on the real-world robot.

3.4 REWARD FORMULATION & CURRICULUM

Our reward has three components, each of which we found to be helpful in achieving good training
and sim-to-real performance. Following (Hwangbo et al., 2019), we use a logistic kernel to convert
tracking error in euclidean space into a bounded reward function. We slightly generalise the given
formulation to account for a range of distance scales, defining, K(x) = (eax + b+ e−ax)

−1, where
a is a scaling factor and b controls the sensitivity to the kernel at low values of distance. We use
a = 30 and b = 2.

As noted in Sec 3.2, we use keypoints in order to calculate the reward. The component of the reward
corresponding to the distance between the cube’s current pose and the desired target pose is given
by: object_goal_reward =

∑N
i=1K(||kcurr,i − ktarget,i||2), where kcurr,i and ktarget,i are each

of the N = 8 keypoints at the corners of the current and target cubes, respectively.

In order to encourage the fingers to reach the cube during initial exploration, we give a reward for
moving the fingers towards the cube, which was also found to be helpful in (Ahmed et al., 2020).
This term is defined by sum of the movement of each fingertip towards the goal per timestep:
fingertip_to_object =

∑3
i=1 ∆t

i, where ∆ denotes the change across the timestep of
the fingertip distance to the centroid of the object, ∆t

i = ||fti,t − pcurr,centroid,t||2 − ||fti,t−1 −
pcurr,centroid,t−1||2, and fti denotes the position of the i-th fingertip.

Finally, we define a penalty on the movement of each finger, preventing sudden motions that may be
difficult to execute reliably on the real robot: fingertip_velocity_penalty =

∑3
i=1 || ˙fti||22

Our total reward is defined as:
R(s, a) =wfo × fingertip_to_object× 1(timesteps ≤ 5e7)

+ wfv × fingertip_velocity_penalty + wog × object_goal_reward
(1)

where wfo = −750, wfv = −0.5 and wog = 40 are the weights of each reward compo-
nent. We also found in initial experimentation that the curriculum reducing the weight of the
fingertip_to_object reward to 0 after 50 million steps was needed in order to allow the robot
to perform nonprehensile manipulation of the cube (releasing it in order to reorient). However, having
the reward term during the initial phases of training dramatically sped up learning by encouraging the
robot to interact with the cube.

4

Under review as a conference paper at ICLR 2022

1256 256 128 128 975
75

72
256 256 128 128512 512

FC1 FC2

FC3 FC4

FC3 FC4

FC5 FC6

FC1 FC2

Actor Critic

Figure 3: The actor and critic
networks are parameterized using
fully-connected layers with ELU
activation functions Clevert et al.
(2016).

3.5 DOMAIN RANDOMIZATION

Domain Randomization (DR) is a straightforward yet practical technique for improving the robustness
of policies in sim2real transfer (Tobin et al., 2017; Peng et al., 2018; Mandlekar* et al., 2017). We
choose our Domain Randomization parameters to account for modelling errors in the environment
as well as noise in sensor measurement noise. These parameters are listed in Table 2. In addition
to these randomizations, we apply random forces to the cube in the same manner as described in
(OpenAI et al., 2018) in order to improve the stability of grasps and represent unmodelled dynamics.
We mimic the dynamics of the camera on the real system, described in Sec 3.7, by repeating the
observation of the keypoints for 5 frames.

PARAMETER RANGE σ σcorr

OBSERVATION NOISE
CUBE POSITION2 [-0.30, 0.30] 0.002 0.000
CUBE ORIENTATION2 [-1.00, 1.00] 0.020 0.000
FINGER JOINT POSITION [-2.70, 1.57] 0.003 0.004
FINGER JOINT VELOCITY [-10.00, 10.0] 0.003 0.004

ACTION NOISE
APPLIED JOINT TORQUE [−0.36, 0.36] 0.02 0.01

PARAMETER SCALING DISTRIBUTION

ENVIRONMENT PARAMETERS
OBJECT SCALE UNIFORM(0.97, 1.03)
OBJECT MASS UNIFORM(0.70, 1.30)
OBJECT FRICTION UNIFORM(0.70, 1.30)
TABLE FRICTION UNIFORM(0.50, 1.50)
EXTERNAL FORCES REFER TO (OPENAI ET AL., 2018, PP. 9)

Table 2: For observations and actions, σ and σcorr are the standard deviation of additive gaussian noise sampled
every timestep and at the start of each episode, respectively. For environment, the parameters represent scaling
factor applied to the nominal values in the real robot model.

3.6 POLICY ARCHITECTURE & LEARNING

We train using the Proximal Policy Optimization algorithm (Schulman et al., 2017), using the
implementation from (Makoviichuk & Makoviychuk, 2021), which vectorizes observations and
actions on GPU allowing us to take advantage of the parallelization provided by the simulator (see
Sec 3.1). We use the following hyper-parameters: discount factor γ = 0.99, clipping ε = 0.2.
The learning rate is annealed linearly over the course of training from 5e−3 to 1e−6; detailed
hyperparameters are described in Appendix ?? The inputs to the policy are described in Table 1b. We
use an asymmetric actor critic approach (Pinto et al., 2017) with an actor that has 4 hidden layers, 2
of size 256 followed by 2 of size 128, and 9 outputs which are scaled to the torque ranges of the real
robot and a critic that has 2 layers of size 512, followed by 2 layers of size 256 and 128 each and
produces a scalar value function as output.

3.7 POLICY INFERENCE ON REMOTE REAL ROBOT

We evaluate our policy remotely on the TriFinger system (Wüthrich et al., 2020) provided by the
organisers of the real robot challenge (Funk et al., 2021). The cube is tracked on the system using 3
cameras, described in (Wüthrich et al., 2020). We convert the position+quaternion representation
output by this system into the keypoints representation described in 3.2 and use it as input to the
policy. Observations of the cube pose from the camera system are provided at 10Hz. Proprioceptive
measurements are available at up to 1KHz. Our policy is evaluated at 50Hz, matching the simulation
timestep. We repeat the camera-based cube-pose observations for subsequent rounds of policy
evaluation to allow the policy to take advantage of the higher-frequency proprioceptive data available
to the robot. The resulting observations are identical to what we use in simulation (Table 1a).

4 EXPERIMENTS

In our experiments, we aim to answer the following four questions pertaining to learning a robust
policy for this task, as well as evaluating how well it transfers to the real world:

2The noise to keypoints is not applied directly. Rather the noise is added to the cube pose in the world frame
before computing the keypoints through it.

5

Under review as a conference paper at ICLR 2022

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps (Billions)

0%

20%

40%

60%

80%

100%

Su
cc

es
s

R
at

e

Position + Orientation Position Orientation

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps (Billions)

0%

20%

40%

60%

80%

100%

Su
cc

es
s

R
at

e

Figure 4: Training curves on a reward function
similar to prior work Funk et al. (2021); Chen et al.
(2021) for the setting with DR. We take the aver-
age of 5 seeds; the shaded areas show standard
deviation, noting that curves for Orientation
and Position+Orientation overlap during
training. It is worth noting that the nature of the
reward makes it very difficult for the policy to op-
timize, particularly achieving an orientation goal.

1. How well does our system using large-scale simulation train on this task with a reward function
similar to what has been previously proposed?
2. How does training performance change when we use a different representation - keypoints - for
reward computation and policy input?
3. Is our policy robust to sensor noise and varying environment parameters, and is robustness
improved by use of Domain Randomization during training?
4. How well do our policies, trained entirely in simulation, transfer to the real TriFinger system?

4.1 EXPERIMENT 1: TRAINING

The aim in our 6-DoF manipulation task is to get the position and orientation of the cube to a specified
goal position and orientation. We define our metric for ‘success’ in this task as getting the position
within 2 cm, and orientation within 22°of the target goal pose as used in (OpenAI et al., 2018);
comparable to mean results obtained in (Funk et al., 2021). Following previous works dealing with
similar tasks (OpenAI et al., 2018; 2019; Ahmed et al., 2020), we attempted applying a reward based
on the position and orientation components of error individually.

We spent considerable effort experimenting with a variety of kernels and tuning the parame-
ters of the translation / rotation based reward. The best candidate reward of this format was:
object_goal_reward = K(||tcurr − ttarget||2) + 1

3×|rot_dist|+0.01 , where rot_dist = 2 ×
arcsin(min(1.0, ||qdiff ||2)), qdiff = qcurrq

∗
target. The argument of K is the logistic kernel that takes L2

norm between the current and target cube position as input, and rot_dist is the distance in radians
between the current and target cube orientation. We use the alternative scaling parameter a = 50
in K, which we found to work better in this reward formulation (see Sec. 3.4). We use the same
weightings for each of the 3 components of the reward as in Sec 3.4.

The results are shown in Figure 4. We found that while this formulation of the reward was good at
allowing PPO to learn a policy to get the cube to the goal, even after 1 Billion steps in an environment
with no Domain Randomization it was learning very slowly to achieve the orientation goal.

4.2 EXPERIMENT 2: REPRESENTATION OF POSE

The poor results in Experiment 1 (Sec 4.1) lead us to search for alternative representations of cube
pose in the calculation of the reward and policy observations; these are described in Sec 3.2 &
3.4. We compared our method of using keypoints to represent the object pose and using positions
and quaternions along two axes. Firstly, using it as the policy input as compared to a position and
quaternion representation, and secondly, using it to calculate the reward as compared to a reward
based on the linear and angular rotational distances individually.

For the observations, in order to provide a fair comparison between position/quaternion and keypoints
as policy input, we ensured that we applied observation noise and delays in the same manner (by
applying them in the position and quaternion space before transforming to keypoints, as noted in
Sec. 3.5). Also note that both representations only rely on the spatial pose information of the cube to
compute. We represent the pose of the cube with a 7-dim vector involving translation and quaternion
(t, q). We provide the position and quaternion of the goal pose as input to the actor and critic,
replacing the keypoints in Tables 1a and 1b.

For the reward, in order to provide a fair comparison to the keypoints reward, as mentioned previously
we spent many hours tuning the kernels and parameters used in the translation based reward, described

6

Under review as a conference paper at ICLR 2022

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps (Billions)

0%

20%

40%

60%

80%

100%
Su

cc
es

s
R

at
e

0 1 2 3 4
Timesteps (Billions)

0%

20%

40%

60%

80%

100%

Su
cc

es
s

R
at

e

0 1 2 3 4
Timesteps £109

0%

20%

40%

60%

80%

100%

Su
cc

es
s

R
at

e

Keypoints Obs & Rew Keypoints Rew Only Keypoints Obs Only No Keypoints

Wall Clock Time (h)0 6 Wall Clock Time (h)0 24

(a) No DR. (b) With DR.
Figure 5: Success Rate over the course of training without and with domain randomization. Each curve is the
average of 5 seeds; the shaded areas show standard deviation. Note that training without DR is shown to 1B steps
to verify performance; use of DR didn’t have a large impact on simulation success rates after initial training.

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Scaling w.r.t. nominal object size

0%

20%

40%

60%

80%

100%

Su
cc

es
s

R
at

e

0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8
Scaling w.r.t. nominal object mass

Keypoints Obs & Rew (DR)
Keypoints Obs & Rew (No-DR)

Keypoints Rew Only (DR)
Keypoints Rew Only (No-DR)

No Keypoints (DR)
No Keypoints (No-DR)

Figure 6: We show the robustness to varying the object parameters outside the DR range it was trained for. In
the evaluations, all the other DR is turned off to ensure a controlled setting. Each success is evaluated over 1024
runs with random goal and object initialization.

in Experiment 1. In comparison, little effort was spent tuning the keypoints function, with only one
tweak to the weightings in the logistic kernel, showing the relative simplicity of working with this
formulation.

Figure 5 shows the results of training, with both timesteps and wall-clock time. In the curve without
any Domain Randomization, we trained for 1 Billion steps over the course of 6 hours on a single
GPU. Using Keypoints in observations and the reward function performs the best of the four policies,
also exhibiting a low variance among seeds.

When Domain Randomization is applied, the two curves with a keypoints-based reward are far better
in terms of success rate at the end of training and in terms of convergence rate, however in this case
having observations be keypoints seems to matter somewhat less. This is perhaps due to the longer
training (4B steps & 24 hours on a single GPU) overwhelming the inductive bias introduced by using
keypoints as representations. However, using keypoints to compute the reward provided a large
benefit in both cases, showing the improvement caused by calculating the reward in Euclidean space
rather than mixing linear and angular displacements through addition.

4.3 EXPERIMENT 3: ROBUSTNESS OF POLICIES IN SIMULATION

In order to investigate the impact that Domain Randomization (DR, see Sec 3.5) has on the robustness
of policies of a hand in this configuration, we ran experiments by varying parameters outside of the
normal domain randomization ranges in simulation. Figure 6 shows the results. We find that, despite
only being randomised initially within a range of 0.97-1.03x nominal size, our policies with Domain
Randomization achieve over an 80% success rate even with a scale of 0.6 and 1.2x nominal size,
while those without DR have a success rate that drops off much more quickly outside the normal

7

Under review as a conference paper at ICLR 2022

Object Success Rate

Cube 6.5cm3 [Training Object] 92.1%
Ball radius=3.75cm 96.7%
Cuboid 2x8x2cm 2.0%
Cuboid 2x8x4cm 42.9%
Cuboid 4x8x4cm 92.4%
Cuboid 2x6.5x2cm 2.44%
Cuboid 2x6.5x4cm 48.9%
Cuboid 4x6.5x4cm 94.6 %
YCB Mug (025_mug) 68.8 %
YCB Banana (011_banana) 28.0 %
YCB Potted Meat Can (010_potted_meat_can) 81.1 %
YCB Foam Brick (061_foam_brick) 91.7 %

Table 3: 0-shot object transfer performance. Numbers calculated from N=1024 trials in simulation. For these,
we disabled Environment and Observation & Action Randomizations (though still only gave 10Hz observations
to simualte camera tracking). Objects prefixed with YCB were used from the YCB dataset. (Calli et al., 2015)

O-PQ
R-PQ

O-KP
R-PQ

O-PQ
R-KP

O-KP
R-KP

0%

20%

40%

60%

80%

100%

Su
cc

es
s

R
at

e
&

80
%

C
I

Figure 7: Success Rate on the real robot plotted for different
trained agents. O-PQ and O-KP stand for position+quaternion and
keypoints observations respectively, and R-PQ and R-KP stand for
linear+angular and keypoints based displacements respectively,
as discussed in Sec 4.2. Each mean made of N=40 trials and error
bars calculated based on an 80% confidence interval.

range. We find similar results when scaling the object mass relative to the nominal range, however
in this case we find that the policies using keypoints-based reward even without DR is much more
robust at masses 3x nominal.

We experimented with our system to see what the 0-shot transfer performance to different object
morphologies was. In order to do this, we swapped the objects in the simulator, ran inference the
O-KP+R-KP policy (see Section 4) that produced the best sim2real transfer results, and measured the
success rate. We do not change the keypoints representation, but rather keep the 8 keypoints as if
they lie on the original 6.5cm3 cube despite the changing object morphology. We were only able to
perform these experiments in simulation, as in the remote Trifinger setup we did not have the capacity
to swap out objects. However, using an off the shelf pose detector (eg. (Tremblay et al., 2018)) we
are confident that the same system would produce good sim2real transfer results.

We tested a sphere of diameter similar to the cube side length, cuboids of different sizes, and a few
objects from the YCB dataset (Calli et al., 2015). The results are listed in Table 3. Our our policy
generalises surprisingly well on different object morphologies, for example by achieving nearly 70%
accuracy on a mug. However, it struggles with long and skinny objects. This is unsurprising given
the difficulty in grasping the cube at less than 0.5x the original scale (or 3cm).
4.4 EXPERIMENT 4: SIMULATION TO REMOTE REAL ROBOT TRANSFER

We ran experiments on the real robot to determine the success rate of the policies trained with Domain
Randomization under the metric defined in Sec 4. We performed N = 40 trials for each policy; the
results for each of the four ablations on keypoints which we tested are shown in Figure 7.

Out of the four models discussed in 4.2, the best policy achieved a success rate of 82.5%. This
was achieved with the use of keypoints used in observations of the policy as well as the reward
function during training (O-KP+R-KP). The policy using position+quaternion representations but
with a reward calculated with keypoints (O-PQ+R-KP) achieved a 77.5% success rate. These first
two policies were well within each others’ confidence intervals. This is likely due to the impact of
the better representation of keypoints being mitigated somewhat after 4 Billion steps of training, as
discussed in 4.2. In contrast, neither of the policies trained using the position & quaternion based
reward achieved good success rates, with the policy using keypoints-based observations (O-KP+R-

8

Under review as a conference paper at ICLR 2022

Flick to reorient 2nd reorientation Drop & Regrasp Lift + in-hand
reorientation

Fine correctionInitial Grasp

Bad grasp Cube Falls Re-grasp Lift Lift + in-hand
reorientation

Fine correction

(a)

(b)

Time

Figure 8: (a) Achieving a challenging goal at the edge of the workspace. (b) Recovery from dropping due to a
bad grasp.

PQ) achieving only a 60% success rate while the one with position and quaternion observations
(O-PQ+R-PQ) only achieved a 55% success rate. These results show the importance of having a
reward function which effectively balances learning to achieve the goal in R3 and SO(3) in order to
have policies with a high success rate in simulation and thus a high corresponding success rate after
real robot transfer.

We noticed a variety of emergent behaviours used to achieve sub-goals within the overall cube-
reposing task. We display some of these in the panel in Figures 1 and 8. The most prominent of these
is "dropping and regrasping". In this maneuver, the robot learns to drop the cube when it is close to
the correct position, re-grasp, and pick it back up. This enables the robot to get a stable grasp on the
cube in the right position. The robot learns to use the motion of the cube to the correct location in the
arena as an opportunity to simultaneously rotate it on the ground to make achieving the correct grasp
in challenging target locations far from the center of the fingers’ workspace. Our policy is also robust
to dropping - it can recover from a cube falling out of the hand and retrieve it from the ground.

5 SUMMARY

This paper emphasizes the empirical value of a systems approach to robot learning through a case
study in dexterous manipulation. We introduced a framework for learning in-hand manipulation
tasks and transferring the resulting policies to the real world. Using GPU-based simulation, we
showed how this can be done with order of magnitude fewer computational resources than prior work.
Furthermore, we show how RL algorithms for in-hand manipulation can benefit from using keypoints
as opposed to the more ordinary angular and linear displacement-based reward and observation
computation. This paper shows a path for democratization of robot learning and a viable solution
through large scale simulation and robotics-as-a-service.

9

Under review as a conference paper at ICLR 2022

REFERENCES

Real robot challenge, 2020. URL https://real-robot-challenge.com.

Ossama Ahmed, Frederik Träuble, Anirudh Goyal, Alexander Neitz, Manuel Wüthrich, Yoshua
Bengio, Bernhard Schölkopf, and Stefan Bauer. Causalworld: A robotic manipulation benchmark
for causal structure and transfer learning. CoRR, abs/2010.04296, 2020. URL https://arxiv.
org/abs/2010.04296.

Berk Calli, Aaron Walsman, Arjun Singh, Siddhartha Srinivasa, Pieter Abbeel, and Aaron M. Dollar.
Benchmarking in manipulation research: Using the yale-cmu-berkeley object and model set. IEEE
Robotics Automation Magazine, 22(3):36–52, 2015. doi: 10.1109/MRA.2015.2448951.

Yevgen Chebotar, Ankur Handa, Viktor Makoviychuk, Miles Macklin, Jan Issac, Nathan Ratliff, and
Dieter Fox. Closing the sim-to-real loop: Adapting simulation randomization with real world
experience, 2019.

Claire Chen, Krishnan Srinivasan, Jeffrey Zhang, and Junwu Zhang. Dexterous manipulation
primitives for the real robot challenge. CoRR, abs/2101.11597, 2021. URL https://arxiv.
org/abs/2101.11597.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus). In Yoshua Bengio and Yann LeCun (eds.), 4th Inter-
national Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4,
2016, Conference Track Proceedings, 2016. URL http://arxiv.org/abs/1511.07289.

Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation for games, robotics
and machine learning. 2016.

Erwin Coumans et al. Bullet physics library. Open source: bulletphysics. org, 15(49):5, 2013.

C. Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and Olivier Bachem.
Brax - a differentiable physics engine for large scale rigid body simulation, 2021. URL http:
//github.com/google/brax.

Niklas Funk, Charles B. Schaff, Rishabh Madan, Takuma Yoneda, Julen Urain De Jesus, Joe
Watson, Ethan K. Gordon, Felix Widmaier, Stefan Bauer, Siddhartha S. Srinivasa, Tapomayukh
Bhattacharjee, Matthew R. Walter, and Jan Peters. Benchmarking structured policies and policy
optimization for real-world dexterous object manipulation. CoRR, abs/2105.02087, 2021. URL
https://arxiv.org/abs/2105.02087.

Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario Bellicoso, Vassilios Tsounis, Vladlen
Koltun, and Marco Hutter. Learning agile and dynamic motor skills for legged robots. Science
Robotics, 4(26):eaau5872, Jan 2019. ISSN 2470-9476. doi: 10.1126/scirobotics.aau5872. URL
http://dx.doi.org/10.1126/scirobotics.aau5872.

Ben Kehoe, Sachin Patil, Pieter Abbeel, and Ken Goldberg. A survey of research on cloud robotics
and automation. IEEE Transactions on Automation Science and Engineering, 12(2):398–409,
2015. doi: 10.1109/TASE.2014.2376492.

Jacky Liang, Viktor Makoviychuk, Ankur Handa, Nuttapong Chentanez, Miles Macklin, and Dieter
Fox. GPU-Accelerated Robotic Simulation for Distributed Reinforcement Learning. In Proceedings
of The 2nd Conference on Robot Learning. PMLR, 2018. URL http://proceedings.mlr.
press/v87/liang18a.html.

Denys Makoviichuk and Viktor Makoviychuk. Rl games, 2021. URL https://github.com/
Denys88/rl_games/.

Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles Macklin,
David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, and Gavriel State. Isaac Gym:
High Performance GPU-Based Physics Simulation For Robot Learning. CoRR, 2021. URL
https://arxiv.org/abs/2108.10470.

10

https://real-robot-challenge.com
https://arxiv.org/abs/2010.04296
https://arxiv.org/abs/2010.04296
https://arxiv.org/abs/2101.11597
https://arxiv.org/abs/2101.11597
http://arxiv.org/abs/1511.07289
http://github.com/google/brax
http://github.com/google/brax
https://arxiv.org/abs/2105.02087
http://dx.doi.org/10.1126/scirobotics.aau5872
http://proceedings.mlr.press/v87/liang18a.html
http://proceedings.mlr.press/v87/liang18a.html
https://github.com/Denys88/rl_games/
https://github.com/Denys88/rl_games/
https://arxiv.org/abs/2108.10470

Under review as a conference paper at ICLR 2022

Ajay Mandlekar*, Yuke Zhu*, Animesh Garg*, Li Fei-Fei, and Silvio Savarese (* equal contribu-
tion). Adversarially Robust Policy Learning through Active Construction of Physically-Plausible
Perturbations. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2017.

Allison M Okamura, Niels Smaby, and Mark R Cutkosky. An overview of dexterous manipulation. In
Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and
Automation. Symposia Proceedings (Cat. No. 00CH37065), volume 1, pp. 255–262. IEEE, 2000.

OpenAI, Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Józefowicz, Bob McGrew,
Jakub W. Pachocki, Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex
Ray, Jonas Schneider, Szymon Sidor, Josh Tobin, Peter Welinder, Lilian Weng, and Wojciech
Zaremba. Learning dexterous in-hand manipulation. CoRR, abs/1808.00177, 2018. URL http:
//arxiv.org/abs/1808.00177.

OpenAI, Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew,
Arthur Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, Jonas Schneider,
Nikolas Tezak, Jerry Tworek, Peter Welinder, Lilian Weng, Qiming Yuan, Wojciech Zaremba,
and Lei Zhang. Solving rubik’s cube with a robot hand. CoRR, abs/1910.07113, 2019. URL
http://arxiv.org/abs/1910.07113.

Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Sim-to-real transfer of
robotic control with dynamics randomization. In 2018 IEEE International Conference on Robotics
and Automation (ICRA), May 2018.

Lerrel Pinto, Marcin Andrychowicz, Peter Welinder, Wojciech Zaremba, and Pieter Abbeel.
Asymmetric actor critic for image-based robot learning. CoRR, abs/1710.06542, 2017. URL
http://arxiv.org/abs/1710.06542.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017.

Fan Shi, Timon Homberger, Joonho Lee, Takahiro Miki, Moju Zhao, Farbod Farshidian, Kei Okada,
Masayuki Inaba, and Marco Hutter. Circus anymal: A quadruped learning dexterous manipulation
with its limbs, 2020.

Joshua Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel.
Domain randomization for transferring deep neural networks from simulation to the real world.
CoRR, abs/1703.06907, 2017. URL http://arxiv.org/abs/1703.06907.

Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5026–
5033, 2012. doi: 10.1109/IROS.2012.6386109.

Jonathan Tremblay, Thang To, Balakumar Sundaralingam, Yu Xiang, Dieter Fox, and Stan Birchfield.
Deep object pose estimation for semantic robotic grasping of household objects. In Proceedings
of The 2nd Conference on Robot Learning, 2018. URL https://arxiv.org/abs/1809.
10790.

Manuel Wüthrich, Felix Widmaier, Felix Grimminger, Joel Akpo, Shruti Joshi, Vaibhav Agrawal,
Bilal Hammoud, Majid Khadiv, Miroslav Bogdanovic, Vincent Berenz, Julian Viereck, Maximilien
Naveau, Ludovic Righetti, Bernhard Schölkopf, and Stefan Bauer. Trifinger: An open-source
robot for learning dexterity. CoRR, abs/2008.03596, 2020. URL https://arxiv.org/abs/
2008.03596.

Manuel Wüthrich, Felix Widmaier, Ossama Ahmed, and Vaibhav Agrawal. Trifinger object
tracking, 2020. URL https://github.com/open-dynamic-robot-initiative/
trifinger_object_tracking.

Takuma Yoneda, Charles B. Schaff, Takahiro Maeda, and Matthew R. Walter. Grasp and motion
planning for dexterous manipulation for the real robot challenge. CoRR, abs/2101.02842, 2021.
URL https://arxiv.org/abs/2101.02842.

Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and Hao Li. On the continuity of rotation
representations in neural networks, 2020.

11

http://arxiv.org/abs/1808.00177
http://arxiv.org/abs/1808.00177
http://arxiv.org/abs/1910.07113
http://arxiv.org/abs/1710.06542
http://arxiv.org/abs/1703.06907
https://arxiv.org/abs/1809.10790
https://arxiv.org/abs/1809.10790
https://arxiv.org/abs/2008.03596
https://arxiv.org/abs/2008.03596
https://github.com/open-dynamic-robot-initiative/trifinger_object_tracking
https://github.com/open-dynamic-robot-initiative/trifinger_object_tracking
https://arxiv.org/abs/2101.02842

	Introduction
	Related Work
	Method
	Simulation Environment
	Representation of the Cube Pose
	Observation and Action Spaces
	Reward Formulation & Curriculum
	Domain Randomization
	Policy Architecture & Learning
	Policy Inference on Remote Real Robot

	Experiments
	Experiment 1: Training
	Experiment 2: Representation of Pose
	Experiment 3: Robustness of Policies in Simulation
	Experiment 4: Simulation to Remote Real Robot Transfer

	Summary

