GitChameleon 2.0: Evaluating AI Code Generation
Against Python Library Version Incompatibilities

Diganta Misra’?*, Nizar Islah®!%% Victor May* ,
Brice Rauby3’5 , Zihan Wang6 , Justine Gehring3’7’8 , Antonio Orvieto'%? |
Muawiz Chaudhary? , Eilif B. Muller®!'? | Irina Rish*!° | Samira Ebrahimi Kahou? , Massimo Caccia'!
'ELLIS Institute Tiitbingen ~>MPI-IS Tiibingen *Mila Quebec Al Institute
“Google SPolytechnique Montréal ~ *McGill University, Montréal
"Moderne 3Gologic °Tiibingen Al Center
10Université de Montréal '!ServiceNow Research

Correspondence:
diganta.misra@tue.ellis.eu, nizar.islah@mila.quebec

Abstract

The rapid evolution of software libraries poses a considerable hurdle for code
generation, necessitating continuous adaptation to frequent version updates while
preserving backward compatibility. While existing code evolution benchmarks
provide valuable insights, they typically lack execution-based evaluation for gener-
ating code compliant with specific library versions. To address this, we introduce
GitChameleon 2.0, a novel, meticulously curated dataset comprising 328 Python
code completion problems, each conditioned on specific library versions and ac-
companied by executable unit tests. GitChameleon 2.0 rigorously evaluates the
capacity of contemporary large language models (LLMs), LLM-powered agents,
code assistants, and RAG systems to perform version-conditioned code generation
that demonstrates functional accuracy through execution. Our extensive evaluations
indicate that state-of-the-art systems encounter significant challenges with this task;
enterprise models achieving baseline success rates in the 48-51% range, under-
scoring the intricacy of the problem. By offering an execution-based benchmark
emphasizing the dynamic nature of code libraries, GitChameleon 2.0 enables a
clearer understanding of this challenge and helps guide the development of more
adaptable and dependable Al code generation methods.

1 Introduction

Large language models (LLMs) are increasingly integral to software development, being adopted for
tasks like code generation and review [Council, 2024, Lambiase et al., 2025].

Despite LLM advancements like larger context windows [Su et al., 2023], faster inference [Dao
et al., 2022], and high performance on general coding benchmarks [Hendrycks et al., 2021, Chen
et al., 2021], a critical capability remains under-evaluated: generating code that is compliant with a
specific library version. This task of version-switching, which is essential for robust development in
environments with fixed or legacy dependencies, is not well-verified in contemporary LLMs.

Existing benchmarks, while valuable, often focus on migrating codebases to newer versions (i.e., code
evolution) or use non-executable evaluation methods. They do not fully address the challenge of gen-

*Equal contribution.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Deep Learning For
Code.

/ Problem Statement \

Instruction: Write a custom_violinplot function that
visualizes x and y from a Pandas DataFrame; scales the
bandwidth to 1.5. Use the library Seaborn version 0.13.0.

import seaborn as sns
from matplotlib.axes import axes

def custom violinpolot(data: pd.DataFrame)
-> Axes:

\\ return /
\

Attempted Solution
Model: gpt-40-mini

Solution:
sns.violinplot(x='x"', y='y',
bw=1.5)

data=data,

Validation Result:
AssertionError: bw parameter should not be
used. Use bw_method and bw_adjust instead.

(a) In this GitChameleon 2.0 problem, the
gpt-40-mini model produced an incorrect solution
due for seaborn.violinplot by using the dep-
recated bw parameter, instead of the appropriate
bw_method and bw_adjust required by the specified
library version.

G } \ [Code Evolution] |

<) 20,21,22
N

17,18
425 .

“ 16,17,
18,19

419,
427

New

e
V[ve
'

'

'

' .

' ‘ ’

'

'

' .

' N,

'

' (1D versions libraries] (100D versions libraries]

. RustEvo2,
GitChameleon 2.0 CodeUpdateEval

‘ 0.0.240.,...,
00283

_Vevs\oned data

(b) An illustration of two evaluation paradigms for
code generation models. Code Evolution (right) as-
sesses model capabilities on out-of-distribution (OOD)
data, using library versions or new libraries not en-
countered during training. In contrast, Version-
Conditioned Generation (VCG) (left) focuses on
the practical ability to generate code for specific, in-
distribution (ID) library versions that the model has
seen before.

erating new, functionally correct code for a static version constraint. For instance, PyMigBench [Islam
et al., 2023] provides comprehensive datasets of real-world, inter-library migrations, rather than
focusing on executable, intra-library tasks conditioned on specific versions. CodeUpdateArena [Liu
et al., 2025] valuably assesses LLM knowledge editing using synthetically generated API updates
for functions in popular libraries, a different approach from using documented historical breaking
changes. Other relevant studies, such as Wang et al. [2024b], investigate the propensity of LLMs
to generate code with deprecated APIs, which does not entirely cover the broader capability of
generating software that adheres to precise, user-specified library versions involving various types of
API changes.

Code Evolution vs. Version Conditioned Generation (VCG). Existing code evaluation bench-
marks often focus on assessing the code evolution or migration capabilities of LLMs, where changes
occur only in the forward direction and typically involve unseen library versions or entirely new
libraries. This framing inherently makes the task out-of-distribution (OOD), as illustrated in Figure 1b.
In contrast, version-conditioned generation (VCG)—the ability of LLMs to produce code aligned
with specific, previously seen library versions—is critical for practical deployment. It enables models
to function reliably in real-world production environments or constrained settings where the libraries
in use may not be the latest stable versions. To better evaluate this capability, a benchmark must pose
problems that are strictly in-distribution (ID) with respect to the relevant library version(s) required
to solve them.

To bridge this gap, our work introduces GitChameleon 2.0, an executable benchmark designed to
assess the capability of LLMs and Al agents in generating version-aware Python code. GitChameleon
2.0 features problems centered on documented breaking changes from popular libraries, requiring
models to produce solutions for explicitly specified versions (an illustrative example is shown in
Figure 1a). The development of such a benchmark faces challenges in meticulously curating version-
specific breaking changes from library changelogs and crafting corresponding testable scenarios.
Our comprehensive evaluation of diverse LLM-based tools on GitChameleon 2.0 reveals critical
limitations in existing systems’ ability to handle library versioning.

In summary, our contributions are highlighted as follows:
* We introduce a novel code completion benchmark GitChameleon 2.0 consisting of 328

Python-based version-conditioned problems, including visible tests for self-debugging and
documentation references for Retrieval-Augmented Generation (RAG).

* We present a comprehensive empirical study on GitChameleon 2.0, evaluating the capabili-
ties of a diverse range of contemporary Al code generation systems, including Al agents,
IDE-integrated and CLI-based coding assistants, and RAG-based LLM pipelines.

* We reveal critical limitations in the ability of current Al systems to adhere to specific
versioning constraints and highlight factors impacting their performance, thereby providing
insights to steer the development of more adaptable and dependable Al code generation
methods.

2 GitChameleon 2.0 Benchmark

We introduce GitChameleon 2.0, a manually authored benchmark that comprises 328 Python-
based version-conditioned problems focused on popular code libraries. To evaluate performance on
GitChameleon 2.0, each problem is accompanied by a suite of assertion-based unit tests, enabling a
thorough execution-based assessment of potential solutions. The dataset was constructed through
careful manual effort, with over 350 hours invested in identifying historical breaking changes, crafting
problem statements, and validating unit tests. In the following sections, we detail the dataset structure,
dataset statistics, evaluation metrics, and sample verification process.

2.1 Dataset Structure

Each dataset sample includes a problem related to a breaking change in a Python library.

To validate a candidate solution, we provide a suite of tests, consisting of a comprehensive suite of
Hidden Tests to be used for model performance evaluation and ranking and a concise Visible Test to
provide execution feedback for Self-Debugging [Chen et al., 2023] experiments.

Inputs Validation
l/ _________ \ ‘/ ________ N
1
1
! Problem 1 1 .
Hidden Tests | 1
= ¢ &3
: ~ aD 1 :
1 N) X !
1 1 i
i | Starter Code | | Cg(’)‘lilt?:r:e J ' !
A J : !
Ve ! j i ! 1
! 1 1 |
' Dep?:gency ! 'l Visible Tests | 1
1 1 Self-Debug !
\\ ________ / | — ,I

Figure 2: An illustration of the workflow for a single example within GitChameleon 2.0. The inputs,
comprising the Problem Statement, Starter Code, and Dependency Info, are processed by an LLM
or an Al agent to generate a Candidate Solution. This candidate solution then undergoes validation
using the Hidden Tests to determine success on the benchmark. Results from the Visible Tests can be
fed back into the solution method for self-debugging.

The detailed structure of dataset samples is presented in Table 4. For a schematic of the workflow for
evaluating a method against a sample from GitChameleon 2.0, see Figure 2.

2.2 Evaluation Metrics

The benchmark metric is the success rate on hidden tests, which directly penalizes version mismatches
that cause runtime errors during our execution-based validation. As a secondary metric, we use the
API Hit Rate Wang et al. [2024a]: the percentage of generated solutions that correctly call all APIs
specified in the ground-truth solution. Note that this hit rate can be lower than the success rate, as
functionally correct alternative solutions may use different APIs.

GitChameleon (1)
S w w
w o w
<

o
o
L]

40 60 80

20 40 60
SWE-Bench (1) LiveCodeBench (1)

Models
e GPT-4o0 e GPT-45 Claude 3.7 Sonnet
GPT-40-Mini e Gemini 1.5-Pro v Claude 3.5 Sonnet
e GPT4.1 Gemini 2.5-Pro LLama 3.1
e GPT-4.1 Mini v Gemini 2.5-Flash LLama 3.3

(a) Can you predict GitChameleon 2.0 performance
from other code generation benchmarks? Here we
present the Spearman (p) and Pearson (r) correlations
between GitChameleon 2.0, SWE-Bench [Jimenez

et al., 2024], and LiveCodeBench [Jain et al., 2024].

GitChameleon exhibits a moderate correlation with
SWE-Bench, with p of 0.550 and r of 0.675; and
a weak correlation with LiveCodeBench, with p of
0.214 and r of 0.130.

(a) Number of samples by version release year

2023
2022
2021
2020
2019
2018
2017
2016
2015
2014

0 10 20 30 40 50 60 70 80

(b) Number of samples by change category
Other

New
Feature

Semantics

Function
Name

Argument
0 20 40 60 80 100

(b) Dataset Statistics. (a) Most versions in
GitChameleon 2.0 were released between 2021-2023,
with a few in earlier years. (b) The most common type
of change between versions was an argument or at-
tribute change, while semantic or functional changes
were least common.

Figure 3: Analysis of the GitChameleon 2.0 benchmark. Left: Performance correlation against
SWE-Bench and LiveCodeBench. Right: Dataset statistics showing (a) the distribution of samples by
version release year and (b) the frequency of different API change categories.

2.3 Statistics

As demonstrated in Fig. 3b(a), most of the samples in GitChameleon 2.0 are from versions of
libraries released in the years 2021-2023. We intentionally use versions that fall within the training
window of most evaluated models. The challenge is therefore not one of data contamination, but of
control and disambiguation: when a model has been exposed to multiple library versions, can it
correctly generate code for the specific version required by the prompt.

Further details about the benchmark and its construction process are presented in Appendix A.

3 Empirical Study

We evaluate GitChameleon 2.0 in a comprehensive selection of settings, including Greedy Decoding,
Chain-of-Thought [Wei et al., 2023], Self-Debugging [Chen et al., 2023], RAG [Lewis et al., 2020],
Multi-Step Agents [Yao et al., 2023] and enterprise Coding Assistant software products, to assess
their ability to generate version-specific executable code.

This section first presents the experimental setup, then reports the experiment results in each setting,
and finally shows a breakdown of the observed results along a few key dimensions.

3.1 Experimental Setup

In this section, we present the experimental setup used for each of our settings. To ensure version
compliance, we use a dual control mechanism: the target version is explicitly included in the model’s
prompt, and the validation environment is configured with that exact library version. All prompts are
shown in Appendix I. For prompt optimization, we used the Anthropic Prompt Improver 2. Further
automated prompt optimization efforts did not make a significant change, as described in Table 10.

2https ://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/prompt-impro
ver

https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/prompt-improver
https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/prompt-improver

3.1.1

Greedy Decoding We configured the generation parameters with a sampling temperature of 0 and a
top_p value of 0.95. We had specified a structured output schema that specifies the fields Answer
and Explanation, where both are of type string.

3.1.2 Zero-Shot Chain-Of-Thought (CoT)

We had used the same generation parameters as for Greedy Decoding and an output schema that
specifies the fields Answer and Steps, where the former is a of type string and the latter is a list of
string.

3.1.3 Self-Debugging

On examples that failed with Greedy Decoding, we employed the method described in Chen et al.
[2023] to feed the visible test error trace along with the model’s explanation of its output back to the
model.

3.1.4 Retrieval-Augmented Generation

We designed a RAG Lewis et al. [2020] pipeline where we first constructed a vectorized
database (VectorDB) by embedding each sample’s relevant API documentation with the OpenAl
text-embedding-3 large model OpenAl [2024]. The corpus used for constructing the VectorDB
included 536 documents, with 140 samples having 1 associated document, 168 having 2 associated
documents and 20 having 3 documents.

Subsequently, we used DocPrompting Zhou et al. [2022] to query the VectorDB to generate solutions.

3.1.5 Multi-Step Agent

We conducted experiments with a tool-calling agent, as implemented by the smolagents Roucher et al.
[2025] framework. This agent implementation mostly follows the ReAct Yao et al. [2023] method,
but, it alternates between acting and planning Li [2024] steps.

Following the Agentic RAG approach [Singh et al., 2025], we had equipped the agent with a grounding
tool in order to assess its capability to independently fetch relevant info for solving the benchmark
problems. To this end, we had experimented with the following grounding tools: DuckDuckGo
Search DuckDuckGo [2025], Perplexity Perplexity Al [2024], and Gemini with Grounding Google
[2025].

Additionally, we examined agentic multi-step self-debugging Jin et al. [2024] by including or omitting
a code execution sandbox tool Rabin et al. [2025], which provides the needed dependencies for each
example. The sandbox takes a Python program as input and outputs the standard output from the
program.

3.2 [Experiment Results

This section presents the benchmark results in each setting, as described in the Experimental Setup
section (3.1). Table 1 contains the results for Greedy Decoding, Self-Debug and Zero-Shot CoT.

3.2.1 Greedy Decoding

We observe that the largest Enterprise-grade models, including Claude 3.7 Sonnet, Gemini 2.5
Pro, GPT-4.1, GPT-40, and o1, exhibit comparable hidden success rates, generally falling within the
48-51% range. Among these o1 (51.2% hidden) achieves the highest hidden success rate.

The open-weight Llama models are notably behind, even the recently released L1ama 4 Maverick
FP8 (40.8% hidden success rate).

Model size clearly impacts performance: for instance, Gemini 2.5 Flash trails its Pro counterpart
by nearly 12% on hidden tests (38.1% vs. 50.0%). Similarly, the mini and nano series within the GPT
family (e.g., GPT-4.1-mini, GPT-4.1-nano, GPT-40-mini) consistently show lower performance

than their larger full-size siblings, with differences on hidden tests ranging from approximately 4 to
15 points.

3.2.2 Zero-Shot Chain-Of-Thought

This approach does not uniformly improve LLM performance across all models. While some models
demonstrate significant gains in hidden success rates, a substantial number of enterprise-grade models
and their smaller variants experience performance degradation.

For instance, notable improvements in hidden success rates are observed in models such as L1ama
3.1 Instruct Turbo (from 30.2% to 36.6%, a +6.4 point increase) and 03-mini (from 45.1% to
50.9%, a +5.8 point increase).

Conversely, several models exhibit a decrease in performance with CoT. Prominent examples include
Gemini 2.0 Flash (from 44.2% to 36.0%) and even the top-performing o1 (from 51.2% to 41.2%).

Greedy Decoding Greedy with Self-Debug Zero-shot CoT
Model Success Success Success
Rate (%) API Rate (%) API Rate (%) API
Hit -~ Hit ——~ Hit

Hidden Visible Rate (%) Hidden Visible Rate (%) Hidden Rate (%)

Open-Weights Models

Llama 3.1 Instruct Turbo 302425 38.1+27 39.7+27 52.1428 69.2425 41.5+27 36.6+27 353426
Llama 3.3 Instruct Turbo 70B 36.3+27 43.3+27 36.4+27 53.0+28 70.1+25 374427 37.5+27 372427
Llama 4 Maverick 400B 40.8+27 46.6+23 49.5423 58.5+27 723425 46.8+23 46.6+23 41.3+27
Qwen 2.5-VL Instruct 72B 48.2+28 55.5+27 43.8+27 64.6+26 77.44+23 45.3+427 45.1+27 43.0+27
Enterprise Models

Claude 3.7 Sonnet 48.8+28 55.8+27 46.0+23 65.9+26 75.9+24 47.6+28 451427 434427
Gemini 1.5 Pro 451427 51.5+28 46.8+27 62.5+28 72.6+24 48.6+27 433427 44,6425
Gemini 2.0 Flash 442427 50.6+28 43.8+27 70.4+27 79.0+24 494427 36.0+26 41.8+27
Gemini 2.5 Pro 50.0+25 61.0+28 477427 61.3+28 73.8+22 49.2427 49.4423 491423
Gemini 2.5 Flash 38.1+26 41.8+27 454427 65.9+23 73.2424 45.8+27 30.8+25 49.8+25
GPT-4.1 48.5+28 49.1+28 46.8+27 63.4+28 76.8+21 48.3+27 479423 445427
GPT-4.1-mini 442427 50.0+28 445427 68.0+23 79.3+23 46.3+27 24.1+18 413427
GPT-4.1-nano 33.8+26 35.1+26 431427 67.7+27 744426 45.8+27 1194138 32.1+25
GPT-40 49.1+23 54.0+28 46.5+27 64.9+23 72.3+25 48.0+27 50.3+25 42 5427
GPT-40-mini 372426 463427 38.4+26 60.4+27 71.6+26 40.6+27 36.0+26 37.3+26
GPT-4.5 40.8+27 46.0+27 528423 662428 744424 544427 39.9+26 48.8+238
Grok 3 48.2+23 53.7+28 448427 67.1+23 771423 46.3+238 49.4123 442427
Mistral Medium 3 43.6+27 49.1+2s 442427 61.3+28 71.3+25 454427 442427 441427

Table 1: Success rate on visible and hidden tests and API hit rate under the Greedy, Self-Debug, and
Zero-shot CoT settings, grouped by OSS vs. Enterprise models. Model ranking on the benchmark is
determined by Hidden Success Rate. Visible Success Rate figures are for context on Self-Debugging.
The values after the £ symbol denote the standard error. The best result in each column is in bold.
For full model details and citations, please refer to Appendix J.

3.2.3 LLM Self-Debugging

We evaluate the models’ self-correction capabilities on problems that failed during greedy decoding.
By providing the error trace from the visible test as feedback, we observe that this self-debugging
process yields substantial performance gains, as detailed below.

Hidden Success Rate: Across models, Self-Debugging significantly improves the hidden success
rates. Observed gains range from approximately 10% to 20%. For instance, L1ama 3.1’s hidden
success rate increases from 30% to 52.1%, and GPT-4.1-mini shows an improvement from 44% to
68%. This demonstrates the strong capability of modern LLMs to diagnose failures and generate
corrected code.

Visible Success Rate: As expected, the improvement is even more pronounced on visible tests,
ranging from 13 to 37 points. For instance, GPT-4.1’s success rate improves from 49% to 69%,
Claude 3.7 Sonnet’s success rate improves from 56% to 83% and Gemini 2.0 Flash improves
from 50% to 75%.

Visible-Hidden Gap Analysis: We analyze the effect of self-debugging on the ''Visible-Hidden
Gap'', which we define as the difference between the success rate on visible and hidden tests:

Visible-Hidden Gap = (Success Rateyigible) — (Success Ratepidden)

Figure 4 plots this gap for each model.

g 25 Models

= Claude 3.7 Sonnet

3 20 B Gemini 1.5 Pro

2 ® Gemini 2.0 Flash

K3 v Gemini 2.5 Pro

515 Gemini 2.5 Flash

2 < GPT-4.1

= v GPT-4.1-mini

310 > m GPT-4.1-nano

© e GPT-4o

s om * GPT-40-mini

w 5 o® ® GPT45

I Grok 3

é ol e | < + Mistral Medium 3
0 10

Success Rate Gap With Self-Debug (%)

Figure 4: Analysis of the Visible-Hidden Gap Before and After Self-Debugging. We analyze how
self-debugging affects the gap between the success rate on visible and hidden tests. We can see that
for all models, the gap increases after self-debugging. This shows that self-debugging on visible tests
has a limited ability to improve on the hidden tests.

3.2.4 Multi-Step Agent
We report the performance of Multi-Step Agents on GitChameleon 2.0 in Table 2.

. Success API Hit
Model ﬁr(;llinglng Rate (%) Rate (%)
etho No Sandbox Sandbox No Sandbox Sandbox

Claude DuckDuckGo 41. 7427 553127 422427 48.9+23
Sonnet Perplexity 441427 51.4+28 41.8+27 46.0+238
3.5 Grounded Gemini 40.0+27 53.7+28 41.0+27 452427
Gemini DuckDuckGo 46.0+28 49.8+28 474428 50.3428
15Ppro FPerplexity 46.5+28 444427 472428 46.6+23
’ Grounded Gemini 441427 492128 49.7 123 51.2+28
DuckDuckGo 239424 33.2426 442427 48.1+28
GPT-40 Perplexity 33.5+26 41.5+27 432427 44T +27

Grounded Gemini 254424 50.0+28 46.5+28 442427

Table 2: Multi-Step Agent performance with different models, grounding methods, and sandbox
states. The values after the + symbol denote the standard error. The best result in each column is in
bold.

A clear and significant trend is the substantial increase in success rates for all models and grounding
methods when giving the agent a sandbox tool. Overall, Claude Sonnet 3.5 demonstrated the high-
est success rates with a sandbox, across all grounding methods, while Gemini 1.5 Pro demonstrated
the best results without a sandbox.

3.2.5 Retrieval-Augmented Generation

Table 3 presents the performance of various models with RAG. Many models exhibit a significant
(up to 10%) boost in success rate with RAG compared to greedy decoding alone. Notably, GPT-4.1,

3This version of the model is not FP8-quantized, unlike the one presented in Table 1

Success API Hit Precision Recall

Model Rate (%) Rate(%) (%) (%) MRR
Open-Weights Models

Deepseek V3 48.9-23 48.5+238 41.6+22 50.4+28 0.62+0.03
Llama 4 Maverick? 451427 50.5+25 41.2422 49.8+28 0.61x003
Qwen3 41.8427 39.6+27 36.3420 46.91+25 0.56+003
Jamba 1.6 Large 41.8+27 47. 1428 419422 50.7+28 0.62+0.03
Enterprise Models

Claude 3.7 Sonnet 56.1+27 53.0+28 41.9422 50.7+28 0.62+003
Claude 4 Sonnet 594125 55.8+28 41.9+22 50.7+28 0.62+003

Gemini 2.5 Pro 56.7+27 51.1+28 41.9422 50.7+28 0.62+003
GPT-4.1 58.5+27 51.8+28 412422 50.1+28 0.61+0.03
Grok3 543427 55.2+428 41.6+22 50.4+28 0.62+003
Mistral Medium 3 524427 512428 41.6+22 50.4+28 0.62+0.03
Devstral Small 433127 451428 41.6+22 50.4+28 0.62+003
Nova Pro 442427 424427 40.7+22 49.6+28 0.60+0.03

Table 3: RAG performance for a subset of models when retrieving k£ = 3 most relevant documents.
The best success rate and API hit rate results for each model group are in bold. The values after the +
symbol denote the standard error. An extended version of the RAG experiment results is presented in
Appendix C.

the best performing model achieves a success rate of 58.5%, up from 48.5% with greedy decoding.
These results demonstrate that the benchmark is still challenging even with access to the library
documentation, with over 40% of the problems remaining unsolved in the best case.

3.3 In-Depth Analysis of Findings

This section provides a detailed analysis of the experimental results, focusing on model performance
across several key dimensions. These dimensions include the impact of different API change types, a
comparison between success rate and API hit rate, and the effectiveness of self-debugging across
various error types.

Comparison of Success Rate and API Hit Rate API hit rate shows a moderate positive Pearson
correlation with hidden-test success under Greedy Decoding with the Pearson correlation coefficient
(r =0.392, p = 0.097, N = 19), indicating that models which invoke the ground truth APIs more
often tend to perform better on hidden tests in the Greedy setting, but falls just short of statistical
significance at 5% level. Under Zero-Shot CoT, the correlation remains similar in magnitude
(r = 0.483) and is statistically significant (p = 0.036, N = 19). In the Self-Debug regime, however,
the association becomes both stronger and highly significant (r = 0.615, p = 0.011, N = 16),
demonstrating that when models can iteratively refine their outputs, invoking ground truth APIs
becomes an especially reliable predictor of hidden-test performance.

Analysis of Performance by Type of API Change Figure 5 illustrates the performance of mod-
els across various API change types within the GitChameleon 2.0 benchmark, revealing notable
variations in success rates. Semantic changes were the most tractable, with success rates ranging
from 60-80% with Self-Debug and 55-65% without. New-feature additions proved to be the most
challenging, with success rates between 25-50% for Greedy Decoding and 50-65% for Self-Debug.
Notably, the Code Assistant Goose exhibited a substantial discrepancy in its performance on seman-
tic and function-name changes compared to argument changes and new features. This suggests a
heightened sensitivity to change category for Goose, a characteristic not observed in the enterprise
models or the Claude-powered tool-calling agent.

Self-Debug Error Categorization Figure 6 shows that self-debugging consistently lowers the rate
of every class of traceback error, both in absolute numbers and relative terms:

Argument Change Function Name Semantics New Feature

Claude 3.7
Sonnet A
Gemini 1.5 B .
Pro Z Z
Gemini 2.5) = | ol L = 1 -
Pro 777722/ V2222222277772 iz 2222222222275
GPT-4.17 b
V2222222222777 V2222222222277 W22/ Z) 2222222222777
o-1 . - g -
722277 7 7 7222272227 7222772
DDG-SB
Claude 3.5
GooseF—‘ - _ !
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
Success Rate Success Rate Success Rate Success Rate

B Venilla 77 Self-Debug

Figure 5: Success Rate Breakdown by Type of Change: We analyze success rates with and without
self-debugging, grouped by the type of change. Light shaded bars represent values obtained from
self-debugging. Standard error is drawn as a black line. We include DDG-SB, a Multi-Step Agent
variant where DuckDuckGo is used for grounding and access to a sandbox is enabled. and the Coding
Assistant Goose. Self-Debug results for these are omitted.

(a) Raw Counts: We observe that for all error categories—from the most common (AssertionError
and TypeError) down to the rarest (RuntimeError)—applying Self-Debugging significantly lowers
the total number of failures.

(b) Percentage Reduction: When normalized by the Greedy Decoding baseline, reductions
span roughly 50% up to about 90%. The biggest relative improvements appear in the infrequent
categories—such as RuntimeError and SyntaxError—while the common AssertionError and
TypeError still see decrease in the range of 60-70%.

8000 [Greedy Decoding
I Self-Debug
¥ 6000
o
=
w
5 4000
=
Q
2000
0 < N N N < N < N
o o o o o o S o S o
& & & & & & & & & &
\oéo QQ/ 395(/ \\»Q/ 6";& ‘@é{/ {_@*Q/ 6\‘?(/{’ &,5\(5’ ,(\QQ/
& BN OINC & N & O B
& < N 2
o v <&

Error Categories
Figure 6: Total error count for each category under Greedy decoding versus Self-Debug. Self-
Debug yields substantial decreases all types of errors.

4 Related Work

The continuous evolution of software libraries presents significant challenges for Al-driven code
generation. This section reviews existing benchmarks designed to evaluate model performance in this
context. Specialized frameworks developed to address the challenge are presented in appendix D.2

The challenge of evaluating large language models (LLMs) in the context of evolving software
libraries and their versions has been approached by several benchmarks. These benchmarks, while
valuable, often differ in scope, methodology, or evaluation techniques compared to GitChameleon
2.0.

PyMigBench Focusing on Python library migration, this benchmark uses 321 real-world instances,
evaluating both individual code transformations and the functional correctness of entire migrated

segments via unit tests Islam et al. [2023]. PyMigBench revealed that LLMs often handle individual
changes well but struggle with achieving full functional correctness, especially for complex argument
transformations.

VersiCode Wu et al. [2024] and the dataset by Wang et al. Wang et al. [2024b] address library
evolution but primarily depend on string matching for evaluation.

CodeUpdateArena Liu et al. [2025] investigates model adaptation to synthetically generated API
updates for functions in popular libraries.

GitChameleon 2.0 distinguishes itself by focusing on the real-world scenario where developers
are often constrained to specific library versions due to technical debt. Unlike CodeUpdateArena’s
synthetic changes, GitChameleon 2.0 evaluates LLMs on their ability to generate code for actual,
documented historical breaking changes within library versions they were likely exposed to during
training. Furthermore, diverging from the string-matching evaluations of VersiCode and Wang et
al. Wang et al. [2024b], GitChameleon 2.0 is based on executable tests. This provides a more
practical and rigorous assessment of functional accuracy in version-specific code generation. For
an extended discussion of how GitChameleon 2.0 is differentiated from existing work, please see
Appendix D.2.

5 Conclusion

The rapid evolution of software libraries presents a critical challenge for LLM-powered Al sys-
tems in generating functionally correct, version-conditioned code. To address this, we introduce
GitChameleon 2.0, a novel Python-based benchmark meticulously curated with version-conditioned
problems and executable tests. Our extensive evaluation reveals that state-of-the-art LLMs, agents
and code assistants currently struggle significantly with this task, achieving modest success rates.

By shedding light on current limitations and facilitating execution-based evaluation, GitChameleon
2.0 aims to foster the development of more robust and adaptable code generation models for evolving
software environments.

Limitations

While we aim to provide a comprehensive and holistic evaluation of LLMs on the task of version-
conditioned generation, our benchmark is currently limited to Python and a small set of libraries.
Moreover, we focus solely on code generation from natural language instructions, and do not evaluate
version-to-version translation—i.e., converting code from one library version to another—even when
both versions are in-distribution relative to the model’s training. For instance, if a model has been
trained on PyTorch versions 1.7, 1.8, and 1.9, it would be valuable to assess whether it performs
better when given a solution in 1.8 and asked to upgrade to 1.9 or downgrade to 1.7. Finally, we
do not include human evaluations, which could provide a baseline for estimating average human
performance on this task.

10

References

Abubakar Abid, Ali Abdalla, Ali Abid, Dawood Khan, Abdulrahman Alfozan, and James Zou.
Gradio: Hassle-free sharing and testing of ML models in the wild, June 2019.

Meta Al. Everything we announced at our first-ever LlamaCon. https://ai.meta.com/blog/1la
macon-1lama-news/, 2025. Discusses Llama 3.3 Instruct Turbo and Llama 4 Maverick.

Mohannad Alhanahnah, Yazan Boshmaf, and Benoit Baudry. DepsRAG: Towards managing software
dependencies using large language models. arXiv preprint arXiv:2405.20455v2, 2024. URL
https://arxiv.org/html/2405.20455v2.

Anthropic. Claude 3.7 Sonnet and Claude Code. https://www.anthropic.com/news/claude-3
-7-sonnet, February 2025.

Arcee. Model Selection | Arcee Al Documentation — docs.arcee.ai. https://docs.arcee.ai/
arcee-conductor/arcee-small-language-models/model-selection#caller-large-too
1-use-and-function-call. [Accessed 15-07-2025].

Farnaz Behrang, Zhizhou Zhang, Georgian-Vlad Saioc, Peng Liu, and Milind Chabbi. Dr.fix:
Automatically fixing data races at industry scale, 2025. URL https://arxiv.org/abs/2504.1
5637.

Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas Mueller, Olivier Grisel,
Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort, Jaques Grobler, Robert Layton, Jake
VanderPlas, Andreas Joly, Bertrand Druillette, Gael Varoquaux, and Marion Gramfort. API
design for machine learning software: experiences from the scikit-learn project. arXiv preprint
arXiv:1309.0238, 2013.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code. ArXiv, July 2021.

Xinyun Chen, Maxwell Lin, Nathanael Schérli, and Denny Zhou. Teaching large language models to
self-debug, 2023. URL https://arxiv.org/abs/2304.05128.

Keyuan Cheng, Xudong Shen, Yihao Yang, Tengyue Wang, Yang Cao, Muhammad Asif Ali, Hanbin
Wang, Lijie Hu, and Di Wang. Codemenv: Benchmarking large language models on code migration,
2025. URL https://arxiv.org/abs/2506.00894.

Matteo Ciniselli, Alberto Martin-Lopez, and Gabriele Bavota. On the generalizability of deep
learning-based code completion across programming language versions, 2024. URL https:
//arxiv.org/abs/2403.15149.

Google Cloud. Gemini 2.5 on Vertex Al: Pro, Flash & Model Optimizer Live. https://cloud.go
ogle.com/blog/products/ai-machine-learning/gemini-2-5-pro-flash-on-vertex-ai,
April 2025. Discusses Gemini 2.5 Pro and Gemini 2.5 Flash.

Team Cohere, :, Aakanksha, Arash Ahmadian, Marwan Ahmed, Jay Alammar, Milad Alizadeh,
Yazeed Alnumay, Sophia Althammer, Arkady Arkhangorodsky, Viraat Aryabumi, Dennis Au-
miller, Raphaél Avalos, Zahara Aviv, Sammie Bae, Saurabh Baji, Alexandre Barbet, Max Bartolo,
Bjorn Bebensee, Neeral Beladia, Walter Beller-Morales, Alexandre Bérard, Andrew Berneshawi,
Anna Bialas, Phil Blunsom, Matt Bobkin, Adi Bongale, Sam Braun, Maxime Brunet, Samuel
Cahyawijaya, David Cairuz, Jon Ander Campos, Cassie Cao, Kris Cao, Roman Castagné, Julidn
Cendrero, Leila Chan Currie, Yash Chandak, Diane Chang, Giannis Chatziveroglou, Hongyu Chen,

11

https://ai.meta.com/blog/llamacon-llama-news/
https://ai.meta.com/blog/llamacon-llama-news/
https://arxiv.org/html/2405.20455v2
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://docs.arcee.ai/arcee-conductor/arcee-small-language-models/model-selection#caller-large-tool-use-and-function-call
https://docs.arcee.ai/arcee-conductor/arcee-small-language-models/model-selection#caller-large-tool-use-and-function-call
https://docs.arcee.ai/arcee-conductor/arcee-small-language-models/model-selection#caller-large-tool-use-and-function-call
https://arxiv.org/abs/2504.15637
https://arxiv.org/abs/2504.15637
https://arxiv.org/abs/2304.05128
https://arxiv.org/abs/2506.00894
https://arxiv.org/abs/2403.15149
https://arxiv.org/abs/2403.15149
https://cloud.google.com/blog/products/ai-machine-learning/gemini-2-5-pro-flash-on-vertex-ai
https://cloud.google.com/blog/products/ai-machine-learning/gemini-2-5-pro-flash-on-vertex-ai

Claire Cheng, Alexis Chevalier, Justin T. Chiu, Eugene Cho, Eugene Choi, Eujeong Choi, Tim
Chung, Volkan Cirik, Ana Cismaru, Pierre Clavier, Henry Conklin, Lucas Crawhall-Stein, Devon
Crouse, Andres Felipe Cruz-Salinas, Ben Cyrus, Daniel D’souza, Hugo Dalla-Torre, John Dang,
William Darling, Omar Darwiche Domingues, Saurabh Dash, Antoine Debugne, Théo Dehaze,
Shaan Desai, Joan Devassy, Rishit Dholakia, Kyle Duffy, Ali Edalati, Ace Eldeib, Abdullah
Elkady, Sarah Elsharkawy, Irem Ergiin, Beyza Ermis, Marzieh Fadaee, Boyu Fan, Lucas Fayoux,
Yannis Flet-Berliac, Nick Frosst, Matthias Gallé, Wojciech Galuba, Utsav Garg, Matthieu Geist,
Mohammad Gheshlaghi Azar, Ellen Gilsenan-McMahon, Seraphina Goldfarb-Tarrant, Tomas
Goldsack, Aidan Gomez, Victor Machado Gonzaga, Nithya Govindarajan, Manoj Govindassamy,
Nathan Grinsztajn, Nikolas Gritsch, Patrick Gu, Shangmin Guo, Kilian Haefeli, Rod Hajjar, Tim
Hawes, Jingyi He, Sebastian Hofstitter, Sungjin Hong, Sara Hooker, Tom Hosking, Stephanie
Howe, Eric Hu, Renjie Huang, Hemant Jain, Ritika Jain, Nick Jakobi, Madeline Jenkins, JJ Jordan,
Dhruti Joshi, Jason Jung, Trushant Kalyanpur, Siddhartha Rao Kamalakara, Julia Kedrzycki, Gokce
Keskin, Edward Kim, Joon Kim, Wei-Yin Ko, Tom Kocmi, Michael Kozakov, Wojciech KryScinski,
Arnav Kumar Jain, Komal Kumar Teru, Sander Land, Michael Lasby, Olivia Lasche, Justin Lee,
Patrick Lewis, Jeffrey Li, Jonathan Li, Hangyu Lin, Acyr Locatelli, Kevin Luong, Raymond Ma,
Lukas Mach, Marina Machado, Joanne Magbitang, Brenda Malacara Lopez, Aryan Mann, Kelly
Marchisio, Olivia Markham, Alexandre Matton, Alex McKinney, Dominic McLoughlin, Jozef
Mokry, Adrien Morisot, Autumn Moulder, Harry Moynehan, Maximilian Mozes, Vivek Muppalla,
Lidiya Murakhovska, Hemangani Nagarajan, Alekhya Nandula, Hisham Nasir, Shauna Nehra,
Josh Netto-Rosen, Daniel Ohashi, James Owers-Bardsley, Jason Ozuzu, Dennis Padilla, Gloria
Park, Sam Passaglia, Jeremy Pekmez, Laura Penstone, Aleksandra Piktus, Case Ploeg, Andrew
Poulton, Youran Qi, Shubha Raghvendra, Miguel Ramos, Ekagra Ranjan, Pierre Richemond,
Cécile Robert-Michon, Aurélien Rodriguez, Sudip Roy, Sebastian Ruder, Laura Ruis, Louise
Rust, Anubhav Sachan, Alejandro Salamanca, Kailash Karthik Saravanakumar, Isha Satyakam,
Alice Schoenauer Sebag, Priyanka Sen, Sholeh Sepehri, Preethi Seshadri, Ye Shen, Tom Sherborne,
Sylvie Shang Shi, Sanal Shivaprasad, Vladyslav Shmyhlo, Anirudh Shrinivason, Inna Shteinbuk,
Amir Shukayev, Mathieu Simard, Ella Snyder, Ava Spataru, Victoria Spooner, Trisha Starostina,
Florian Strub, Yixuan Su, Jimin Sun, Dwarak Talupuru, Eugene Tarassov, Elena Tommasone,
Jennifer Tracey, Billy Trend, Evren Tumer, Ahmet Ustiin, Bharat Venkitesh, David Venuto, Pat
Verga, Maxime Voisin, Alex Wang, Donglu Wang, Shijian Wang, Edmond Wen, Naomi White,
Jesse Willman, Marysia Winkels, Chen Xia, Jessica Xie, Minjie Xu, Bowen Yang, Tan Yi-Chern,
Ivan Zhang, Zhenyu Zhao, and Zhoujie Zhao. Command a: An enterprise-ready large language
model, 2025. URL https://arxiv.org/abs/2504.00698.

Forbes Technology Council. Revolutionizing software development with large language models.
https://www.forbes.com/councils/forbestechcouncil/2024/03/20/revolutionizing
-software-development-with-large-language-models/, March 2024.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast and
memory-efficient exact attention with IO-awareness. In Advances in Neural Information Processing
Systems (NeurIPS), 2022.

DeepSeek-Al. Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement learning,
2025. URL https://arxiv.org/abs/2501.12948.

DeepSeek-Al, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli
Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen,
Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi Ni, Jiashi
Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, Junxiao Song,
Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun Wang, Mingchuan
Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang,
Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi
Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang, Ruyi Chen, S. S. Li,
Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng Ye, Shengfeng Ye,
Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shuting Pan, T. Wang,
Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, Wangding Zeng, Wanjia Zhao, Wei An, Wen Liu,

12

https://arxiv.org/abs/2504.00698
https://www.forbes.com/councils/forbestechcouncil/2024/03/20/revolutionizing-software-development-with-large-language-models/
https://www.forbes.com/councils/forbestechcouncil/2024/03/20/revolutionizing-software-development-with-large-language-models/
https://arxiv.org/abs/2501.12948

Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, X. Q. Li, Xiangyue Jin, Xianzu Wang,
Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xiaokang Zhang, Xiaosha
Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
Xingkai Yu, Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang, Xinyuan Li, Xuecheng Su,
Xuheng Lin, Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang Zhang, Yanhong Xu, Yanhong
Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Li, Yaohui Wang, Yi Yu, Yi Zheng,
Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Ying Tang, Yishi Piao, Yisong Wang, Yixuan
Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yu Wu, Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue
Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo,
Yuxiang You, Yuxuan Liu, Yuyang Zhou, Z. F. Wu, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu,
Zhean Xu, Zhen Huang, Zhen Zhang, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhibin Gou,
Zhicheng Ma, Zhigang Yan, Zhihong Shao, Zhipeng Xu, Zhiyu Wu, Zhongyu Zhang, Zhuoshu
Li, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Ziyi Gao, and Zizheng Pan.
Deepseek-v3 technical report, 2025. URL https://arxiv.org/abs/2412.19437.

DuckDuckGo. DuckDuckGo: Privacy, simplified. https://duckduckgo.com/, 2025.

Lishui Fan, Mouxiang Chen, and Zhongxin Liu. Self-explained keywords empower large language
models for code generation, 2024. URL https://arxiv.org/abs/2410.15966.

Google. Grounding with Google Search | Gemini API. https://ai.google.dev/gemini-api/d
ocs/grounding, 2025.

Aric A Hagberg, Daniel A Schult, and Pieter J Swart. Exploring network structure, dynamics, and
function using NetworkX. In Proceedings of the 7th Python in Science Conference, pages 11-15,
2008.

Charles R Harris, K Jarrod Millman, Stéfan J van der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J Smith, Robert Kern, Matti
Picus, Changqing Hoyer, Marten H van Kerkwijk, Alex Brett, Andrew Wen, Pete Zhang, Joe Igoe,
Keith Featherstone, and Travis E Oliphant. Array programming with NumPy. Nature, 585(7825):
357-362, 2020.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring coding challenge
competence with apps. NeurIPS, 2021.

J. D. Hunter. Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 9(3):
90-95, 2007.

Amazon Artificial General Intelligence. The amazon nova family of models: Technical report and
model card. Amazon Technical Reports, 2024. URL https://www.amazon.science/publicati
ons/the-amazon-nova-family-of-models-technical-report-and-model-card.

Mohayeminul Islam, Ajay Kumar Jha, Sarah Nadi, and Ildar Akhmetov. Pymigbench: A benchmark
for python library migration. In 2023 IEEE/ACM 20th International Conference on Mining
Software Repositories (MSR), pages 511-515, 2023. doi: 10.1109/MSR59073.2023.00075.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.net/f
orum?id=VTF8yNQM66.

Haolin Jin, Zechao Sun, and Huaming Chen. Rgd: Multi-llm based agent debugger via refinement
and generation guidance, 2024. URL https://arxiv.org/abs/2410.01242.

Kelsey Jordahl, Joris Van den Bossche, Martin Fleischmann, Jacob Wasserman, James McBride,
Jeffrey Gerard, Jeff Tratner, Matthew Perry, Adrian Garcia Badaracco, Carson Farmer, Geir Arne

13

https://arxiv.org/abs/2412.19437
https://duckduckgo.com/
https://arxiv.org/abs/2410.15966
https://ai.google.dev/gemini-api/docs/grounding
https://ai.google.dev/gemini-api/docs/grounding
https://www.amazon.science/publications/the-amazon-nova-family-of-models-technical-report-and-model-card
https://www.amazon.science/publications/the-amazon-nova-family-of-models-technical-report-and-model-card
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://arxiv.org/abs/2410.01242

Hjelle, Alan D. Snow, Micah Cochran, Sean Gillies, Lucas Culbertson, Matt Bartos, Nick Eu-
bank, maxalbert, Aleksey Bilogur, Sergio Rey, Christopher Ren, Dani Arribas-Bel, Leah Wasser,
Levi John Wolf, Martin Journois, Joshua Wilson, Adam Greenhall, Chris Holdgraf, Filipe, and
Francois. geopandas/geopandas: v0.8.1, July 2020. URL https://doi.org/10.5281/zenodo. 3
946761.

Kat Kampf. Create and edit images with Gemini 2.0 in preview. https://developers.googleb
log.com/en/generate-images-gemini-2-0-flash-preview/, May 2025. Discusses Gemini
2.0 Flash.

Paul Kassianik, Baturay Saglam, Alexander Chen, Blaine Nelson, Anu Vellore, Massimo Au-
fiero, Fraser Burch, Dhruv Kedia, Avi Zohary, Sajana Weerawardhena, Aman Priyanshu, Adam
Swanda, Amy Chang, Hyrum Anderson, Kojin Oshiba, Omar Santos, Yaron Singer, and Amin
Karbasi. Llama-3.1-FoundationAI-SecurityLL.M-Base-8B Technical Report. arXiv preprint
arXiv:2504.21039, 2025. URL https://arxiv.org/abs/2504.21039. Cited for Llama 3.1
Instruct Turbo.

Sachit Kuhar, Wasi Uddin Ahmad, Zijian Wang, Nihal Jain, Haifeng Qian, Baishakhi Ray, Murali Kr-
ishna Ramanathan, Xiaofei Ma, and Anoop Deoras. Libevolutioneval: A benchmark and study for
version-specific code generation, 2024. URL https://arxiv.org/abs/2412.04478.

Stefano Lambiase, Gemma Catolino, Fabio Palomba, Filomena Ferrucci, and Daniel Russo. Exploring
individual factors in the adoption of llms for specific software engineering tasks, 2025. URL
https://arxiv.org/abs/2504.02553.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rocktéischel, Sebastian Riedel, and Douwe Kiela.
Retrieval-augmented Generation for Knowledge-Intensive NLP Tasks. In Advances in Neural
Information Processing Systems, volume 33, 2020.

James Li. ReAct vs Plan-and-Execute: A Practical Comparison of LLM Agent Patterns. https:
//dev.to/jamesli, November 2024.

Linxi Liang, Jing Gong, Mingwei Liu, Chong Wang, Guangsheng Ou, Yanlin Wang, Xin Peng, and
Zibin Zheng. Rustevo: An evolving benchmark for api evolution in llm-based rust code generation,
2025. URL https://arxiv.org/abs/2503.16922.

Opher Lieber, Barak Lenz, Hofit Bata, Gal Cohen, Jhonathan Osin, Itay Dalmedigos, Erez Safahi,
Shaked Meirom, Yonatan Belinkov, Shai Shalev-Shwartz, Omri Abend, Raz Alon, Tomer Asida,
Amir Bergman, Roman Glozman, Michael Gokhman, Avashalom Manevich, Nir Ratner, Noam
Rozen, Erez Shwartz, Mor Zusman, and Yoav Shoham. Jamba: A hybrid transformer-mamba
language model, 2024. URL https://arxiv.org/abs/2403.19887.

Zeyu Leo Liu, Shrey Pandit, Xi Ye, Eunsol Choi, and Greg Durrett. Codeupdatearena: Benchmarking
knowledge editing on API updates, 2025. URL https://openreview.net/forum?id=ecRyUAPs
hy.

Edward Loper and Steven Bird. NLTK: The natural language toolkit. In Proceedings of the ACL-02
Workshop on Effective Tools and Methodologies for Teaching Natural Language Processing and
Computational Linguistics, pages 6370, Philadelphia, Pennsylvania, USA, July 2002. Association
for Computational Linguistics. URL https://aclanthology.org/Wo2-0109.

Stephan Lukasczyk and Gordon Fraser. Pynguin: Automated unit test generation for python. In Pro-
ceedings of the ACM/IEEE 44th International Conference on Software Engineering: Companion
Proceedings, pages 168—172, 2022.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. WizardCoder: Empowering code large language models with
Evol-Instruct. June 2023.

Wes McKinney. Data Structures for Statistical Computing in Python. In Proceedings of the 9th
Python in Science Conference, pages 51-56, 2010.

14

https://doi.org/10.5281/zenodo.3946761
https://doi.org/10.5281/zenodo.3946761
https://developers.googleblog.com/en/generate-images-gemini-2-0-flash-preview/
https://developers.googleblog.com/en/generate-images-gemini-2-0-flash-preview/
https://arxiv.org/abs/2504.21039
https://arxiv.org/abs/2412.04478
https://arxiv.org/abs/2504.02553
https://dev.to/jamesli
https://dev.to/jamesli
https://arxiv.org/abs/2503.16922
https://arxiv.org/abs/2403.19887
https://openreview.net/forum?id=ecRyUAPshY
https://openreview.net/forum?id=ecRyUAPshY
https://aclanthology.org/W02-0109

Mistral AI. Medium is the new large: Introducing mistral medium 3. https://mistral.ai/news/
mistral-medium-3, May 2025. Accessed: 2025-05-17.

OpenAl. GPT-40 System Card. arXiv preprint arXiv:2410.21276, 2024. URL https://arxiv.or
g/abs/2410.21276. Cited for GPT-4o.

OpenAl. New embedding models and api updates. https://openai.com/index/new-embedding
-models-and-api-updates/, Jan 2024. Accessed: 2025-07-28.

OpenAl. OpenAl ol System Card. https://openai.com/index/openai-ol-system-card/,
2024. Discusses the ol model series, including ol and mentioning o3-mini.

OpenAl. Introducing GPT-4.1 in the APL. https://openai.com/index/gpt-4-1/, April 2025a.
Discusses GPT-4.1, GPT-4.1 mini, and GPT-4.1 nano.

OpenAl. Introducing GPT-4.5. https://openai.com/index/introducing-gpt-4-5/, February
2025b.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. PyTorch: An imperative style, high-performance deep learning
library, December 2019.

Perplexity Al. Getting started with Perplexity. https://www.perplexity.ai/hub/blog/getting
-started-with-perplexity, 2024.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yugiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL
https://arxiv.org/abs/2412.15115.

Rafiqul Rabin, Jesse Hostetler, Sean McGregor, Brett Weir, and Nick Judd. Sandboxeval: Towards
securing test environment for untrusted code, 2025. URL https://arxiv.org/abs/2504.00018.

Reka. RekaAl/reka-flash-3 - Hugging Face — huggingface.co. https://huggingface.co/RekaA
I/reka-flash-3. [Accessed 15-07-2025].

Aymeric Roucher, Albert Villanova del Moral, Thomas Wolf, Leandro von Werra, and Erik Kaunis-
miki. ‘smolagents‘: a smol library to build great agentic systems. https://github.com/huggi
ngface/smolagents, 2025.

Aditi Singh, Abul Ehtesham, Saket Kumar, and Tala Talaei Khoei. Agentic retrieval-augmented
generation: A survey on agentic rag, 2025. URL https://arxiv.org/abs/2501.09136.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding, 2023. URL https://arxiv.org/abs/2104.09864.

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
Damien Vincent, Zhufeng Pan, Shibo Wang, Soroosh Mariooryad, Yifan Ding, Xinyang Geng, Fred
Alcober, Roy Frostig, Mark Omernick, Lexi Walker, Cosmin Paduraru, Christina Sorokin, Andrea
Tacchetti, Colin Gaffney, Samira Daruki, Olcan Sercinoglu, Zach Gleicher, Juliette Love, Paul
Voigtlaender, Rohan Jain, Gabriela Surita, Kareem Mohamed, Rory Blevins, Junwhan Ahn, Tao
Zhu, Kornraphop Kawintiranon, Orhan Firat, Yiming Gu, Yujing Zhang, Matthew Rahtz, Manaal
Faruqui, Natalie Clay, Justin Gilmer, JD Co-Reyes, Ivo Penchev, Rui Zhu, Nobuyuki Morioka,
Kevin Hui, Krishna Haridasan, Victor Campos, Mahdis Mahdieh, Mandy Guo, Samer Hassan,
Kevin Kilgour, Arpi Vezer, Heng-Tze Cheng, Raoul de Liedekerke, Siddharth Goyal, Paul Barham,
DJ Strouse, Seb Noury, Jonas Adler, Mukund Sundararajan, Sharad Vikram, Dmitry Lepikhin,
Michela Paganini, Xavier Garcia, Fan Yang, Dasha Valter, Maja Trebacz, Kiran Vodrahalli,
Chulayuth Asawaroengchai, Roman Ring, Norbert Kalb, Livio Baldini Soares, Siddhartha Brahma,

15

https://mistral.ai/news/mistral-medium-3
https://mistral.ai/news/mistral-medium-3
https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2410.21276
https://openai.com/index/new-embedding-models-and-api-updates/
https://openai.com/index/new-embedding-models-and-api-updates/
https://openai.com/index/openai-o1-system-card/
https://openai.com/index/gpt-4-1/
https://openai.com/index/introducing-gpt-4-5/
https://www.perplexity.ai/hub/blog/getting-started-with-perplexity
https://www.perplexity.ai/hub/blog/getting-started-with-perplexity
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2504.00018
https://huggingface.co/RekaAI/reka-flash-3
https://huggingface.co/RekaAI/reka-flash-3
https://github.com/huggingface/smolagents
https://github.com/huggingface/smolagents
https://arxiv.org/abs/2501.09136
https://arxiv.org/abs/2104.09864

David Steiner, Tianhe Yu, Fabian Mentzer, Antoine He, Lucas Gonzalez, Bibo Xu, Raphael Lopez
Kaufman, Laurent El Shafey, Junhyuk Oh, Tom Hennigan, George van den Driessche, Seth Odoom,
Mario Lucic, Becca Roelofs, Sid Lall, Amit Marathe, Betty Chan, Santiago Ontanon, Luheng He,
Denis Teplyashin, Jonathan Lai, Phil Crone, Bogdan Damoc, Lewis Ho, Sebastian Riedel, Karel
Lenc, Chih-Kuan Yeh, Aakanksha Chowdhery, Yang Xu, Mehran Kazemi, Ehsan Amid, Anastasia
Petrushkina, Kevin Swersky, Ali Khodaei, Gowoon Chen, Chris Larkin, Mario Pinto, Geng Yan,
Adria Puigdomenech Badia, Piyush Patil, Steven Hansen, Dave Orr, Sebastien M. R. Arnold,
Jordan Grimstad, Andrew Dai, Sholto Douglas, Rishika Sinha, Vikas Yadav, Xi Chen, Elena
Gribovskaya, Jacob Austin, Jeffrey Zhao, Kaushal Patel, Paul Komarek, Sophia Austin, Sebastian
Borgeaud, Linda Friso, Abhimanyu Goyal, Ben Caine, Kris Cao, Da-Woon Chung, Matthew
Lamm, Gabe Barth-Maron, Thais Kagohara, Kate Olszewska, Mia Chen, Kaushik Shivakumar,
Rishabh Agarwal, Harshal Godhia, Ravi Rajwar, Javier Snaider, Xerxes Dotiwalla, Yuan Liu,
Aditya Barua, Victor Ungureanu, Yuan Zhang, Bat-Orgil Batsaikhan, Mateo Wirth, James Qin, Ivo
Danihelka, Tulsee Doshi, Martin Chadwick, Jilin Chen, Sanil Jain, Quoc Le, Arjun Kar, Madhu
Gurumurthy, Cheng Li, Ruoxin Sang, Fangyu Liu, Lampros Lamprou, Rich Munoz, Nathan Lintz,
Harsh Mehta, Heidi Howard, Malcolm Reynolds, Lora Aroyo, Quan Wang, Lorenzo Blanco, Albin
Cassirer, Jordan Griffith, Dipanjan Das, Stephan Lee, Jakub Sygnowski, Zach Fisher, James Besley,
Richard Powell, Zafarali Ahmed, Dominik Paulus, David Reitter, Zalan Borsos, Rishabh Joshi,
Aedan Pope, Steven Hand, Vittorio Selo, Vihan Jain, Nikhil Sethi, Megha Goel, Takaki Makino,
Rhys May, Zhen Yang, Johan Schalkwyk, Christina Butterfield, Anja Hauth, Alex Goldin, Will
Hawkins, Evan Senter, Sergey Brin, Oliver Woodman, Marvin Ritter, Eric Noland, Minh Giang,
Vijay Bolina, Lisa Lee, Tim Blyth, Ian Mackinnon, Machel Reid, Obaid Sarvana, David Silver,
Alexander Chen, Lily Wang, Loren Maggiore, Oscar Chang, Nithya Attaluri, Gregory Thornton,
Chung-Cheng Chiu, Oskar Bunyan, Nir Levine, Timothy Chung, Evgenii Eltyshev, Xiance Si,
Timothy Lillicrap, Demetra Brady, Vaibhav Aggarwal, Boxi Wu, Yuanzhong Xu, Ross Mcllroy,
Kartikeya Badola, Paramjit Sandhu, Erica Moreira, Wojciech Stokowiec, Ross Hemsley, Dong
Li, Alex Tudor, Pranav Shyam, Elahe Rahimtoroghi, Salem Haykal, Pablo Sprechmann, Xiang
Zhou, Diana Mincu, Yujia Li, Ravi Addanki, Kalpesh Krishna, Xiao Wu, Alexandre Frechette,
Matan Eyal, Allan Dafoe, Dave Lacey, Jay Whang, Thi Avrahami, Ye Zhang, Emanuel Taropa,
Hanzhao Lin, Daniel Toyama, Eliza Rutherford, Motoki Sano, HyunJeong Choe, Alex Tomala,
Chalence Safranek-Shrader, Nora Kassner, Mantas Pajarskas, Matt Harvey, Sean Sechrist, Meire
Fortunato, Christina Lyu, Gamaleldin Elsayed, Chenkai Kuang, James Lottes, Eric Chu, Chao Jia,
Chih-Wei Chen, Peter Humphreys, Kate Baumli, Connie Tao, Rajkumar Samuel, Cicero Nogueira
dos Santos, Anders Andreassen, Nemanja Raki¢evi¢, Dominik Grewe, Aviral Kumar, Stephanie
Winkler, Jonathan Caton, Andrew Brock, Sid Dalmia, Hannah Sheahan, lain Barr, Yingjie Miao,
Paul Natsev, Jacob Devlin, Feryal Behbahani, Flavien Prost, Yanhua Sun, Artiom Myaskovsky,
Thanumalayan Sankaranarayana Pillai, Dan Hurt, Angeliki Lazaridou, Xi Xiong, Ce Zheng, Fabio
Pardo, Xiaowei Li, Dan Horgan, Joe Stanton, Moran Ambar, Fei Xia, Alejandro Lince, Mingqiu
Wang, Basil Mustafa, Albert Webson, Hyo Lee, Rohan Anil, Martin Wicke, Timothy Dozat,
Abhishek Sinha, Enrique Piqueras, Elahe Dabir, Shyam Upadhyay, Anudhyan Boral, Lisa Anne
Hendricks, Corey Fry, Josip Djolonga, Yi Su, Jake Walker, Jane Labanowski, Ronny Huang, Vedant
Misra, Jeremy Chen, RJ Skerry-Ryan, Avi Singh, Shruti Rijhwani, Dian Yu, Alex Castro-Ros,
Beer Changpinyo, Romina Datta, Sumit Bagri, Arnar Mar Hrafnkelsson, Marcello Maggioni,
Daniel Zheng, Yury Sulsky, Shaobo Hou, Tom Le Paine, Antoine Yang, Jason Riesa, Dominika
Rogozinska, Dror Marcus, Dalia El Badawy, Qiao Zhang, Luyu Wang, Helen Miller, Jeremy
Greer, Lars Lowe Sjos, Azade Nova, Heiga Zen, Rahma Chaabouni, Mihaela Rosca, Jiepu Jiang,
Charlie Chen, Ruibo Liu, Tara Sainath, Maxim Krikun, Alex Polozov, Jean-Baptiste Lespiau,
Josh Newlan, Zeyncep Cankara, Soo Kwak, Yunhan Xu, Phil Chen, Andy Coenen, Clemens
Meyer, Katerina Tsihlas, Ada Ma, Juraj Gottweis, Jinwei Xing, Chenjie Gu, Jin Miao, Christian
Frank, Zeynep Cankara, Sanjay Ganapathy, Ishita Dasgupta, Steph Hughes-Fitt, Heng Chen,
David Reid, Keran Rong, Hongmin Fan, Joost van Amersfoort, Vincent Zhuang, Aaron Cohen,
Shixiang Shane Gu, Anhad Mohananey, Anastasija Ilic, Taylor Tobin, John Wieting, Anna Bortsova,
Phoebe Thacker, Emma Wang, Emily Caveness, Justin Chiu, Eren Sezener, Alex Kaskasoli,
Steven Baker, Katie Millican, Mohamed Elhawaty, Kostas Aisopos, Carl Lebsack, Nathan Byrd,
Hanjun Dai, Wenhao Jia, Matthew Wiethoff, Elnaz Davoodi, Albert Weston, Lakshman Yagati,
Arun Ahuja, Isabel Gao, Golan Pundak, Susan Zhang, Michael Azzam, Khe Chai Sim, Sergi
Caelles, James Keeling, Abhanshu Sharma, Andy Swing, YaGuang Li, Chenxi Liu, Carrie Grimes
Bostock, Yamini Bansal, Zachary Nado, Ankesh Anand, Josh Lipschultz, Abhijit Karmarkar,
Lev Proleev, Abe Ittycheriah, Soheil Hassas Yeganeh, George Polovets, Aleksandra Faust, Jiao

16

Sun, Alban Rrustemi, Pen Li, Rakesh Shivanna, Jeremiah Liu, Chris Welty, Federico Lebron,
Anirudh Baddepudi, Sebastian Krause, Emilio Parisotto, Radu Soricut, Zheng Xu, Dawn Bloxwich,
Melvin Johnson, Behnam Neyshabur, Justin Mao-Jones, Renshen Wang, Vinay Ramasesh, Zaheer
Abbas, Arthur Guez, Constant Segal, Duc Dung Nguyen, James Svensson, Le Hou, Sarah York,
Kieran Milan, Sophie Bridgers, Wiktor Gworek, Marco Tagliasacchi, James Lee-Thorp, Michael
Chang, Alexey Guseynov, Ale Jakse Hartman, Michael Kwong, Ruizhe Zhao, Sheleem Kashem,
Elizabeth Cole, Antoine Miech, Richard Tanburn, Mary Phuong, Filip Pavetic, Sebastien Cevey,
Ramona Comanescu, Richard Ives, Sherry Yang, Cosmo Du, Bo Li, Zizhao Zhang, Mariko linuma,
Clara Huiyi Hu, Aurko Roy, Shaan Bijwadia, Zhenkai Zhu, Danilo Martins, Rachel Saputro, Anita
Gergely, Steven Zheng, Dawei Jia, loannis Antonoglou, Adam Sadovsky, Shane Gu, Yingying
Bi, Alek Andreev, Sina Samangooei, Mina Khan, Tomas Kocisky, Angelos Filos, Chintu Kumar,
Colton Bishop, Adams Yu, Sarah Hodkinson, Sid Mittal, Premal Shah, Alexandre Moufarek, Yong
Cheng, Adam Bloniarz, Jachoon Lee, Pedram Pejman, Paul Michel, Stephen Spencer, Vladimir
Feinberg, Xuehan Xiong, Nikolay Savinov, Charlotte Smith, Siamak Shakeri, Dustin Tran, Mary
Chesus, Bernd Bohnet, George Tucker, Tamara von Glehn, Carrie Muir, Yiran Mao, Hideto Kazawa,
Ambrose Slone, Kedar Soparkar, Disha Shrivastava, James Cobon-Kerr, Michael Sharman, Jay
Pavagadhi, Carlos Araya, Karolis Misiunas, Nimesh Ghelani, Michael Laskin, David Barker,
Qiuyjia Li, Anton Briukhov, Neil Houlsby, Mia Glaese, Balaji Lakshminarayanan, Nathan Schucher,
Yunhao Tang, Eli Collins, Hyeontaek Lim, Fangxiaoyu Feng, Adria Recasens, Guangda Lai,
Alberto Magni, Nicola De Cao, Aditya Siddhant, Zoe Ashwood, Jordi Orbay, Mostafa Dehghani,
Jenny Brennan, Yifan He, Kelvin Xu, Yang Gao, Carl Saroufim, James Molloy, Xinyi Wu, Seb
Arnold, Solomon Chang, Julian Schrittwieser, Elena Buchatskaya, Soroush Radpour, Martin
Polacek, Skye Giordano, Ankur Bapna, Simon Tokumine, Vincent Hellendoorn, Thibault Sottiaux,
Sarah Cogan, Aliaksei Severyn, Mohammad Saleh, Shantanu Thakoor, Laurent Shefey, Siyuan
Qiao, Meenu Gaba, Shuo yiin Chang, Craig Swanson, Biao Zhang, Benjamin Lee, Paul Kishan
Rubenstein, Gan Song, Tom Kwiatkowski, Anna Koop, Ajay Kannan, David Kao, Parker Schuh,
Axel Stjerngren, Golnaz Ghiasi, Gena Gibson, Luke Vilnis, Ye Yuan, Felipe Tiengo Ferreira,
Aishwarya Kamath, Ted Klimenko, Ken Franko, Kefan Xiao, Indro Bhattacharya, Miteyan Patel,
Rui Wang, Alex Morris, Robin Strudel, Vivek Sharma, Peter Choy, Sayed Hadi Hashemi, Jessica
Landon, Mara Finkelstein, Priya Jhakra, Justin Frye, Megan Barnes, Matthew Mauger, Dennis
Daun, Khuslen Baatarsukh, Matthew Tung, Wael Farhan, Henryk Michalewski, Fabio Viola, Felix
de Chaumont Quitry, Charline Le Lan, Tom Hudson, Qingze Wang, Felix Fischer, Ivy Zheng,
Elspeth White, Anca Dragan, Jean baptiste Alayrac, Eric Ni, Alexander Pritzel, Adam Iwanicki,
Michael Isard, Anna Bulanova, Lukas Zilka, Ethan Dyer, Devendra Sachan, Srivatsan Srinivasan,
Hannah Muckenhirn, Honglong Cai, Amol Mandhane, Mukarram Tariq, Jack W. Rae, Gary Wang,
Kareem Ayoub, Nicholas FitzGerald, Yao Zhao, Woohyun Han, Chris Alberti, Dan Garrette,
Kashyap Krishnakumar, Mai Gimenez, Anselm Levskaya, Daniel Sohn, Josip Matak, Inaki Iturrate,
Michael B. Chang, Jackie Xiang, Yuan Cao, Nishant Ranka, Geoff Brown, Adrian Hutter, Vahab
Mirrokni, Nanxin Chen, Kaisheng Yao, Zoltan Egyed, Francois Galilee, Tyler Liechty, Praveen
Kallakuri, Evan Palmer, Sanjay Ghemawat, Jasmine Liu, David Tao, Chloe Thornton, Tim Green,
Mimi Jasarevic, Sharon Lin, Victor Cotruta, Yi-Xuan Tan, Noah Fiedel, Hongkun Yu, Ed Chi,
Alexander Neitz, Jens Heitkaemper, Anu Sinha, Denny Zhou, Yi Sun, Charbel Kaed, Brice Hulse,
Swaroop Mishra, Maria Georgaki, Sneha Kudugunta, Clement Farabet, Izhak Shafran, Daniel
Vlasic, Anton Tsitsulin, Rajagopal Ananthanarayanan, Alen Carin, Guolong Su, Pei Sun, Shashank
V, Gabriel Carvajal, Josef Broder, Tulia Comsa, Alena Repina, William Wong, Warren Weilun Chen,
Peter Hawkins, Egor Filonov, Lucia Loher, Christoph Hirnschall, Weiyi Wang, Jingchen Ye, Andrea
Burns, Hardie Cate, Diana Gage Wright, Federico Piccinini, Lei Zhang, Chu-Cheng Lin, Ionel
Gog, Yana Kulizhskaya, Ashwin Sreevatsa, Shuang Song, Luis C. Cobo, Anand Iyer, Chetan Tekur,
Guillermo Garrido, Zhuyun Xiao, Rupert Kemp, Huaixiu Steven Zheng, Hui Li, Ananth Agarwal,
Christel Ngani, Kati Goshvadi, Rebeca Santamaria-Fernandez, Wojciech Fica, Xinyun Chen,
Chris Gorgolewski, Sean Sun, Roopal Garg, Xinyu Ye, S. M. Ali Eslami, Nan Hua, Jon Simon,
Pratik Joshi, Yelin Kim, Ian Tenney, Sahitya Potluri, Lam Nguyen Thiet, Quan Yuan, Florian
Luisier, Alexandra Chronopoulou, Salvatore Scellato, Praveen Srinivasan, Minmin Chen, Vinod
Koverkathu, Valentin Dalibard, Yaming Xu, Brennan Saeta, Keith Anderson, Thibault Sellam,
Nick Fernando, Fantine Huot, Junehyuk Jung, Mani Varadarajan, Michael Quinn, Amit Raul,
Maigo Le, Ruslan Habalov, Jon Clark, Komal Jalan, Kalesha Bullard, Achintya Singhal, Thang
Luong, Boyu Wang, Sujeevan Rajayogam, Julian Eisenschlos, Johnson Jia, Daniel Finchelstein,
Alex Yakubovich, Daniel Balle, Michael Fink, Sameer Agarwal, Jing Li, Dj Dvijotham, Shalini
Pal, Kai Kang, Jaclyn Konzelmann, Jennifer Beattie, Olivier Dousse, Diane Wu, Remi Crocker,

17

Chen Elkind, Siddhartha Reddy Jonnalagadda, Jong Lee, Dan Holtmann-Rice, Krystal Kallarackal,
Rosanne Liu, Denis Vnukov, Neera Vats, Luca Invernizzi, Mohsen Jafari, Huanjie Zhou, Lilly
Taylor, Jennifer Prendki, Marcus Wu, Tom Eccles, Tianqgi Liu, Kavya Kopparapu, Francoise
Beaufays, Christof Angermueller, Andreea Marzoca, Shourya Sarcar, Hilal Dib, Jeff Stanway,
Frank Perbet, Nejc Trdin, Rachel Sterneck, Andrey Khorlin, Dinghua Li, Xihui Wu, Sonam
Goenka, David Madras, Sasha Goldshtein, Willi Gierke, Tong Zhou, Yaxin Liu, Yannie Liang,
Anais White, Yunjie Li, Shreya Singh, Sanaz Bahargam, Mark Epstein, Sujoy Basu, Li Lao,
Adnan Ozturel, Carl Crous, Alex Zhai, Han Lu, Zora Tung, Neeraj Gaur, Alanna Walton, Lucas
Dixon, Ming Zhang, Amir Globerson, Grant Uy, Andrew Bolt, Olivia Wiles, Milad Nasr, Ilia
Shumailov, Marco Selvi, Francesco Piccinno, Ricardo Aguilar, Sara McCarthy, Misha Khalman,
Mrinal Shukla, Vlado Galic, John Carpenter, Kevin Villela, Haibin Zhang, Harry Richardson,
James Martens, Matko Bosnjak, Shreyas Rammohan Belle, Jeff Seibert, Mahmoud Alnahlawi,
Brian McWilliams, Sankalp Singh, Annie Louis, Wen Ding, Dan Popovici, Lenin Simicich, Laura
Knight, Pulkit Mehta, Nishesh Gupta, Chongyang Shi, Saaber Fatehi, Jovana Mitrovic, Alex Grills,
Joseph Pagadora, Tsendsuren Munkhdalai, Dessie Petrova, Danielle Eisenbud, Zhishuai Zhang,
Damion Yates, Bhavishya Mittal, Nilesh Tripuraneni, Yannis Assael, Thomas Brovelli, Prateek
Jain, Mihajlo Velimirovic, Canfer Akbulut, Jiaqi Mu, Wolfgang Macherey, Ravin Kumar, Jun Xu,
Haroon Qureshi, Gheorghe Comanici, Jeremy Wiesner, Zhitao Gong, Anton Ruddock, Matthias
Bauer, Nick Felt, Anirudh GP, Anurag Arnab, Dustin Zelle, Jonas Rothfuss, Bill Rosgen, Ashish
Shenoy, Bryan Seybold, Xinjian Li, Jayaram Mudigonda, Goker Erdogan, Jiawei Xia, Jiri Simsa,
Andrea Michi, Yi Yao, Christopher Yew, Steven Kan, Isaac Caswell, Carey Radebaugh, Andre
Elisseeff, Pedro Valenzuela, Kay McKinney, Kim Paterson, Albert Cui, Eri Latorre-Chimoto,
Solomon Kim, William Zeng, Ken Durden, Priya Ponnapalli, Tiberiu Sosea, Christopher A.
Choquette-Choo, James Manyika, Brona Robenek, Harsha Vashisht, Sebastien Pereira, Hoi Lam,
Marko Velic, Denese Owusu-Afriyie, Katherine Lee, Tolga Bolukbasi, Alicia Parrish, Shawn Lu,
Jane Park, Balaji Venkatraman, Alice Talbert, Lambert Rosique, Yuchung Cheng, Andrei Sozanschi,
Adam Paszke, Praveen Kumar, Jessica Austin, Lu Li, Khalid Salama, Bartek Perz, Wooyeol Kim,
Nandita Dukkipati, Anthony Baryshnikov, Christos Kaplanis, XiangHai Sheng, Yuri Chervonyi,
Caglar Unlu, Diego de Las Casas, Harry Askham, Kathryn Tunyasuvunakool, Felix Gimeno,
Siim Poder, Chester Kwak, Matt Miecnikowski, Vahab Mirrokni, Alek Dimitriev, Aaron Parisi,
Dangyi Liu, Tomy Tsai, Toby Shevlane, Christina Kouridi, Drew Garmon, Adrian Goedeckemeyer,
Adam R. Brown, Anitha Vijayakumar, Ali Elqursh, Sadegh Jazayeri, Jin Huang, Sara Mc Carthy,
Jay Hoover, Lucy Kim, Sandeep Kumar, Wei Chen, Courtney Biles, Garrett Bingham, Evan Rosen,
Lisa Wang, Qijun Tan, David Engel, Francesco Pongetti, Dario de Cesare, Dongseong Hwang, Lily
Yu, Jennifer Pullman, Srini Narayanan, Kyle Levin, Siddharth Gopal, Megan Li, Asaf Aharoni,
Trieu Trinh, Jessica Lo, Norman Casagrande, Roopali Vij, Loic Matthey, Bramandia Ramadhana,
Austin Matthews, CJ Carey, Matthew Johnson, Kremena Goranova, Rohin Shah, Shereen Ashraf,
Kingshuk Dasgupta, Rasmus Larsen, Yicheng Wang, Manish Reddy Vuyyuru, Chong Jiang, Joana
Tjazi, Kazuki Osawa, Celine Smith, Ramya Sree Boppana, Taylan Bilal, Yuma Koizumi, Ying
Xu, Yasemin Altun, Nir Shabat, Ben Bariach, Alex Korchemniy, Kiam Choo, Olaf Ronneberger,
Chimezie Iwuanyanwu, Shubin Zhao, David Soergel, Cho-Jui Hsieh, Irene Cai, Shariq Igbal,
Martin Sundermeyer, Zhe Chen, Elie Bursztein, Chaitanya Malaviya, Fadi Biadsy, Prakash Shroff,
Inderjit Dhillon, Tejasi Latkar, Chris Dyer, Hannah Forbes, Massimo Nicosia, Vitaly Nikolaev,
Somer Greene, Marin Georgiev, Pidong Wang, Nina Martin, Hanie Sedghi, John Zhang, Praseem
Banzal, Doug Fritz, Vikram Rao, Xuezhi Wang, Jiageng Zhang, Viorica Patraucean, Dayou Du,
Igor Mordatch, Ivan Jurin, Lewis Liu, Ayush Dubey, Abhi Mohan, Janek Nowakowski, Vlad-Doru
Ion, Nan Wei, Reiko Tojo, Maria Abi Raad, Drew A. Hudson, Vaishakh Keshava, Shubham
Agrawal, Kevin Ramirez, Zhichun Wu, Hoang Nguyen, Ji Liu, Madhavi Sewak, Bryce Petrini,
DongHyun Choi, Ivan Philips, Ziyue Wang, loana Bica, Ankush Garg, Jarek Wilkiewicz, Priyanka
Agrawal, Xiaowei Li, Danhao Guo, Emily Xue, Naseer Shaik, Andrew Leach, Sadh MNM Khan,
Julia Wiesinger, Sammy Jerome, Abhishek Chakladar, Alek Wenjiao Wang, Tina Ornduff, Folake
Abu, Alireza Ghaffarkhah, Marcus Wainwright, Mario Cortes, Frederick Liu, Joshua Maynez,
Andreas Terzis, Pouya Samangouei, Riham Mansour, Tomasz Kepa, Francois-Xavier Aubet, Anton
Algymr, Dan Banica, Agoston Weisz, Andras Orban, Alexandre Senges, Ewa Andrejczuk, Mark
Geller, Niccolo Dal Santo, Valentin Anklin, Majd Al Merey, Martin Baeuml, Trevor Strohman,
Junwen Bai, Slav Petrov, Yonghui Wu, Demis Hassabis, Koray Kavukcuoglu, Jeff Dean, and Oriol
Vinyals. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context,
2024. URL https://arxiv.org/abs/2403.05530.

18

https://arxiv.org/abs/2403.05530

The pandas development team. pandas-dev/pandas: Pandas, February 2020. URL https://doi.or
g/10.5281/zenodo. 3509134.

Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, et al. Scipy 1.0: fundamental
algorithms for scientific computing in python. Nature methods, 17(3):261-272, 2020.

Chaozheng Wang, Shuzheng Gao, Cuiyun Gao, Wenxuan Wang, Chun Yong Chong, Shan Gao, and
Michael R. Lyu. A systematic evaluation of large code models in api suggestion: When, which,
and how, 2024a. URL https://arxiv.org/abs/2409.13178.

Chong Wang, Kaifeng Huang, Jian Zhang, Yebo Feng, Lyuye Zhang, Yang Liu, and Xin Peng. How
and Why LLMs Use Deprecated APIs in Code Completion? an Empirical Study. arXiv preprint
arXiv:2312.14617, 2024b.

Chong Wang, Kaifeng Huang, Jian Zhang, Yebo Feng, Lyuye Zhang, Yang Liu, and Xin Peng. LLMs
Meet Library Evolution: Evaluating Deprecated API Usage in LLM-based Code Completion . In
2025 IEEE/ACM 47th International Conference on Software Engineering (ICSE), pages 781-781,
Los Alamitos, CA, USA, May 2025a. IEEE Computer Society. doi: 10.1109/ICSE55347.2025.0
0245. URL https://doi.ieeecomputersociety.org/10.1109/ICSE55347.2025.00245.

Chong Wang, Kaifeng Huang, Jian Zhang, Yebo Feng, Lyuye Zhang, Yang Liu, and Xin Peng. Llms
meet library evolution: Evaluating deprecated api usage in llm-based code completion, 2025b.
URL https://arxiv.org/abs/2406.09834.

Xingyao Wang. Introducing openhands Im 32b — a strong, open coding agent model. All Hands Al
Blog, March 2025. URL https://www.all-hands.dev/blog/introducing-openhands-1m-3
2b----a-strong-open-coding-agent-model.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023.
URL https://arxiv.org/abs/2201.11903.

Tongtong Wu, Weigang Wu, Xingyu Wang, Kang Xu, Suyu Ma, Bo Jiang, Ping Yang, Zhenchang
Xing, Yuan-Fang Li, and Gholamreza Haffari. VersiCode: Towards version-controllable code
generation. June 2024.

xAl Grok-3. Official XAl announcement, 2025. URL https://x.ai/news/grok-3. Accessed May
17, 2025.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?id=WE
_vluYUL-X.

Sixiang Ye, Zeyu Sun, Guoqing Wang, Liwei Guo, Qingyuan Liang, Zheng Li, and Yong Liu.
Prompt alchemy: Automatic prompt refinement for enhancing code generation, 2025. URL
https://arxiv.org/abs/2503.11085.

Shuyan Zhou, Uri Alon, Frank F Xu, Zhiruo Wang, Zhengbao Jiang, and Graham Neubig. DocPrompt-
ing: Generating code by retrieving the docs. July 2022.

19

https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://arxiv.org/abs/2409.13178
https://doi.ieeecomputersociety.org/10.1109/ICSE55347.2025.00245
https://arxiv.org/abs/2406.09834
https://www.all-hands.dev/blog/introducing-openhands-lm-32b----a-strong-open-coding-agent-model
https://www.all-hands.dev/blog/introducing-openhands-lm-32b----a-strong-open-coding-agent-model
https://arxiv.org/abs/2201.11903
https://x.ai/news/grok-3
https://arxiv.org/abs/2505.09388
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://arxiv.org/abs/2503.11085

Library The software library under test.

Library Version The exact version of that library.

Task Description A problem centered on a particular library change.
Initial Code The Python snippet provided as a starting point.
Extra Dependencies Any additional packages required to solve the task.
Hidden Tests Comprehensive unit tests designed to maximize

coverage. The success rate on these is the bench-
mark metric.

Visible Test A concise test that validates the specific target be-
havior, intended to be used for Self-Debugging
experiments.

Reference Solution A correct, ground-truth implementation.

Reference Documents A set of version-specific reference documents, to
be used for RAG experiments.

Table 4: Problem column definitions for the GitChameleon 2.0 dataset.

A Benchmark Details

This appendix provides additional details on the GitChameleon 2.0 benchmark. We provide details
on the dataset construction process, the structure of the dataset samples, on the processes for validating
the examples and constructing the hidden tests, and finally present additional statistics regarding the
dataset.

A.1 Dataset Construction Process

The examples were created by the authors, which took roughly 350 human hours. To construct that
dataset, we compiled a list of popular Python libraries, focusing on those that had more than 1000
stars on Github as well as detailed documentation of changes between versions. For each library,
we reviewed the change logs to identify breaking changes: deprecated functions, argument changes,
alterations in behavior, and newly introduced functions.

For each identified change, we wrote a concise problem statement, starter code, expected solution and
a suite of tests, consisting of a comprehensive suite of hidden tests to be used for model performance
evaluation and ranking and a manually written concise visible test to be used for self-debugging
experiments. We also added a ground-truth set of relevant documents for RAG experiments.

NOTE: Low-level changes—such as backend optimizations that do not alter the surface-level
API—are not considered valid changes for our benchmark. For example, if between Torch 1.7
and Torch 1.8 the torch.nn.Softmax() function received a CUDA-based numerical stability
improvement, this does not modify the API usage of Softmax() and is therefore not labeled as
a change in our benchmark. Since most changes in mature libraries primarily impact backend
functionality, collecting 328 valid samples required significant effort.

A.2 Structure of Dataset Samples
The main fields of each sample are given in Table 4. Additionally, each problem in GitChameleon

2.0 is associated with metadata to assist in the analysis of the results, as described in Table 5. Each
problem is classified with a type of API evolution change among the categories defined in Table 6.

A.3 Dataset Validation
To ensure the validity of the dataset examples, we followed the following process: First, we created a

clean Docker container for each problem and installed the required dependencies into it. Then, we
executed the visible and hidden validation tests to ensure that all are successful.

20

Change Category The type of library-evolution changes, as defined

in table 6.
Target Entity The specific function or class under test.
Solution Style “Functional” if only a function body is expected,

or “Full” for a general code completion.
Web Framework Task “Yes” if the problem exercises a web-development
framework, otherwise “No.”

Table 5: Metadata column definitions.

Change Category Description

Argument or Attribute The API call to a function, method, or class has

change a change in arguments (e.g. name, order, new,
deprecated argument) between versions.

Function Name change The name of the API call has changed between ver-

sions (e.g. pandas. append to pandas.concat).
Semantics or Function Be- The semantic / runtime behavior of the API call
havior change changed between versions (e.g. returning a differ-
ent type).
New feature or additional A feature was introduced in a specific version;
dependency-based change therefore, to execute the same functionality, a
model using an older version should make use of
an additional dependency (e.g. torch.special
was introduced in TORCH 1.10, previously one
could use NUMPY for the same).

Table 6: Categories of API Evolution Changes

A.4 Hidden Test Construction

This section presents how we generated the hidden tests for each dataset example. These tests were
generated by instructing the Zencoder AI Coding Agent “ to create test files for each example,
incorporating the appropriate dependency versions. The Zencoder agent, built on the GPT-4.1 base
model, operated with internet search enabled and was granted execution access, allowing it to self-
correct outputs that initially failed during runtime. Further errors encountered during verification
were resolved by supplying error traces back to Zencoder or through an isolated instance of GPT-4o,
supplemented with manual inspection and intervention where necessary. This process enabled us
to construct a robust and comprehensive test suite, achieving a coverage of 96.5%. The decision to
use ZENCODER was motivated by limitations observed in alternative unit test generation approaches.
Rule-based generators such as Pynguin Lukasczyk and Fraser [2022] fail to account for version
differences among samples that share the same or similar problem statements. Meanwhile, Al-based
unit test generators like Claude Code and EarlyAI’ were not suitable: the former typically generated
test classes where each sub-function was populated only with pass() statements, while the latter was
restricted to functional-style problems and could not handle the more complex, class-based structures
prevalent in GitChameleon 2.0.

A.5 Additional Dataset Statistics

Figure 7 presents the number of unique versions per library and the number of samples per library.

B Extra Methodologies: Reasoning, Sampling and Prompting

This section presents results from additional experimental methodologies:

4https://zencoder.ai
Shttps://www.startearly.ai/

21

https://zencoder.ai
https://www.startearly.ai/

7
w6
C
o
g5
S
]
o4
c
>
53
o]
Q
g2
=]
=
1
D EFOC AN PP C L ALCELANCH SRS AP
RSP Q\O'\o‘ SIS &Qd’?fo&o\@" S ENELL P
® &Q‘}§ N Q,&Q,Q Q’b \ioleb] \{_\\3 &0‘ (\\)\&‘\“ N \\'c,é?\éoQ NP QC R E
< & @ & N 3
S)
Library
(a) Number of unique versions per library.
40
35
(%2}
230
o
€
K825
kS
520
£
515
=
10
5
2NN T LCORNCLO AN F QN2 SOOI A0
92 Q2 Q0,5 O (O Qo 80 O sHE 7 L0 TG 27 L8
O RN P O PO SR T L P S F R 2L 2
NG &o‘\“\&'\zq’bob\’o@(?@‘ég@ Qq"’oé‘"oo"o@ & QYR CE
O @O R 67X 2 \x
£ & X & &

(b) Number of samples per library.

Figure 7: Dataset library statistics. (a) The count of distinct versions identified for each library,
presented in decreasing order of uniqueness. (b) The total frequency of samples containing each
library, ordered by their occurrence count.

* Temperature Sampling: Results are shown in Table 8. We evaluate sampling at temperature
T = 0.8 across 10 seeds using both the OpenAl and Gemini model suites. The performance
difference compared to greedy decoding is minimal.

22

* Reasoning Models: Performance results for the OpenAl o-series reasoning models are
provided in Table 7.

¢ Self-Explained Keywords (SEK) Prompting: We evaluate the SEK prompting method
proposed by Fan et al. [2024], applied to both OpenAl and Gemini models. SEK involves a
two-stage process: (1) Keyword Extraction, where the model generates relevant keywords for
the coding task, and (2) Keyword Categorization, where keywords are ranked and classified
into (a) Function, (b) General, and (c) Abstract categories. TF-IDF ranking is performed
using a 50,000-document subset of the EVOL-CODEALPACA-V1 corpus Luo et al. [2023].
As shown in our empirical analysis, SEK does not yield significant improvements over
greedy sampling, and in several cases underperforms relative to it. NOTE: Temperature
T = 0 is used in both stages of SEK prompting.

Vanilla Decoding Vanilla with Self-Debug Zero-shot CoT

Model Success Success Success
Rate (%) API Rate (%) API Rate (%) API
- Hit - Hit ——— Hit
Hidden Visible Rate (%) Hidden Visible Rate (%) Hidden Rate (%)

ol 51.2428 60.1+27 421427 57.6+27 68.6+26 492405 41.2427 41.3+27
03-mini 44,5427 52.7+23 40.6+27 66.8+26 76.5+23 45.7 25 50.9+25 40.7 +27
04-mini 482425 57.0+27 48.3125 63.1+27 75.0+24 454427 - -
codex-mini 48.5+25 582427 47.5428 - - - 32.0+26 37.9427

Table 7: Success rate on visible and hidden tests and API hit rate under the Vanilla, Self-Debug,
and Zero-shot CoT settings, for the OpenAl o-series models. Model ranking on the benchmark is
determined by Hidden Success Rate. Visible Success Rate figures are for context on Self-Debugging.
The best result in each column is in bold. For full model details and citations, please refer to
Appendix J.

Hidden Success API Hit

Model Rate (%) Rate (%)
ol 50.5+0s 44.0+0s
03-mini 46.4+16 42.5+06
GPT-4.1 48.9+14 48.1+10
GPT-4.1-mini 459113 46.9+06
GPT-4.1-nano 33.8+11 43.8+0s
GPT-40 472412 45.1+09
GPT-40-mini 40.2+12 41.0+11
Gemini 1.5 Pro 454412 45.5+07
Gemini 2.5 Pro 41.0+34 48.3+17
Gemini 2.0 Flash 43443, 42.5109
Gemini 2.5 Flash 46.4+0s 46.8+12

Table 8: Hidden Success Rate using temperature sampling (1" = 0.8), averaged over 10 seeds.
A comparison to the greedy decoding baseline in Table 1 reveals that the changes in performance
between greedy decoding and temperature sampling are mixed. For most models, the differences are
small, but for a few specific models, the changes are big and noteworthy. For the majority of models
evaluated (8 out of 11), the performance change is minor, typically within +/- 2 percentage points.
For example, Gemini-2.5-pro, shows a notable decrease in success rate (-9.0 points).

C Extended Experiment Results and Analysis

This section contains the following additional experimental results:

23

Hidden Success API

Model Rate (%) Hit Rate (%)
GPT-40 29.6+25 43.6+27
GPT-40-mini 277425 40.3+27
GPT-4.1 43.6+27 49 4405
GPT-4.1-mini 41.2+27 44,0427
GPT-4.1-nano 32.9+26 43 8427
GPT-4.5 33.8+26 58.0+27
Gemini 1.5 Pro 44 5427 457123
Gemini 2.0 Flash 41.2+27 434427
Gemini 2.5 Pro 47 3128 50.0+28
Gemini 2.5 Flash 48.2425 43,4427

Table 9: Success and API hit rates under the SEK setting. While SEK, being a two-round
prompting scheme, is expected to outperform greedy decoding, we observe that it does not yield
significant improvements. For example, with GPT-4.1, the success rate actually drops by 4.9% when
using SEK compared to greedy decoding.

* An experiment on Automatic Prompt Optimization of the system prompt for Greedy Decod-
ing is described in Table 10.

* An experiment on static analysis based generated solutions fixing to ensure model failures
are not attributed to confounding factors like indentation problems and unused imports or
variable declarations. Refer to Table 13 for further details.

Table 11 contains an extended set of RAG results, including both additional models and the
setting where only a single document is retrieved.

Table 12 contains a set of results with IDE and CLI coding assistants, such as Claude Code,
Goose, and Cline.

We also present the following additional analyses:
* A comparison of success rates between Self-Debug and Greedy Decoding, when broken

down by version release year (Figure 8) and by library (Figure 9).

* A comparison of success rates between RAG and Greedy Decoding by library is shown in
Figure 10.

* Figure 11 analyzes the intra-model sample agreement rates in the Greedy Decoding, Zero-
Shot CoT and RAG settings.

Model Best Round Success Rate (%) A (%)
GPT-4.1-mini 1 42.1+27 2.1
GPT-4.1-nano 3 37.5+27 +3.7
GPT-4.1 1 50.0+28 +1.5
GPT-40 0 49.1+258 0.0

Table 10: Automatic System Prompt Optimization results. The prompt was optimized for at most
5 rounds using the method described in Ye et al. [2025], with early stopping if the improvement over
previous round is less than 1.5%. We used GPT-4.1 as the mutation model and a random fixed 20%
subset of the dataset for the optimization process. For the initial prompt, we use the same system
prompt that we had used for our Greedy Decoding experiments, as given in Figure 15. We report the
delta of the hidden test success rate, in comparison to the Greedy Decoding baseline. The results
demonstrate the limited utility of further optimizing the prompts we had used in our experiments.

In addition to evaluating a generic agentic framework endowed with basic tools, we also analyze the
performance of specialized Al coding assistant software.

24

Model k=1 k=3
Success API Hit Success API Hit Precision Recall

Rate (%) Rate (%) Rate (%) Rate (%) (%) (%) MRR

Open-Weights Models

CommandA 43.6+27 439427 48.2128 454427 419127 50.7+25 0.63x003
CommandR 7B 232423 36.3427 23.2423 35.6426 41.6+27 504128 0.62+003
Deepseek R1 50.9+28 44.8+27 512428 479+28 41.5+27 50.1+28 0.62+0.03
Reka Flash-3 8.5+15 34.5+26 11.6+18 31.9126 299425 39.6125 0.47x003
Jamba 1.6 Mini 18.0+2.1 35.4426 293425 40.4+27 41.6+27 50.1x28 0.62x003
OpenHands LM 32B v0.1 =~ 34.8+26 41.0+27 289425 36.5+27 259424 33.7+27 0424003
Llama 4 Scout 38.7+27 451427 39.3+27 43.6427 41.3427 504425 0.62+003
Enterprise Models

Arcee CoderLL 46.3+28 473428 36.6+27 40.4427 31.1+26 41.0+28 0.49+003
Claude 3.5 Haiku 43.6427 47.9428 43.0427 47 5428 419427 50.7+28 0.62+0.03
Claude 3.5 Sonnet 8.5+15 18.6+21 494128 51.5+28 419127 50.7x28 0.62x003
Codestral 442427 47 3128 46.0+28 48.5128 419127 50.7+28 0.62+003
CommandR+ 32.0+26 43.0427 36.6+27 41.9427 41.6427 504425 0.62+003
Gemini 2.5 Flash 543128 50.5+28 552428 51.2+28 41.9+27 50.7+25 0.62+003
GPT-4.1-mini 46.9+28 50.0+2s8 48.8+28 50.0+28 413127 504128 0.62+003
GPT-4.1-nano 38.1427 45. 1427 37.8427 45.0+27 41.3+27 50.4+25 0.62+003
GPT-40-mini 41.5+28 454427 433428 46.8423 41.0427 50.1+25 0.62+003
GPT-40 48.2+28 47.0+27 52.1+28 494128 40.6+27 49.5+28 0.61x003
Inflection 3 Productivity 247428 42.0+26 21.9+27 442427 419427 50.7+28 0.62+003
LFM 40B MoE 30.8427 38.3427 20.7+27 34.0427 33.8427 448128 0.53+003

Table 11: RAG performance of additional models when retrieving £ = 1 and k¥ = 3 most relevant
documents. Precision is shown only for £ = 3 as it is equivalent to Recall in the £ = 1 case. This
table shows that retrieving three documents is better in almost all cases than retrieving a single
document, despite the incurred false positives that arise due to most of the examples having less than
three relevant documents.

For this setting, we examine both Command-Line Interface (CLI), such as Claude Code® coding
assistants and Integrated Development Environment (IDE) coding assistants, such as Cline’.

The input to the assistants is given as a Python file which consists of the required library, version and
extra dependencies as in-line comments and subsequently the starter code. NOTE: All assistants had
internet and terminal commands execution access.

We had furthermore ablated this setting versus giving the full problem statement as input. For instruct
models, we run the model’s parsed output as standalone code, and for base models, the concatenation
of the starting code and model’s parsed output (completion).

Table 12 presents the success rates of various CLI and IDE assistants on the visible and hidden tests
in GitChameleon 2.0.

6ht‘cps ://docs.anthropic.com/en/docs/claude-code/overview
"https://cline.bot/

25

https://docs.anthropic.com/en/docs/claude-code/overview
https://cline.bot/

Success Rate API Hit Rate
(%) (%)

Name Model
No-prob Prob No-prob Prob
CLI Assistants
Claude Code Claude 3.7 Sonnet 32.0+26 48.8+28 442127 45.5+27
Goose GPT-40 36.3+27 369+27 439127 54.5+27
GPT-4.1 19.2422 55.5427 41.7+27 53.0+2s8
IDE Assistants
Claude 3.7 Sonnet 329126 44.8427 40.5+27 50.2+28
GPT-4.1 38.4+27 54.6+27 424427 48.8+28
Cline GPT-4.1-mini 271425 421427 32.9+26 52.4+28
GPT-4.1-nano 38.1+27 54.6427 424427 48.8+28
GPT-40 41.5+27 - 427427 -
Kilocode Claude 3.7 Sonnet 30.2+25 - 43.3127 -
Roocode Claude 3.5 Sonnet 12.5+1s - 41.2+427 -

Table 12: Success and API-hit rates for CLI and IDE coding assistants, under the setting where the
problem statement is given (Prob) and where it is not (No-prob), in which case we evaluate a scenario
akin to tab code-completion. The results show that including the problem statement improves success
rate by double-digit margins for 4 out of 5 cases evaluated.

When the problem statement is not given, Cline with GPT-4.1 achieves the best result, with a success
rate of 38.4%. All assistants besides for Goose on GPT-40 demonstrate significant gains, ranging
from 12 to 35 points, from including the problem statement.

2021 2022 2023
Claude 3.7 M
Sonnet
Pro
Gemini 2.5)] mml ol
Pro (2222222227722 7222222222278)
Gt Y
0-1
DDG-SB =
Claude 3.5
Goosep -
0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Success Rate Success Rate Success Rate

I vanilla 777 Self-Debug

Figure 8: Success Rate Breakdown by Version Release Year. Lighter and darker shaded bars
represent values obtained with and without Self-Debugging, respectively. Standard error is drawn as
a black line. This plot shows that the release year does not significantly impact the results for most
evaluated settings.

26

NumPy SymPy

zzzzzzzzzzzzzzzzz;zz;z;z;z;: 222

Wzzzzzzz7z77:7:777707777 70777077777
DDG-SB Claude 3.5

Goose

00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 1.0
Success Rate Success Rate Success Rate

SciPy Django Flask

DDG-SB Claude 3.5

Goose

00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 1.0
Success Rate Success Rate Success Rate

s Vanilla Self-Debug

Figure 9: Success Rate Breakdown by Library. This figure shows the differences in success rate
between the libraries included in GitChameleon 2.0. All evaluated settings do very well on NumPy,
which is to be expected given the popularity of the library and the subsequent abundance of code
that uses it. The success rates on the web development frameworks are notably lower than on the
scientific computing libraries, perhaps due to having more complex abstractions.

27

falcon
scikit-learn
sympy
librosa
django
flask

scipy

torch
numpy

pandas

Figure 10: A Success Rate of RAG over Greedy Decoding, per library. The 10 most frequent
libraries in GitChameleon 2.0 are shown here. The plots demonstrate a trend where smaller models
are less effective at using RAG, with the full-size GPT-4. 1 improving on 7 libraries, the mini version

scikit-learn
django
sympy
librosa
falcon
pandas
scipy
torch
numpy
flask

-10%

-5% 0% 5% 10% 15% 20%

Success Rate Lift

(a) GPT-4.1

Success Rate Lift

(b) GPT-4.1-mini

scikit-learn
sympy
librosa
numpy
falcon
scipy
pandas
torch

flask
django

—20% -10%

0% 10% 20% 30% 40% 50%
Success Rate Lift

(¢) GPT-4.1-nano

improving on 5 and the nano version improving only on 3.

28

-20% -10% 0% 10% 20%

40%

Claude 3.7 Sonnet 0.750.780.760.800.78 0.75 0.71.0.77 0.71 Gemini 1.5 Pro 0.75 - 0.69 0.64 0.75.0.77.
0.82
Gemini 1.5 Pro 0.730.750:780.72 0.74 0.70 0.77 0.75 0.76 Gemini 2.0 Flash 0.70 0.74 0.64 0.70 0.69 0.72 . 0.70 0.80
Gemini 2.0 Flash 0.740.740.750.740.76 0.76 0.77.0.70| 0.80 Gemini 2.5 Pro 0.62 0.58 0,74 R 7
Gemini 2.5 Pro 0.760.750.700.700.730.700.72 p—— ey 0.75. 075
GPT4.1 078
GPT 4.1-mini 0.74 0.69 0.66 0.69 0.66
GPT 4.1-mini 0.70
076 GPT 4.1-nano
GPT 4.1-nano
. 0.76 0.74 0.75
GPT 4.5 0.74 GPT 4.5 oo
GPT-40 GPT-40
0.72
GPT-40-mini GPT-40-mini 0.60
Llama4 Maverick o.70 Llama4 Maverick
x -
d 5 N QO 9 0 QL
& < D S S
GRS & S
PR & ad v AL RPLS
& S & &S & & ¢ &
& S o © RS
(a) Greedy Decoding (b) Zero-Shot Chain-Of-Thought
0.86
Claude 3.7 Sonnet 0.81 0.81 0.79 0.80 0.74 0.77
Gemini 2.5 Flash 0.81 0.79 0.73 0.80 0. L 084
Gemini 2.5 Pro 0.71 0.75 0. 74 0.82
GPT 4.1 .73 [0.79
0.80
GPT 4.1-mini
0.78
GPT 4.1-nano
0.76
GPT-40-mini
Grok 3 0.74
Llama4 Maverick 0.72

(c) RAG (k=3)

Figure 11: Intra model sample agreement rates. These plots show the rate of samples that have
the same pass/fail result among all pairs of models, under the Greedy Decoding, Zero-Shot CoT and
RAG settings. Each cell in these plots represents the agreement rate of a pair of models, with the
rate also being color-coded. The high agreement rates in all three subfigures show that ensembling
different models would have a limited effect on the success rates.

29

Pylint Success
Assistant Model Linter Score T Rate (%)
N/A 1.06 54.6+28
Cline IDE) GPT-4.1 Black + Isort 1.69 54.6+23
Ruff 2.64 54.6+28
N/A 0.53 36.3+27
Goose (CLI) GPT-4o0 Black + Isort 1.82 36.3+27
Ruff 2.92 36.3+27
N/A 0.00 48.8+25
Claude Claude
Black + Isort 1.92 48.8+28
Code (CL) 3.7 Sonnet o 2.60 488+

Table 13: Static Analysis and Auto-linting/Formatting. Pylint® scores are averaged across code
samples and are scored out of 10. The success rate numbers presented are the same as in Table 12
wherein Goose has no access to problem statement while Cline and Claude are provided with the same.
We observe that the original generated solutions via coding assistants do not meet minimum quality
standard requirements, however when improved via auto-linters like Black®, ISort'® and Ruff!!, their
code quality improves but with no impact to the success rate. This demonstrates that there are no
confounding errors like indentation issues, unused imports and other formatting issues influencing
our evaluation results observed. NOTE: For Ruff formatting, we used the already formatted/ linted

solutions via Black and ISort.

Benchmark Language Evaluation Method Core Task Source of Changes Key Difference from GC 2.0

GitChameleon 2.0 Python Execution-Based Generation for a static version: Real, documented historical (Baseline for comparison)
Writes new code for a specific, breaking changes.
often older, library version.

CodeUpdateEval Python Execution-Based Code Updating: Modifies exist- Real-world software update Focuses on migrating code forward
ing code to work with a newer commits. to a newer version, not generating
library version. for a static one.

JavaVersionGenBench ~ Java Execution-Based Code Updating: Modifies exist- Real-world Java projects. Focuses on the Java ecosystem and
ing Java code to handle version its specific language/tooling chal-
updates. lenges.

LLM-Deprecated-API Python Non-Executable Deprecation Fixing: Identifies A curated list of deprecated Uses a non-executable evaluation
and replaces specific deprecated ~ APIs. method and has a narrow scope fo-
API calls. cused only on API deprecation.

LibEvolutionEval Python Non-Executable Code Completion: Fills in a API documentation and re- Is a completion-based task that
missing part of a code snippet lease notes. does not test functional correctness
based on context. through execution.

RustEvo2 Rust Execution-Based Code Repair: Fixes existing Real breaking changes from Focuses on the Rust ecosystem and
code that fails to compile after Rust libraries ("crates"). a reactive, compiler-error-driven re-
a dependency update. pair task.

CODEMENV Python Execution-Based Environment Compatibility: A broad set of environment Has a broader focus on overall en-

Generates code that is compat-
ible with a complex environment
specification.

configurations.

vironment compatibility, not specifi-
cally on historical breaking changes.

Table 14: Detailed comparison of GitChameleon 2.0 with related benchmarks across several key
dimensions, highlighting differences in evaluation methodology, core task, and primary programming
language.

D Related Work

This section discusses additional lines of related work and provides a detailed comparison of the
differentation of GitChameleon 2.0 versus previous efforts.

8https://pylint.pycqa.org/en/latest/index.html
“https://black.readthedocs.io/en/stable/
Ohttps://pycqa.github.iofisort/
"https://docs.astral.sh/ruff/

30

D.1 Code Evolution Datasets

While the main text provides a high-level overview of the most similar benchmarks, this section
offers a more detailed differentiation between GitChameleon 2.0 and other relevant works. We
categorize these benchmarks based on several key dimensions, including their evaluation method
(execution-based vs. non-executable) and, most importantly, their core task format (instruction-
based generation vs. completion- or repair-based tasks). This distinction is critical as it tests
different capabilities of language models.

D.1.1 Task Format: Instruction-Based Generation

GitChameleon 2.0 is fundamentally an instruction-based benchmark. For each problem, the
model is given a natural language "Problem Statement" and starter code. The core challenge is to
comprehend the user’s intent and generate a new, functionally correct solution that adheres to specific
version constraints. This tests a model’s ability to translate human requirements into code.

D.1.2 Task Format: Code Update, Repair, and Completion

In contrast, many other benchmarks focus on tasks where the primary input is existing code, not a
natural language instruction. The model’s goal is to modify, repair, or complete a given code snippet.

Code Update and Repair Benchmarks A significant body of work evaluates a model’s ability to
modify or repair existing code.

* CodeUpdateArena [Liu et al., 2025] and JavaVersionGenBench [Ciniselli et al., 2024]
are code modification benchmarks for Python and Java, respectively. They provide a model
with a working piece of code and require it to be updated to a newer library version.

* RustEvo2 [Liang et al., 2025] is a code repair benchmark for Rust. It provides a model
with code that is broken due to a dependency update and asks it to generate a fix based on
compiler errors.

These tasks are distinct from GitChameleon 2.0’s, as they test a reactive, corrective capability rather
than the proactive generation of new code from a specification.

Completion-Based and Non-Executable Benchmarks Another category of benchmarks uses
non-executable metrics or focuses on code completion.

¢ LibEvolutionEval [Kuhar et al., 2024] is a non-executable benchmark structured as a
"fill-in-the-middle" completion-based task. Its evaluation is based on textual similarity
metrics (e.g., F1 score), not the functional correctness of the code.

e LLM-Deprecated-API [Wang et al., 2025b], which we note in our introduction, focuses
on replacing deprecated APIs. This is a specific type of repair task that is evaluated using
non-executable string matching.

* CODEMENY [Cheng et al., 2025] evaluates a model’s ability to generate code compatible
with a complex environment specification. While execution-based, its task is primarily
driven by satisfying technical constraints rather than implementing a distinct, high-level
natural language instruction.

For a detailed breakdown, Table 14 contrasts GitChameleon 2.0 with these related benchmarks
across several key methodological dimensions.

D.2 Specialized Frameworks and Repair Techniques
Recognizing the unique challenges of library evolution, researchers and practitioners are developing

specialized frameworks and automated repair techniques that often combine LL.Ms with other
methods.

31

D.2.1 DepsRAG

This framework utilizes a multi-agent system built around RAG and Knowledge Graphs specifically
for reasoning about software dependencies Alhanahnah et al. [2024]. It employs distinct agents
managed by an LLM: one to construct and query the dependency KG, another for web searches, and
a critic agent to review and refine the generated responses, aiming for higher accuracy in complex
dependency analysis tasks.

D.2.2 Dr.Fix

This tool represents a family of approaches using LLMs, often combined with program analysis
and RAG, for automated program repair. It focuses on fixing API misuse in LLM-generated code
based on the taxonomy of misuse types. It employs a detect-reason-fix pipeline and demonstrates
substantial improvements in repair accuracy metrics such as BLEU and Exact Match Behrang et al.
[2025].

D.2.3 ReplaceAPI/ InsertPrompt

These are lightweight, targeted techniques designed specifically to mitigate the use of deprecated
APIs in LLM-based code completion. Replace API performs a direct, post-generation substitution of
known deprecated API calls with their replacements, achieving high fix rates in evaluations Wang
et al. [2025b]. InsertPrompt modifies the input prompt to discourage the generation of deprecated
APIs in the first place. They serve as valuable baseline approaches for this specific problem Wang
et al. [2025a].

D.2.4 Conclusion

These works indicate a trend towards hybrid and agentic systems, moving beyond single LLM calls
to more sophisticated architectures that integrate LLMs with other methods for handling library
evolution. GitChameleon 2.0 serves as an essential resource for evaluating such systems.

In the subsequent sections we present qualitative sample analyses and model generation differences.

E Case Study: Code Assistant Failure With Search

Here we present an example where a coding assistant (Zencoder) fails at solving a problem in our
benchmark even when it can search the internet for the correct API call. The task required using the
torch.special module or equivalent scipy.special to calculate the the modified Bessel function
of the first kind of order 0. This can be computed using torch.special.i@ or scipy.special.i@
if the version pre-dates the introduction of torch.special.

E.1 Inputs

Problem Statement: Calculate the modified Bessel function of the first kind, order 0 using pytorch’s
special functions if available in this version, otherwise you may use another library.

Environment

* Python Version: 3.7
 Pytorch Version: 1.10

Starting Code

import torch
def bessel_i@(input_tensor: torch.Tensor) -> torch.Tensor:

Listing 1: Initial Python function signature provided.

32

E.2 Model Attempt and Failure

The model’s attempt involved manually implementing the modified Bessel function, handling small
and large inputs as separate cases.

Assistant Trace

[truncated]

*xWeb search#*x*

Done

Let me check if the torch.special module with Bessel functions is
specifically available in PyTorch 1.10.0.

xWeb search#x

Done

The search results dont specifically confirm if torch.special.i@ is
available in PyTorch 1.10.0. Let me search more specifically.

*xWeb search#*x*

Done

Since Im not getting clear information about the availability of torch.
special.i®@ in PyTorch 1.10.0, Ill implement the function manually
using the mathematical definition of the modified Bessel function of
the first kind of order 0.

Now, lets implement the solution:

Listing 2: The assistant’s trace while designing the solution.

Proposed Solution

def bessel_i@(input_tensor: torch.Tensor) -> torch.Tensor:
result = torch.zeros_like(input_tensor)
abs_x = torch.abs(input_tensor)

For small values (|x| < 15), use the series expansion
small_mask = abs_x < 15.0
small_x = abs_x[small_mask]

if small_x.numel() > 0:

small_result = torch.ones_like(small_x)
term = torch.ones_like(small_x)
x_squared_over_4 = (small_x / 2.0) x* 2

Sum the series until convergence or max iterations

for k in range(1, 30): # 30 terms should be enough for good
precision
term = term * x_squared_over_4 / (k ** 2)
small_result = small_result + term

Check for convergence
if torch.all(term < 1e-10 * small_result):
break

result[small_mask] = small_result

For large values (|x| \geqg 15), use the asymptotic approximation
large_mask = ~small_mask
large_x = abs_x[large_mask]

if large_x.numel() > 0:
large_result = torch.exp(large_x) / torch.sqrt(2 * math.pi =*
large_x)
result[large_mask] = large_result

33

return result}

Listing 3: The solution proposed by the assistant.

Error Traceback:

TestBessell@.test_large_values
def test_large_values(self):
"""Test bessel_i0 with large positive and negative values.
input_tensor = torch.tensor([10.0, -10.0, 20.0, -20.0], dtype=torch.
float32)
result = bessel_i@(input_tensor)
expected = torch.from_numpy(scipy_i@(input_tensor.numpy()))

nnon

> torch.testing.assert_close(result, expected)
E AssertionError: Tensor-likes are not close!

Listing 4: Error trace for the implementation of bessel_i@.

Explanation: The failure in the manual implementation arises because the asymptotic approximation

el‘

V2w

has only O(1/z) accuracy and omits higher-order correction terms, so for z = 20 its relative error
exceeds the test tolerance of 107°. To fix this, either use the built-in torch.special.i0(z) or
include at least the first correction term in the expansion:

Io(l‘) ~

€

Iop(z) =~ \/%(1 — 8%),

which reduces the large-z error below the required threshold.

F Case Study: Self-Debugging in Batched Matrix Exponential Computation

This appendix details an instance where self-debugging helped rectify an initially incorrect solution
from GPT-4.5 for computing the matrix exponential of batched matrices. The task required leveraging
the scipy.linalg.expm function while ensuring compatibility with batched inputs.

F.1 Inputs

Problem Statement: Complete the function that computes the matrix exponential of batched matrices,
non specified parameters should use the default value

Environment:

* Python Version: 3.10
* SciPy Version: 1.8.1

Starting Code

from scipy import linalg
import numpy as np

def compute_matrix_exponential(A: np.ndarray) -> np.ndarray:
Model needs to complete this function
pass

Listing 5: Initial Python function signature provided.

34

F.2 First Model Attempt and Failure

The model’s first attempt involved reshaping the input array and applying scipy.linalg.expm
directly.

Initial Model Output

from scipy import llinalg
import numpy as np

def compute_matrix_exponential(A: np.ndarray) -> np.ndarray:
return linalg.expm(A)

Listing 6: First attempt by the model to define compute_matrix_exponential.

Model’s Explanation (Initial): The function directly returns linalg.expm(A) because SciPy’s expm
computes the matrix exponential for a given matrix. Given that A is a batch of matrices, SciPy should
naturally handle this batch input and apply the exponential operation to each matrix independently,
producing the correct batched result.

Result: Failure

Error Traceback Failure: Calling 1inalg.expm(A) on a 3D array A € R®*™*™ makes SciPy treat
it as one “matrix,” and raises

ValueError: expected a square matrix

because it only supports 2D inputs.

Traceback (most recent call last):
File "/app/repo/eval_venvs/gcham_venv_111/1ib/python3.10/site-packages/scipy/sparse/linalg/_
matfuncs.py”, line 601, in _expm
raise ValueError('expected a square matrix')
ValueError: expected a square matrix

Listing 7: Error traceback from the initial model output.

F.3 Self-Debugging Process and Correction

The self-debugging process recognized that simply calling linalg.expm was insufficient. Instead,
linalg.expm must be applied individually to each 2D matrix within the batch. Additionally, a crucial
pre-condition is that each matrix within the batch must be square.

Second Model Attempt (Post-Debugging) The model regenerated the solution, incorporating input
validation and iterating over the individual matrices in the batch.

Regenerated Model Output

from scipy import linalg
import numpy as np

def compute_matrix_exponential(A: np.ndarray) -> np.ndarray:
return np.stack([linalg.expm(A[i]) for i in range(A.shape[0]) if A[i
1.shape[@] == A[i].shape[1]], axis=0)

Listing 8: Corrected compute_matrix_exponential after self-debugging.

Model’s Explanation (Regenerated): The corrected solution applies linalg.expm separately to each
2D square matrix in the batch using a list comprehension, then re-stacks the results into a 3D array.
This ensures each call to expm receives a valid input, resolving the error.

Result: Success

F.4 Analysis of the Correction

The regenerated output effectively addressed the shortcomings of the initial attempt:

35

* Fix: Apply expm to each 2D slice 4; € R™*" and re-stack, ensuring every call gets a proper
square matrix.

This revised approach correctly computes the matrix exponential for each matrix in the batch and
handles the data dimensions appropriately, thus resolving the ValueError and fulfilling the problem
requirements.

G Qualitative Analysis

This section presents additional qualitative studies of attempted solutions in the Greedy Decoding
and the Chain-of-Thought settings.

G.1 Greedy Decoding
G.1.1 Example 1: (PyTorch)

Problem Statement: Calculate the logarithm of the cumulative distribution function of the standard
normal distribution using available functions. If not available in PyTorch, use another library.

Environment:

 Python Version: 3.7
* Torch Version: 1.9.0
» Extra Dependencies: scipy==1.7.3, numpy==1.21.6

Starting Code

import torch
def log_ndtr(input_tensor: torch.Tensor) -> torch.Tensor:
pass

Listing 9: Greedy Example 1 Starting Code

Solution

import numpy as np
from scipy.stats import norm
output = torch.from_numpy(norm.logcdf (input_tensor.numpy()))
return output

Listing 10: Greedy Example 1 Solution

Claude 3.7 Failure Output

import torch
import math
from torch.distributions import Normal

def log_ndtr(input_tensor: torch.Tensor) -> torch.Tensor:
normal = Normal (@, 1)
return normal.cdf (input_tensor).log()

Listing 11: Claude 3.7 Output

Gemini 2.5 Pro Failure Output

import torch
from torch.distributions import Normal

def log_ndtr(input_tensor: torch.Tensor) -> torch.Tensor:

loc = torch.tensor (0.0, device=input_tensor.device, dtype=input_tensor.
dtype)

36

scale = torch.tensor (1.0, device=input_tensor.device, dtype=input_
tensor.dtype)

standard_normal = Normal(loc=loc, scale=scale)
log_cdf_values = standard_normal.log_cdf(input_tensor)

return log_cdf_values

Listing 12: Gemini 2.5 Pro Output

Analysis of Model Outputs

Both Claude 3.7 and Gemini 2.5 Pro incorrectly attempt to compute the log-CDF of the
standard normal distribution using PyTorch’s Normal distribution. Claude 3.7 computes
normal.cdf (input_tensor).log(), which is numerically unstable for large negative inputs since
the CDF approaches zero and its logarithm can underflow to —oo, leading to invalid results. Gemini
2.5 Pro mistakenly calls a non-existent log_cdf method on the PyTorch Normal object, causing an
immediate AttributeError in PyTorch 1.9. This reflects a confusion between PyTorch and other
libraries (such as SciPy or TensorFlow Probability) that do provide this method. In summary, neither
model provides a robust or correct implementation; the only reliable approach in this environment is
to use scipy.stats.norm.logcdf as shown in the reference solution, or to implement a numerically
stable approximation in PyTorch when SciPy is unavailable.

G.1.2 Greedy Example 2 (SciPy)

Problem Statement: complete the following function that check if all the batch of matrices are
invertible, using numpy 1.25.1.

Environment:

 Python Version: 3.10
* Scipy Version: 1.11.1

Starting Code

import warnings

from scipy.linalg import det
import numpy as np
warnings.filterwarnings('error")

def check_invertibility(matrices: np.ndarray) -> np.bool_:
pass

Listing 13: Greedy Example 3 Starting Code

Solution

return np.all(det(matrices))

Listing 14: Greedy Example 3 Solution

Gemini 2.5 Correct Output

import warnings

from scipy.linalg import det
import numpy as np
warnings.filterwarnings('error')

def check_invertibility(matrices: np.ndarray) -> np.bool_:
try:
Check if matrices is a batch of matrices
if matrices.ndim < 3:
If it's a single matrix, add a batch dimension

37

matrices = np.expand_dims(matrices, axis=0)

Check if all matrices are square
batch_size, rows, cols = matrices.shape
if rows != cols:

return np.bool_(False)

Calculate determinants for all matrices in the batch
determinants = np.array([det(matrix) for matrix in matrices])

A matrix is invertible if its determinant is not zero
Check if all determinants are non-zero
return np.bool_(np.all(determinants != 0))

except Exception:
If any error occurs during computation, return False
return np.bool_(False)

Listing 15: Gemini 2.5 Pro Output

GPT 4.1 Failure Output

import warnings

from scipy.linalg import det
import numpy as np
warnings.filterwarnings('error")

def check_invertibility(matrices: np.ndarray) -> np.bool_:
for matrix in matrices:
try:
d = det(matrix)
if np.isclose(d, 0):
return np.bool_(False)
except Warning:
return np.bool_(False)
return np.bool_(True)

Listing 16: GPT 4.1 Output

Analysis of Model Outputs

Gemini 2.5 Pro produces a robust solution that handles both single matrices and batches, verifies
that matrices are square, computes the determinant for each matrix, and correctly checks if all
determinants are non-zero to determine invertibility, returning False on any exception to ensure
safe failure. In contrast, GPT 4.1’s output contains a subtle but critical error in exception handling:
the code attempts to catch Warning as an exception, but Python treats warnings and exceptions
differently, so this approach is ineffective—especially since warnings.filterwarnings(’error’)
escalates warnings to exceptions that should be caught as Exception. As a result, GPT 4.1’s function
may fail or produce unpredictable results in the presence of numerical issues or shape mismatches,
despite using the correct logic for checking determinant values.

G.1.3 Greedy Example 3 (SymPy)

Problem Statement: Write a custom jacobi symbols function that compute the Jacobi symbol.

Environment:

* Python Version: 3.9
* Sympy Version: 1.13

Starting Code

import sympy

38

def custom_jacobi_symbols(a: int, n: int) -> int:
pass

Listing 17: Greedy Example 4 Starting Code

Solution

return sympy. jacobi_symbol(a, n)

Listing 18: Greedy Example 4 Solution

GPT 4.1 Correct Output

import sympy

def custom_jacobi_symbols(a: int, n: int) -> int:
return sympy.ntheory. jacobi_symbol(a, n)

Listing 19: GPT 4.1 Output

01 Failure Output

import sympy

def custom_jacobi_symbols(a: int, n: int) -> int:
return sympy.ntheory.residues. jacobi_symbol(a, n)

Listing 20: O1 Output

Analysis of Model OQutputs

GPT-4.1 provides the correct solution by calling sympy.ntheory. jacobi_symbol, which is the
proper and documented API for computing the Jacobi symbol in SymPy 1.13. In contrast, Ol
incorrectly uses sympy.ntheory.residues. jacobi_symbol, assuming that the function is nested
in the residues submodule; however, in this version of SymPy, jacobi_symbol is not found there,
resulting in an AttributeError on all tests. This error highlights a lack of up-to-date API knowledge
or reliance on outdated documentation.

G.1.4 Greedy Example 4 (Flask)

Problem Statement: Complete the app set-up so that, when given a batch of matrix, the json
encoding compute the determinants of each matrix, before flattening and converting the result to a
list, we are using scipy 1.11.1. Do not run the app in your code.

Environment:

 Python Version: 3.10
* Flask Version: 3.0.0

» Extra Dependencoes: scipy==1.11.1

Starting Code

import flask
import numpy as np
from scipy import linalg

app = flask.Flask('testl')
@app.route('/data')
def data(num_list):
return flask. jsonify({ ' numbers': num_list})
def eval_app(app, data_fn, num_arr):
with app.test_request_context():
response = data_fn(num_arr)

39

return response.get_data(as_text=True)

class MyCustomJSONHandler (flask. json.provider.DefaultJSONProvider):
def default(self, obj):
if isinstance(obj, np.ndarray) and len(obj.shape)==3 and obj.
shape[-1]==o0bj.shape[-2]
pass

Listing 21: Greedy Example 5 Starting Code

Solution

res = linalg.det(obj)
return res.tolist()
return super().default(obj)

app.json_provider_class = MyCustomJSONHandler
app.json = app.json_provider_class(app)

Listing 22: Greedy Example 5 Solution

Gemini 2.5 Pro Correct Qutput

import flask
import numpy as np
from scipy import linalg

app = flask.Flask('test1")
@app.route('/data’')
def data(num_list):
return flask. jsonify({ 'numbers': num_list})
def eval_app(app, data_fn, num_arr):
with app.test_request_context():
response = data_fn(num_arr)
return response.get_data(as_text=True)

class MyCustomJSONHandler (flask. json.provider.DefaultJSONProvider):
def default(self, obj):

if isinstance(obj, np.ndarray) and len(obj.shape)==3 and obj.
shape[-1]==o0bj.shape[-2]
Calculate determinants for each matrix in the batch
determinants = linalg.det(obj)
Convert the resulting 1D array of determinants to a list
return determinants.tolist()

Fallback to the default serialization for other types

return super().default(obj)

Apply the custom JSON provider to the app
app.json = MyCustomJSONHandler (app)

Listing 23: Gemini 2.5 Pro Output

Claude 3.7 Failure Output

import flask
import json

app = flask.Flask('test')
@app.route('/data’')
def data(num_set):
return flask. jsonify({ 'numbers': num_set})

def eval(app, data_fn, num_set):

with app.test_request_context():
response = data_fn(num_set)

40

return response.get_data(as_text=False)

def app_set_up(app: flask.Flask) -> None:
def set_encoder (obj):
if isinstance(obj, set):
return sorted(list(obj))
raise TypeError(f"Object of type {type(obj)} is not JSON
serializable”)

app.json.encoder = lambda: json.JSONEncoder (default=set_encoder)

Listing 24: Claude 3.7 Output

Analysis of Model Outputs

Gemini 2.5 Pro provides a solution that correctly subclasses
flask.json.provider.DefaultJSONProvider and overrides the default method to check
for batches of square matrices, compute their determinants using scipy.linalg.det, and serialize
the result as a list, fully aligning with both the requirements and Flask 3.0.0’s JSON provider API.
In contrast, Claude 3.7’s output incorrectly tries to customize JSON serialization by modifying
app.json.encoder—a property that is not available in Flask 3.0.0—and focuses on encoding
sets rather than NumPy arrays, neglecting the determinant computation altogether. Consequently,
Claude’s approach fails with an AttributeError and does not satisfy the task requirements even
if the encoder logic were correct, while Gemini’s implementation is robust and functional for the
specified environment.

G.2 Zero-Shot Chain-Of-Thought
G.2.1 CoT Example 1 (Torch)

Problem Statement: Calculate the modified Bessel function of the first kind, order 1 using PyTorch’s
special functions if available in this version, otherwise you may use another library.

Environment:

* Python Version: 3.7
¢ Torch Version: 1.9.0
» Extra Dependencies: scipy==1.7.3, numpy==1.21.6

Starting Code

import torch
def bessel_il(input_tensor: torch.Tensor) -> torch.Tensor:
pass

Listing 25: CoT Example 1 Starting Code

Solution

import numpy as np

from scipy.special import i1 as scipy_il

output = torch.from_numpy(scipy_il(input_tensor.numpy()))
return output

Listing 26: CoT Example 1 Solution

Claude 3.7 Correct Output

import torch
from scipy import special

def bessel_il(input_tensor: torch.Tensor) -> torch.Tensor:
Convert PyTorch tensor to NumPy array

41

input_numpy = input_tensor.cpu().numpy()

Apply the modified Bessel function of the first kind, order 1
result_numpy = special.il(input_numpy)

Convert back to PyTorch tensor
result_tensor = torch.from_numpy(result_numpy).to(input_tensor.device

)

Ensure the output has the same dtype as the input
result_tensor = result_tensor.to(dtype=input_tensor.dtype)

return result_tensor

Listing 27: Claude 3.7 Output

Gemini 2.5 Pro Failure Output

import torch
def bessel_il(input_tensor: torch.Tensor) -> torch.Tensor:
"""Calculates the modified Bessel function of the first kind, order
1.

Args:
input_tensor: The input tensor.

Returns:
A tensor containing the element-wise modified Bessel function of
the first kind, order 1.
Check if torch.special.il is available (it is in torch 1.9.0)
if hasattr(torch.special, 'il1'):
return torch.special.il(input_tensor)
else:
Fallback or error handling if needed for other versions
For torch 1.9.0, this else block should not be reached.
raise NotImplementedError(”"torch.special.il is not available in
this PyTorch version.")

Listing 28: Gemini 2.5 Pro Output

Analysis of Model Outputs

Claude 3.7 provides a robust solution by correctly identifying that torch. special. il is not available
in PyTorch 1.9.0 and instead leveraging scipy.special. il to compute the modified Bessel function,
converting the result back to a PyTorch tensor and ensuring proper device and dtype handling; this
approach is fully compatible with the given environment and passes all tests. In contrast, Gemini
2.5 Pro mistakenly assumes that torch.special. il exists in PyTorch 1.9.0, checks for its presence
using hasattr, and raises a NotImplementedError when unavailable; however, since this function
is absent in the specified version, the code fails every test due to the raised exception.

G.2.2 CoT Example 2 (Scikit-learn)

Problem Statement: Adapt the use of ‘manhattan distances* to obtain a pairwise distance matrix.

Environment:

* Python Version: 3.10
e Scikit-learn Version: 1.1

» Extra Dependencies: numpy==1.23.5

Starting Code

42

from sklearn.metrics.pairwise import manhattan_distances

import numpy as np

def get_pairwise_dist(X: np.ndarray,Y: np.ndarray) -> np.ndarray:
distances = manhattan_distances(X, Y, sum_over_features=False)
pass

Listing 29: CoT Example 2 Starting Code

Solution

return np.sum(distances, axis=1)

Listing 30: CoT Example 2 Solution

GPT 4.1 Correct Output

from sklearn.metrics.pairwise import manhattan_distances

import numpy as np

def get_pairwise_dist(X: np.ndarray, Y: np.ndarray) -> np.ndarray:
distances = manhattan_distances(X, Y)
return distances

Listing 31: GPT 4,1 Output

Claude 3.7 Failure Output

from sklearn.metrics.pairwise import manhattan_distances

import numpy as np

def get_pairwise_dist(X: np.ndarray,Y: np.ndarray) -> np.ndarray:
distances = manhattan_distances(X, Y, sum_over_features=False)
return np.sum(distances, axis=2)

Listing 32: Claude 3.7 Pro Output

Analysis of Model Outputs

In this example, GPT 4.1 provides a correct implementation by calling manhattan_distances(X,
Y) without the sum_over_features argument, which by default returns the desired pair-
wise distance matrix of shape (nsamplesx,nsamplesy). In contrast, Claude 3.7 incorrectly sets
sum_over_features=False, causing the output to be a 3D array of shape, and then applies
np.sum(distances, axis=2), which does not match the problem’s intent and produces incor-
rect results if further summed incorrectly. The misuse of the sum_over_features parameter and the
erroneous axis for reduction demonstrates a misunderstanding of the scikit-learn API and leads to a
failure, while GPT 4.1’s output is concise and correct for all valid input shapes.

G.2.3 CoT Example 3 (Falcon)

Problem Statement: Create a class named CustomRouter to manage your application’s routes.
The class should maintain an internal dictionary named routes for storing the mapping between
URI templates and their associated resources. Implement an add_route method that accepts three
arguments: a URI template, a resource, and additional keyword arguments. This method should
use Falcon’s routing utility—specifically, the map_http_methods function from the falcon.routing
module—to generate a mapping of HTTP methods to resource handlers. If a ’fallback’ parameter
is provided in the keyword arguments, it should be passed to map_http_methods. The method
should then store a tuple consisting of the resource and the generated method mapping in the routes
dictionary, using the URI template as the key, and finally return the generated method mapping. You
must not modify the provided starting code, which includes the empty CustomRouter class. Instead,
complete the solution by dynamically adding the required method in the solution() function.

Environment:

* Python Version: 3.10

43

e Falcon Version: 2.0

Starting Code

class CustomRouter:
def __init__(self):
self.routes = {}

def solution() -> None:

def add_route(

Listing 33: CoT Example 3 Starting Code

Solution

self, uri_template, resource, *xkwargs):
from falcon.routing import map_http_methods
method_map = map_http_methods(resource, kwargs.get('fallback',
None))
self.routes[uri_template] = (resource, method_map)
return method_map

CustomRouter.add_route = add_route

Listing 34: CoT Example 3 Solution

01 Correct Output

import falcon
from falcon.routing import map_http_methods

class CustomRouter:
def __init__(self):
self.routes = {}

def solution() -> None:
def add_route(self, uri_template, resource, *xkwargs):
fallback = kwargs.pop('fallback', None)
if fallback is not None:
method_map = map_http_methods(resource, fallback=fallback)

else:
method_map = map_http_methods(resource)
self.routes[uri_template] = (resource, method_map)
return method_map
CustomRouter.add_route = add_route

Listing 35: O1 Output

GPT 4.1 Failure Output

from falcon.routing import map_http_methods

def solution() -> None:
def add_route(self, uri_template, resource, *xkwargs):
fallback = kwargs.pop('fallback', None)
if fallback is not None:
method_map = map_http_methods(resource, fallback=fallback)
else:
method_map = map_http_methods(resource)
self.routes[uri_template] = (resource, method_map)
return method_map

CustomRouter.add_route = add_route

44

Listing 36: GPT 4.1 Output

Analysis of Model Outputs

In this case, the O1 output provides a fully correct solution by dynamically attaching an add_route
method to the CustomRouter class, properly handling the optional fallback argument, and updating
the routes dictionary according to the problem statement. The method is inserted via the solution()
function without modifying the provided class definition, and it uses Falcon’s map_http_methods
utility to construct the method mapping as required. In contrast, the GPT 4.1 output omits the
explicit definition of the CustomRouter class in its solution, violating the requirement to use the
existing starting code. Although the logic within the solution() function is correct, the absence of a
CustomRouter definition in the completed module would lead to a NameError or otherwise prevent
the expected dynamic method attachment. The critical distinction is that O1 respects all constraints
including not modifying the class definition directly, while GPT 4.1 provides an incomplete module,
failing to meet the initialization requirements set by the problem.

H Logic vs. Knowledge Retention

The goal of our proposed benchmark, GitChameleon, is to evaluate a model’s ability to retain
version-specific knowledge—specifically, whether it can recall the functionalities associated with
particular library versions it has been trained on. Notably, this capability is distinct from the ability to
generate logically correct code. While we do not explicitly disentangle whether model failures on our
evaluation suite stem from incorrect logic generation or incorrect API version usage, our benchmark is
intentionally designed so that most problems primarily test knowledge retention rather than complex
logic reasoning. For each problem in our dataset, we compute the number of logic-related nodes in the
Abstract Syntax Tree (AST) of the ground-truth solution and present their distribution in Figure 12.
As shown, most ground-truth solutions contain fewer than five logic-related AST nodes. This supports
our claim that the benchmark is primarily designed to assess version-specific knowledge retention
rather than complex logic-based code generation.

Table 15: Criteria for classifying AST nodes as logic-related.

Condition Classification

Calling a user-defined function

Calling built-in Python operators (e.g., +)

Calling a math or utility function with non-obvious purpose
Calling a library method (e.g., torch. from_numpy)
Composing multiple calls together

Ax AN

The criteria for classifying AST nodes as logic-related are provided in Table 15, and we include
visualizations of the ASTs for two example ground-truth solutions for further illustration in Figures
13 and 14 respectively.

1. Sample ID: 0, Logic Nodes: 3

import torch
def log_ndtr(input_tensor: torch.Tensor) -> torch.Tensor:
import numpy as np
from scipy.stats import norm
output = torch.from_numpy(norm.logcdf (input_tensor.numpy()))
return output

Listing 37: Sample 0 Ground Truth Solution

2. Sample ID: 329, Logic Nodes: 0

import matplotlib.pyplot as plt
def use_seaborn() -> None:
plt.style.use("seaborn”)

45

Listing 38: Sample 329 Ground Truth Solution

Logic Nodes Distribution

250 -

200 1

150 -

Frequency

100 1

50 -

O - T T T T
0 20 40 60 80 100

Number of Logic Nodes

Figure 12: Logic Nodes Distribution over samples’ ground truth solutions’ ASTs. Most ground
truth solutions have less than five logic nodes.

I Prompt Templates

This appendix contains all the prompts we had used for our experiments:

* The prompts for greedy sampling are given in Figure 15.

» The prompts for self-debugging are given in Figure 16.

* The prompt for the multi-step agent is given in Figure 17.

* The prompt for RAG is given in Figure 18.

* The prompt and file format for Coding Assistants are given in Figure 19.

* The prompt for SEK is given in Figure 20 (for keywords generation) and Figure 21 (for code
generation).

J Artifacts and Model Details

This appendix provides citations for various artifacts and models mentioned in the paper.

J.1 Libraries

This is the full list of libraries included in GitChameleon 2.0.

e PyTorch [Paszke et al., 2019]

46

<>
Cimer) C it)
) G5 G@ond) o Cwim) o)
Coe) G Catmrom > o> () e ompa > Crameors > (i)
G e wommy > (@) Co) o)
Gone D> (1) Cumeana > G) st > ()
o) Co) Crmonem > (o) o sy
Con) G > (o)
o)

Figure 13: AST visualization for the ground-truth solution of Sample ID 0. The three color-
coded call nodes (in grey and green) represent the logic-related components, classified under the
“composing multiple calls together” category. The corresponding ground-truth code is shown in Code
block 37 for reference.

Figure 14: AST visualization for the ground-truth solution of Sample ID 329. No logic nodes
are present, as the only call node corresponds to the “calling a library method” category. The
ground-truth solution is provided for reference in Code block 38.

* Geopandas [Jordahl et al., 2020]

47

Figure 15: Prompts for Greedy Sampling

(a) System Prompt for Zero-Shot Prompting

You are a skilled Python
programmer tasked with
solving a coding problem.
Your goal is to provide a
clear, efficient, and correct

solution that meets all the
specified requirements.

Please provide your solution
following these guidelines:

1. Use the required library in
your solution.

2. Incorporate the provided
starter code correctly.

3. Write your solution in Python.

4. Format your solution within a
markdown code block.

5. Ensure your code is clean,
efficient, and well-commented

6. Output only the code block and
nothing else.

Example output format:

T Tpython

[Your code here, incorporating
the starter codel

[Additional code and comments
as needed]

After writing your solution,
please review it to ensure
all requirements are met and
the code is correct and
efficient.

Here are the key elements for
this task:

(b) System Prompt for Chain-Of-Thought Prompt-
ing

You are a skilled Python
programmer tasked with
solving a coding problem.
Your goal is to provide a
clear, efficient, and correct

solution that meets all the
specified requirements.

First, let's think step-by-step.
Then, please provide your
solution following these
guidelines:

1. Use the required library in
your solution.

2. Incorporate the provided
starter code correctly.

3. Write your solution in Python.

4. Format your solution within a
markdown code block.

5. Ensure your code is clean,
efficient, and well-commented

6. Output nothing else after the
code block.

Example output format:

[Step-by-step thinking]

T python

[Your code here, incorporating
the starter code]

[Additional code and comments
as needed]

After writing your solution,
please review it to ensure
all requirements are met and
the code is correct and
efficient.

Here are the key elements for
this task:

(c) User Prompt

1. Required Library:
<library>
{{1library}?}
</library>

2. Python version:
<python>
{{python_version}}
</python>

2. Coding Problem:
<coding_problem>

{{coding_pggblem}}
</coding_problem>

3. Starter Code:
<starter_code>

* NLTK [Loper and Bird, 2002]

* NetworkX [Hagberg et al., 2008]

* GeoPy!'?

e Gradio [Abid et al., 2019]

e Scikit-Learn [Buitinck et al., 2013]
e Matplotlib [Hunter, 2007]

* PyCaret!?

* Pandas [The pandas development team, 2020, McKinney, 2010]
e NumPy [Harris et al., 2020]

» LightGBM'

e spaCy 1

* Django'®

¢ SciPy [Virtanen et al., 2020]

* Flask!?

* Jinja2'®

» SymPy!?

* Seaborn?’

o mitmproxy?! 22

* pytest 23

* Falcon web framework?*

* Tornado web server?

» Plotly?®
* Librosa?’
e Pillow?®
o tqgdm >

* Kymatio®

Zhttps://pypi.org/project/geopy/
Bnttps://pycaret.org/
14https://lightgbm.readthedocs.io/
15https://spacy.io/
https://www.djangoproject.com/
"https://flask.palletsprojects.com/
18https://jinja.palletsprojects.com/
19https://www.sympy.org/en/index.html
2Ohttps://seaborn.pydata.org/
https://mitmproxy.org/
Zhttps://mitmproxy.org/
23https://pytest.org/
24https://falconframework.org/
25https://www.tornadoweb.org/
Phttps://plotly.com/python/
https://librosa.org/doc/latest/index.html
28https://python—pillow.org/
2(’https://github.com/tqdm/tqdm
30https://1ibrosa.org/doc/latest/index.html

49

https://pypi.org/project/geopy/
https://pycaret.org/
https://lightgbm.readthedocs.io/
https://spacy.io/
https://www.djangoproject.com/
https://flask.palletsprojects.com/
https://jinja.palletsprojects.com/
https://www.sympy.org/en/index.html
https://seaborn.pydata.org/
https://mitmproxy.org/
https://mitmproxy.org/
https://pytest.org/
https://falconframework.org/
https://www.tornadoweb.org/
https://plotly.com/python/
https://librosa.org/doc/latest/index.html
https://python-pillow.org/
https://github.com/tqdm/tqdm
https://librosa.org/doc/latest/index.html

J.2 Models
Open-Weights Models

The following open-weights models were evaluated:

e Llama 3.1 Instruct Turbo: Kassianik et al. [2025]
e Llama 3.3 Instruct Turbo 70B: Al [2025]

e L1ama 4 Maverick 400B: Al [2025]

* Qwen 2.5-VL Instruct 72B: Qwen et al. [2025]
* Qwen 3 235B:Yang et al. [2025]

e Command A 111B: Cohere et al. [2025]

* DeepSeek R1 685B: DeepSeek-Al [2025]

* DeepSeek v3: DeepSeek-Al et al. [2025]

* Openhands LM 32B v@.1: Wang [2025]

* Reka Flash-3: Reka

e Jamba 1.6 Mini, Large: Lieber et al. [2024]

Enterprise Models

The following enterprise models were evaluated:

* Arcee CoderL: Arcee

* Claude 3.5 Haiku®!

 Claude 3.5 Sonnet??

e Claude 3.7 Sonnet: Anthropic [2025]
 Claude 4 Sonnet?

* CommandR+3*

* Gemini 1.5 Pro: Team et al. [2024]
* Gemini 2.0 Flash: Kampf [2025]
e Gemini 2.5 Pro: Cloud [2025]

e Gemini 2.5 Flash: Cloud [2025]

* GPT-4.1: [OpenAl, 2025a]

* GPT-4.1-mini: [OpenAl, 2025a]

* GPT-4.1-nano: [OpenAl, 2025a]

* GPT-40: OpenAl [2024]

* GPT-40-mini: OpenAl [2024]

* GPT-4.5: OpenAl [2025b]

e o1: [OpenAl, 2024]

* 03-mini: OpenAl [2024]

» codex-mini®

e Grok 3: xAI[2025]

e Mistral Medium 3: Mistral AI [2025]

3 https://www.anthropic.com/claude/haiku
Zhttps://www.anthropic.com/news/claude-3-5-sonnet
Bhttps://www.anthropic.com/claude/sonnet

34https ://cohere.com/blog/command-r-plus-microsoft-azure
35https ://platform.openai.com/docs/models/codex-mini-latest

50

https://cohere.com/blog/command-r-plus-microsoft-azure
https://platform.openai.com/docs/models/codex-mini-latest

Devstral Small3®
Inflection 3 Productivity®’
Liquid LFM 40B MoE?®

Nova Pro:Intelligence [2024]

J.3 Coding Assistants (CLI/IDE)

The following coding assistants were studied as part of the experimentation pipeline:

Claude Code® (CLI)
Goose*? (CLI)

Cline*! (IDE-VSCode)
RooCode*? (IDE-VSCode)
KiloCode*? (IDE-VSCode)

NeurlIPS Paper Checklist

1.

Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately describe the paper’s contribution as the
introduction of GitChameleon 2.0, a new executable benchmark for version-conditioned code
generation. The subsequent sections provide a comprehensive empirical study evaluating
various models on this benchmark, fulfilling the claims made.

Guidelines:
¢ The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper does discuss its limitations in section 5 Limitations, and for example
in Appendix H, where it clarifies that the benchmark is primarily designed to test version-
specific knowledge retention rather than complex logical reasoning.

Guidelines:

36https://mistral.ai/news/devstral

https://openrouter.ai/inflection/inflection-3-productivity

Bhttps://www.liquid.ai/blog/liquid-foundation-models-our-first-series-of-generativ
e-ai-models

Phttps://docs.anthropic.com/en/docs/claude-code/overview

“https://block.github.io/goose/

Hhttps://cline.bot/

42https://roocode.com/

Bhttps://kilocode.ai/

51

https://mistral.ai/news/devstral
https://openrouter.ai/inflection/inflection-3-productivity
https://www.liquid.ai/blog/liquid-foundation-models-our-first-series-of-generative-ai-models
https://www.liquid.ai/blog/liquid-foundation-models-our-first-series-of-generative-ai-models
https://docs.anthropic.com/en/docs/claude-code/overview
https://block.github.io/goose/
https://cline.bot/
https://roocode.com/
https://kilocode.ai/

The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This paper introduces an empirical benchmark and presents an evaluation of
existing models; it does not propose new theoretical results, theorems, or proofs.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides detailed descriptions of the dataset construction (Appendix
C), the execution environment, and the exact models evaluated (Appendix J), which are
sufficient to reproduce the main experimental results.

Guidelines:

* The answer NA means that the paper does not include experiments.

52

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper releases the GitChameleon 2.0 benchmark, including all data and
evaluation scripts, as an open-source asset with instructions for use.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/pu
blic/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

53

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental settings, including the models tested, specific library versions,
and evaluation metrics are described in Section 3 and Appendix J.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports concrete evaluation metrics (e.g. execution pass rates) across
hundreds of problems (Table 1), with error bars where applicable, providing a clear and
statistically robust comparison of model capabilities.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:

Justification: As the paper contains a large array of experiments run on our benchmark, with
many failed runs due to various reasons, it was difficult to provide an accurate estimate of the
total compute and per experiment compute to reproduce all results. However, if requested
for a specific experiment, we could provide a ballpark estimate.

54

9.

10.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conforms to the code of ethics as it involves the creation of a
benchmark dataset and the evaluation of existing models. This work does not involve human
subjects, personal data collection, or other areas that would typically raise ethical concerns
under the policy.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Enabling better evaluation of version-conditioned code generation can have
downstream impacts in terms of LLMs with better backward compatible code generation.
From an efficiency standpoint, this can save a significant amount of time for projects using
older versions. Beyond this, we did not feel it was necessary to point out specific positive or
negative societal impacts of version-specific code generation.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

55

https://neurips.cc/public/EthicsGuidelines

11.

12.

13.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper introduces GitChameleon 2.0, which is an evaluation benchmark
dataset, not a generative model or a large-scale scraped dataset that carries a high risk for
misuse. Therefore, specific safeguards for the responsible release of high-risk models or
data are not applicable to this work.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The paper properly credits and cites the original sources for existing assets

used, such as other benchmarks (e.g., SWE-Bench) and the models evaluated (with full
details in Appendix J).

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

56

paperswithcode.com/datasets

14.

15.

16.

Justification: The primary new asset, the GitChameleon 2.0 benchmark dataset, is thoroughly
documented in the paper, particularly its construction methodology (Appendix A) and usage
(Section 3).

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The research methodology did not involve crowdsourcing or human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This research does not involve human subjects, so Institutional Review Board
(IRB) approval was not applicable or required.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

57

Answer: [Yes]

Justification: The paper’s core methodology is the evaluation of LLMs, and it also explic-
itly describes using Zencoder/GPT-4 as a component in the benchmark’s hidden test set
construction process (Appendix A.4).

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.

58

https://neurips.cc/Conferences/2025/LLM

Figure 16: Prompts for Self-Debugging

(a) System Prompt

(b) User Prompt

You are an expert programming
assistant. Your task is to fix
issues in a generated Python
solution for a given
programming problem.
provided with:

You are

A problem statement

Starter code

- A previously generated incorrect

solution

- A top-level execution trace or
error message

Dependencies information (
versions, libraries).

Please generate a corrected Python
solution by following these
strict guidelines:

1. Use the required libraries
explicitly in your code.

2. Correctly incorporate the
provided starter code - do not
remove or alter its structure.

3. Write in standard Python syntax.

4. Wrap your entire solution within

a single Markdown code block.

5. Do not include any text outside
the code block - no
explanations, comments,
docstrings, or usage examples.

6. Ensure the code is clean,

efficient, and syntactically
valid.
7. Avoid interactive, stateful, or

environment -dependent
constructs (e.g., Django
projects, web servers).

8. Your output must be executable
in a non-interactive
environment (e.g., a test
harness or script runner).

Example output format:

T python
[Your corrected code here]

Before submitting, carefully review
your code for correctness,
completeness, and adherence to
all constraints.

<Problem>
{problem}
</Problem>

<Python Version>
{python_version}
</Python Version>

<Library>
{library}
</Library>

<Version>
{version}
</Version>

<Extra Dependencies>
{additional_dependencies?}
</Extra Dependencies>

<Starting Code>
{starting_code}
</Starting Code>

<Generated Solution>
{solution}
</Generated Solution>

<Trace>
{top_level_trace}
</Trace>

59

Figure 17: Tool-Calling Agent Prompt

You are to solve a coding problem in Python.

Instructions:

* The coding problem requires using the library {library}=={version}. Try
using the problem with only this library and the standard Python

libraries.

* Do a thorough research on the web about how to solve the coding problem
for the given library version. Repeat multiple times if needed.

* BEFORE FINISHING YOUR WORK, YOU MUST check your solution to the coding
problem by running the “docker_problem_sandbox ™ tool.

* Use the ~final_answer™ tool to return a self-contained Python script
that solves the problem. DO NOT INCLUDE ANY TEXT BESIDES FOR THE CODE
IN THE FINAL ANSWER.

* The solution needs to be in a markdown code block.

* The solution needs to start with the starter code provided below.

Coding Problem:

{problem}

Starter Code:

T python
{starting_code}

60

Figure 18: RAG Prompt

You are an AI assistant specialized in solving Python programming
problems using information derived from documentation.

Each query may specify particular libraries and version constraints. Your
task is to generate a correct, efficient, and minimal Python
solution that adheres strictly to these requirements.

Please follow these rules when crafting your response:

1. Use only the specified libraries and respect the given version
constraints.

2. Incorporate any provided starter code as required.

3. Write only Python code- no in- line comments or usage examples. Do not

provide anything in the response but the code.

4. Ensure the code is clean, minimal, and adheres to best practices.

5. The code must be executable in a non-interactive environment (e.g.,
avoid frameworks like Django or code requiring a web server).Context:

{context}

Based on the above, respond to the user query below.

Query: {query}

Here, {context} refers to the context of the top-k retrieved documents from the vectorized database
for that query and {query?} is the same as the User Prompt given in Figure 15(c).

Figure 19: Prompt and File Format for Coding Assistants

(a) Prompt (b) Input File Format
Solve each sample_{i}.py in this # Complete using the following
folder then subsequently save libraries and/or extra

your solutions as py files dependencies and their versions
with the same name in a :
problem statement: {problem}

separate subfolder called "{ #

assistant name}"” that just # library: {library}
completes the starting code # version: {version}
provided in the sample and # extra_dependencies: {
uses the instructions written extra_dependencies}
in the comments at the start {starting_code}

of each file.

(a) presents the prompt template we had used for our Coding Assistant experiments. (b) shows the
format of the example files referenced in the prompt.

61

Figure 20: Prompts for SEK (Keyword Generation Stage)

(a) System Prompt

(b) User Prompt

You are a seasoned Python developer
at a Fortune 500 company who
excels at analyzing complex
code. Analyze the given code
problem from the problem
statement and starter code
provided. Try to extract the
keywords from the code problem.
For each identified keyword:
1. Provide the keyword.
2. Give a formalized explanation of
the keyword using technical
languages.

Provided Format:

Keywords :[Keywords]

Explainations:[Formalized
explanations]

Guidelines:

- Prioritize keywords that are
crucial to understanding the
input parameters, return
content or supplementary
information.

- Use precise languages in
explanations and provide
formalized definitions where
appropriate.

- Ensure explanations are
consistent with the behaviors
expected based on the problem
description.

- Limit to the top 1-3 important
keywords to focus on core
concepts.

- You are supposed to output a
structured JSON output
containing the extracted
keywords and their
corresponding formalized
explanations in individual
lists of strings. The keys for
this JSON must be Keywords and
Explainations.

- Strictly adhere to the provided
format, do not output anything
else.

<Problem Statement>
{problem}
</Problem Statement>

<Starting Code>
{starting_code}
</Starting Code>

62

Figure 21: Prompts for SEK (Code Generation Stage)

(a) System Prompt

(b) User Prompt

You are a skilled Python programmer
tasked with solving a coding
problem. Your goal is to
provide a clear, efficient,
correct solution that meets
all the specified requirements.

and

Please provide your solution
following these guidelines:

1. Use the required library in your

solution.

2. Incorporate the provided starter

code correctly.

3. Write your solution in Python.

4. Format your solution within a
markdown code block.

5. Ensure your code is clean and
efficient.

6. Output only the code block and
nothing else. Do not add any in
-line comments, documentations,

references or usage examples.

7. Make sure your code is
executable in a non-interactive

environment. For example, do
not write code which requires
building a Django project or
deploying a web-app.

Example output format:

T python
[Your code here, incorporating
the starter code]

After writing your solution, please
review it to ensure all
requirements are met and the

code is correct and efficient.

Here are the key elements for this
task:

<Python Version>
{python_version}
</Python Version>

<Library>
{library}
</Library>

<Version>
{version}
</Version>

<Extra Dependencies>
{extra_dependencies}
</Extra Dependencies>

<Problem Statement>
{problem}
</Problem Statement>

<Keywords >

Analyze the following key terms and
their relationships within the
problem context:

{General_Keywords}

{Abstract_Keywords}

</Keywords>

<Starting Code>
{starting_code}
</Starting Code>

63

	Introduction
	GitChameleon 2.0 Benchmark
	Dataset Structure
	Evaluation Metrics
	Statistics

	Empirical Study
	Experimental Setup
	
	Zero-Shot Chain-Of-Thought (CoT)
	Self-Debugging
	Retrieval-Augmented Generation
	Multi‐Step Agent

	Experiment Results
	Greedy Decoding
	Zero-Shot Chain-Of-Thought
	LLM Self-Debugging
	Multi‐Step Agent
	Retrieval-Augmented Generation

	In-Depth Analysis of Findings

	Related Work
	Conclusion
	Benchmark Details
	Dataset Construction Process
	Structure of Dataset Samples
	Dataset Validation
	Hidden Test Construction
	Additional Dataset Statistics

	Extra Methodologies: Reasoning, Sampling and Prompting
	Extended Experiment Results and Analysis
	Related Work
	Code Evolution Datasets
	Task Format: Instruction-Based Generation
	Task Format: Code Update, Repair, and Completion

	Specialized Frameworks and Repair Techniques
	DepsRAG
	Dr.Fix
	ReplaceAPI / InsertPrompt
	Conclusion

	Case Study: Code Assistant Failure With Search
	Inputs
	Model Attempt and Failure

	Case Study: Self-Debugging in Batched Matrix Exponential Computation
	Inputs
	First Model Attempt and Failure
	Self-Debugging Process and Correction
	Analysis of the Correction

	Qualitative Analysis
	Greedy Decoding
	Example 1: (PyTorch)
	Greedy Example 2 (SciPy)
	Greedy Example 3 (SymPy)
	Greedy Example 4 (Flask)

	Zero-Shot Chain-Of-Thought
	CoT Example 1 (Torch)
	CoT Example 2 (Scikit-learn)
	CoT Example 3 (Falcon)

	Logic vs. Knowledge Retention
	Prompt Templates
	Artifacts and Model Details
	Libraries
	Models
	Coding Assistants (CLI/IDE)

