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ABSTRACT

MobileViT (MobileViTv1) combines convolutional neural networks (CNNs) and
vision transformers (ViTs) to create light-weight models for mobile vision tasks.
Though the main MobileViTv1-block helps to achieve competitive state-of-the-
art results, the fusion block inside MobileViTv1-block creates scaling challenges
and has a complex learning task. We propose changes to the fusion block that are
simple and effective to create MobileViTv3-block, which addresses the scaling
and simplifies the learning task. Our proposed MobileViTv3-block used to create
MobileViTv3-XXS, XS and S models outperform MobileViTv1 on ImageNet-1k,
ADE20K, COCO and PascalVOC2012 datasets. On ImageNet-1K, MobileViTv3-
XXS and MobileViTv3-XS surpasses MobileViTv1-XXS and MobileViTv1-XS
by 2% and 1.9% respectively. Recently published MobileViTv2 architecture re-
moves fusion block and uses linear complexity transformers to perform better
than MobileViTv1. We add our proposed fusion block to MobileViTv2 to create
MobileViTv3-0.5, 0.75 and 1.0 models. MobileViTv3-0.5 and MobileViTv3-0.75
outperforms MobileViTv2-0.5 and MobileViTv2-0.75 by 2.1% and 1.0% respec-
tively on ImageNet-1K dataset. For segmentation task, MobileViTv3-1.0 achieves
2.07% and 1.1% better mIOU compared to MobileViTv2-1.0 on ADE20K dataset
and PascalVOC2012 dataset respectively. Our code and the trained models will
be made available on GitHub.

1 INTRODUCTION

Convolutional Neural Networks (CNNs) [ResNet (He et al., 2016), DenseNet (Huang et al., 2017)
and EfficientNet (Tan & Le, 2019)] are widely used for vision tasks such as classification, detection
and segmentation, due to their strong performance on the established benchmark datasets such as
Imagenet (Russakovsky et al., 2015), COCO (Lin et al., 2014), PascalVOC (Everingham et al.,
2015), ADE20K (Zhou et al., 2017) and other similar datasets. When deploying CNNs on edge
devices like mobile phones which are generally resource constrained, light-weight CNNs suitable
for such environments come from family of models of MobileNets (MobileNetv1, MobileNetv2,
MobileNetv3) (Howard et al., 2019), ShuffleNets (ShuffleNetv1 and ShuffleNetv2) (Ma et al., 2018)
and light-weight versions of EfficientNet (Tan & Le, 2019) (EfficientNet-B0 and EfficientNet-B1).
These relatively small models lack in accuracy when compared to models with large parameters
and FLOPs. Recently, Vision Transformers (ViTs) have emerged as an strong alternatives to CNNs
on these vision tasks. Self-attention mechanism in ViTs interacts with all parts of the image to
produce features which have global information embedded in them. This has been demonstrated to
produce comparable results to CNNs but with large pre-training data and advance data augmentation
(Dosovitskiy et al., 2020). Also, this global processing comes at a cost of large parameters and
FLOPs to match the performance of CNNs as seen in ViT (Dosovitskiy et al., 2020), and its different
versions such as DeiT (Touvron et al., 2021), SwinT (Liu et al., 2021), MViT (Fan et al., 2021),
Focal-ViT (Yang et al., 2021), PVT (Wang et al., 2021), T2T-ViT (Yuan et al., 2021b), XCiT (Ali
et al., 2021).

Many recent work have introduced convolutional layers in ViT architecture to form hybrid networks
to improve performance, achieve sample efficiency and make the models more efficient in terms of
parameters and FLOPs like MobileViTs (MobileViTv1 (Mehta & Rastegari, 2021), MobileViTv2
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Figure 1: Comparing Top-1 accuracies of MobileViTv3, ViT variants and hybrid models on
ImageNet-1K dataset. The area of bubbles correspond to number of FLOPs in the model. The
reference FLOP sizes are shown in the bottom right (example, 250M is 250 Mega-FLOPs/Million-
FLOPs). Models of our MobileViTv3 architecture outperforms other models with similar parameter
budget of under 2M, 2-4M and 4-8M. Also, they achieve competitive results when compared to the
models greater than 8M parameters.

Mehta & Rastegari (2022) ), CMT (Guo et al., 2022), CvT (Wu et al., 2021), PVTv2 (Wang et al.,
2022), ResT (Zhang & Yang, 2021), MobileFormer (Chen et al., 2022), CPVT (Chu et al., 2021),
MiniViT (Zhang et al., 2022), CoAtNet (Dai et al., 2021), CoaT (Xu et al., 2021a). Performance of
many of these models on ImageNet-1K, with parameters and FLOPs is shown in Figure 1. Among
these models, only MobileViTs and MobileFormer are specifically designed for resource constrained
environment such as mobile devices. These two models achieve competitive performance compared
to other hybrid networks with less parameters and FLOPs. Even though these small hybrid models
are critical for the vision tasks on mobile devices, there is little work done in this area.

Our work focuses on improving one such light-weight family of models known as MobileViTs (Mo-
bileViTv1 (Mehta & Rastegari, 2021) and MobileViTv2 (Mehta & Rastegari, 2022)). When com-
pared to the models with parameter budget of 6 million(M) or less, MobileViTs achieve competitive
state-of-the-art results with a simple training recipe (basic data augmentation) on classification task.
Also it can be used as an efficient backbone across different vision tasks such as detection and seg-
mentation. While focusing on only the models with 6M parameters or less, we pose the question: Is
it possible to change the model architecture to improve its performance by maintaining similar pa-
rameters and FLOPs? To do so, our work looks into challenges of MobileViT-block architecture and
proposes simple and effective way to fuse input, local (CNN) and global (ViT) features which lead to
significant performance improvements on Imagenet-1K, ADE20k, PascalVOC and COCO dataset.
We propose four main changes to MobileViTv1 block (three changes w.r.t MobileViTv2 block) as
shown in figure 2. Three changes are in the fusion block: First, 3x3 convolutional layer is replaced
with 1x1 convolutional layer. Second, features of local and global representation blocks are fused to-
gether instead of input and global representation blocks. Third, input features are added in the fusion
block as a final step before generating the output of MobileViT block. Fourth change is proposed in
local representation block where normal 3x3 convolutional layer is replaced by depthwise 3x3 con-
volutional layer. These changes result in the reduction of parameters and FLOPs of MobileViTv1
block and allow scaling (increasing width of the model) to create a new MobileViTv3-S, XS and
XXS architecture, which outperforms MobileViTv1 on classification (Figure 1), segmentation and
detection tasks. For example, MobileViTv3-XXS and MobileViTv3-XS perform 2% and 1.9% better
with similar parameters and FLOPs on ImageNet-1K dataset compared to MobileViTv1-XXS and
MobileViTv1-XS respectively. In MobileViTv2, fusion block is absent. Our proposed fusion block
is introduced in MobileViTv2 architecture to create MobileViTv3-1.0, 0.75 and 0.5 architectures.
MobileViTv3-0.5 and MobileViTv3-0.75 outperforms MobileViTv2-0.5 and MobileViTv2-0.75 by
2.1% and 1.0% respectively with similar parameters and FLOPs on ImageNet-1K dataset.
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2 RELATED WORK

Vision Transformers: ViT (Dosovitskiy et al., 2020) introduced the transformer models used for
Natural Language Processing tasks to vision domain, specifically for image recognition. Later, its
different versions such as DeiT (Touvron et al., 2021) improved the performance by introducing a
novel training technique and reducing the dependency on large pre-training data. Works focusing on
improving self-attention mechanism to boost performance include XCiT (Ali et al., 2021), SwinT
(Liu et al., 2021), ViL (Zhang et al., 2021) and Focal-transformer (Yang et al., 2021). XCiT in-
troduces cross-covariance attention where self-attention is operated on feature channels instead of
tokens. SwinT modified the ViT to make it a general purpose architecture for classification, de-
tection and segmentation tasks. ViL improves ViT by encoding image at multiple scales and uses
self-attention mechanism which is a variant of Longformer (Beltagy et al., 2020). Recent works like
T2T-ViT (Yuan et al., 2021b) and PVT (PVTv1) (Wang et al., 2021) also focus on introducing CNN
like hierarchical feature learning by reducing spatial resolution or token sizes of output after each
layer. Few new architectures like CrossViT (Chen et al., 2021), MViT (Fan et al., 2021), MViTv2
(Li et al., 2022) and Focal-transformer (Yang et al., 2021) learn both local features (features learnt
specifically from neighbouring pixels/features/patches) and global features (features learnt using all
pixels/features/patches).

CNNs: Models like EfficientNet-B7 (Tan & Le, 2019), ConvNeXt (Liu et al., 2022), EfficientNetV2
(Tan & Le, 2021), RegNetY (Radosavovic et al., 2020) and NFNet-F4+ (Brock et al., 2021) achieve
high accuracy on ImageNet-1K dataset and also many can be used as a general purpose backbone
models for detection and segmentation tasks. But, these CNN models are generally high in num-
ber of parameters and FLOPs. Light-weight CNNs that achieve competitive performance with less
parameters and FLOPs include EfficientNet-B0 and B1, MobileNetV3 (Howard et al., 2019), Shuf-
fleNetv2 (Ma et al., 2018) and ESPNetv2 (Mehta et al., 2019). EfficientNet studied model scaling
and developed family of efficientnet models which are still one of the most efficient CNNs in terms
of parameters and FLOPs. MobileNetV3 belongs to category of models specifically developed for
resource constrained environments such as Mobile phones. Building block of MobileNetV3 archi-
tecture uses MobileNetv2 (Sandler et al., 2018) block and Squeeze-and-Excite (Hu et al., 2018)
network in it. ShuffleNetv2 studies and proposes guidelines for efficient model design and produces
shufflenetv2 family of models which also performs competitively with other light-weight CNN mod-
els. ESPNetv2 uses depth-wise dilated separable convolution to create EESP (Extremely Efficient
Spatial Pyramid) unit which helps to reduce parameters and FLOPs and achieve competitive results.

Hybrids: Lately, several models are being proposed to combine CNNs and ViTs together in one
architecture to capture both long-range dependencies using self-attention mechanism of ViT and
local information using local kernels in CNNs to improve performance on vision tasks. MobileViT
(MobileViTv1 (Mehta & Rastegari, 2021), MobileViTv2 Mehta & Rastegari (2022)) and Mobile-
Former (Chen et al., 2022) have been specifically designed for constrained environments like mobile
devices. CMT (Guo et al., 2022) architecture has convolutional stem and stacks convolutional lay-
ers and transformer layers alternatively. CvT (Wu et al., 2021) uses convolutional token embedding
instead of linear embedding and a convolutional transformer layer block that leverages these convo-
lutional token embeddings to improve performance. CoAtNet (Dai et al., 2021) unifies depthwise
convolution and self-attention using simple relative attention and vertically stacks convolutional lay-
ers and attention layers. CeiT (Yuan et al., 2021a) introduces locally-enhanced-feed-forward layer
by using depth-wise convolution with other changes to achieve competitive results. ViTAE (Xu et al.,
2021b) has convolution layers in parallel to multi-head self-attention module and both are fused and
fed to feedforward network, also ViTAE uses convolutional layers to embed inputs to token. RVT
(Mao et al., 2022) uses convolutional stem to generate patch embeddings and uses convolutional
feed-forward network in transformer to achieve better results.

3 NEW MOBILEVIT ARCHITECTURE

Our work proposes four design changes to the existing MobileViTv1 block architecture to build
MobileViTv3-block as shown in Figure 2a. Section 3.1 explains these four changes in MobileViTv3-
block architecture and compares with MobileViTv1 and MobileViTv2-blocks. Section 3.2 details
MobileViTv3-S, XS and XXS architectures and shows how it is scaled compared to MobileViTv1-
S, XS and XXS. In recently published MobileViTv2 architecture, changes applied to MobileViT-
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Figure 2: A comparison between: (a) MobileViTv1 and MobileViTv3 modules, and (b) Mobile-
ViTv2 and MobileViTv3 modules. The proposed architectural changes are highlighted in red.

block are, fusion block is removed, transformer block uses self-attention with linear complexity and
depthwise convolutional layer is used in local representation block. We add back the fusion block
to MobileViTv2-block with our proposed changes to create MobileViTv3-block as shown in Figure
2b for MobileViTv3-0.5, 0.75, 1.0 architectures.

3.1 MOBILEVITV3 BLOCK

Replacing 3x3 convolutional layer with 1x1 convolutional layer in fusion block: Two main mo-
tivations exist for replacing 3x3 convolutional layer in fusion. First, fuse local and global features
independent of other locations in the feature map to simplify the fusion block’s learning task. Con-
ceptually, 3x3 convolutional layer is fusing input features, global features, and other location’s input
and global features which are present in the receptive field, which is a complex task. Fusion block’s
goal can be simplified by allowing it to fuse input and global features, independent of other locations
in feature map. To do so, we use 1x1 convolutional layer in fusion instead of 3x3 convolutional layer.
Second, is to remove one of the major constraints in scaling of MobileViTv1 architecture. Scaling
MobileViTv1 from XXS to S is done by changing width of the network and keeping depth con-
stant. Changing width (number of input and output channels) of MobileViTv1 block causes large
increase in number of parameters and FLOPs. For example, if the input and output channels are
doubled (2x) in MobileViTv1 block, the number of input channels to 3x3 convolutional layer inside
fusion block increases by 4x and output channels by 2x, because input to the 3x3 convolutional layer
is concatenation of input and global representation block features. This causes a large increase in
parameters and FLOPs of MobileViTv1 block. Using 1x1 convolutional layer avoids this large in-
crease in parameters and FLOPs while scaling. Local and Global features fusion: In fusion layer,
features from local and global representation blocks are concatenated in our proposed MobileViTv3
block instead of input and global representation features. This is because the local representation
features are more closely related to the global representation features when compared to the input
features. The output channels of the local representation block are slightly higher than the channels
in input features. This causes an increase in the number of input feature maps to the fusion block’s
1x1 convolutional layer, but the total number of parameters and FLOPs are significantly less than
the baseline MobileViTv1 block due to the change of 3x3 convolutional layer to 1x1 convolutional
layer. Fusing input features: Input features are added to the output of 1x1 convolutional layer in
the fusion block. The residual connections in models like ResNet and DenseNet have shown to help
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the optimization of deeper layers in the architecture. By adding the input features to the output in
the fusion block, we introduce this residual connection in new MobileViTv3 architecture. Ablation
study results shown in table 5 demonstrates that this residual connection contributes 0.6% accuracy
gain. Depthwise convolutional layer in local representation block: To further reduce parameters,
3x3 convolutional layer in local representation block is replaced with depthwise 3x3 convolutional
layer. As seen in the ablation study results table 5, this change does not have a large impact on the
Top-1 ImageNet-1K accuracy gain and provides good parameter and accuracy trade-off.

3.2 SCALING UP BUILDING BLOCKS

Applying the changes proposed in section 3.1, allows scaling of our MobileViTv3 architecture by
increasing the width (number of channels) of the layers. Table 1 shows MobileViTv3-S, XS and
XXS architectures with their output channels in each layer, scaling factor, parameters an FLOPs.

Table 1: MobileViTv3-S, XS and XXS architecture details and comparison with MobileViTv1-S, XS
and XXS. Values given in brackets ‘()’ represent scaling factor compared to MobileViTv1 models.

Layer Size Stride Repeat XXS XS S

Image 256x256 1

Conv-3x3, ↓ 2 128x128 2 1 16 16 16
MV2 128x128 2 1 16 32 32

MV2 , ↓ 2 64x64 4 1 24 48 64
MV2 64x64 4 2 24 48 64

MV2 , ↓ 2 32x32 8 1 64 (1.3x) 96 (1.5x) 128 (1.3x)
MobileViT block (L=2) 32x32 8 1 64 (1.3x) 96 (1.5x) 128 (1.3x)

MV2 , ↓ 2 16x16 16 1 80 (1.3x) 160 (2.0x) 256 (2.0x)
MobileViT block (L=4) 16x16 16 1 80 (1.3x) 160 (2.0x) 256 (2.0x)

MV2 , ↓ 2 8x8 32 1 128 (1.6x) 160 (1.7x) 320 (2.0x)
MobileViT block (L=3) 8x8 32 1 128 (1.6x) 160 (1.7x) 320 (2.0x)

Conv-1x1, 8x8 32 1 512 (1.6x) 640 (1.7x) 1280 (2.0x)

Global pool 1x1 256 1 512 640 1280
Linear 1x1 256 1 1000 1000 1000

Parameters (M) 1.25 2.5 5.8
FLOPs (M) 289 927 1841

4 EXPERIMENTAL RESULTS

Our work shows results on classification task using ImageNet-1K in section 4.1, segmentation task
using ADE20K and PASCAL VOC 2012 datasets in section 4.2, detection task using COCO dataset
in section 4.3. We also discuss changes to our proposed MobileViTv3 architecture for improving
latency and throughput in appendix B.

4.1 IMAGE CLASSIFICATION ON IMAGENET-1K

Implementation details: Except for the batch size, hyperparameters used for MobileViTv3-S, XS
and XXS are similar to the MobileViTv1 and hyperparameters used for MobileViTv3-1.0, 0.75
and 0.5 are similar to MobileViTv2. Due to resource constraints, we were limited to using a total
batch size of 384 (32 images per GPU) for experiments on MobileViTv3-S and XS. To maintain
consistency in batch sizes, MobileViTv3-XXS is also trained on batch size of 384. Batch size of
1020 (85 images per GPU) used of MobileViTv3-0.5,0.75 and 1.0 training. More hyperparameter
details in appendix C.1. Performance is evaluated using single crop top-1 accuracy, for inference an
exponential moving average of model weights is used. All the classification models are trained from
scratch on the ImageNet-1K classification dataset. This dataset contains 1.28M and 50K images for
training and validation respectively.

Comparison with MobileViTs: Table 2 demonstrates that performance of all the versions of Mo-
bileViTv3 surpass MobileViTv1 and MobileViTv2 versions with similar parameters and FLOPs
and smaller training batch size. Increasing total batch size from 192 to 384 improves accuracy of
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MobileViTv3-S, XS and XXS models (Table 2). This indicates the potential for further accuracy
gains with batch size of 1024 on MobileViTv3-XXS, XS and S models. It is also important to note
that MobileViTv3-S, XS and XXS models trained with basic data augmentation not only outper-
forms MobileViTv1-S, XS, XXS, but also surpasses performance of MobileViTv2-1.0, 0.75 and 0.5
which are trained with advanced data augmentation.

Table 2: MobileViT V1, V2 and V3 comparison in terms of Top-1 ImageNet-1k accuracy, parame-
ters and operations. Models with similar parameters and operations are grouped together for clear
comparison.

Model Training Batch size FLOPs (M)↓ # Params. (M)↓ Top-1 (%)↑

MobileViTv1-XXS 1024 364 1.3 69.00
MobileViTv3-XXS 192 289 1.2 70.02 (+1%)
MobileViTv3-XXS 384 289 1.2 70.98 (+2%)

MobileViTv2-0.5 1024 466 1.4 70.18
MobileViTv3-0.5 1020 481 1.4 72.33 (+2.1%)

MobileViTv1-XS 1024 986 2.3 74.8
MobileViTv3-XS 192 927 2.5 76.3 (+1.5%)
MobileViTv3-XS 384 927 2.5 76.7 (+1.9%)

MobileViTv2-0.75 1024 1030 2.9 75.56
MobileViTv3-0.75 1020 1064 3.0 76.55 (+0.99%)

MobileViTv1-S 1024 2009 5.6 78.4
MobileViTv3-S 192 1841 5.8 78.8 (+0.4%)
MobileViTv3-S 384 1841 5.8 79.3 (+0.9%)

MobileViTv2-1.0 1024 1851 4.9 78.09
MobileViTv3-1.0 1020 1876 5.1 78.64 (+0.55%)

Comparison with ViTs: Figure 1 compares our proposed MobileViTv3 models performance with
other ViT variants and hybrid models. Following MobileViTv1, we mainly compare our models
with parameter budget of around 6M or less. Also, when comparing to models greater than 6M
parameters, we limit FLOPs budget to ∼2 GFLOPs or less because our largest model in this work
has ∼2 GFLOPs. Models under 2 million parameters: To the best of our knowledge, only MobileViT
variants exist in this range. MobileViTv3-XXS and MobileViTv3-0.5 outperform other MobileViT
variants. MobileViTv3-0.5 by far achieves the best accuracy of 72.33 %. Models between 2-4 million
parameters: MobileViTv3-XS and MobileViTv3-0.75 outperform all the models in this range. Top-
1 accuracy of MobileViTv3-XS on ImageNet-1k is 76.7%, which is 3.9% higher than Mini-DeiT-
Ti (Zhang et al., 2022) and 4.5 % higher than XCiT-N12 (Ali et al., 2021). Although Mobile-
Former-53M (Chen et al., 2022) uses only 53 GFLOPs, it lags in accuracy by a large margin of
12.7% with MobileViTv3-XS. Models between 4-8 million parameters: MobileViTv3-S attains the
highest accuracy of 79.3% in this parameter range. MobileViTv3-S with simple training recipe
and 300 training epochs is 0.7% better than XCiT-T12 trained using distillation, advanced data
augmentation and 400 epochs. It is 1.8% and 2.6% better than Coat-Lite-Tiny (Xu et al., 2021a)
and ViL-Tiny-RPB (Zhang et al., 2021) respectively. MobileViTv3-S is 1% better with 0.5x FLOPs
and similar parameters as compared to CoaT-Tiny (Xu et al., 2021a). Models greater than 8 million
parameters: We also compare our designed models with existing models having more than 8M
parameters and around 2 GFLOPs. When compared with MobileViTv3-S (79.3%) trained with basic
data augmentation and 300 epochs, MobileFormer-508M achieves similar accuracy of 79.3% with
∼2.5x more parameters, ∼3.5x less FLOPs, advance data augmentation and 450 training epochs,
CMT-Ti (Guo et al., 2022) achieves 79.1% with ∼1.6x more parameters, ∼2.9x less FLOPs (due to
input image size of 160x160) and advanced data augmentation.

Comparison with CNNs: Figure 3 compares our proposed models with the CNN models which are
light-weight with a parameter budget of ∼6M or less, similar to MobileViTv1 (Mehta & Rastegari,
2021). Models in 1-2 million parameters range: MobileViTv3-0.5 and MobileViTv3-XXS with
72.33% and 70.98% respectively are best accuracies in this range. MobileViTv3-0.5 achieves over
2.5% improvement compared to ESPNetv2-123M, MobileNetv3-small(0.75) (Howard et al., 2019)
and MobileNetV2(0.5) (Sandler et al., 2018). Models with 2-4 million parameters: MobileViTv3-
XS achieves over 4% improvement compared to MobileNetv3-Large(0.75), ShuffleNetv2(1.5),
ESPNetv2-284M and MobileNetv2(0.75). Models with 4-8 million parameters: MobileViTv3-
S shows more than 2% accuracy gain over EfficientNet-B0 (Tan & Le, 2019), ESPNetv2-602M
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Figure 3: Top-1 accuracy comparison between MobileViTv3 models and existing light-weight CNN
models on ImageNet-1K dataset. The bubble size corresponds to the number of FLOPs. The refer-
ence FLOP sizes are shown in the bottom right (example, 50M is 50 Mega-FLOPs/Million-FLOPs).
Models of our MobileViTv3 architecture outperform other models with similar parameter budget of
1-2M, 2-4M and 4-8M.

and MobileNetv3-Large(1.25). EfficientNet-B1 with 1.3x more parameters and 2.6x less FLOPs
achieves competitive accuracy of 79.1% compared to MobileViTv3-S with accuracy of 79.3%.

4.2 SEGMENTATION

Implementation details: The segmentation performance is evaluated on the validation set and re-
ported using mean Intersection over Union (mIOU). PASCAL VOC 2012 dataset: Following Mo-
bileViTv1, MobileViTv3 is integrated with DeepLabv3 (Chen et al., 2017) for segmentation task
on PASCAL VOC 2012 dataset (Everingham et al., 2015). Extra annotations and data is used from
(Hariharan et al., 2011) and (Lin et al., 2014) respectively, which is a standard practise for training
on PascalVOC2012 dataset (Chen et al., 2017); (Mehta et al., 2019). For MobileViTv3-S, XS and
XXS, training hyperparameters are similar to MobileViTv1 except the batch size. Smaller batch size
of 48 (12 images per GPU) is used compared to 128 (32 images per GPU) for MobileViTv1. For
MobileViTv3-1.0, 0.75 and 0.5, all the hyperparameters are kept same as used for MobileViTv2-
1.0, 0.75 and 0.5 training. ADE20K dataset (Zhou et al., 2019): Contains total 25K images with
150 semantic categories. Out of 25K images, 20K images are used for training, 3K images for test
and 2K images for validation. Same training hyperparameters are used for MobileViTv2 models as
MobileViTv3-1.0, 0.75 and 0.5 models.

Results: PASCAL VOC 2012 dataset: Table 3a demonstrates MobileViTv3 models with lower
training batch size of 48, outperforming their corresponding counterpart models of MobileViTv1
and MobileViTv2 which are trained on higher batch size of 128. MobileViTv3-1.0 achieves
80.04% mIOU, which outperforms MobileViTv2-1.0 by 1.1%. MobileViTv3-XS is 1.6% bet-
ter than MobileViTv1-XS and MobileViTv3-0.5 surpasses MobileViTv2-0.5 by 1.41%. ADE20K
dataset: Table 3b shows the results of MobileViTv3-1.0, 0.75 and 0.5 models on ADE20K dataset.
MobileViTv3-1.0, 0.75 and 0.5 models outperform MobileViTv2-1.0, 0.75 and 0.5 models by
2.07%, 1.73% and 1.64% respectively.

4.3 OBJECT DETECTION

Implementation details: MS-COCO dataset (Lin et al., 2014) with 117K training and 5K valida-
tion images, is used to evaluate the detection performance of MobileViTv3 models. Similar to Mo-
bileViTv1, we integrated pretrained MobileViTv3 as a backbone network in Single Shot Detection
network (SSD) (Liu et al., 2016) and the standard convolutions in the SSD head are replaced with
separable convolutions to create SSDLite network. This SSDLite with pre-trained MobileViTv3
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Table 3: Comparing MobileViTv3 segmentation task results on PASCAL VOC 2012 and ADE20K
datasets. # params of MobileViT models denotes the number of parameters of the encoder/backbone
architecture only.

(a) Segmentation on PASCAL VOC 2012 dataset

Backbone # Params (M)↓ mIOU(%) ↑

MobileViTv1-XXS 1.9 73.6
MobileViTv3-XXS 1.96 74.04 (+0.44%)

MobileViTv2-0.5 6.2 75.07
MobileViTv3-0.5 6.3 76.48 (+1.41%)

MobileViTv1-XS 2.9 77.1
MobileViTv3-XS 3.3 78.77 (+1.6%)

MobileViTv1-S 6.4 79.1
MobileViTv3-S 7.2 79.59 (+0.49%)

MobileViTv2-1.0 13.32 78.94
MobileViTv3-1.0 13.56 80.04 (+1.10%)

(b) Segmentation on ADE20K dataset

Backbone # Params (M)↓ mIOU(%) ↑

MobileViTv2-0.5 6.31 31.93
MobileViTv3-0.5 6.37 33.57 (+1.64%)

MobileViTv2-0.75 9.6 34.7
MobileViTv3-0.75 9.71 36.43 (+1.73%)

MobileViTv2-1.0 13.4 37.06
MobileViTv3-1.0 13.62 39.13 (+2.07%)

backbone is fine-tuned on MS-COCO dataset. No change to training hyperparameters. Detailed
list of hyperparameters in appendix C.2. Performance evaluation is done on validation set using
mAP@IoU of 0.50:0.05:0.95 metric.

Results: Table 4a and 4b show the detection results on COCO dataset. # params of MobileViT
models indicates number of parameters of the encoder/backbone architecture only. MobileViTv3
comparison with other light-weight CNN models is shown in Table 4a. MobileViTv3-XS outper-
forms MobileViTv1-XS by 0.8% and MNASNet by 2.6% mAP. Comparison with heavy-weight
CNNs detailed in Table 4b. MobileViTv3-XS and MobileViTv3-1.0 surpasses MobileViTv1-XS
and MobileViTv2-1.0 by 0.8% and 0.5% mAP respectively.

Table 4: Comparing MobileViTv3 detection task results on COCO dataset with light-weight and
heavy-weight CNNs. # params of MobileViT models denotes the number of parameters of the
encoder/backbone architecture only.

(a) Comparison w/light-weight CNNs

Backbone # Params (M)↓ mAP(%) ↑

MobileViTv1-XXS 1.5 18.5
MobileViTv3-XXS 1.53 19.3 (↑0.8%)

MobileViTv2-0.5 2 21.24
MobileViTv3-0.5 2 21.8 (↑0.56%)

MobileViTv2-0.75 3.6 24.57
MobileViTv3-0.75 3.7 25.0 (↑0.43%)

MobileNetv3 4.9 22.0
MobileNetv2 4.3 22.1
MobileNetv1 5.1 22.2

MixNet 4.5 22.3
MNASNet 4.9 23.0 (↑0.0%)

MobileViTv1-XS 2.7 24.8 (↑1.8%)
MobileViTv3-XS 2.7 25.6 (↑2.6%)

(b) Comparison w/heavy-weight CNNs

Backbone # Params (M)↓ mAP(%) ↑

VGG 35.6 25.1
ResNet50 22.9 25.2 (↑0.0%)

MobileViTv1-XS 2.7 24.8 (↓0.4%)
MobileViTv3-XS 2.7 25.6 (↑0.4%)
MobileViTv2-1.0 5.6 26.47 (↑1.27%)
MobileViTv3-1.0 5.8 27.0 (↑1.8%)
MobileViTv1-S 5.7 27.7 (↑2.5%)
MobileViTv3-S 5.5 27.3 (↑2.1%)

4.4 ABLATION STUDY OF OUR PROPOSED MOBILEVITV3 BLOCK

Implementation details: We study the effect of the four proposed changes on MobileViTv1-S block
by adding changes one by one. The final model with all the four changes is our unscaled version
and we name it: MobileViTv3-S(unscaled). To match the number of parameters of MobileViTv1 we
increase the width of MobileViTv3-S(unscaled), giving us MobileViTv3-S. In this ablation study we
train models for 100 epochs, use batch size of 192 (32 images per GPU) and other hyper-parameters
are default as given in section 4.1. In Table 5, ‘conv-3x3’: 3x3 convolutional layer in fusion block,
‘conv-1x1’: 1x1 convolutional layer in fusion block, ‘Input-Concat’: concatenating input features
with global representation in the fusion block, ‘Local-Concat’: concatenating local-representation
block output features with global representation in the fusion block, ‘Input-Add’: adding input
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features to the output of fusion block, ‘DWConv’: using depthwise convolutional layer in the local
representation block and ‘Top-1’: Top-1 accuracy on ImageNet-1K dataset.

Table 5: Ablation study of MobileViTv3 block. ‘unscaled’ indicates that the number of channels in
the architecture are kept same as the baseline MobileViTv1. ✓represents incorporating the change
in the block.

Model Conv 3x3 Conv 1x1 Input Concat Local Concat Input Add DW Conv Top-1 (%)↑

MobileViTv1-S ✓ ✓ 73.7 (↑0.0%)

MobileViTv3-S(unscaled) ✓ ✓ 74.8 (↑1.1%)

MobileViTv3-S(unscaled) ✓ ✓ 74.7 (↑1.0%)

MobileViTv3-S(unscaled) ✓ ✓ ✓ 75.3 (↑1.6%)

MobileViTv3-S(unscaled) ✓ ✓ ✓ ✓ 75.0 (↑1.3%)

With 100 training epochs: Results are shown in Table 5. The baseline MobileViTv1-S, in fusion
block, concatenates input features with global representation block features and uses 3x3 convolu-
tional layer. Also, it uses normal 3x3 convolutional layer in the local representation block. This
baseline achieves an accuracy of 73.7%. 1. Replacing 3x3 convolution with 1x1 convolutional layer
in fusion block, MobileViTv3-S(unscaled) achieves 1.1% improvement. This result supports the
assumption that simplifying the fusion block’s task (allowing fusion layer to fuse local and global
features independent of the other location’s local and global features) should help optimization to
attain better performance. 2. Along with 1x1 convolutional layer in fusion block, concatenating
local representation features instead of input features results in similar performance gains of 1%
compared to concatenating input features. 3. This allows us to incorporate the next change i.e,
to add input features to the output of fusion block to create a residual connection for helping opti-
mization of deeper layers in the model. With this change, MobileViTv3-S(unscaled) attains 1.6%
accuracy gain over the baseline MobileViTv1-S and 0.6% gain over the last change demonstrating
the clear advantage of this residual connection. 4. To further reduce number of parameters and
FLOPs in MobileViTv3-block, depth-wise convolutional layer is used instead of normal convolu-
tional layer in the local representation block. MobileViTv3-S(unscaled) maintains high accuracy
gains by achieving 1.3% gain over the baseline. 0.3% accuracy drop can be observed when com-
pared to the previous change. We adopt this change since it reduces parameters and FLOPs without
significantly impacting performance and helps in scaling of MobileViTv3-block.

Table 6: MobileViTv3-S(unscaled), MobileViTv1-S and MobileViTv3-S Top-1 ImageNet-1K ac-
curacy comparisons. With similar parameters and FLOPs after scaling, MobileViTv3-S is able to
exhibit better performance than baseline MobileViTv1-S.

Model Training batch size FLOPs (M)↓ # Params (M) ↓ Top-1 (%)↑

MobileViTv1-S 192 2009 5.6 75.6
MobileViTv3-S(unscaled) 192 1636 (↓18.6%) 4.3 (↓22.7%) 77.5 (↑1.9%)

MobileViTv1-S 1024 2009 5.6 78.4
MobileViTv3-S 384 1841 (↓8.3%) 5.8 (↑3.6%) 79.3 (↑0.9%)

With 300 epochs training: Results shown in Table 6. When trained for 300 epochs with the batch
size of 192, the baseline MobileViTv1-S achieves Top-1 accuracy of 75.6%, which is lower by 2.8%
compared to reported accuracy on MobileViTv1-S trained on 1024 batch size. With all the four
proposed changes implemented in MobileViTv1-S architecture to form MobileViTv3-S(unscaled),
the model reaches Top-1 accuracy of 77.5%, which outperforms the baseline by 1.9% with 22.7%
and 18.6% less parameters FLOPs respectively. MobileViTv3-S(unscaled) architecture though bet-
ter than the baseline MobileViTv1-S with training batch size of 192, performs worse than the
MobileViTv1-S trained at batch size of 1024. Therefore, MobileViTv3-S, XS and XXS models
are scaled to have similar parameters and FLOPs as MobileViTv1-S, XS and XXS and are trained
with batch size of 384. Table 6 demonstrates that after scaling, MobileViTv3-S is able to outperform
MobileViTv1-S by achieving 79.3% accuracy with similar parameters and FLOPs.
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Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
International Conference on Machine Learning, pp. 10347–10357. PMLR, 2021.

11

https://arxiv.org/abs/2206.02680
https://arxiv.org/abs/2104.00298


Under review as a conference paper at ICLR 2023

Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo,
and Ling Shao. Pyramid vision transformer: A versatile backbone for dense prediction without
convolutions. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
568–578, 2021.

Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo,
and Ling Shao. Pvt v2: Improved baselines with pyramid vision transformer. Computational
Visual Media, 8(3):415–424, 2022.

Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, and Lei Zhang. Cvt:
Introducing convolutions to vision transformers. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 22–31, 2021.

Weijian Xu, Yifan Xu, Tyler Chang, and Zhuowen Tu. Co-scale conv-attentional image transform-
ers. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9981–
9990, 2021a.

Yufei Xu, Qiming Zhang, Jing Zhang, and Dacheng Tao. Vitae: Vision transformer advanced by ex-
ploring intrinsic inductive bias. Advances in Neural Information Processing Systems, 34:28522–
28535, 2021b.

Jianwei Yang, Chunyuan Li, Pengchuan Zhang, Xiyang Dai, Bin Xiao, Lu Yuan, and Jianfeng
Gao. Focal self-attention for local-global interactions in vision transformers. arXiv preprint
arXiv:2107.00641, 2021.

Kun Yuan, Shaopeng Guo, Ziwei Liu, Aojun Zhou, Fengwei Yu, and Wei Wu. Incorporating convo-
lution designs into visual transformers. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 579–588, 2021a.

Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Zi-Hang Jiang, Francis EH Tay, Jiashi
Feng, and Shuicheng Yan. Tokens-to-token vit: Training vision transformers from scratch on
imagenet. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
558–567, 2021b.

Jinnian Zhang, Houwen Peng, Kan Wu, Mengchen Liu, Bin Xiao, Jianlong Fu, and Lu Yuan.
Minivit: Compressing vision transformers with weight multiplexing. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12145–12154, 2022.

Pengchuan Zhang, Xiyang Dai, Jianwei Yang, Bin Xiao, Lu Yuan, Lei Zhang, and Jianfeng Gao.
Multi-scale vision longformer: A new vision transformer for high-resolution image encoding.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2998–3008,
2021.

Qinglong Zhang and Yu-Bin Yang. Rest: An efficient transformer for visual recognition. Advances
in Neural Information Processing Systems, 34:15475–15485, 2021.

Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Scene
parsing through ade20k dataset. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 633–641, 2017.

Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fidler, Adela Barriuso, and Antonio Torralba.
Semantic understanding of scenes through the ade20k dataset. International Journal of Computer
Vision, 127(3):302–321, 2019.

A FINETUNING

Table 7 compares finetuning results of MobileViTv3-1.0, 0.75 and 0.5 with MobileViTv2-1.0, 0.75
and 0.5. Implementation details are similar to section 4.1.
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Table 7: Fine-tuned MobileViT V2 and V3 comparison in terms of Top-1 ImageNet-1k accuracy,
parameters and operations. <Model name>(384) indicate that the model was fine-tuned using an
image size of 384x384. Models with similar parameters and operations are grouped together for
clear comparison.

Model Training Batch size FLOPs (M)↓ # Params. (M)↓ Top-1 (%)↑

MobileViTv2-0.5 (384) 64 1048 1.4 72.14
MobileViTv3-0.5 (384) 64 1083 1.4 74.01 (+1.87%)

MobileViTv2-0.75 (384) 64 2318 2.9 76.98
MobileViTv3-0.75 (384) 64 2395 3.0 77.81 (+0.83%)

MobileViTv2-1.0 (384) 64 4083 4.9 79.68
MobileViTv3-1.0 (384) 64 4220 5.1 79.74 (+0.06%)

B IMPROVING LATENCY AND THROUGHPUT

Implementation details: We use GeForce RTX 2080 Ti GPU for obtaining latency timings. Results
are averaged over 10000 iterations. The timing results may vary ±0.1 ms. Throughput for XXS,
XS and S are calculated on 1000 iterations with batch size of 100. ‘Blocks’ in Table 8 represents
number of MobileViTv3-blocks in ‘layer4’ of MobileViTv3 architectures (Table 1). To improve the
latency, we reduce the number of MobileViT-blocks in ‘layer4’ from 4 to 2.

Results: Table 8 shows the latency and throughput results. MobileViTv3-XXS with similar pa-
rameters and FLOPs as the baseline MobileViTv1-XXS, along with 1.98% accuracy improvement
achieves similar latency of ∼7.1 ms. MobileViTv3-XXS with two MobileViT-blocks instead of
four, has 30% less FLOPs and achieves latency of 6.24 ms which is ∼1 ms faster than the baseline
MobileViTv1-XXS. With similar changes in MobileViTv3-XS and MobileViTv3-S architecture,
FLOPs are reduced by 13.5% and 17.82% respectively and latency is reduced by ∼1 ms and ∼0.7
ms respectively.

Model Blocks (↓) FLOPs (↓) # Params (↓) Top-1 (↑) Throughput (↑) # Time (ms) (↓)

MobileViTv1-XXS 4 364 1.3 69 2124 7.24
MobileViTv3-XXS 4 289 1.25 70.98 (↑1.98%) 2146 7.12
MobileViTv3-XXS 2 256 (↓30%) 1.14 70.23 (↑1.23%) 2308 6.24

MobileViTv1-XS 4 986 2.3 74.8 1097 7.32
MobileViTv3-XS 4 927 2.5 76.7 (↑1.9%) 1078 7.2
MobileViTv3-XS 2 853 (↓13.5%) 2.3 76.1 (↑1.3%) 1129 6.35

MobileViTv1-S 4 2009 5.6 78.4 822 7.34
MobileViTv3-S 4 1841 5.8 79.3 (↑0.9%) 824 7.29
MobileViTv3-S 2 1651 (↓17.82%) 5.2 79.06 (↑0.6%) 876 6.6

Table 8: Latency and throughput comparison between MobileViTv3-XXS, XS, and S and
MobileViTv1-XXS, XS, and S. While keeping the parameters and Top-1 accuracy similar to Mo-
bileViTv1, MobileViTv3 with 2 blocks reduces the number of FLOPs and improves the throughput
and latency.

C HYPERPARAMETERS

C.1 CLASSIFICATION

MobileViTv3-S, XS and XXS: Default hyperparameters used from MobileViTv1 include us-
ing AdamW as optimizer, multi-scale sampler (S = (160,160), (192,192), (256,256), (288,288),
(320,320)), learning rate increased from 0.0002 to 0.002 for the first 3K iterations and then annealed
to 0.0002 using cosine schedule, L2 weight decay of 0.01, basic data augmentation i.e, random
resized cropping and horizontal flipping.

MobileViTv3-1.0, 0.75 and 0.5: Default hyperparameters used from MobileViTv2 include using
AdamW as optimizer, batch-sampler (S = (256,256)), learning rate increased from 1e-6 to 0.002 for
the first 20K iterations and then annealed to 0.0002 using cosine schedule, L2 weight decay of 0.05,
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advanced data augmentation i.e, random resized cropping, horizontal flipping, random augmenta-
tion, random erase, mixup and cutmix.

C.2 COCO

MobileViTv3-S, XS and XXS: Default hyperparameters include using images of input resolution of
320 x 320, AdamW optimizer, weight decay of 0.01, cosine learning rate scheduler, total batch size
of 128 (32 images per GPU), smooth L1 and cross-entropy losses are used for object localization
and classification respectively.

MobileViTv3-1.0, 0.75 and 0.5: Default hyperparameters include using images of input size 320
x 320, AdamW optimizer, weight decay of 0.05, cosine learning rate scheduler, total batch size of
128 (32 images per GPU), smooth L1 and cross-entropy losses are used for object localization and
classification respectively.

D DISCUSSION AND LIMITATIONS

This work is an effort towards improving performance of models for resource constrained environ-
ments like mobile phones. We looked at reducing memory (parameters), computation (FLOPs),
latency while boosting accuracy and throughput. With the proposed changes to MobileViT blocks
we achieve higher accuracy, with same memory and computation as the baseline MobileViTv1 and
v2 as seen in section 4.1. Table 7 shows fine-tuning results which also outperform the fine-tuned
MobileViTv2 models. Section B shows how we can achieve better latency and throughput with min-
imal impact on the accuracy of the model. While MobileViTv3 has higher accuracy and lower or
similar parameters as compared to other mobile-CNNs, it’s higher FLOPs can be an issue for edge
devices (Figure 3). This limitation of MobileViTv3 architecture is inherited from the self-attention
module of ViTs. To solve this issue, we will further explore optimization of the self-attention block.
Table 2 shows results on Imagenet-1K. The reported accuracies of MobileViTv3-XXS, XS and S
models on Imagenet-1K can potentially be further improved by increasing the training batch size
to 1024 similar to the baseline model. The proposed fusion of input features, local features (CNN
features) and global features (ViT features) shown in this paper can also be explored in other hybrid
architectures.

E OBJECT DETECTION AND SEMANTIC SEGMENTATION RESULTS

E.1 OBJECT DETECTION ON COCO DATASET

Figure 4 shows object detection results on COCO validation images using SSD-Lite with
MobileViTv3-S as its backbone. Figure 5 shows object detection results on COCO validation im-
ages using SSD-lite with MobileViTv3-1.0 as its backbone. The images shown in figure 4 include
challenging object detection examples (blurred human/person and complex background).

E.2 SEMANTIC SEGMENTATION ON PASCALVOC2012 DATASET

Figure 6 shows segmentation results on PascalVOC2012 validation images using Deeplabv3 with
MobileViTv3-S as its backbone. Figure 7 shows segmentation results on PascalVOC2012 validation
images using Deeplabv3 with MobileViTv3-1.0 as its backbone. In figure 6 and 7, moving from left
to right we provide the input image, the corresponding segmentation output, and the overlay of
segmentation output on the input image.
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Figure 4: Object detection results using SSD-Lite model with MobileViTv3-S as its backbone.
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Figure 5: Object detection results using SSD-Lite model with MobileViTv3-1.0 as its backbone.
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Figure 6: Semantic segmentation results using Deeplabv3 with MobileViTv3-S as its backbone.
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Figure 7: Semantic segmentation results using Deeplabv3 with MobileViTv3-1.0 as its backbone.
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