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Abstract

The simulation of human neurons and neurotransmission mechanisms has been
realized in deep neural networks based on the theoretical implementations of activa-
tion functions. However, recent studies have reported that the threshold potential of
neurons exhibits different values according to the locations and types of individual
neurons, and that the activation functions have limitations in terms of representing
this variability. Therefore, this study proposes a simple yet effective activation
function that facilitates different thresholds and adaptive activations according
to the positions of units and the contexts of inputs. Furthermore, the proposed
activation function mathematically exhibits a more generalized form of Swish acti-
vation function, and thus we denoted it as Adaptive SwisH (ASH). ASH highlights
informative features that exhibit large values in the top percentiles in an input,
whereas it rectifies low values. Most importantly, ASH exhibits trainable, adaptive,
and context-aware properties compared to other activation functions. Furthermore,
ASH represents general formula of the previously studied activation function and
provides a reasonable mathematical background for the superior performance.
To validate the effectiveness and robustness of ASH, we implemented ASH into
many deep learning models for various tasks, including classification, detection,
segmentation, and image generation. Experimental analysis demonstrates that our
activation function can provide the benefits of more accurate prediction and earlier
convergence in many deep learning applications. 1

1 Introduction

Searching for the optimal activation functions has been a challenge in the field of artificial intelli-
gence (Maas et al., 2013; Ramachandran et al., 2017; Clevert et al., 2015). Early activation functions
have been studied to compensate for the non-linearity of the artificial neural networks or ameliorate
the gradient vanishing problem (Hertz et al., 1997; Hochreiter, 1998). Recently, novel activation func-
tions have been suggested with the zero-centered or parametric properties that improve the training
efficiency of deep neural networks (DNNs) (Maas et al., 2013; Clevert et al., 2015). Currently, the
activation functions focusing on the stability of DNNs or probabilistic distribution of inputs have
been proposed (Hendrycks, Gimpel, 2016; Misra, 2019). Advances in the activation functions have
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allowed DNNs to perform various tasks such as detecting or segmenting target objects in sophisticated
images or even generating new images beyond the simple classifiers (Simonyan, Zisserman, 2014;
Zhao et al., 2019; Badrinarayanan et al., 2017; Goodfellow et al., 2014).

The activation functions has evolved to behave more like a human neuron (Sharma et al., 2017; Lee
et al., 2017). However, Izhikevich (2003); Evans et al. (2018) reported that the neurotransmission
mechanism, including the membrane, action, and threshold potentials of human neurons, is subject
to the location or the connection type of the neurons. Additionally, humans perceive objects with
surrounding contexts using the N : N mapping of visions to human neurons rather than the 1:1
mapping of a pixel to an input node in a neural network (Liu et al., 2018). The connections between
neurons can be realized through the linear combinations of layers in DNNs. However, DNNs have
limitations in terms of realizing contextual perception. This implies that the further improvement
in deep neural networks and convolutional neural networks (CNNs) can be realized despite the
impressive performance on image analysis (Jinsakul et al., 2019; Misra, 2019). Therefore, the
development of DNNs is leaned to mimic human perception by realizing the mechanism of human
neurons (Aggarwal, others, 2018; Lindsay, 2021).

tCurrently, the primary issue is that many activation functions exhibit passivity, in this paper, indicating
that they determine outputs only concerning the value of one element rather than entire contexts.
For instance, the Rectified Linear Unit (ReLU), defined as f(x) = max(x, 0), determines the output
values related to x (Fukushima, Miyake, 1982), whereas the softmax function generates output values
as the ratio of the input value to the totals (Goodfellow et al., 2017). Particularly, ReLU exhibits
passivity, whereas softmax does not. Suppose an image can be classified by considering 80% of the
total portion. Current activation functions are limited in terms of classifying such an image since only
elements (pixels) of the image are used to rectify the image rather than a ratio. Another limitation
is that the activation functions are invariant. Although the parametric activation functions update
their parameters during training, the resulting parameters are invariant during the inference phase (Xu
et al., 2015; Bingham, Miikkulainen, 2022). Therefore, the limited rectification can be realized by
the invariant parameters or thresholds regardless of new inputs from different domains (e.g., test set).

Contribution To realize the mechanism of human neurons that rectify inputs considering their
contexts, we propose a novel ASH activation function. The main contributions of this study are to
suggest a simple yet effective activation function, ASH, and to implement ASH in a mathematically
effective form. Going beyond the passive activation functions, ASH activation function is designed
as (1) an active activation function that provides outputs regarding the context of inputs and (2) a
conditional activation function that employs an adaptive threshold. Unlike ReLU or Leaky ReLU, the
threshold value of ASH is adaptively changed by considering the contextual information.

f(x) =

{
x if x ≥ θ,

0 otherwise
(1)

In particular, the threshold value (θ) is adaptively changed according to the input distribution without
heavy calculation, and thus ASH provides outputs considering the contexts of inputs adaptively. By
applying ASH, we obtained the following theoretical and experimental results:

• We conducted mathematical modeling on ASH in an effective form to ensure trainable
and parametric properties, and thus ASH exhibits parametric and adaptive properties. The
baseline threshold of ASH is initially trained during the training phase, and the threshold
value is adaptively fine-tuned according to the contexts of inputs without heavy calculations.

• We theoretically verified that ASH adaptively changes its threshold alongside the stochastic
distribution of inputs. This implies that ASH provides outputs regarding the entire contexts
of inputs, thus leading to enhanced feature extraction.

• We theoretically verified that ASH exhibits a generalized formula of Swish activation
function and provided the mathematical explanations for the superior performance of Swish,
which was empirically searched in the previous work.

• We experimentally showed that ASH improves the performance of deep learning models on
various tasks and shortens the convergence epoch.

Related works Activation functions affect the performance of the training process to determine a
functional subspace of a DNN (Hayou et al., 2019). In particular, the non-linearity using activation
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functions have been introduced to prevent the issue of the linear transformation causing simple
feature extractions in the DNNs (Misra, 2019; Jarrett et al., 2009). DNNs with non-linearity have
been employed to perform complex tasks (Leshno et al., 1993). In the early era, Rectified Linear
Unit (ReLU) replaced the classical activation functions such as sigmoid and tanh (Nair, Hinton,
2010) due to its simple and computational efficiency compared to other activation functions. During
decades, many activation functions have been proposed , including Leaky ReLU (Maas et al.,
2013), Exponential Linear Unit (ELU) (Clevert et al., 2015), Gaussian Error Linear Unit (GELU)
(Hendrycks, Gimpel, 2016), Scaled Exponential Linear Unit (SELU) (Klambauer et al., 2017), and
Swish (Ramachandran et al., 2017) to improve the performance and stability of learning parameters in
DNNs. Those activation functions have solved the dying ReLU problem, which exhibits a zero value
in the negative region, and improved DNNs more smoothly for stable optimization. In particular, ELU
and SELU have realized internal normalization in the layer using the zero-mean property. GELU
exploited a Gaussian error and could implement an adaptive dropout to apply a higher probabilistic
intuition.

Problem statement For adaptive thresholding, ASH exploits a stochastic selection methodology
such as a quick selection (Hoare, 1961). In particular, for enhanced feature extraction, the informative
elements, which exhibit large values, should be identified as an attention mechanism. In contrast,
some elements, which exhibit low relevance, should be required to be rectified. To this end, ASH is
designed to identify informative elements but rectify others as 0.

Let X ∈ RH×W×C be a tensor (i.e., feature-map) disregarding the batch, but with a height (H),
width (W ), and channel (C), and let X̄ ∋ X be a set of feature-maps. LetA be an activation function
such that A : X̄ → X̄ . We can then extract the ith element from X , and denote it as x(i). Here, the
goal of this study is to design the activation function represented as follows:

A(x(i)) =

{
x(i) if x(i) is ranked in the top-k percentile of X,

0 otherwise
(2)

Note that, the novel activation function A is represented similar to ReLU, whereas its threshold is not
invariant in contrast to ReLU, but it is subjected to the distribution of the input X . To simplify, let
C(x(i), k;X) be a condition whether x(i) is ranked in the top k percentile of X , and the negation of
C is denoted as ¬C. In particular, the elements that satisfy C(x(i), k;X) are from the first largest
element to the (0.01kN )-th largest element in X , where N indicates the number of elements in X .
Here, the elements can be extracted using a simple algorithm as a quick selection. Suppose a set X̂
that includes all elements in X such that X̂ = {x(1), x(2), ..., x(N)}. We can then construct subsets
of X̂ as X̂C = {x(i) ∈ X|C(x(i), k;X)} and (X̂C)

c = {x(i) ∈ X|¬C(x(i), k;X)}. Equation (2)
can be then simplified as follows:

A(x(i)) =

{
x(i) if x(i) ∈ X̂C ,

0 otherwise
(3)

In summary, the activation function is designed to sample the top-k percentile from the input, where
criteria are the values of elements. Sampling examples are presented in Fig. 1, compared to ReLU.

(a) Feature-map (b) ReLU (c) ASH (80%) (d) ASH (50%) (e) ASH (30%)

Figure 1: Input feature-map and outputs by activation functions. ASH (k%) indicates that ASH
activation function samples top-k% elements from input feature-map. The sampled elements by the
activation functions are colored as blue.
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2 Method

This study aims to design an activation function for a stochastic sampling of the top-k percentile
elements from inputs. However, sorting or sampling methods such as a quick selection requires
high computational costs. In contrast, sampling the top-k percentile can be realized using a Z-
score-based method in a simple calculation despite the prerequisites of a normal distribution (also
known as Gaussian distribution). As discussed below, the outputs of neurons are normally distributed.
Therefore, we employed the stochastic sampling to design ASH activation function.

In this section, we (1) demonstrate that the outputs of neurons are normally distributed, (2) construct a
model for stochastic sampling using a Z-score, (3) formulate ASH activation function, (4) verify that
ASH is parametric and trainable, and (5) search for general applications of ASH activation function.

2.1 Background

Gaussian distribution Many deep learning models employ normalization methods to improve
their stability in training (Ioffe, Szegedy, 2015; Ulyanov et al., 2016; Wu, He, 2018). In a previous
study, Ioffe, Szegedy (2015) reported that the output of the convolutional layer, x = Wu + b, is
more likely to have a symmetric, non-sparse distribution, that is "more Gaussian". Since most deep
learning models are based on convolutional operations, the outputs of neurons are supposed to be
normally distributed (Gaussian distribution). Therefore, it is concluded that the inputs of the activation
functions are normally distributed when activation functions follow convolutional layers, such that
x ∼ N(µx, σ

2
x), where x is an input feature-map of an activation function, µx and σx are mean and

standard deviation of x, respectively. Therefore, we can obtain the following proposition.

Proposition 1. The outputs of neurons in convolutional neural networks are normally distributed.

Figure 2: Top-k% sampling from normal distribution

Sampling from a normal distribution This study aimed to sample the top-k% elements that
exhibit large values in an input feature-map. Since the area under the normal distribution indicates the
percentile, sampling the top-k% from a normal distribution is theoretically identical to the statement
calculating the area under the curve presented in Fig. 2. Let F be a tensor, a multi-dimensional array
or a matrix. F should be then normally distributed, and thus we can sample the elements (f (i)) in the
top-k% from F using the following equation:

P (f (i) ≥ z′k) = k, k ∈ [0, 1] z′k ∈ [−∞,∞] (4)
However, heavy computational costs are incurred to obtain a trivial solution from the probability
density function of the normal distribution, defined as 1

σF

√
2π

e−(x−µF )2/2σ2
F . Therefore, we leaned

to probability theory to simplify the computation rather than calculus. To this end, we employed the
standard normal distribution (Z-score normalization) for Equation (4), and we obtained the following
equation:

P (Z(i) ≥ zk) = k, Z(i) =
f (i) − µF

σF
s.t. Z(i) ∼ N(0, 1) (5)

where zk = (z′k − µF )/σF , which is the Z-normalized value from z′k, and thus zk is subjected to k,
indicating percentile to sample, in terms of Z-table (Larsen, Marx, 2005). Then, we go Z-table and
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easily find the proper value for zk, intuitively. Therefore, the condition, Z(i) = (f (i) − µF )/σF ≥
zk ⇔ f(i) ≥ µF + zkσF , is mathematically identical to sample the top-k% elements from F . To
summarize, we obtained the following proposition.

Proposition 2. Element x(i) ∈ X , which is normally distributed, is in the top-k% of X if x(i) ≥
µX + zkσX , where zk is a z-value subjected to k in Z-table (Larsen, Marx, 2005).

Differentiation The mechanisms of convolutional neural networks (CNNs) have been studied in
many previous works (Rumelhart et al., 1986; Bottou, 2010; Zhang, 2016; Hu et al., 2018). Training
CNN models is subjected to the backpropagation derived from the partial derivatives of loss functions
by the individual convolutional parameters. Let L be a loss function for the deep learning model
M and let W be one of the variables in M . Then, the derivative of L in terms of W is represented
as ∂L

∂W , and W is updated as W ← W − η ∂L
∂W with a learning rate η. On the other hand, suppose

variable θ be the threshold, the function f(x) is αx if x ≥ θ, otherwise 0. Thus, the partial derivative
of f is represented as follows:

∂f

∂x
=

{
α, if x ≥ θ

0, otherwise
,

∂f

∂α
=

{
x, if x ≥ θ

0, otherwise
,

∂f

∂θ
= 0 (6)

Here, α is arithmetically combined with f(x), whereas θ does not. Therefore, α is trainable, but θ is
not trainable in this context. In basic calculus, it is trivial that if the loss function is not dependent on
the variable, the partial derivative is zero, and thus the variable cannot be trained or optimized; In
other words, it is invariant. Therefore, we obtain the following lemma:

Lemma 1. The derivative of a variable in the conditional statement is zero, and thus that the variable
cannot be optimized.

2.2 ASH Activation Function

Let X be an input of ASH activation function (Æ) and be a tensor of which elements are normally
distributed. Furthermore, let x(i) ∈ X be the i-th element in X . Then, by Proposition 2, ASH
activation function, which samples the top-k% elements from the input, is represented as follows:

Æ(x(i)) =

{
x(i) if x(i) ≥ µX + zkσX ,

0 otherwise
(7)

where µX and σX are the mean and the standard deviation of all elements in X , respectively, and
zk is the Z-score concerning percentile (k) to sample (i.e., z = 1.96 if k = 2.5%, see Z-table).
Equation (7) exhibits that ASH activation function is represented in a simple yet effective form with
low computational costs.

Intuitively, we assumed that the activation level (percentile) is supposed to be different by each
neuron and the tasks of the deep learning model, similar to human neurons. However, in Equation
(7), the condition (x(i) ≥ µX + zkσX ) is invariant by Lemma 1. Note that, µX + zkσX is variable
and changeable with respect to X , but the sampled portion (k% related to zk) from X is invariant.
Therefore, ASH in Equation (7) is not parametric and trainable. To make ASH be trainable and
parametric, let Equation (7) be substituted using a proxy function as Æ(x(i)) = x(i)f(x(i)), such that
the proxy function f(x(i)) is represented as follows:

f(x(i)) =

{
1 if x(i) − µX − zkσX ≥ 0,

0 otherwise
(8)

For simplicity, suppose that a Heaviside step function (Weisstein, 2002) is defined as H(x) =
d
dxmax(0, x), and thus f(x(i)) = H(x(i) − µX − zkσX). Then, we obtain the arithmetical form to
formulate ASH activation function as follows:

Æ(x(i)) = x(i)H(x(i) − µX − zkσX) (9)

Even with the arithmetic formula, ASH activation function in Equation (9) is still independent of zk,
and thus the zk is still not trainable. However, it is well known that the Heaviside step function is

5



analytically approximated as 2H(x) = 1+1 tanh(αx) with a large value of α (Iliev et al., 2017), and
thus ASH activation function is approximated using the smooth Heaviside step function as follows:

Æ(x(i)) = x(i)H(x(i) − µX − zkσX)

=
1

2
x(i) +

1

2
x(i) tanh(α(x(i) − µX − zkσX))

=
x(i)

1 + e−2α(x(i)−µX−zkσX)

(10)

Since zk is arithmetically placed, zk representing a sampling percentile is trainable, and thus ASH
activation function is also trainable and parametric. By optimizing zk, ASH activation functions
exhibit different thresholds. Therefore, it is concluded that ASH exhibits different activation levels
based on the stochastic sampling of inputs and different thresholds, similar to human neurons,
synapses, and their potentials. As human neurons, the mechanism of ASH can be summarized as
follows:

(1) In the training phase, each ASH activation function optimizes its zk and fine-tunes the threshold
for the sampling percentile of inputs. Thus, it implies that ASH activation function realizes the
arbitrary threshold potentials as human neurons (Clevert et al., 2015; Evans et al., 2018). Some
examples of zk related to Equation (7) are:

Example 1. A small value of zk, even a small negative value, implies the dense activation, and the
dying ReLU problem can be solved.

Example 2. A large value of zk implies the sparse activation, and the sparsity can be leveraged.

(2) In the training or inference phase, ASH activation function rectifies the inputs using the learned
threshold value and contexts of inputs. In particular, to sample the top-k percentile, ASH employs the
mean and the standard deviation of inputs, representing the contexts of the entire inputs. Therefore, it
implies that ASH realizes the adaptive activation considering the contexts of inputs. Some examples
of the adaptive activation related to Equation (7) are:

Example 3. A small threshold value (θs) is employed to calculate the input X that exhibits large
mean and standard deviation values (X > θs).

Example 4. A large threshold value (θl) is employed to calculate the input X ′ that exhibits large
mean and standard deviation values (X ′ > θl ≫ θs).

2.3 Generalized Activation Function

We found the innovation while representing Equation (10) using the sigmoid function S(x) = 1
1+e−x

as follows:

Æ(x(i)) = x(i)S
(
− 2α(x(i) − µX − zkσX)

)
= x(i)S(ax(i) + b))

(11)

In a previous work, Ramachandran et al. (2017) introduced the leverage of automatic search tech-
niques to discover the best performance activation function. The experiments empirically discovered
that the Swish activation function is the best performance activation function, defined as xS(x) (Ra-
machandran et al., 2017). Intuitively, the definition of the Swish activation function is the same
with Equation (11), and Equation (11) represents more generalized formula. Therefore, ASH (Adap-
tive SwisH) activation function provides the theoretical explanations for why Swish was the best
performance activation function in the empirical evaluations. Therefore, we obtain the following.

Lemma 3. ASH activation function exhibits general formula for the Swish activation function.

Interestingly, the activation function designed for stochastic adaptive sampling is converged to the
generalized Swish activation function. The extreme impression is that the stochastic percentile
sampling by the activation function that mimics real neurons expresses the general formula of the
swish activation function formerly known as state-of-the-art. Therefore, the stochastic percentile
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sampling can partially be applied to the Swish activation function. Additionally, it can be supposed
that the Swish activation function achieved superior performance in the previous studies based on the
utilization of stochastic percentile sampling.

This paper initially considered an activation function that enables stochastic percentile sampling
in a mathematically effective manner. However, we found that the mathematical expression of
ASH supports the theoretical background of the Swish activation function. Therefore, this paper
provides the theoretical backgrounds and rationales for the Swish activation function, which was
empirically investigated. It is a significant innovation to provide the mathematical theorem that the
Swish activation function is derived from a stochastically designed activation function.

3 Main Result

Similar to a previous study (Ramachandran et al., 2017), we compared ASH to several baseline
activation functions on various models for different tasks using public datasets. Because many
activation functions have been developed, we employed some of the most commonly used activation
functions, namely ReLU, leaky ReLU (LReLU) (Maas et al., 2013), parametric ReLU (PReLU) (He
et al., 2015), Softplus (Nair, Hinton, 2010), ELU (Clevert et al., 2015), SELU (Klambauer et al.,
2017), and GELU (Hendrycks, Gimpel, 2016). In our experiments, every hyper-arameter in ASH and
the other activation functions was set to be the same to demonstrate the advantages of ASH compared
to other activation functions. In the tables, the highest accuracy values are highlighted in bold.

3.1 Classification Task

We first compared ASH to all the baseline activation functions on the CIFAR-10 (Krizhevsky et al.,
2009), CIFAR-100 (Krizhevsky et al., 2009) datasets, and ImageNet (Russakovsky et al., 2015)
datasets. We employed environments from a previous study (Ramachandran et al., 2017) and re-
implemented the baseline models of ResNet-164 (He et al., 2016), wide ResNet28-10 (Zagoruyko,
Komodakis, 2016), and DenseNet-100-12 (Huang et al., 2017). Based on these different environments,
small differences were reported previously, but we believe that the accuracy trends are similar. We
first evaluated ASH activation function against other activation functions using the ImageNet 2012
classification dataset because ImageNet is a widely utilized dataset in classification tasks. We then
evaluated all activation functions using the CIFAR-10 and CIFAR-100 datasets, which have been
widely utilized as benchmarks.

Model Top-1 Acc. (%) Top-5 Acc. (%)
ReLU 76.4 ± 0.09 75.6 ± 0.10 77.1 ± 0.11 91.2 ± 0.09 90.7 ± 0.06 90.7 ± 0.06

LReLU 77.6 ± 0.07 78.0 ± 0.03 76.6 ± 0.07 91.6 ± 0.10 91.2 ± 0.07 92.3 ± 0.07
PLeLU 77.0 ± 0.13 78.7 ± 0.03 78.0 ± 0.09 92.9 ± 0.03 92.3 ± 0.14 92.2 ± 0.12
Softplus 76.8 ± 0.11 77.3 ± 0.03 76.0 ± 0.05 91.5 ± 0.12 93.7 ± 0.05 93.8 ± 0.11

ELU 71.6 ± 0.09 73.7 ± 0.09 74.9 ± 0.10 85.6 ± 0.06 89.8 ± 0.13 90.2 ± 0.08
SELU 75.4 ± 0.13 78.1 ± 0.14 76.8 ± 0.06 91.6 ± 0.09 93.5 ± 0.10 90.9 ± 0.04
GELU 76.8 ± 0.13 77.9 ± 0.05 78.0 ± 0.12 90.2 ± 0.11 92.6 ± 0.04 91.9 ± 0.09
Swish 77.5 ± 0.07 76.6 ± 0.06 76.5 ± 0.05 92.2 ± 0.12 90.9 ± 0.07 92.2 ± 0.07
ASH 78.5 ± 0.06 78.6± 0.07 78.7± 0.10 94.0± 0.08 94.7± 0.07 94.1± 0.08

Table 1. ImageNet dataset. Three models are averaged. The values are mean and 95% confidence Interval (C.I.)

Model ResNet WRN DenseNet
ReLU 94.4 ± 0.04 95.6 ± 0.03 95.7 ± 0.02

LReLU 94.5 ± 0.05 95.6 ± 0.04 94.7 ± 0.09
PLeLU 94.7 ± 0.08 95.4 ± 0.03 95.1 ± 0.08
Softplus 94.3 ± 0.10 94.2 ± 0.08 95.2 ± 0.07

ELU 93.5 ± 0.10 93.8 ± 0.09 94.5 ± 0.11
SELU 94.5 ± 0.05 95.8 ± 0.07 94.9 ± 0.10
GELU 95.2 ± 0.04 95.7 ± 0.06 94.8 ± 0.10
Swish 95.5 ± 0.09 95.6 ± 0.08 95.2 ± 0.03
ASH 95.7 ± 0.08 96.7 ± 0.04 96.0 ± 0.11

Table 2. CIFAR-10 with mean values and 95% C.I.

Model ResNet WRN DenseNet
ReLU 74.5 ± 0.10 78.4 ± 0.04 84.0 ± 0.09

LReLU 75.3 ± 0.06 77.9 ± 0.07 82.2 ± 0.07
PLeLU 74.7 ± 0.06 77.6 ± 0.06 82.1 ± 0.07
Softplus 76.1 ± 0.05 78.6 ± 0.06 84.1 ± 0.02

ELU 75.0 ± 0.08 76.4 ± 0.09 80.8 ± 0.05
SELU 73.4 ± 0.05 74.4 ± 0.08 81.4 ± 0.06
GELU 75.0 ± 0.05 78.2 ± 0.10 84.0 ± 0.02
Swish 75.7 ± 0.10 78.9 ± 0.05 84.0 ± 0.03
ASH 76.5 ± 0.08 79.2 ± 0.06 84.6 ± 0.06
Table 3. CIFAR-100 with mean values and 95% C.I.

The ImageNet dataset evaluations were averaged based on the accuracy values of the three deep
learning models. The results in Tables 1 to 3 highlight the outstanding performance of ASH activation
function in terms of improving predictive accuracy. Because deep learning models for classification
tasks demand sparsity, it is intuitive that ASH activation function improves accuracy compared to
other activation functions.
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3.2 Detection Task

We compared ASH to all the baseline activation functions on the COCO (Lin et al., 2014) and
PASCAL VOC (Everingham et al., 2010) datasets for the detection task. Both of these datasets
are widely used as benchmarks for detection tasks. We employed the same environments as the
classification task and implemented the baseline models of Mask-R-CNN (He et al., 2017), SSD (Liu
et al., 2016), and YOLOv4 (Bochkovskiy et al., 2020). For detection tasks, deep learning models
output bounding boxes representing the locations of target objects. We exploited mAP@50 as an
evaluation metric based on its popularity for detection tasks.

Model MR-CNN SSD YOLOv5
ReLU 68.5 ± 0.02 70.1 ± 0.07 72.1 ± 0.04

LReLU 68.9 ± 0.06 70.6 ± 0.10 72.6 ± 0.03
PLeLU 69.4 ± 0.10 71.0 ± 0.11 73.1 ± 0.11
Softplus 69.4 ± 0.03 71.0 ± 0.08 73.0 ± 0.09

ELU 69.4 ± 0.10 71.1 ± 0.10 73.0 ± 0.06
SELU 69.7 ± 0.06 71.2 ± 0.04 73.3 ± 0.10
GELU 70.0 ± 0.08 71.6 ± 0.05 73.7 ± 0.04
Swish 70.4 ± 0.08 72.0 ± 0.03 74.0 ± 0.08
ASH 71.1 ± 0.06 72.7 ± 0.02 74.8 ± 0.09

Table 4. COCO with mean values and 95% C.I.

Model MR-CNN SSD YOLOv5
ReLU 65.8 ± 0.03 67.3 ± 0.07 69.3 ± 0.09

LReLU 66.9 ± 0.07 68.4 ± 0.07 70.5 ± 0.07
PLeLU 67.8 ± 0.03 69.2 ± 0.07 71.2 ± 0.09
Softplus 67.9 ± 0.05 69.4 ± 0.03 71.4 ± 0.03

ELU 67.8 ± 0.05 69.3 ± 0.06 71.4 ± 0.06
SELU 68.4 ± 0.07 69.9 ± 0.03 72.1 ± 0.11
GELU 68.9 ± 0.07 70.5 ± 0.03 72.4 ± 0.11
Swish 69.0 ± 0.04 70.6 ± 0.02 72.6 ± 0.08
ASH 70.5 ± 0.06 72.1 ± 0.04 74.1 ± 0.11

Table 5. PASCAL VOC with mean values and 95% C.I.

The quantitative results in Tables 4 and 5 highlight the outstanding performance of ASH activation
function compared to other activation functions. A higher mAP indicates that the predicted bounding
boxes are closer to the annotations. ASH activation function provides superior performance for
detecting target objects in various datasets for various deep learning models. Because the deep
learning models used for detection tasks demand locality to generate bounding boxes, it is expected
that zk will be small, demonstrating that greater activation can be realized using ASH activation
function compared to the models used for the classification task.

3.3 Segmentation Task

We compared ASH to all of the baseline activation functions on the ADE20K (Zhou et al., 2017) and
PASCAL VOC (Everingham et al., 2010) datasets for the segmentation task. Both datasets include
many target objects in one scene. Therefore, they are widely utilized as benchmarks for segmentation
tasks. We employed the same environments as the classification and detection tasks and implemented
the baseline models of U-Net (Ronneberger et al., 2015), DeepLabV3+(DLV3+) (Chen et al., 2018),
and EfficientNet (Tan, Le, 2019). Similar to other general benchmarks, we adopted intersection
over union (IoU) and mean IoU (mIoU) values as evaluation metrics based on their popularity for
segmentation tasks.

Similar to the previous tasks, the quantitative results in Tables 6 and 7 highlight the outstanding
performance of ASH activation function compared to the other activation functions. Because locality
is important for segmenting target objects from the background in segmentation tasks, it is intuitive
that ASH activation function improves locality during feature extraction. The experimental results
demonstrate that superior segmentation performance can be realized by using ASH activation function,
which aids significantly in localizing target objects.

Model U-Net DLV3+ EfficientNet
ReLU 49.4 ± 0.04 50.7 ± 0.06 52.2 ± 0.03

LReLU 49.8 ± 0.07 51.0 ± 0.09 52.3 ± 0.05
PLeLU 49.9 ± 0.02 51.0 ± 0.03 52.5 ± 0.06
Softplus 50.1 ± 0.11 51.2 ± 0.10 52.8 ± 0.03

ELU 50.3 ± 0.04 51.4 ± 0.09 52.8 ± 0.08
SELU 50.9 ± 0.04 52.1 ± 0.03 53.5 ± 0.06
GELU 50.9 ± 0.07 52.2 ± 0.08 53.5 ± 0.05
Swish 51.3 ± 0.05 52.4 ± 0.02 53.9 ± 0.07
ASH 53.4 ± 0.05 54.7 ± 0.08 56.3 ± 0.09

Table 6. ADE20K with mean values and 95% C.I.

Model U-Net DLV3+ EfficientNet
ReLU 74.3 ± 0.05 76.0 ± 0.08 78.1 ± 0.07

LReLU 76.2 ± 0.06 78.0 ± 0.05 80.3 ± 0.10
PLeLU 77.0 ± 0.07 78.9 ± 0.06 81.0 ± 0.08
Softplus 77.1 ± 0.09 78.8 ± 0.03 81.2 ± 0.10

ELU 77.2 ± 0.10 79.0 ± 0.05 81.3 ± 0.02
SELU 78.2 ± 0.06 80.1 ± 0.03 82.4 ± 0.03
GELU 78.9 ± 0.06 80.7 ± 0.05 83.2 ± 0.08
Swish 78.8 ± 0.11 80.7 ± 0.04 82.9 ± 0.04
ASH 81.2 ± 0.04 83.2 ± 0.04 85.5 ± 0.05
Table 7. PASCAL VOC with mean values and 95% C.I.
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Figure 3: Validation loss values alongside the training epoch for the activation functions. The
validation losses are averaged from the results of all experiments.

3.4 Training Time

We empirically explored the effectiveness of ASH activation function in terms of training time by
monitoring the validation loss values for all activation functions. Fig. 3 reveals that the loss values of
ASH activation function exhibit a steeper slope than those of the other activation functions. Therefore,
because ASH activation function reaches convergence significantly faster than the other activation
functions, we can empirically conclude that ASH has a superior effect in terms of reducing training
time.

Through our experiments, we explored the outstanding performance of ASH activation function
compared to other activation functions, including improvements in accuracy, sparsity, training time,
and localization. In this study, the experimental results demonstrate the outstanding performance of
ASH activation function. Additionally, supporting experiments and the results of other tasks such as
image generation is presented in the Supplementary Material.

4 Conclusions

In this paper, we proposed a novel activation function to rectify inputs using an adaptive threshold
considering the entire contexts of inputs more like human neurons. To this end, we designed an
activation function to extract elements in the top-k percentile from the input feature-map. Since
sorting algorithm-based selections or quick selection algorithm demands a heavy computational cost,
we employed the stochastic technique utilizing normal distribution to realize stochastic percentile
sampling. Based on the mathematical derivations, we implemented ASH activation function in simple
yet effective formula (f(x) = x·sigmoid(ax+b)) with low computational cost for sampling the top-k
percentile from the input. In addition, we implemented ASH activation function, realizing (1) the
adaptive threshold by employing the Z-score-based trainable variables and (2) the perception of entire
contexts in rectifying an input by utilizing the mean and standard deviation of the input. Meanwhile,
ASH activation function represented the generalized form of the Swish activation function that was
empirically searched in the previous study. Therefore, this study also exhibited a novel contribution
of the mathematical proofs for the state-of-the-art performance of the Swish activation function.
Experiments using various deep learning models on different tasks (classification, detection, and
segmentation) demonstrated superior performance for ASH activation function, in terms of accuracy,
localization, and training time.
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