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Abstract

Document-level Relation Extraction (DRE)001
aims to recognize the relations between two002
entities. The entity may correspond to mul-003
tiple mentions that span beyond sentence004
boundary. Few previous studies have inves-005
tigated the mention integration, which may006
be problematic because coreferential mentions007
do not equally contribute to a specific rela-008
tion. Moreover, prior efforts mainly focus009
on reasoning at entity-level rather than cap-010
turing the global interactions between entity011
pairs. In this paper, we propose two novel tech-012
niques, Context Guided Mention Integration013
and Inter-pair Reasoning (CGM2IR), to im-014
prove the DRE. Instead of simply applying015
average pooling, the contexts are utilized to016
guide the integration of coreferential men-017
tions in a weighted sum manner. Addition-018
ally, inter-pair reasoning executes an iterative019
algorithm on the entity pair graph, so as to020
model the interdependency of relations. We021
evaluate our CGM2IR model on three widely022
used benchmark datasets, namely DocRED,023
CDR, and GDA. Experimental results show024
that our model outperforms previous state-of-025
the-art models1.026

1 Introduction027

Relation extraction is a fundamental problem in028

natural language processing, which aims to iden-029

tify the semantic relation between a pair of entities030

mentioned in the text. Recent progress in neural re-031

lation extraction has achieved great success (Zeng032

et al., 2015; Baldini Soares et al., 2019), but these033

approaches usually focus on binary relations (rela-034

tions that only involve two entities) within a single035

sentence. While in practice, a large number of re-036

lations in entity pairs span sentence boundaries2.037

Many recent works (Yao et al., 2019; Zhou et al.,038

1Our code is available at https://anonymous.
4open.science/r/CGM2IR-F582.

2According to Yao et al. (2019), at least 40.7% of relations
can only be identified from multiple sentences.

[1] Britain ‘s Prince Harry is engaged to his US partner

Meghan Markle  … [2] Harry spent 10 years in the army and

has this year, with his elderly brother William , … [3] The

last major royal wedding took place in 2011, when Kate

Middleton and Prince William were married ...

Relations: royalty_of(Harry,Britain), sibling_of(William, 

Harry), spouse_of(kate,William), royalty_of(kate,Britain) ...

Figure 1: An example of DRE. Note that mentions of
the same entity are marked with identical color.

2021) pay emphasis on document-level scene that 039

requires a larger context to identify relations, mak- 040

ing it a more practical but also more challenging 041

task. 042

Document-level Relation Extraction (DRE) 043

poses unique challenges compared to its sentence- 044

level counterpart. First, it is more complex to 045

model a document with rich entity structure for re- 046

lation extraction. The entities engaged in a relation 047

may appear in different sentences, and some enti- 048

ties are repeated with the same phrases or aliases, 049

the occurrences of which are often named entity 050

mentions. For example, as shown in Figure 1, 051

Britain and Kate appear in the first and third sen- 052

tences, respectively. Harry and William also appear 053

more than once in this example. We are therefore 054

confronted to deal with cross-sentence dependen- 055

cies and synthesizing the information of multiple 056

mentions, in contrast to two entities in one sentence. 057

Second, there are intrinsic interactions among re- 058

lational facts. The identification of relations be- 059

tween two entities requires reasoning beyond the 060

contextual features. Specifically, in Figure 1, we 061

can determine that the royalty_of relation exists be- 062

tween William and Britain from the context word 063

Prince. Kate is also a member of the royal fam- 064

ily, as she is married to William. Logical reason- 065

ing plays a dominant role when extract the fact 066

〈Kate; royalty_of ;Britain〉. 067

Many previous works have tried to fulfill DRE 068
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and tackle the above challenges. In order to exploit069

the document structure and capture cross-sentence070

dependencies, most current approaches construct a071

delicately designed document graph with syntactic072

structures (coreference, dependency, etc.) (Sahu073

et al., 2019), heuristics rules3, or structured atten-074

tion (Nan et al., 2020). The constructed graphs075

bridge entities that spread far apart in the docu-076

ment. Besides, as Transformers for NLP can be077

considered as a graph neural network with multi-078

head attention as the neighbourhood aggregation079

function. It implicitly models long-distance de-080

pendencies. There are also some works (Xu et al.,081

2021a; Zhou et al., 2021) that attempt to use Pre-082

trained Models (PTMs) directly for DRE without083

involving graph structure. Afterwards, researchers084

simply apply average (max) pooling to the repre-085

sentation of coreferential entity mentions. Unfor-086

tunately, this is obviously not in accordance with087

intuition and fact. All mentions are equally treated,088

ignoring the corresponding mention pair contexts089

for a specific relation.090

In this paper, instead of simply synthesizing mul-091

tiple coreferential mentions, we propose a novel092

context guided attention mechanism for mention093

integration. Similarly to Zhou et al. (2021), after094

encoding through PTMs, we directly get the con-095

texts for each entity pair from the attention heads.096

Then, the contexts are guided as query to obtain097

the weights of mentions through cross-attention.098

This process makes the representation of an entity099

change dynamically according to the entity pair in100

which it is located.101

In light of the necessity of reasoning, mes-102

sage passing algorithms on graph are employed103

to update the entity representations accordingly.104

Thus, it conducts reasoning in an implicit way105

(Christopoulou et al., 2019). Otherwise, a special106

reasoning network is designed for relation infer-107

ence (Zeng et al., 2020; Li et al., 2021). Despite108

their great success, these methods mainly focus on109

entity-level or contextual information propagation110

rather than entity pair interactions, ignoring the111

global interdependency among multiple relational112

facts.113

In this paper, we propose a novel inter-pair rea-114

soning approach to achieve this purpose. The head115

and tail entity representations obtained by context116

3For example, EoG (Christopoulou et al., 2019) builds a
graph network with sentences, entities, and entity mentions as
nodes and edges connected between different nodes according
to heuristical rules.

guided integration are merged with their contextual 117

information to get the representations of multiple 118

entity pairs. Then, the entity pair representations 119

are formed as the nodes of Graph Neural Networks 120

(GNNs). The inter-pair interactions are captured 121

through an iterative algorithm over entity pairs, so 122

as to complete reasoning. 123

By combining the proposed two techniques, 124

we propose a simple yet effective document 125

level relation extraction model, dubbed CGM2IR 126

(Context Guided Mention Integration and Inter- 127

pair Reasoning), to fully utilize the power of PTMs. 128

To demonstrate the effectiveness of the proposed 129

approach, we conduct comprehensive experiments 130

on three widely used document level relation ex- 131

traction datasets. The experimental results reveal 132

that our CGM2IR model significantly outperforms 133

the state-of-the-art methods. Our contributions can 134

be summarized as follows: 135

• We propose a context guided attention mecha- 136

nism to dynamically merge mentions that refer 137

to the same entity in a weighted sum manner. 138

Our approach innovatively uses contextual in- 139

formation to guide the entity representation. 140

• We propose an inter-pair reasoning approach 141

to model interactions among entity pairs rather 142

than entities. Reasoning based on entity pairs 143

is more rational and consistent with the human 144

way of intelligence and learning. 145

• We conduct experiments on three public DRE 146

datasets. Experimental results demonstrate 147

the effectiveness of our CGM2IR model that 148

achieves the new state-of-the-art performance. 149

2 Related Work 150

Relation extraction, also known as relational facts 151

extraction, plays an essential role in a variety of ap- 152

plications in Natural Language Processing (NLP), 153

especially for the automatic construction of Knowl- 154

edge Graph (KG). Early researchers mainly con- 155

centrate on the sentence-level task, i.e. predicting 156

the relations between two entities within a sen- 157

tence. Many approaches (Zeng et al., 2014; Cai 158

et al., 2016) have been proposed to effectively ful- 159

fill Sentence-level Relation Extraction (SRE), espe- 160

cially the pre-training-then-fine-tuning paradigm of 161

PTMs (Zheng et al., 2021). SRE faces an inevitable 162

restriction in practice, where many relation facts 163

can only be extracted from multiple sentences. Re- 164
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cently, researchers gradually push SRE forward to165

DRE (Yao et al., 2019).166

In DRE, an entity may correspond to multiple167

mentions, which are scattered in different sentences.168

We need to classify the relations of multiple entity169

pairs all at once, which usually requires complex170

reasoning skills and inter-sentential information.171

DRE can be cast as a problem with multiple en-172

tity pairs to classify and multiple labels to assign173

(Zhou et al., 2021). To fulfill this task, most cur-174

rent approaches (Christopoulou et al., 2019) adopt175

appropriate models to first learn the contextual rep-176

resentation of an input document and encode the177

tokens in it. Then the representation of entity pairs178

is obtained by different strategies. Finally, a sig-179

moid classifier is used for multi-label classification.180

There are two types of mainstream for docu-181

ment representation. On the one hand, researchers182

construct a delicately designed document graph.183

Quirk and Poon (2017) attempted a first step to-184

ward constructing document-level graph that aug-185

ments conventional intra-sentential dependencies186

with new dependencies introduced by adjacent sen-187

tences and discourse relations. Following this,188

Christopoulou et al. (2019) built a document graph189

with heterogeneous types of nodes and edges. Nan190

et al. (2020) proposed a latent structure induction191

to induce the dependency tree in the document dy-192

namically. Wang et al. (2020), Zeng et al. (2020),193

Li et al. (2020), Zhang et al. (2020) integrated sim-194

ilar structural dependencies to model documents.195

Afterwards, graph based algorithm was employed196

to pass messages and conduct reasoning in an im-197

plicit way (Christopoulou et al., 2019). Otherwise,198

a special reasoning network was designed for rela-199

tion inference (Zeng et al., 2020; Xu et al., 2021c;200

Li et al., 2021; Xu et al., 2021b; Zeng et al., 2021).201

On the other hand, as Transformers for NLP can be202

considered as a graph neural network with multi-203

head attention as the neighbourhood aggregation204

function, it implicitly models long-distance depen-205

dencies. There are also some works (Wang et al.,206

2019; Ye et al., 2020) that attempt to use PTMs207

directly for DRE without involving graph structure.208

Xu et al. (2021a) incorporated entity structure de-209

pendencies within Transformers encoding part and210

throughout the overall system. Zhou et al. (2021)211

proposed an adaptive-thresholding loss and a local-212

ized context pooling to improve the performance.213

Transformer-based approaches implicitly integrate214

reasoning into the encoding process. These meth-215

ods are simple but very effective, and have yielded 216

the state-of-the-art performance. 217

Among the various amounts of prior works, 218

Zhou et al. (2021) and Zhang et al. (2021) are the 219

most two relevant to our approach. Zhou et al. 220

(2021) also considered context to enhance the en- 221

tity representation. Zhang et al. (2021) captured 222

global interdependency among relation facts at en- 223

tity pair level. However, the differences are sub- 224

stantial. First and foremost, these two approaches 225

both equally treated all the mentions. In contrast, 226

we use a context guided intra-pair attention mecha- 227

nism to weigh the mentions. Moreover, we adopt a 228

GNN that forms entity pairs as nodes to learn the 229

inter-pair interactions. 230

3 Methodology 231

In this section, we describe the proposed model 232

CGM2IR that incorporates context guided men- 233

tion integration and inter-pair reasoning to improve 234

DRE. As illustrated in figure 2, CGM2IR mainly 235

consists of four parts, namely (i) the document en- 236

coding; (ii) the context guided mention integration; 237

(iii) the inter-pair reasoning; (iv) and the final clas- 238

sification layer. 239

3.1 Document Encoding Module 240

To model the semantics of input document better, 241

CGM2IR adopts BERT (Devlin et al., 2019) as the 242

document encoder, which has recently been proven 243

surprisingly effective by presenting state-of-the-art 244

results in various NLP tasks. 245

Given a document D as input, it is comprised of 246

l tokens x = {ti}l1 and a set of annotated entities 247

ei = {mj}t1 where entity ei may have multiple 248

mentions that scatter across the document. Borrow- 249

ing the idea of entity marker (Baldini Soares et al., 250

2019), we first insert a special marker “*” at the 251

start and end of mentions to mark the mention’s 252

span by the entity’s annotation. Then, the document 253

encoder is responsible to map each token and men- 254

tion markers to a sequence of contextualized em- 255

bedding representations H = {h1,h2, · · · ,hn}. 256

257

H = PTMs({x1, x2, · · · , xn}) (1) 258

where n is the length of tokens with all markers. 259

For each mention, we take the embedding of start 260

marker as the mention embeddings. Limited by the 261

input length of BERT, we use a dynamic window 262

(Zhou et al., 2021) to sequentially encode the whole 263

documents when n > 512. 264
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[1] Britain ‘s Prince Harry is engaged to his US partner Meghan Markle  …

[2] Harry spent 10 years in the army and has this year, with his elderly brother William , …

[3] The last major royal wedding took place in 2011, when Kate Middleton and Prince William were married ...

...

Document

Input

Harry spent 10 years in the army and has this year, with his elderly brother William

Pre-trained Language Model (e.g. BERT)Encoder

attention score 

... ...

Harry William

Classifier

Context guided 
mention integration

( , )C Harry William

0.2

0.8

0.7

0.3

( )
e

Harry

( )e William

Inter-pair reasoning

( , )H W

( , )H B ( , )B K

( , )W K

( , )B W

Figure 2: The overall architecture of CGM2IR. First, the input document is viewed as a long sequence of words,
which are subsequently encoded through BERT. Then, the context guided mention integration module dynamically
generates the head and tail entity embeddings for each entity pair. Next, we construct a homogeneous entity pair
graph and use GNNs to model the inter-pair interaction. Finally, the classifier predicts relations of all the entity
pairs in a parallel way.

3.2 Context Guided Mention Integration265

Module266

As argued in Section 1, an entity may be mentioned267

under the same phrase or alias in multiple sentences268

throughout the document. To obtain entity-level269

representation, previous works usually synthesize270

the embeddings of all mentions of an entity. These271

methods equally treat each mention and only gen-272

erate one global embedding for an entity. Then, the273

entity embedding is used in the relation classifica-274

tion of all entity pairs.275

Unfortunately, it is obvious that some mentions276

may not be relevant to the relation when categoriz-277

ing a particular entity pair. Therefore, we propose278

a context guided attention mechanism that can gen-279

erate fine-grained entity representations for each280

pair. Different from the previous approaches, our281

motivation is to first get the entity-aware context282

through the average of mention attention matrices.283

Then, the contexts involved in both head and tail284

entities are located to steer the model for mention285

integration. Following Zhou et al. (2021), we ex-286

plicitly use the token-level attention score A in287

the last encoder block of BERT to compute the288

pair-specific context embedding ch,t for entity pair289

(eh, et) as follows:290

c(h,t) =Ha(h,t)

a(h,t) =
Ah ·At

1>(Ah ·At)

(2)291

where Ah = avgmi∈eh(Ami), Ami is the attention 292

matrix for i-th mention of head entity eh to all 293

tokens in the document. A similar operation yields 294

At for the tail entity. Since the transformer-based 295

PTMs have learned token-level dependencies well 296

by training in a large-scale corpus, we attend all 297

the tokens that are important to both entities in pair 298

(eh, et) by multiplying their entity-level attentions 299

score with a normalization. 300

After obtaining the contextual features of entity 301

pairs in the first step, we use them as queries and 302

perform cross-attention to pool the entity represen- 303

tations related to the entity pair from the mention 304

embeddings of head or tail entity. Specifically, 305

given an entity pair (eh, et) and a sequence of men- 306

tion embeddings hm1 ,hm2 , · · · ,hmp of the head 307

or tail entity, where hmi ∈ Rd, p is the number of 308

mentions. Guided by context feature c(h,t) ∈ Rd 309

for this pair, the head entity eh(h,t) is computed as 310

follows: 311

eh(h,t) =

p∑
i=1

αi
(h,t)hmi

ai
(h,t) =

WQc
>
(h,t)WKhmi√

d

αi
(h,t) =

exp (ai
(h,t))∑p

j=1 exp (a
j
(h,t))

(3) 312

where WQ ∈ Rd×d, WK ∈ Rd×d denotes the 313

query and key transformation matrixes, d is the 314

dimension of hidden states. In a similar way, we 315
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can obtain the representation of the tail entity et(h,t).316

We can observe that the representation of each en-317

tity is not fixed. It is guided by the trade-off be-318

tween the context and the entity pair in which it319

is located. The head entity and the tail entity are320

combined to dynamically determine the respective321

representations.322

3.3 Inter-pair Reasoning Module323

To model interactions among entity pairs in a doc-324

ument, we construct a homogeneous entity pair325

graph and use GNNs to perform reasoning.326

For each document D with m entities, we for-327

mulate a graph G = (V, E), where m × (m − 1)328

entity pairs form the nodes of the graph. Each329

node representation is computed by the following330

steps: Given the embeddings (eh(h,t), e
t
(h,t)) of an331

entity pair (eh, et) and its context features c(h,t),332

we first combine the entity embeddings with their333

context embedding, and then map them to hidden334

representations zh
(h,t) and zt

(h,t) respectively with a335

feedforward neural network. Finally, the entity pair336

embedding, p(h,t), is calculated through a group337

bilinear4 function as follows:338

zh
(h,t) = tanh(Whe

h
(h,t) +Wc1c(h,t))

zt
(h,t) = tanh(Wte

t
(h,t) +Wc2c(h,t))

p(h,t) = σ(

k∑
i=1

zhi>
(h,t)W

i
pz

ti

(h,t))

(4)339

where Wh ∈ Rd×d, Wt ∈ Rd×d, Wc1 ∈ Rd×d,340

Wc2 ∈ Rd×d and W i
p ∈ Rd/k×d/k are learnable pa-341

rameters. Furthermore, we concatenate the entity342

pair embedding with coreference embedding for343

head and tail entities to get the initial node repre-344

sentations following Yao et al. (2019):345

P 0
(h,t) = [ph;p(h,t);p

t] (5)346

In contrast to the fully-connected case, we link347

each node to the nodes that have overlapping enti-348

ties with it, since the clues for logical reasoning are349

usually passed on the chain of entities as it is ap-350

proved in Xu et al. (2021b) and Zeng et al. (2021).351

After the graph is constructed, We use GNNs to352

learn the inter-pair interactions. In each layer l, The353

GNNs selectively aggregate all entity pair embed-354

dings passed from neighbors through an attention355

mechanism to update its representation in the next356

4Group bilinear (Zheng et al., 2019) splits the embedding
dimensions into k equal-sized groups and applies bilinear
within the groups.

layer l + 1. Formally, we have: 357

P l+1
u = FFN(Wr

∑
v∈N(u)

α(u,v)P
l
u)

α(u,v) =
exp[QP l

v(KP
l
u)
>]∑

v′∈N(u)
exp[QP l

v′(KP l
u)>]

(6) 358

where Wr ∈ Rd×d, Q ∈ Rd×d, K ∈ Rd×d are 359

learnable weight matrices, FFN(∆) denotes a 360

feed-forward network, N(u) is the set of neighbor 361

nodes to the vertex u. In addition, we employ resid- 362

ual connection between two layers and perform 363

layer normalization. 364

3.4 Classification Module 365

To determine the semantic relations for an entity 366

pair (eh, et), we first concatenate two pair-specific 367

entity representations and the corresponding final 368

entity pair representation. 369

r(h,t) = [eh(h,t); e
t
(h,t);P(h,t)] (7) 370

Then, we use a feed-forward neural network to 371

calculate the probability for each relation: 372

P (r|eh, et) = sigmoid(Wbσ(War(h,t) + ba) + bb) (8) 373

where Wa ∈ R3d×d, Wb ∈ Rd×r, ba, bb are learn- 374

able parameters, σ is an elementwise activation 375

function (e.g., tanh). 376

To address the multi-label and sample imbalance 377

problem more effectively, we adopt an adaptive- 378

thresholding loss (Zhou et al., 2021) as the clas- 379

sification loss to train our model in an end-to-end 380

way. Specifically, it introduces an additional thresh- 381

old relation category TH, and optimizes the loss 382

by increasing the logits of the positive relations 383

PT higher than the TH relation and decreasing the 384

logits of the negative relations NT lower than the 385

TH relation. 386

L = −
∑
r∈PT

log(
exp(logitr))∑

r′∈PT∪{TH} exp(logitr)
)

− log(
exp(logitTH))∑

r′∈NT∪{TH} exp(logitr)
)

(9) 387

where logit is the output in the last layer before 388

Sigmoid function. 389

4 Experiments 390

4.1 Datasets 391

We evaluate the effectiveness of our CGM2IR 392

model on three public DRE datasets: DoRED, 393
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Statistics / Dataset DocRED CDR GDA

# Train 3,053 500 23,353
# Dev 1,000 500 5,839
# Test 1,000 500 1,000
# Relations 97 2 2
Avg. # Ment. per Ent. 1.4 2.7 3.3
Avg. # Ents per Doc. 19.5 7.6 2.4
Avg. # Facts. per Doc. 12.6 2.1 1.5

Table 1: Statistics of the datasets.

CDR, and GDA. The dataset statistics are shown in394

Table 1.395

DocRED is a large-scale human-annotated396

dataset for document-level RE proposed by (Yao397

et al., 2019). It contains 97 types of relations398

and 5,053 annotated documents in total which are399

constructed from Wikipedia and Wikidata. Docu-400

ments in DocRED contain about 12.6 positive re-401

lational facts on average, which is several times402

that of the common sentence-level RE dataset.403

CDR (Chemical-Disease Reactions) (Li et al.,404

2016) and GDA (Gene-Disease Associations) (Wu405

et al., 2019) are two widely-used DRE datasets in406

the biomedical domain. They both contain only407

one type of positive relation, Chemical-Induced-408

Disease between chemical and disease entities and409

Gene-Induced-Disease between gene and disease410

entities respectively. For a fair comparison, We411

follow the standard split of the three datasets as412

Zeng et al. (2020) and Zhou et al. (2021).413

4.2 Experiment Settings and Evaluation414

Metrics415

In our CGM2IR implementation, we use cased416

BERT-base (Devlin et al., 2019) or RoBERTa-large417

(Liu et al., 2019) the encoder on DocRED and418

cased SciBERT-base (Beltagy et al., 2019) on CDR419

and GDA. AdamW (Loshchilov and Hutter, 2019)420

is used to optimize the neural networks with a lin-421

ear warmup and cosine decay learning rate sched-422

ule. We set the initial learning rate for all encoder423

modules to 2e−5, the initial learning rate for other424

modules to 1e−4, the embedding dimension, and425

the hidden dimension to 768. The GNNs have 3426

layers and the hidden size of node embedding is427

768. All hyper-parameters are tuned based on the428

development set. Other parameters in the network429

are all obtained by random orthogonal initialization430

(Saxe et al., 2014) and updated during training. All431

the experiments are trained with an NVIDIA RTX432

3090 GPU.433

Following Yao et al. (2019) and previous works,434

we use the micro F1 and micro Ign F1 as the evalua- 435

tion metrics for DocRED. Ign F1 denotes the result 436

after excluding the common relational facts that 437

appear in both training set and development/test 438

sets. For CDR and GDA, in addition to using mi- 439

cro F1, we also report the Intra F1 and Inter F1 440

metrics to evaluate the model’s performance on 441

intra-sentential relations and inter-sentential rela- 442

tions on the dev set, since they strictly annotate 443

these two types of facts but DocRED does not. In 444

our experiments, a triplet is taken as correct when 445

the two corresponding entities and the relation type 446

are all correct and we exclude all triplets with rela- 447

tion of “None”. 448

4.3 Results on DocRED 449

We conduct comprehensive and comparable exper- 450

iments on DocRED dataset. The results are shown 451

in Table 2. 452

We compare our CGM2IR model with lots of 453

methods from two categories. The first one is 454

graph-based methods, including LSR (Nan et al., 455

2020), GEDA (Li et al., 2020), GCGCN-BERT 456

(Zhou et al., 2020), GLRE (Wang et al., 2020), 457

GAIN (Zeng et al., 2020), HeterGSAN (Xu et al., 458

2021c), SIRE (Zeng et al., 2021) and DRE (Xu 459

et al., 2021b). The second one is non-graph-based 460

methods including BERT (Wang et al., 2019), HIN- 461

BERT (Tang et al., 2020), CorefBERT (Ye et al., 462

2020), SSAN (Xu et al., 2021a), ATLOP (Zhou 463

et al., 2021), MRN (Li et al., 2021) and DocuNet 464

(Zhang et al., 2021). The baselines we selected all 465

use BERT as their encoder. 466

As shown in Table 2, we observe that CGM2IR 467

outperforms all baseline methods on both develop- 468

ment and test sets. Compared with the models in 469

these two categories, both F1 and Ign F1 of our 470

model are significantly improved. Among the var- 471

ious amounts of baselines, ATLOP (Zhou et al., 472

2021) and DocuNet (Zhang et al., 2021) are the 473

most two relevant to our approach. Compared to 474

ATLOP-BERTbase, the performance of CGM2IR- 475

BERTbase improves roughly about 0.8% for Ign 476

F1 and 0.92% for F1. CGM2IR-BERTbase also 477

brings about 0.2% ign F1 enhancement compared 478

to DocuNet-BERTbase, which verifies the effec- 479

tiveness of our proposed method. Furthermore, 480

CGM2IR-RoBERTalarge obtains better results than 481

baselines with BERT-large or RoBERTa-large 482

as well. For example, CGM2IR-RoBERTalarge 483

achieves 0.71% Ign F1/0.77% F1 gain compared 484
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Model Dev Test
Ign F1 F1 Ign F1 F1

LSR-BERTbase (Nan et al., 2020) 52.43 59.00 56.97 59.05
GEDA-BERTbase (Li et al., 2020) 54.52 56.16 53.71 55.74
GCGCN-BERTbase (Zhou et al., 2020) 55.43 57.35 54.53 56.67
GLRE-BERTbase (Wang et al., 2020) - - 55.40 57.40
HeterGSAN-BERTbase (Xu et al., 2021c) 58.13 60.18 57.12 59.45
GAIN-BERTbase (Zeng et al., 2020) 59.14 61.22 59.00 61.24
DRE-BERTbase (Xu et al., 2021b) 59.33 61.39 59.15 61.37
SIRE-BERTbase (Zeng et al., 2021) 59.82 61.60 60.18 62.05

BERTbase (Wang et al., 2019) - 54.16 - 53.20
HIN-BERTbase (Tang et al., 2020) 54.29 56.31 53.70 55.60
CorefBERTbase (Ye et al., 2020) 55.32 57.51 54.54 56.96
SSAN-BERTbase (Xu et al., 2021a) 57.03 59.19 55.84 58.16
ATLOP-BERTbase (Zhou et al., 2021) 59.22 61.09 59.31 61.30
MRN-BERTbase (Li et al., 2021) 59.74 61.61 59.52 61.74
DocuNet-BERTbase(Zhang et al., 2021) 59.86 61.83 59.93 61.86
CGM2IR-BERTbase 60.02 62.01 60.24 62.06
BERTlarge (Wang et al., 2019) 56.67 58.83 56.47 58.69
CorefRoBERTalarge (Ye et al., 2020) 57.84 59.93 57.68 59.91
SSAN-RoBERTalarge (Xu et al., 2021a) 60.25 62.08 59.47 61.42
GAIN-BERTlarge (Zeng et al., 2020) 60.87 63.09 60.31 62.76
ATLOP-RoBERTalarge (Zhou et al., 2021) 61.32 63.18 61.39 63.40
CGM2IR-RoBERTalarge 62.03 63.95 61.96 63.89

Table 2: Results on the development and test set of DocRED. We separate graph-based and non-graph-based
methods into two groups. The results of baselines are from their related papers.

Model F1 intra-F1 inter-F1

• CDR Dataset
EoG 63.6 68.2 50.9
LSR 64.8 68.9 53.1
DHG-BERTbase 65.9 70.1 54.6
MRN 65.9 70.4 54.2
ATLOP-SciBERTbase 69.2 74.2 52.6
CGM2IR-SciBERTbase 73.8 79.2 55.1
• GDA Dataset
EoG 81.5 85.2 50.0
LSR 82.2 85.4 51.1
MRN 82.9 86.1 53.5
DHG-BERTbase 83.1 85.6 58.8
ATLOP-SciBERTbase 83.9 87.3 52.9
CGM2IR-SciBERTbase 84.7 88.3 59.0

Table 3: Results on CDR and GDA datasets.

to ATLOP-RoBERTalarge on the development set.485

In general, these results demonstrate both the effec-486

tiveness of context guided mention integration and487

the usefulness of inter-pair reasoning.488

4.4 Results on CDR and GDA489

Table 3 depicts the comparisons with state-of-the-490

art models on CDR and GDA. We compare our491

CGM2IR model with five baselines, including EoG492

(Christopoulou et al., 2019), DHG (Zhang et al.,493

2020), LSR (Nan et al., 2020), MRN (Li et al.,494

2021), ATLOP (Zhou et al., 2021). Our model495

adopts SciBERTbase for its superiority when deal-496

Model Ign F1 F1

CGM2IR-BERTbase 60.02 62.01

w/o mention integration module 59.64 61.63
w/o inter-pair reasoning module 59.87 61.74
w/o both module 59.12 60.89

Table 4: Ablation study of CGM2IR on the develop-
ment set of DocRED, where “w/o” indicates without.

ing with biomedical domain texts. 497

It can be observed that CGM2IR achieves the 498

new state-of-the-art F1 score on these two datasets 499

in the biomedical domain. On CDR test set, 500

CGM2IR obtains +4.6 F1 gain, which significantly 501

outperforms all other approaches. On GDA test set, 502

similar improvements can also be observed. These 503

results demonstrate the effectiveness and generality 504

of our approach. 505

4.5 Ablation Study 506

We also conduct a thorough ablation study as 507

shown in Table 4 to study the contribution of two 508

key modules: context guided mention integration 509

module and inter-pair reasoning module. From 510

Table 4, we can observe that: 511

(1) When the context guided mention integration 512

module is discarded and replaced with the logsum- 513

exp pooling layer, the performance of our model on 514

the DocRED dev set drops by 0.38% in both F1 and 515

7



Ign F1 score. Similarly, removal of the inter-pair516

reasoning module results in a 0.27% drop in F1 and517

0.14% in Ign F1. This phenomenon indicates the518

effectiveness of context guided mention integration519

module and inter-pair reasoning module.520

(2) Removal of both modules leads to a more521

considerable decrease. The F1 score decreases522

from 62.01% to 60.89% and the Ign F1 score de-523

creases from 60.02% to 59.12%. This study demon-524

strates that all components work together in syn-525

ergy with the final relation classification.526

4.6 Intra- and Inter-sentence Triplet527

Extraction528

To further evaluate the performance, we report the529

results of intra- and inter-sentence relation extrac-530

tion on CDR and GDA, since they explicitly an-531

notate these two types of facts. The experimental532

results are listed in Table 3, from which we can find533

that CGM2IR outperforms the current best models534

on these two datasets in regard to both intra- and535

inter-F1. For example, Our model obtains +5.0536

intra-F1/+2.5 inter-F1 and +1.0 intra-F1/+6.1 inter-537

F1 gain compared with ATLOP on the test set of538

these two datasets. The improvements indicate that539

our model can effectively capture the complex in-540

teractions among entity pairs across the document.541

The intra-sentence relations contained in local text542

can be well considered, as well as the long-distance543

dependent inter-sentence relations.544

4.7 Effect Analysis for Context Guided545

Cross-Attention546

To assess the effectiveness of context guided cross-547

attention in modeling entity representations, we548

compare five different strategies for generating en-549

tity representations including global mean pool-550

ing, global max pooling, global attention pooling,551

global logsumexp pooling, and our context guided552

cross-attention. For simplicity, after encoding the553

document, we directly concat the representations554

of the head entity and the tail entity then send them555

to the final classifier. The results on the devel-556

opment set of DocRED are illustrated in Table 5,557

from which we can observe that the context guided558

cross-attention is absolutely superior to the global559

strategies. This result indicates that context guided560

cross-attention is reasonable and effective, which561

drives the head and tail entities together to dynami-562

cally determine their respective representations.563

Method Ign F1 F1

global mean pooling 57.24 58.23
global max pooling 57.41 58.54
global attention pooling 58.17 59.00
global logsumexp pooling 58.23 59.12

context guided cross-attention 59.34 60.76

Table 5: Results of different strategies for generating
entity representations on DocRED.

Model Infer F1 P R
BERT-RE∗base 39.62 34.12 47.23
GAIN-GloVe† 40.82 32.76 54.14
RoBERTa-RE∗base 41.78 37.97 46.45
SIRE-GloVe† 42.72 34.83 55.22
GAIN-BERT∗base 46.89 38.71 59.45
CGM2IR-BERTbase 48.04 39.54 61.21

Table 6: Infer-F1 results on dev set of DocRED. Re-
sults with ∗ are reported in Zeng et al. (2020), † are
reported in Zeng et al. (2021).

4.8 Effect Analysis for Inter-pair Reasoning 564

In addition, we evaluate the reasoning ability of 565

our model on the development set of DocRED in 566

Table 6. Following Zeng et al. (2021), we use infer- 567

F1 as a metric that only considers instances of the 568

two-hop positive relations in the development set 569

of DocRED. More specifically, we only evaluate 570

the golden relational facts r1, r2 and r3 when there 571

exists eh
r1−→ eo

r2−→ et and eh
r3−→ et. 572

As illustrated in Table 6, CGM2IR outperforms 573

all the baselines in infer-F1. Specifically, CGM2IR- 574

BERTbase improves roughly about 1.15% for infer- 575

F1 score compared with GAIN-BERTbase. This 576

reveals that the inter-pair reasoning module plays 577

an important role in capturing intrinsic clues and 578

performing logic reasoning on entities chains. 579

5 Conclusion 580

In this paper, we propose CGM2IR that incorpo- 581

rates context guided mention integration and inter- 582

pair reasoning to improve DRE. Instead of sim- 583

ply synthesizing multiple coreferential mentions at 584

once, CGM2IR dynamically generates fine-grained 585

entity representations for each entity pair. More- 586

over, we construct a homogeneous entity pair graph 587

and employ GNNs to capture intrinsic clues and 588

perform reasoning among entity pairs. Experi- 589

mental results on three widely used DRE datasets 590

demonstrate that our CGM2IR model is effective 591

and outperforms previous state-of-the-art models. 592
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