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Abstract

Certifying the robustness of machine learning mod-
els against domain shifts and input space perturba-
tions is crucial for many applications, where high
risk decisions are based on the model’s predic-
tions. Techniques such as randomized smoothing
have partially addressed this issues with a focus
on adversarial attacks in the past. In this paper,
we generalize randomized smoothing to arbitrary
transformations and extend it to conformal predic-
tion. The proposed ansatz is demonstrated on a
time series classifier connected to an automotive
use case. We meticulously assess the robustness
of smooth classifiers in environments subjected to
various degrees and types of time series native per-
turbations and compare it against standard confor-
mal predictors. The proposed method consistently
offers superior resistance to perturbations, main-
taining high classification accuracy and reliability.
Additionally, we are able to bound the performance
on new domains via calibrating generalisation with
configuration shifts in the training data. In combi-
nation, conformalized randomized smoothing may
offer a model agnostic approach to construct ro-
bust classifiers tailored to perturbations in their
respective applications - a crucial capability for AI
assurance argumentation.

1 INTRODUCTION

Deep neural networks have shown their remarkable ability to
learn intricate patterns from vast amounts of data, marking
them as a preferred choice for complex challenges [LeCun
et al., 2015, Han et al., 2022, Wen et al., 2022]. In order
to be able to employ these models in applications where
high-stake decisions are based on their outputs, such as in
all safety-critical systems, it is imperative not only to ensure

their accuracy but also to understand and quantify the confi-
dence attached to their predictions and the robustness of the
model to input space perturbations and domain shifts. Ad-
dressing the former, the Conformal Prediction (CP) [Vovk
et al., 1999, 2005, Shafer and Vovk, 2008] framework has
emerged as a tool to construct set classifiers with guaranteed
confidence that can be adjusted by the user.

The importance of domain generalization becomes espe-
cially crucial when the costs of mispredictions are high, as
in medical diagnosis or autonomous driving [Zhou et al.,
2022, Wang et al., 2022]. Notably, research by Park et al.
[2019, 2020, 2022a,b] demonstrated how CP can be utilized
to bound performance on unseen domains, if there is an
adequate amount of training domains for calibration during
the training process. In addition, Randomized Smoothing
(RS) [Cohen et al., 2019, Salman et al., 2019] has emerged
as method to robustify machine learning models against
worst case, i.e., adversarial, attacks. While undeniably suc-
cessful as defense mechanism, RS is not equally useful in
an assurance argumentation, where it is necessary to demon-
strate robustness against disturbances inherent to the specific
data domain being targeted.

Often, real life perturbations come with large norms which
renders certification with respect to some ℓp-norm - as typi-
cally done in RS - prohibitively conservative, as huge vol-
umes would need to be certified. Consider the example in
Figure 1a, where a time series signal is characterized by a
few peaks. When a time warping augmentation is applied, it
may result in a large magnitude for a conventional ℓp-norm.
However, this transformation would remain concentrated
around the original peak’s location. As a result, in order to
establish certified robustness, we do not need to consider
other transformations with equal norm but amplitudes at a
different position of the signal. These considerations moti-
vate the new technique developed in this paper.

Contribution In this paper, we generalize RS to arbitrary
perturbations following an automotive use case build around
a binary classification of time series input. The input time
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Figure 1: Visual representations showcasing different stages of a Temporal Smooth Conformal Predictor (TSCP) with a
sample from the UCR-TS dataset [Dau et al., 2018]. In (a) we display the distributional shift where the original signal x
can be manipulated via time warping x̃. In (b) we represent the smoothing versions of x′ derived from a temporal shifts
around x̃. While in (c) we illustrate non-conformity scores, highlighting that TSCP obtains more precise confidence sets
with respect than the Randomly Smoothed Conformal Predictor (RSCP) Gendler et al. [2021].

series are subjected to different, practically relevant trans-
formations such as time warping, window warping, scaling
or jitter. Since different domains can be modeled, i.e., exper-
iment parameters which introduce domain shifts are known,
several data sets are recorded. First, we show how CP natu-
rally generalizes RS and use the resulting algorithm to show
robustness on the use case tailored perturbations. Second,
we utilize the available domains during training to bound
the performance of the algorithm on unseen test domains un-
der loose assumptions Park et al. [2019, 2020, 2022a,b]. In
Figure 1, we show a visual representation of our framework.
By applying temporal transformations to smooth the sample,
we enhance the certainty of the predicted confidence set. As
observed, the output demonstrates increased confidence for
class 0, leading to a reduction in the size of the predicted
confidence set.

In summary, our core contributions are:

• Generalizes RS to handle various transformations in
time series classification, like time, window and mag-
nitude warping.

• Introduce a Temporal Smooth Conformal Predictor
(TSCP) that employees temporal-shift transformations
to smooth the input and demonstrates CP guarantees ro-
bustness against adversarial attacks and perturbations.

• Experimental evaluation of TSCP on a open-source
time series dataset and on a real-world application,
demonstrating the effectiveness in terms of robustness
certification and empirical risk minimization.

2 RELATED WORK

Conformal Prediction In CP [Vovk et al., 1999, 2005,
Papadopoulos, 2008], the main objective is to generate a set
of predictions that will likely include the correct label, an
approach known as marginal coverage. This is achievable

under the assumption that the training and test examples are
exchangeably distributed, as is the case for identical and
independent distributed (iid) data. Nevertheless, this assump-
tion does not hold in general in cases of distribution shift,
where the test data’s distribution differs from the training
data. In such scenarios, previous research [Tibshirani et al.,
2019, Cauchois et al., 2020, Gibbs and Candes, 2021, Park
et al., 2022a] offers a solution, maintaining marginal cover-
age by adjusting for the differences in likelihood between
training and test datasets. Despite these advancements, there
remains a lack of reliable assurances regarding the robust-
ness of the predictions.

Randomized Smoothing RS is a technique used to en-
hance the robustness of machine learning models by intro-
ducing random Gaussian noise to the input data and aggre-
gating the predicted outputs [Cohen et al., 2019, Salman
et al., 2019]. The prediction is robust against all disturbances
within a norm-ball of radius R. Subsequent studies have ex-
panded the robustness guarantees of RS to include semantic
and real-world transformations [Fischer et al., 2020, Li et al.,
2021, Hao et al., 2022]. Additionally, Yoon et al. [2022] ex-
tended its application to time series data, demonstrating its
effectiveness in temporal shifting the input data.

Recently, Gendler et al. [2021] combined RS with CP, re-
sulting in a better and robust coverage against adversarial
input manipulations, denoted as RSCP. However, the strat-
egy for addressing extreme-case Gaussian perturbations can
diminish the baseline performance (assessment using only
unperturbed inputs) of the CP method. For example, the
size of the prediction set might be excessively large even
for unperturbed and straightforward-to-classify inputs. To
overcome these challenges, Ghosh et al. [2023] proposed an
adjustment on the construction of the prediction set based
on a two thresholds framework. Even if the results surpassed
RSCP in performance (coverage and set-size) the guarantees
are only probabilistic in practice and the approach is limited



to transformations that follow a normal distribution.

3 PRELIMINARIES

Let us consider x ∈ X as a multi-variate time series signal
where X ⊆ Rc×T , with c denoting the number of channels
and T specifying the signal’s window size. Here, we are
examining a soft classifier, denoted as F : Rc×T → P(Y),
where P(Y) is the set of probability distributions over Y ,
and Y = {0, 1, . . . ,K} is the collection of classification
labels. Thus, a soft classifier assigns each data point a distri-
bution over classes, rather than just assigning it to a class. It
is possible to convert any soft classifier F into a hard classi-
fier f by mapping f(x) def

= argmaxy∈Y F (x)y . In addition,
we denote with I the identity matrix, with N (0, σ2I) the
standard normal distribution and with U(a, b) the uniform
integer distribution where a, b ∈ Z, a < b.

3.1 CONFORMAL PREDICTION (CP)

Introduced by Vovk et al. [1999, 2005] and Papadopoulos
[2008], CP offers an intuitive approach to produce predic-
tion sets that achieve a user defined confidence. In essence,
given n training samples (x(i), y(i))

n

i=1, the objective is to
predict the label y(n+1) for a test point x(n+1). Assuming
the training and test samples come from an exchangeable
source (i.i.d. distribution), CP methods create a prediction
set C(x(n+1)) that is likely to include the test label y(n+1)

with a specified coverage, such as 90% or 95%. Formally,
this is expressed as:

P[y(n+1) ∈ C(x(n+1))] ≥ 1− α, (1)

where α represents the chosen error rate. Notably, this proba-
bility considers all training samples and the test point x(n+1)

and is also known as marginal coverage. CP’s core principle
involves training a classifier on the dataset and subsequently
assigning non-conformity scores to validation data. Gener-
ally, lower prediction errors correspond to more concise and
informative prediction sets.

(Non) Conformity Score The process initiates by divid-
ing the training data into two distinct subsets: (i) a primary
training set, denoted as Dtr within the range of 1, ..., n, and
(ii) a calibration set Dcal, which is the remainder of the
range after subtracting Itr. A soft classifier, represented as
F (x) spanning [0, 1]K , is then trained on the primary set to
determine the conditional probabilities of each class P[y|x]
for every y ∈ Y . When using deep network classifiers, the
subject of this study, this is typically the outcome of the soft-
max layer. Subsequently, a score function S : X×Y → R≥0

produces a (non) conformity score, S(i) = S(x(i), y(i)) for
each point in the calibration set. This score evaluates the
coherence between the model’s prediction F (x) and the
actual label y, where a smaller score denotes a closer match.

Definition 3.1 (Conformal Prediciton Set). Given the de-
sired coverage level 1− α, a prediction set C for a new test
point x(n+1) is defined as:

C =
{
y ∈ Y : S(x(n+1), y) ≤ Q1−α({S(i)}i∈Dcal

)
}
,

(2)
where Q1−α({S(i)}i∈Dcal

) is defined as the (1 − α)(1 +
1/(1+|Dcal|))-th empirical quantile of {S(i)}i∈Dcal

.

In other words, Eq. 2 involves scanning through all potential
labels y ∈ Y and adding to C(x(n+1)) those predicted labels
y whose scores S(x(n+1), y) are lower than the majority
of calibration scores S(x(i), y(i)),∀i ∈ Dcal [Vovk et al.,
2005].

3.2 PAC PREDICTION SET

Our goal is to find conformal sets that are not only as
compact as possible, but also highly reliable, adhering
to the principle of being probably approximately correct
(PAC) [Valiant, 1984]. Formally, considering an algorithm
A that takes a set of calibration data Dcal ⊂ Dtr and gener-
ates a CP set C. Given γ, ξ ∈ (0, 1), we consider A is PAC
if:

PDcal∼Dtr [LDcal
(C) ≤ ξ | C = A(Dcal)] ≥ 1− γ, (3)

where LDcal
(C) = P(x,y)∼Dcal

[y /∈ C(x)] is the true error.
The challenge lies in developing an algorithm A that not
only meets the PAC criteria but also constructs confidence
sets C(x) that are, on average, as minimal as possible. In
the context of machine learning, Park et al. [2019, 2020]
proposes to construct C by parametrizing it with a scalar
τ ∈ T ⊆ R≥0 as:

Cτ = {y ∈ Y : S(x, y) ≥ τ} , (4)

where τ represents the threshold which controls the trade-off
between size and expected error. Intuitively, they formulate
this challenge into an empirical risk minimization frame-
work, where the objective is to minimize the size of the
predicted confidence sets. In practice, the goal is to find the
maximum threshold value τ̂ such that the empirical error
L̂Dcal

(C) =
∑

(x,y)∈Dcal
1(y /∈ Cτ (x)) remains within a

certain confidence interval. Formally, this is expressed as:

τ̂ = max
τ∈T

{
τ : L̂Dcal

(Cτ ) ≤ k(m, ξ, γ)
}
, (5)

where the right-hand side of the inequality is the confidence
level k derived from the Binomial distribution as follows:

k(m, ξ, γ) = max
k∈N0

{
k :

k∑
i=0

(
m
k

)
ξi(1− ξ)m−i < γ

}
.

(6)
This approach is conceptually linked to the idea that the
average loss behaves like a Binomial distribution. By set-
ting τ̂ in this manner, we aim to minimize the size of the



confidence sets while ensuring that the empirical error stays
within acceptable probabilistic bounds, thereby adhering to
the PAC guarantee of Eq. 3.

3.3 SMOOTHED CONFORMAL PREDICTION

Initially introduced by Cohen et al. [2019] and Salman et al.
[2019], randomized smoothing computes the ℓ2-norm cer-
tificates around an input sample x by counting which class is
most likely to be returned when x is perturbed by isotropic
Gaussian noise.

Definition 3.2 (Smooth Classifier). Given a soft classifier
F , randomized smoothing considers a smooth version of F
defined as:

G(x)
def
= E

δ∼N (0,σ2I)
[F (x+ δ)] , (7)

where σ > 0 represents the standard deviation.

Cohen et al. [2019] demonstrated that G is robust to per-
turbations of radius R, where the radius R is defined as
the difference in probabilities between the most likely class
and the second most likely class. Contrary to other formal
verification methods, randomized smoothing does not make
any assumptions regarding the model’s properties, allow-
ing certification to be scaled to larger and more complex
networks.

Smoothed Score Interestingly, this inherent robustness of-
fered by randomized smoothing served as an additional layer
to address challenges in conformal predictions [Gendler
et al., 2021, Ghosh et al., 2023]. Sets formed by the basic
conformal method may not ensure accurate coverage, espe-
cially when real-world data breaches the exchangeability
assumption due to frequent distribution shifts [Tibshirani
et al., 2019, Cauchois et al., 2020, Gibbs and Candes, 2021].
In a recent work, Gendler et al. [2021] introduced a smooth
version of the original non-conformity score obtained by
averaging the value of S(x+ δ, y) over many independent
samples.

Definition 3.3 (Smooth Score). Let S : X × Y → R≥0 be
a scoring function. We define the smoothed score function
as:

S̃(x, y)
def
= Φ−1

(
E

δ∼N (0,σ2I)
[S(x+ δ, y)]

)
, (8)

where Φ−1 is the inverse of the cumulative distribution
function (quantile) of the standard normal distribution.

As shown in Salman et al. [2019] and Gendler et al.
[2021], the local Lipschitz continuity derived from randomly
smoothing the prediction, sets an upper-bound for the con-
formal score:

S̃(x̃(n+1), y) ≤ S̃(x(n+1), y) +
Rδ

σ
, (9)

where it holds for every y ∈ Y . If we consider a distance
metric between x̃ and x, such that d(x̃, x) ≤ ϵ, with ϵ > 0,
than for a Gaussian distribution δ ∼ N (0, σ2I) the radius
Rδ corresponds to ∥ϵ∥2.

4 GENERALIZED ROBUSTNESS VIA
CONFORMALIZED RANDOMIZED
SMOOTHING

This section introduces the methods and ideas related to
smooth conformal predictions for robustness certification.
For ease of explanation, in this section, we will regard the
input x ∈ RT as one-variate signal.

4.1 GENERALIZED SMOOTHED CLASSIFIER

Following previous works on image classifiers [Li et al.,
2021, Hao et al., 2022], we introduce a smooth classifier
by randomly transforming inputs with parameters sampled
from a smoothing distribution. An important aspect is that
even if the definition is general and applies towards any
transformation, our focus is on time series augmentations.

Let us consider a transformation ϕ : X × Z → X which
produces a unique augmented version of the time series x,
leading to a distinct x̃. In this notation, Z represents the set
of parameters. In App. A, we define the set of time series
transformations ϕ considered in this work.

Definition 4.1 (Generalized Smoothed Classifier). Let ϕ :
X × Z → X be a transformation, π ∼ Dπ a random
variable taking values in Z and let F : RT → R be a soft
classifier. We define the ϕ-smoothed version Gϕ : X →
P(Y) of F as:

Gϕ(x)
def
= E

π∼Dπ

[F (ϕ(x, π))] . (10)

Drawing from Theorem 1 in Li et al. [2021], it is possible
to establish a robustness certificate for the classifier Gπ that
employs a ϕ-smoothing technique. In Sec. 5.2, we discuss
the robustness guarantees for a specific set of time series
transformations. In general, take an input x ∈ X and a
random variable π ∈ Z . The soft classifier F assesses that
x̃ = ϕ(x, π) is likely to be in class yA with a probability of
at least pA, and the likelihood of it being in the second most
probable class does not exceed pB . To establish a robustness
certificate, one must identify a set of perturbation parameters
Zλ ⊆ Z and to ensure that for all perturbations λ ∈ Zλ,
the classifier Gϕ’s output for ϕ(x, λ) remains identical to
its output for x, i.e. Gϕ(ϕ(x, λ)) = Gϕ(x).

Lastly, we establish a ϕ-smoothed conformal score for Gϕ.
Unlike the approach in Gendler et al. [2021], we incorporate
a broader range of transformations.



Definition 4.2 (Generalized Smoothed Score). Let ϕ : X ×
Z → X be a transformation, π ∼ Dπ a random variable
taking values in Z and S : X × Y → R≥0 a scoring
function. We define the ϕ-smoothed score function as:

Sϕ(x, y)
def
= Q

(
E

π∼Dπ

[S(ϕ(x, π), y)]

)
, (11)

where Q : [0, 1]→ R represents the quantile function.

4.2 ROBUSTNESS GUARANTEES FOR
CONFORMAL PREDICTIONS UNDER
GENERAL TRANSFORMATIONS

In the context of domain generalization, where the assump-
tion of i.i.d. data no longer applies, it becomes crucial to
estimate the potential shift between a baseline smooth score
and one that comes from a different domain or has been
attacked. This estimation is necessary to effectively bound
the distribution shift. This approach extend the setting of
Gendler et al. [2021], to a broader range of input transfor-
mations. We approach this by considering a non-conformity
score function Sϕ as defined in Def. 4.2, which allows us to
gauge the extent of change brought on by a transformation
function to x(n+1). Our task is to ensure that Sϕ complies
with the condition:

Sϕ(x̃
(n+1), y) ≤ Sϕ(x

(n+1), y) +Rπ, ∀y ∈ Y, (12)

where x̃(n+1) = ϕ(x(n+1), π) and Rπ is a constant con-
nected to π, fulfilling the criteria that Rπ1

≤ Rπ2
if

π1 ≤ π2, and Rπ is zero when π is zero.

The exact derivation of the robustness radius Rπ depends
on the transformation considered. Strictly speaking, our
objective is to verify the robustness in response to a trans-
formation ϕ that can be effectively addressed by ψ, and
this verification pertains to transformation parameters con-
tained within the set Zλ ⊆ Z . To achieve this, we begin by
selecting a set of parameters {λj}Nj=1 from the parameter
space Zλ. We then apply these parameters to transform the
input data, generating a collection of transformed inputs
{ϕ(x, λj)}Nj=1. Next, we utilize the classifier (which has
been enhanced with the transformable transformation ψ)
to calculate the class probabilities for each of these trans-
formed inputs. Following Li et al. [2021, Corollary 2], if the
guaranteed robustness radius Rπ , defined as:

Rπ
def
=

σ

2
min

1≤j≤N

(
Φ−1(p

(j)
A )− Φ−1(p

(j)
B )

)
(13)

for differentially resolvable transformations is greater than
the maximum interpolation error:

MZλ
= max

λ∈Zλ

min
1≤j≤N

∥ϕ(x, λ)− ϕ(x, λj)∥2 < Rπ (14)

then the it is guaranteed that ∀λ ∈ Zλ, the smooth classifier
will continue classify the original predicted class. Practically,

given a transformation ϕ, if the conditions identified in
Table 1 are satisfied, Sϕ provides a tight certified distance
Rπ that satisfies Eq. 12.

In this context, Rπ is instrumental in linking the ob-
served score Sϕ(x̃

(n+1), y) with the unobserved score
Sϕ(x

(n+1), y) for any given y ∈ Y . Leveraging this rela-
tionship, we construct a prediction set Cπ(x̃(n+1)) resilient
to input transformations with bounded deviation, following
a decision rule:{
y ∈ Y : Sϕ(x̃

(n+1), y) ≤ Q1−α({S(i)
ϕ }i∈Dcal

) +Rπ

}
,

(15)
where S(i)

ϕ is defined as Sϕ(x
(i), y(i)). This approach di-

verges from the standard split conformal method of Eq. 2,
as our prediction set is derived by comparing the test score
against an elevated thresholdQ1−α+Rπ . This adjustment is
dependent on both the magnitude of the transformation and
the robustness of Sϕ, implying that a larger disturbance ne-
cessitates a higher threshold increase, while a more resilient
Sϕ requires a smaller increase.

Theorem 4.1. Assume a set of samples {(x(i), y(i))}n+1
i=1

that are exchangeably drawn from an unknown distribution
Dxy. Let ϕ : X × Z → X be a differentially resolvable
transformation, let Zλ ⊆ Z , {λj}Nj=1 be a set of pertur-
bation parameters and let G : X → P(Y) be a smooth
classifier as in Def. 3.2 that predicts yA ∈ Y given x (i.e.
G(yA |x) where x = x(n+1)). If for any j, G(x) has class
probabilities that satisfy:

G(yA |ϕ(x, λj)) ≥ p(j)A ≥ p
(j)
B ≥ max

y ̸=yA

G(y |ϕ(x, λj)),
(16)

and Eq. 14 holds, then, the prediction set Cπ as defined in
Eq. 15 will satisfy the following probability:

P[y(n+1) ∈ Cπ(ϕ(x(n+1), π))] ≥ 1− α. (17)

Proof is given in App. B. Thus, we assert that the prediction
set Cπ(x̃(n+1)) will include the unknown target label y(n+1)

with a probability of at least 1− α, regardless of the distri-
bution Dxy, sample size n, the score function Sπ adhering
to Eq. 12, and the magnitude of adversarial perturbation π
generated by any attack algorithm.

4.3 BOUNDING THE DOMAIN
GENERALIZATION

In this section, we broaden our examination to include
the PAC theory and sketch guarantees for the Generalized
Smoothed Classifier to comply with the PAC criteria out-
lined in Eq. 3.

Following Park et al. [2020, 2022a], the goal is to find an
upper bound ξ̄(k;m, γ) ∈ [0, 1] on the true success probabil-
ity µ, constructed from a sample k ∼ Binom(m,µ), which



holds with probability at least 1− γ, where the probability
mass function is defined as:

PB(k |m, ξ) =
k∑

i=0

(
m
k

)
ξi(1− ξ)m−i. (18)

The PAC guarantees is expressed as:

Pk∼Binom(m,µ)[µ ≤ ξ̄(k |m, γ)] ≥ 1− γ, (19)

where the upper bound ξ̄ is defined as:

ξ̄(k |m, γ) def
= inf

ξ∈[0,1]
{ξ : PB(k |m, ξ) ≤ γ}∪{1}. (20)

In other words, the true error LDcal
(C) is bounded by the

upper bound ξ̄(L̂Dcal
(C) |m, γ) with probability at least

1− γ.

In our analysis, we consider the conformal set Cπ of Eq. 15
and bound the generalization error by adjusting the esti-
mated threshold τ̂ , defined in Eq. 5, by the robustness Rπ

radius of the smooth classifier. To do so, we consider a map-
ping function ψπ : X × Y → R that incorporates the score
function Sϕ and the robustness radius Rπ , and encodes the
prediction set condition into a binary classification frame-
work:

ψπ(x̃, y)
def
= Sϕ(x̃, y)−Q1−α({S(i)

ϕ }i∈Dcal
)−Rπ, (21)

where x̃ = x̃(n+1) = ϕ(x(n+1), y). Thus, let us define a
binary function Mτ (t) = I[t ≤ 0], such that we can re-
write the confidence set Cτ as:

Cπ,τ (x̃(n+1)) =
{
y ∈ Y :Mτ (ψ(x̃

(n+1), y)) = 1
}
.

(22)
Thus, the PAC bound for the binary classifier Mτ will then
imply a PAC bound for the confidence set predictor Cπ,τ ,
ensuring that the prediction set adheres to the desired proba-
bility bounds. This means we need to establish a PAC bound
for Mτ under the modified encoding that incorporates Sϕ,
Q1−α, and Rπ. In practice, we can obtain an empirical
threshold τ̂π defined as:

τ̂π = sup
τ∈T

{
τ : L̂Dcal

(Cπ,τ ) ≤ k(m, ξ, γ)
}
, (23)

which depends on the distribution π and on the confidence
level k defined in Eq. 6.

5 CERTIFIED ROBUSTNESS FOR
TEMPORAL TRANSFORMATIONS

In this section, we introduce a temporal transformation for
stretching and compressing time series. Building upon pre-
vious work [Li et al., 2021], we establish proven robust-
ness guarantees. We conclude by presenting our Temporal
Smooth Conformal Predictor (TSCP).

5.1 RANDOM TIME WARPING

In practice, the time warping transformation ϕ is centered
around a randomly chosen warp point p ∈ N with 0 <
p < T , and involves stretching and compressing different
sections of x while preserving its overall length. The time
warping process is characterized by two key parameters:
wl, wr ∈ N, representing the warp factors for the left and
right sides of p, respectively. The warp factor wl is selected
randomly from a uniform distribution in the range (0, ⌈θ ·
T ⌉), where 0 < θ < 1, θ ∈ R denotes the warp size. The
warp factor wr is then calculated to ensure a balanced warp,
maintaining the length of T . Formally, this relationship is
expressed as:

wr = wl ·
p

T − p . (24)

For each index i in the original time series x, the corre-
sponding index ĩ in the warped time series x̃ is determined
based on wl, wr, and p. Specifically, the warped indices are
computed as follows:

ĩ =

{
i+ ⌈wl · p−i

p ⌉ for i < p,

i− ⌈wr · i−p
T−p⌉ for i ≥ p. (25)

Finally, the warped time series x̃ is constructed by map-
ping each value ti from the original time series x to the
corresponding warped index ĩ. In Alg. 1, we synthesize the
overall procedure.

Algorithm 1 Random Time Warping of a Time Series

1: procedure RANDTIMEWARP(x, θ)
2: initialize:p ∼ U [1, T − 1], wl ∼ U [1, ⌈θ · T − 1⌉]
3: x̃← x; wr ← wl · p

T−p
4: for i = 0 to T − 1 do
5: if i < p then
6: ĩ← i+ ⌈wl · p−i

p ⌉
7: else
8: ĩ← i− ⌈wr · i−p

T−p⌉
9: end if

10: x̃ĩ ← xi
11: end for
12: return x̃
13: end procedure

Numerical Complexity Here, we discuss the computa-
tional complexity of our time warping augmentation method
in relation to earlier studies [Le Guennec et al., 2016, Um
et al., 2017, Iwana and Uchida, 2021b]. Traditionally, time
warping involves creating a cubic spline using a series of
knots, a process that typically requires solving a tridiagonal
system of equations. Once constructed, this spline is applied
across the time series. The complexity of this method is
primarily dictated by the number of knots, I , and the time
series length, T , resulting in an overall linear complexity
of O(I + T ). In contrast, our proposed method adopts a



Table 1: Certified robustness radii for resolvable and differentially resolvable time series transformations.

Type Transformation (π) Distribution Certified Robustness Radius (Rπ)

Resolvable Jitter δ ∼ N (0, σ2I) σ
2

(
Φ−1(pA)− Φ−1(pB)

)
Scaling δ ∼ N (1, σ2I) 1

2

(
Φ−1(pA)− Φ−1(pB)

)
Diff. Resolvable Magnitude-warp u ∼ N (1, σ2I) σ

2 min1≤j≤N

(
Φ−1(pA

(j))− Φ−1(pB
(j))

)
Time warp p ∼ U [0, T ] σ

2 min1≤j≤N

(
Φ−1(pA

(j))− Φ−1(pB
(j))

)
Window-warp p ∼ U [0, T ] σ

2 min1≤j≤N

(
Φ−1(pA

(j))− Φ−1(pB
(j))

)
more straightforward approach. It primarily consists of a
loop that runs through the time series, executing one simple
arithmetic operation for each element. This results in a lin-
ear complexity of O(T ), making it I-times more efficient,
especially when the number of knots I in the cubic spline
method is significantly large.

5.2 ROBUSTNESS RADII

Similarly to Li et al. [2021], we categorize the transforma-
tions into two types: resolvable and differentiably resolvable.
In Table 1, we report the certified radius for each individual
transformation considered.

As previously discussed in Sec. 4.2, we consider the meth-
ods for computing a tight and scalable upper bound M for
the interpolation error MZλ

in resolvable and differentially
resolvable time series transformations. The process begins
by selecting a subset of transformation parameters {λ}Nj=1

from Zλ, and applying these parameters to transform the
input, resulting in a set of transformed inputs {ϕ(x, λj)}Nj=1.
Subsequently, the class probabilities for each of these trans-
formed inputs are calculated using a classifier that has been
smoothed with the transformation ψ. The underlying prin-
ciple is that if each parameter λj in Zλ is sufficiently close
to one of the sampled parameters, then the classifier can be
considered robust against any parameters from the set Zλ.
This forms a crucial part of the methodology for ensuring
both the accuracy and scalability of the upper bound M in
relation to the certification of transformations, particularly
those involving interpolation errors.

Jitter This method aligns with the application and bounds
derivation associated with smooth classifiers as formerly
described in Cohen et al. [2019], Salman et al. [2019]. The
convolution of a Gaussian process with the input signal,
formerly recognized as the Weierstrass transform [Bilodeau,
1962], provides an alternative yet equivalent perspective on
the certified robustness assurances for predictions [Salman
et al., 2019].

Scaling As one might expect, scaling a time series is quite
like adjusting the contrast in an image. To determine a guar-
anteed robustness radius from this, we can calculate the
probability of the leading predicted class, denoted as pA,

and the next closest class, pB , using Monte-Carlo sampling
(refer to Corollary 7; Appendix D in Li et al. [2021]). The
robustness radius is then determined by taking half the dif-
ference between the quantiles of these two probabilities.

Magnitude & window warping In the context of magni-
tude and window warping computing an upper bound on the
interpolation error is related to find the maximum value of
the derivative of the cubic spline interpolation. In general,
we can calculate an upper bound for interpolation error in
transformations, using stratified sampling Li et al. [2021].
An interval of transformation parameters, Zλ = [a, b], is
divided uniformly into N parameters, λi. For these param-
eters, functions gi : [a, b] → R≥0, representing squared
ℓ2 interpolation error between transformed samples, are
defined as:

λ→ gi(λ)
def
= ∥ϕ(x, λ)− ϕ(x, λi)∥22 . (26)

The goal is to find an upper bound,Mi, for each sub-interval
[λi, λi+1] such that:

Mi ≥ max
λi≤λ≤λi+1

min{gi(λ), gi+1(λ)}. (27)

This leads to an overall upper bound
√
M

def
=

max1≤i≤N−1

√
M i, which is valid for the entire interval

Zλ.

Second-level sampling (n) is conducted within each sub-
interval [λi, λi+1], dividing them uniformly into n param-
eters, {γi,j}nj=1. If we have that L is a global Lipschitz
constant for all functions {gi}Ni=1, a closed-form expression
for Mi can be derived. In App. C, we compute the global
derivative and bound it by a Lipschitz constant for a cubic
spline interpolation. With a global Lipschitz constant L for
all gj functions, a closed-form expression for Mj can be
derived [Li et al., 2021]. This methodology shows that in-
creasing the number of first-level (N ) or second-level (n)
samples results in a tighter upper bound on interpolation
error.

Time warping In the context of time warping, ϕ alters the
indices of the time series based on the parameterswl andwr,
with the transformation centered around the point p. The
derivative of the warping function ϕ essentially represents



the rate of change of the warped indices with respect to the
original indices. Formally,

dϕ(i) =

{
1− wl

p for i < p,

1 + wr

T−p for i ≥ p. (28)

Since wl ≤ p ≤ T , the derivatives are always positive.
Given that wl is selected in the range (0, ⌈θ · T ⌉) and
wr = wl · p

T−p , we can compute the upper bounds for
both derivatives.

5.3 TEMPORAL SMOOTH CONFORMAL
PREDICTOR

Algorithm 2 TSCP: Temporal Smooth Conformal Predictor

Require: target error rate α ∈ (0, 1), transformation ϕ,
budget σ, smoothing samples N , data split into training
Dtr and calibration Dcal sets.

1: Train a classifier F on Dtr.
2: Compute generalized smoothed scores {S(i)

ϕ }i∈Dcal
.

3: Compute the empirical quantile Q1−α({S(i)
ϕ }i∈Dcal

).
4: Given x̃(i+1), construct Cπ(x̃(n+1)) as in Eq. 15.

In Alg. 2 we present our method. It is primarly designed to
generate reliable predictions within a defined error range
α. It operates by considering a transformation function ϕ, a
budget constraints σ, and a number of smoothing samplesN .
The algorithm calculates generalized smoothed scores for
the calibration dataset and determines the empirical quantile
from these scores, aligning with the target error rate. The
final step involves constructing a conformal prediction set
for any new input, ensuring that the predictions adhere to the
set error rate and maintain the required level of reliability.

6 EXPERIMENTS

In our investigation of time series classification, we compare
the generalized smoothed classifier, as defined in Sec. 4.1
with the vanilla classifier. We dub the classifier Temporal
Smooth Conformal Predictor (TSCP) since our main goal
is to understand how smoothing the input with time series
native perturbation (see App. A) affects the coverage and
accuracy of CP. In the first experiment, we examine adver-
sarial attacks to measure the robustness of TSCP against
intentionally crafted disturbances. Next, we explore domain
generalization to assess how well the models adapt to differ-
ent operational settings. These experiments are structured to
provide a clearer understanding of the relative advantages of
TSCP in managing the dynamic and noisy conditions typical
of vehicle operation, and to identify a suitable architecture
for time series classification.

6.1 SETTINGS

In our analysis, we consider two datasets: the UCR time
series classification archive Dau et al. [2018] composed of
128 time series datasets and an in-house dataset composed
of 7 input signals resulting from vehicle sensors. After an
initial binning, a single data point contains 500 time steps,
resulting in a data snippet of x ∈ R7×500, which is then
classified into two classes y ∈ {0, 1}. As classifiers, we
employ two distinct neural network architectures: a convo-
lutional neural network (CNN) for the UCR datasets and a
time series transformer for the in-house dataset. Additional
details are reported in App. D.

Coverage In the context of conformal prediction, cover-
age is a pivotal metric that measures the accuracy of the
predictive model’s confidence intervals. Essentially, cover-
age represents the proportion of times the true labels fall
within the prediction intervals generated by the model. For-
mally, the coverage can be expressed as

Coverage =
1

|Dtest|
∑

(x,y)∈Dtest

1(y ∈ C(x)), (29)

where C(x) denotes the conformal prediction set generated
by the model, 1 is the indicator function, which equals 1 if
the condition y ∈ C(x) is true, and 0 otherwise.

Hardware Resources The experiments were conducted
utilizing a server with four NVIDIA A100 GPUs and an
AMD EPYC 7542 32-Core CPU.

6.2 ADVERSARIAL ROBUSTNESS ON UCR

In this section, we explore the effectiveness of different
classifiers in a white-box setting, focusing on their suscepti-
bility to evasion attacks. Using Projected Gradient Descent
(PGD) Carlini and Wagner [2017], we assess the robust-
ness of three prediction techniques: CP Vovk et al. [2005],
RSCP Gendler et al. [2021], and our method (TSCP). Our
analysis delves into each method’s accuracy, coverage, and
prediction set-size under varying levels of adversarial per-
turbations. In this context, we performed 20 uniformly dis-
tributed PGD [Carlini and Wagner, 2017] attacks within
ϵ ∈ [0, 0.1], for 40 iterations and a step size of ϵ× 10−1. In
the context of RSCP and TSCP, we consider 2000 samples.
The primary objective is to shed light on how standard and
smooth classification approaches behave when faced with
increasingly intense adversarial samples, thereby evaluating
their overall robustness.

Figure 2 presents top-1 accuracy, coverage and set-size of
CP, RSCP, and TSCP under escalating ℓ∞-norm perturba-
tions, denoted by ϵ, for one dataset of the UCR datasets [Dau
et al., 2018]. We observe that RSCP and TSCP mantains
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Figure 2: Top-1 accuracy, coverage and set-size compari-
son between CP [Vovk et al., 2005], RSCP [Gendler et al.,
2021] and TSCP (our) under increasing ℓ∞-norm adversar-
ial perturbations with budget ϵ for the earth-quakes UCR
dataset [Dau et al., 2018]. TSCP and RSCP have σ = 0.2.

higher coverage for increasing ϵ values, despite having dif-
ferent accuracy. This highlights the robustness of a smooth
classifier against adversarial perturbations. However, the set-
size increases slightly with increasing ϵ, indicating larger
prediction sets. Overall, TSCP tends to outperform in accu-
racy and coverage, but all methods show a degree of decline
in performance with increasing adversarial budget.

In Table 2, we present a comprehensive comparison between
CP, RSCP and TSCP across various datasets from the UCR
archive (complete version in App. E). This assessment was
limited to models that demostrate a minimum clean test top-
1 accuracy of 70% or higher. We highlight the method that
reaches a coverage as much close as possible to the target
one 90% (1−α) and the target set-size which corresponds to
1. Notably, we prioritize methods that consistently achieve at
least the desired coverage of 90%. This minimum threshold
ensures a baseline level of robustness, as methods falling
below this level are considered less reliable in the face of
adversarial manipulation. The Overall row encapsulates the
average performance and provides an aggregated view of
the adversarial robustness across all datasets. In general, the
performance of TSCP and RSCP are close each other.

We observe that despite augmenting the set-size, both the
RSCP and TSCP methods successfully create conformal
sets that adapt to changes in data distribution and maintain a
coverage level above the target of 90%. For some of the data
sets, both methods achieve 100% coverage. This might be
attributed to the relatively small size of the validation and
calibration sets (20% of the dataset, respectively). Few data
points in the calibration and validation sets lead to overly
cautious decision thresholds and fluctuations in coverage
estimates. Therefore, while we observe 100% coverage in
many cases, the actual coverage on unseen data might be

Table 2: Comparison analysis of CP [Vovk et al., 2005],
RSCP [Gendler et al., 2021] and TSCP (our) across
UCR [Dau et al., 2018] datasets. We consider an average of
20 uniformly distributed PGD [Carlini and Wagner, 2017]
attack samples with ϵ ∈ [0, 0.1] and a target coverage of
90% (α = 0.1). RSCP and TSCP are augmented by σ = 0.2.
The complete version is available in App. E.

Dataset Coverage Set-Size
CP RSCP TSCP CP RSCP TSCP

ArrowHead 78.7 97.5 99.4 0.83 2.41 2.53
BME 100.0 100.0 100.0 0.47 3.00 3.00
Beef 71.6 100.0 100.0 0.40 4.57 4.57
BirdChicken 78.2 100.0 100.0 0.74 2.00 2.00
CBF 97.2 100.0 100.0 2.14 3.00 3.00
Car 78.4 100.0 100.0 0.95 4.00 4.00
Chinatown 92.2 100.0 100.0 0.69 2.00 2.00
CinC-ECG 88.6 99.9 98.2 0.52 3.98 3.84
Coffee 56.4 99.1 53.9 0.61 1.94 0.99
Cricket-X 85.4 99.7 100.0 1.22 10.54 10.19
Cricket-Z 85.0 99.4 99.7 1.94 10.20 9.70
Diatom Red. 75.0 99.9 99.3 0.69 3.99 3.94
Distal Age 92.1 100.0 100.0 1.57 2.93 2.96
Distal Correct 93.3 99.8 100.0 1.72 1.97 1.97
Distal TW 90.6 100.0 100.0 2.17 4.48 4.35

...
...

...
...

...
...

Toe Seg. 1 79.2 99.4 95.4 0.89 1.81 1.64
Toe Seg. 2 93.9 98.7 95.6 0.66 1.45 1.38
Trace 90.1 100.0 100.0 0.68 3.14 3.18
TwoLeadECG 75.0 95.4 99.7 0.44 1.81 1.92
Two-Patterns 100.0 100.0 100.0 0.78 3.80 3.77
UMD 99.7 100.0 100.0 1.71 3.00 3.00
UWave All 95.8 99.9 100.0 0.80 6.91 7.37
Synt. Control 99.4 100.0 100.0 0.90 2.84 2.78
uWave-X 91.3 99.6 99.6 1.34 5.47 5.17
uWave-Z 85.8 99.9 99.9 1.33 7.06 7.12
Wafer 99.8 100.0 100.0 0.88 1.93 1.94
Yoga 72.4 99.9 99.8 1.04 1.98 1.96

Overall 85.9 98.7 98.0 1.09 4.32 4.28

slightly lower. Importantly, TSCP tends to produce smaller
confidence sets while still ensuring high coverage, which
aligns more closely with our overall goal.

6.3 DOMAIN GENERALIZATION IN VEHICLE
SENSOR DATA

Here, we conducted a comparative analysis of CP, RSCP
and TSCP using our internal dataset derived from vehicle
sensor data. In this context, we train the time series trans-
former using portions of data from each distinct domain,
each characterized by unique recording configurations. Both
the calibration and test sets consist of one or more config-
urations, each containing a minimum of 2 000 data points.
The training set encompasses the rest, amounting to a total
of 32 000 data points.

In Figure 3, we plot the accuracy, coverage and set-size for
each specific test domain (configuration). In this context,
we consider a temporal-warping transformation (σ = 0.2)
for TSCP and jitter (Gaussian noise with σ = 0.2) for
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Figure 3: Coverage comparison between temporal smooth
and plain CP in a domain generalization context.

RSCP. We emphasize, with a dashed gray line, the goal of
achieving target coverage at 0.9 (α = 0.1) and a target set
size of 1. We observe that CP and TSCP demonstrate similar
performance, whereas RSCP lags in certain configurations.
Overall, for CP and TSCP, only 2 out of 19 configurations
fall below the 0.9 threshold. This indicates that the target
coverage for domain generalization is nearing its optimal
level (2/19 ≃ 0.1).

In Table 3, we provide an average of the domain general-
ization performance between CP, RSCP and TSCP across
different transformations. Interestingly, the coverage level
is fairly uniform across these different transformations, il-
lustrating the classifiers’ resilience in preserving their pre-
diction accuracy despite the diversity introduced by these
transformations. However, to some degree, the performance
in accuracy varies among transformations, with window-
warp showing a significant decrease. This suggests that
certain transformations can introduce complexities that chal-
lenge the classifier’s ability to generalize. Regarding set-
size, which reflects consistent outcomes, RSCP displays a
surprisingly smaller value, yet it is in line with the results
of the other methods. With these results, we want to high-
light the effects of induced transformations on classifier
performance, showing that while some transformations can
enhance generalization, others may introduce challenges,
impacting accuracy and certainty in predictions.

6.4 DISCUSSION OF RESULTS

In our analysis, spanning adversarial robustness and domain
generalization, the study reveals notable insights into the
performance of conformal methods such as CP, RSCP, and
TSCP. Particularly in adversarial settings, the resilience of
RSCP and TSCP shows that these methods maintain higher
coverage against increasing adversarial perturbations, a prac-
tical demonstration of their robustness. This effect is offset

Table 3: Comparison of domain generalization performance
between vanilla and π-smoothed classifiers across various
transformations (σ = 0.2) in terms of accuracy (top-1),
coverage and set-size. The values presented are averages
calculated over the plain test sets of each individual config-
uration.

Method Tranform. Acc. Coverage Set-Size

CP Vanilla 83.0 94.2 1.35
RSCP Jitter 80.5 93.0 1.28
TSCP Scaling 83.1 93.8 1.33
TSCP Magnitude-Warp 73.2 91.3 1.33
TSCP Time-Warp 74.3 91.9 1.32
TSCP Window-Warp 62.5 85.6 1.37

by a modest rise in set-size, hinting at reduced precision,
yet it still preserves both accuracy and coverage effectively.
TSCP generally performs well, often showing good accuracy
and coverage. Furthermore, in the real-world application of
vehicle sensor data, the experiments demonstrate that tempo-
ral transformations are nearing optimal target coverage for
domain generalization, though the accuracy decreases with
stronger transformations such as window-warping, point-
ing to challenges in this area. These findings collectively
demonstrate the potential of introducing native time series
augmentation in environments susceptible to domain shifts
and highlight the challenges in enhancing classifier robust-
ness and accuracy across diverse configurations.

7 CONCLUSION

In this work, we introduce a generalized smoothed clas-
sifier, inspired by the limitations of traditional RS under
substantial perturbations like time-warping. By extending
RS to include arbitrary perturbations specific to time series
data and integrating it with CP, we have developed a robust
approach that adapts to diverse and unknown distributions.
We establish robustness boundaries for transformations in
time series data, applying these to delineate the limits of
confidence sets and to facilitate the transfer of learning
across various domains. Additionally, we sketch a method
for empirically estimating PAC guarantees in the context of
domain generalization.

In a practical application, we present TSCP, a conformal
prediction model that employs temporal-shift transforma-
tions to refine the input data. TSCP is designed to provide re-
silience against adversarial attacks and to adapt effectively to
real-world data augmentations. The results highlight TSCP’s
effectiveness in domain generalization and empirical risk
minimization, showcasing its practical utility. Overall, our
work not only presents a theoretical advancement in han-
dling perturbations in time series data but also demonstrates
tangible benefits in real-world scenarios, bridging the gap
between theoretical robustness and practical applicability.
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A REAL-WORLD PERTURBATIONS FOR TIME SERIES DATA

Here, we introduce five primary techniques to augment time series: jitter, scaling, magnitude warping, time warping and
window warping. Each method provides a unique way of altering the amplitude and frequency of time series data.

Jitter The process of jittering, which involves introducing Gaussian noise to time series data, stands as a straightforward
yet powerful method of transformation-based data augmentation [Iwana and Uchida, 2021a]. This operation can be
mathematically represented as:

x̃ = x1 + δ1, . . . , xt + δt, . . . , xT + δT , (30)

where each time step t sees Gaussian noise δi added, following a normal distribution δi ∼ N (0, σ2). The standard deviation
σ > 0 of this noise is a tunable hyperparameter.

Scaling Scaling pertains to modifying the global magnitude or intensity of a time series through the multiplication of a
random scalar value. With a scaling parameter denoted as δ, the scaling process is expressed as:

x̃ = δx1, . . . , δxt, . . . , δxT . (31)

The scaling parameter δ can be derived from a Gaussian distribution δ ∼ N (1, σ2) with σ as a tunable hyperparameter, or it
could be selected as a random value from a predetermined set. In the context of time series, the term scaling carries different
meanings with respect to image processing, where it is associated to contrast. In time series, scaling strictly refers to the
amplification of the magnitude of the elements, without altering the duration of the time series.

Magnitude warping Magnitude warping, as presented by Um et al. [2017], is a data augmentation strategy specifically
designed for time series data. This technique alters the magnitude of a signal through the application of a smoothed curve.
Formally, the newly generated, or augmented, time series is derived through the following expression:

x̃ = δ1x1, . . . , δtxt, . . . , δTxT , (32)

where δ1, . . . , δt, . . . , δT is a sequence derived from interpolating a cubic spline S(u) with knots u = u1, . . . , ui, . . . , uI .
Each knot ui originates from a distribution N (1, σ2), with the number of knots I and the standard deviation σ acting as
tunable hyperparameters. The core concept of magnitude warping is to introduce minor variations in the data by either
amplifying or diminishing random segments of the time series.

Time warping Time-warping involves stretching or compressing the time axis to induce variability in the temporal
dynamics. Given a univariate time series x ∈ RT subjected to a time-warping perturbation characterized by a smooth
warping path, the resulting augmented time series can be denoted as:

x̃ = xϕ(1), . . . , xϕ(t), . . . , xϕ(T ). (33)

In this representation, ϕ(·) is a time-warping function, which modifies the time indices based on a smooth curve. In previous
works [Le Guennec et al., 2016, Um et al., 2017, Iwana and Uchida, 2021b], this curve was characterized by a cubic spline,
S(u), having knots defined as u = u1, . . . , ui, . . . , uI , where each knot height, ui, was derived from a normal distribution,
ui ∼ N (1, σ2). However, in this work we consider a different approach to temporally shift the time series.

Window warping A familiar technique of time warping termed as window warping has been introduced by Le Guennec
et al. [2016]. In this method, a random segment of the time series, starting from p ∈ N with 0 < p < T and ending at
p+ ⌈σ · T ⌉, is selected and either stretched by a factor of 2 or contracted by a factor of 1

2 . Then the segment is interpolated
back into the original time series. Even though the stretching and contracting factors are preset to 2 and 1

2 respectively, these
values can be adjusted or optimized to other values as needed.

B PROOF OF THEOREM 4.1

Theorem 4.1. Assume a set of samples {(x(i), y(i))}n+1
i=1 that are exchangeably drawn from an unknown distribution Dxy .

Let ϕ : X ×Z → X be a differentially resolvable transformation, let Zλ ⊆ Z , {λj}Nj=1 be a set of perturbation parameters



and let G : X → P(Y) be a smooth classifier as in Def. 3.2 that predicts yA ∈ Y given x (i.e. G(yA |x) where x = x(n+1)).
If for any j, G(x) has class probabilities that satisfy:

G(yA |ϕ(x, λj)) ≥ p(j)A ≥ p
(j)
B ≥ max

y ̸=yA

G(y |ϕ(x, λj)), (16)

and Eq. 14 holds, then, the prediction set Cπ as defined in Eq. 15 will satisfy the following probability:

P[y(n+1) ∈ Cπ(ϕ(x(n+1), π))] ≥ 1− α. (17)

Proof. From Corollary 2 of Li et al. [2021], we know that if the maximum interpolation error satisfy Eq. 14, then it is
guaranteed that ∀λ ∈ Zλ : yA = argmaxy Gϕ(y |ϕ(x, λ). Therefore, if we define the robustness certificates radius as:

Rπ
def
=

σ

2
min

1≤j≤N

(
ϕ−1(p

(j)
A )− ϕ−1(p

(j)
B )

)
,

we can link the observed score Sϕ(x̃
(n+1), y) with the unobserved score Sϕ(x

(n+1), y) for any given y ∈ Y . Thus, let us
consider the definition of the conformal set as in Eq. 15:

P
[
y(n+1) ∈ Cπ(x̃(n+1))

]
= P

[
Sϕ(x̃

(n+1), y(n+1)) ≤ Q1−α({S(i)}i∈Dcal
) +Rπ

]
(Eq. 12) ≥ P

[
Sϕ(x

(n+1), y(n+1)) +Rπ ≤ Q1−α({S(i)}i∈Dcal
) +Rπ

]
=

[
Sϕ(x

(n+1), y(n+1)) ≤ Q1−α({S(i)}i∈Dcal
)
]

(Eq. 1) ≥ 1− α

C LIPSCHITZ CONSTANT FOR CUBIC SPLINE INTERPOLATION

When dealing with magnitude and window warping, estimating the maximum error in interpolation involves finding the
largest value of the derivative of the cubic spline used for interpolation. This maximum value is considered as the Lipschitz
constant. The cubic spline is a piecewise polynomial function, typically of degree three. Assume we have a sequence of
n+ 1 knots, (x0, y0) through (xn, yn). There exists a cubic spline segment qi(x) defined as:

qi(x) = (1− t(x))yi−1 + t(x)yi + t(x)(1− t(x))((1− t(x))ai + t(x)bi),

with t(x) =
x− xi−1

xi − xi−1
, ai = ki−1(xi − xi−1)− (yi − yi−1), bi = −ki(xi − xi−1) + (yi − yi−1),

(34)

where ki represents the second order derivative of the spline at the knot points (xi, yi). To compute the derivative of the
cubic spline function qi(x), we first need to recognize that qi(x) is a composite function involving t which itself is a function
of x. Therefore, we will use the chain rule to find the derivative, i.e. dqi

dx = dqi
dt · dtdx . Thus, the first order derivative is defined

as:
dqi
dx

=
yi − yi−1

xi − xi−1
+ (1− 2t)

ai(1− t) + bit

xi − xi−1
+ t(1− t) bi − ai

xi − xi−1
, (35)

where we omit the dependence of t on x for brevity. This derivative represents the rate of change of the cubic spline segment
qi(x) with respect to x, and it varies along different segments of the spline depending on the values of xi, xi−1, yi, yi−1, ki,
and ki−1. From the spline’s derivative, the Lipschitz constant can be estimated by finding the maximum of its absolute
values. The maximum value of the first derivative occurs either at the endpoints of a segment (i.e., at the knots xi−1 or xi) or
at a critical point within the segment where the second-order derivative is zero. The second order derivative d2qi

dx2 gives the

maximum rate of change of the first derivative. Thus, let us compute d2qi
dx2 and set it equal to zero. The second derivative of

the cubic spline function qi(x) is:

d2qi
dx2

= 2
bi − 2ai + (ai − bi)3t

(xi − xi−1)2
. (36)



Next, we set this second derivative to zero and solve for x. This will give us the points where the curvature of the spline
segment changes, indicating inflection points. The solution to the equation d2qi

dx2 = 0 is:

t =
2ai − bi
3(ai − bi)

, or x =
(2ai − bi)xi + (ai − 2bi)xi−1

3(ai − bi)
. (37)

This formula represents the inflection point of the spline segment between xi−1 and xi. Inflection points are where the
curvature of the spline changes sign and we can obtain the maximum value of the first order derivative by inserting t (or x)
in dqi

dx . In practice, the specific value where this occurs depend on the values of xi, xi−1, yi, yi−1, ki, and ki−1. The global
maximum of the first derivative of the entire cubic spline is the largest value found among all segments.

D ADDITIONAL DETAILS ON EXPERIMENTAL PROCEDURES

In Table 4, we provide an overview of the architecture and key features of two neural network models: a Convolutional
Neural Network (CNN) and a Time Series Transformer. The CNN comprises three convolutional layers with 32, 64, and
64 channels respectively, and two linear layers with 128 and 32 units. It includes max pooling with a kernel size of 4
and flattening operations. The Time Series Transformer, in contrast, does not have convolutional layers but includes two
transformer layers and two linear layers, each with 32 units, along with a flattening step. Both models utilize ReLU activation
functions in their convolutional and linear layers, and they both have a softmax output activation function.

Parameter CNN Time Series Transformer

Number of Layers 3 Conv + 2 Linear 1 Transformer + 2 Linear
Convolutional Layers 3 (32, 64, 64 channels) N/A
Transformer Layers N/A 2 Layers
Max Pooling Yes (Kernel Size: 4) N/A
Linear Layers 2 (128, 32 units) 2 (32 units each)
Activation Functions ReLU ReLU
Output Activation Softmax Softmax

Table 4: Network parameters of CNN and time series transformer networks.

In training the respective networks, both the CNN and the transformer shared similar hyper-parameters. Both models were
training for 200 epochs with a batch size of 1024 and implementing an early stopping mechanism with a patience of 100
epochs to prevent overfitting. We incorporate random data augmentation from App. A with an intensity of 0.5. We utilize
the Adam optimizer for both models and paired with a learning rate adjustment strategy that reduces the rate upon hitting a
plateau.

E ADVERSARIAL ATTACK EXPERIMENT DETAILS

An adversarial attack refers to crafting input data with the intent of fooling a machine learning model into making a
misclassification [Szegedy et al., 2013, Goodfellow et al., 2014]. Formally, x̃ is called an adversarial example of x if
argmaxy∈Y Fyd(x̃) ̸= argmaxy∈Y Fy(x) where d(x̃, x) ≤ ϵ, with ϵ > 0. In practice, using a loss function L as defined in
Carlini and Wagner [2017]:

Ltarget(x̃) = max
ỹ∈Y\y

Fỹ(x̃)− Fy(x̃), (38)

the goal is to maximize this difference in order to make the model very confident about the wrong classification.

We report in Table 5, the clean top-1 accuracy, the adversarial accuracy, coverage and set-size for CP, RSCP and TSCP under
an uniform distribution of 20 adversarial attacks within ϵ ∈ [0, 0.1]. In this comparison, we consider only the results were
the classifier achieved a clean accuracy higher than 70%.

TSCP consistently outshines CP and RSCP, particularly in maintaining higher adversarial accuracy and coverage, demon-
strating its superior resilience to adversarial manipulations. This robustness is evident despite the noticeable decline in
performance all methods experience under adversarial conditions compared to their clean top-1 accuracy. The performance



of these methods, however, varies significantly across different datasets, underscoring the influence of dataset characteristics
on model robustness. For instance, in datasets like ECG200 and Plane, all methods maintain high adversarial accuracy,
whereas in others like Meat and Coffee, there’s a substantial performance drop, especially for CP and RSCP. Furthermore,
TSCP tends to generate more precise predictions, as indicated by its generally smaller set sizes compared to RSCP, while
CP, though having the smallest set sizes, lags in adversarial accuracy.

F DOMAIN GENERALIZATION FOR TIME SERIES CLASSIFICATION

In Figure 4, we display the individual results of the domain generalization experiment conducted in the in-house dataset.
Each test set satisfies the condition of a minimum of 2 000 samples. The ability of the model to maintain high accuracy and
coverage, along with a consistent set size across these different domains, is indicative of its robustness and effectiveness
in handling unseen domains. As we observe, the use of jitter transformation to augment the input signal shows reduced
coverage performance in two additional domains compared to other transformations.
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Figure 4: Results of domain generalization for a binary time-series classifier applied to different recordings of vehicle sensor
data.



Table 5: Comparison analysis of CP [Vovk et al., 2005], RSCP [Gendler et al., 2021] and TSCP (our) across UCR [Dau
et al., 2018] datasets. We consider an average of 20 uniformly distributed PGD [Carlini and Wagner, 2017] attack samples
with ϵ ∈ [0, 0.1] and a target coverage of 90% (α = 0.1). RSCP and TSCP are augmented by σ = 0.2. Continue in Table 6.

Dataset Acc. Adversarial Acc. Coverage Set-Size
CP RSCP TSCP CP RSCP TSCP CP RSCP TSCP

ArrowHead 72.0 57.8 58.0 60.7 78.7 97.5 99.4 0.83 2.41 2.53
BME 93.3 90.4 90.4 90.4 100.0 100.0 100.0 0.47 3.00 3.00
Beef 70.0 51.6 50.0 49.0 71.6 100.0 100.0 0.40 4.57 4.57
BirdChicken 75.0 72.1 72.1 72.1 78.2 100.0 100.0 0.74 2.00 2.00
CBF 92.6 91.3 91.3 91.3 97.2 100.0 100.0 2.14 3.00 3.00
Car 73.3 59.5 59.5 59.5 78.4 100.0 100.0 0.95 4.00 4.00
Chinatown 87.5 87.5 87.5 87.5 92.2 100.0 100.0 0.69 2.00 2.00
CinC-ECG-torso 73.9 69.9 69.4 68.8 88.6 99.9 98.2 0.52 3.98 3.84
Coffee 96.4 54.8 55.4 53.9 56.4 99.1 53.9 0.61 1.94 0.99
Cricket-X 70.5 65.6 66.8 62.5 85.4 99.7 100.0 1.22 10.54 10.19
Cricket-Z 70.3 65.2 66.1 62.5 85.0 99.4 99.7 1.94 10.20 9.70
DiatomSizeReduction 94.1 68.3 68.3 33.1 75.0 99.9 99.3 0.69 3.99 3.94
DistalPhalanxOutlineAgeGroup 85.2 79.1 78.9 81.0 92.1 100.0 100.0 1.57 2.93 2.96
DistalPhalanxOutlineCorrect 77.7 66.2 61.2 46.5 93.3 99.8 100.0 1.72 1.97 1.97
DistalPhalanxTW 74.8 72.4 73.4 76.2 90.6 100.0 100.0 2.17 4.48 4.35
ECG200 89.0 86.4 86.7 84.6 92.6 100.0 100.0 0.79 1.98 1.94
ECG5000 93.6 92.2 91.4 92.4 96.0 99.4 99.8 0.93 4.01 4.46
ECGFiveDays 80.8 72.9 72.3 83.7 78.8 97.8 93.0 0.77 1.59 1.25
Earthquakes 73.3 71.1 69.8 74.8 82.9 94.9 92.8 0.39 1.64 1.42
ElectricDevices 73.8 64.8 66.7 64.6 84.0 98.1 98.1 1.63 6.37 6.44
FaceAll 72.7 67.9 67.9 72.0 90.7 87.0 88.5 0.92 8.82 7.60
FaceFour 79.5 69.4 68.2 81.1 88.1 95.9 99.3 1.69 2.38 2.30
FacesUCR 83.1 73.2 73.7 81.3 91.4 99.5 99.5 1.04 11.24 11.64
Fish 86.9 48.7 48.7 48.7 63.8 100.0 100.0 0.70 7.00 7.00
FordA 90.1 70.9 72.2 78.3 75.9 95.8 97.4 0.83 1.66 1.66
FordB 85.2 72.5 72.0 76.4 78.0 99.6 98.2 1.04 1.73 1.66
FreezerRegularTrain 96.1 76.3 76.3 76.3 72.9 100.0 100.0 0.34 2.00 2.00
FreezerSmallTrain 73.3 73.0 73.0 73.0 89.3 100.0 100.0 0.32 2.00 2.00
GunPointAgeSpan 87.3 87.3 87.3 87.3 99.3 100.0 100.0 1.63 2.00 2.00
GunPointMaleVersusFemale 93.4 93.1 93.1 93.1 99.6 100.0 100.0 1.11 2.00 2.00
GunPointOldVersusYoung 89.2 89.0 89.0 89.0 91.9 100.0 100.0 0.91 2.00 2.00
Gun-Point 97.3 71.1 70.8 82.4 87.9 100.0 100.0 0.48 1.97 1.96
HandOutlines 84.7 59.5 62.4 78.3 59.2 98.7 98.5 0.89 1.94 1.92
HouseTwenty 72.3 72.3 72.3 72.3 79.7 100.0 100.0 0.62 2.00 2.00
InsectEPGRegularTrain 100.0 100.0 100.0 100.0 100.0 100.0 100.0 0.65 3.00 3.00
InsectEPGSmallTrain 100.0 100.0 100.0 100.0 100.0 100.0 100.0 0.51 3.00 3.00
ItalyPowerDemand 95.8 90.0 90.0 90.0 98.1 100.0 100.0 0.70 2.00 2.00
LargeKitchenAppliances 72.0 60.6 62.3 66.2 84.1 98.1 97.3 1.64 2.80 2.70
Lighting2 75.4 72.8 72.4 72.3 82.4 100.0 100.0 0.48 1.96 1.91
Lighting7 71.2 65.6 64.4 60.0 85.1 100.0 100.0 1.50 6.31 5.41
MALLAT 94.7 78.4 79.8 85.8 78.7 100.0 100.0 0.49 6.81 6.89
Meat 85.0 20.2 21.3 26.5 23.9 62.0 61.1 0.84 1.97 1.91
MiddlePhalanxOutlineAgeGroup 79.8 75.8 75.4 76.3 95.1 89.5 94.2 1.70 1.45 2.01
MiddlePhalanxOutlineCorrect 70.8 58.6 58.5 58.6 91.9 100.0 100.0 1.72 2.00 2.00
MixedShapesRegularTrain 88.9 83.3 83.3 83.3 93.8 100.0 100.0 1.08 5.00 5.00
MixedShapesSmallTrain 80.8 76.3 76.3 76.3 90.8 100.0 100.0 1.32 5.00 5.00
MoteStrain 77.5 77.5 78.0 79.2 87.7 98.2 94.2 0.49 1.73 1.35

...
...

...
...

...
...

...
...

...
...



Table 6: Continuation of Table 5

Dataset Acc. Adversarial Acc. Coverage Set-Size
CP RSCP TSCP CP RSCP TSCP CP RSCP TSCP

...
...

...
...

...
...

...
...

...
...

NonInvasiveFatalECG-Thorax1 83.3 33.9 35.4 38.5 70.7 100.0 100.0 3.21 32.22 33.91
NonInvasiveFatalECG-Thorax2 89.5 37.2 38.7 45.9 65.1 99.9 100.0 2.20 27.47 27.23
Plane 96.2 95.6 95.4 91.0 99.2 100.0 100.0 1.06 4.93 4.78
PowerCons 98.3 95.3 95.3 95.3 100.0 100.0 100.0 0.75 2.00 2.00
ProximalPhalanxOutlineAgeGroup 83.4 73.8 75.5 81.0 80.3 100.0 100.0 1.15 2.99 2.99
ProximalPhalanxOutlineCorrect 75.9 66.7 74.8 72.3 91.2 100.0 100.0 1.55 1.98 1.96
ProximalPhalanxTW 73.0 70.8 68.8 65.3 88.7 100.0 100.0 2.11 4.56 5.25
Rock 74.0 75.4 75.4 75.4 100.0 100.0 100.0 3.42 4.00 4.00
SemgHandGenderCh2 86.8 86.1 86.1 86.1 93.4 100.0 100.0 0.66 2.00 2.00
SemgHandSubjectCh2 76.2 75.8 75.8 75.8 89.2 100.0 100.0 1.30 5.00 5.00
SonyAIBORobotSurface1 83.7 81.5 81.5 81.5 89.4 100.0 100.0 0.73 2.00 2.00
SonyAIBORobotSurface2 81.1 82.0 82.0 82.0 92.7 100.0 100.0 0.68 2.00 2.00
StarLightCurves 92.0 83.7 84.1 86.4 95.8 100.0 100.0 1.06 2.88 2.85
Strawberry 86.9 53.5 55.5 64.4 58.7 100.0 100.0 1.11 1.95 1.91
SwedishLeaf 85.6 59.8 63.3 57.6 82.4 100.0 100.0 1.64 13.96 13.66
Symbols 82.0 76.7 76.4 83.2 88.1 99.9 99.8 0.95 4.77 4.04
ToeSegmentation1 77.2 75.7 75.7 77.2 79.2 99.4 95.4 0.89 1.81 1.64
ToeSegmentation2 86.2 84.0 84.1 87.3 93.9 98.7 95.6 0.66 1.45 1.38
Trace 99.0 82.4 81.9 83.1 90.1 100.0 100.0 0.68 3.14 3.18
TwoLeadECG 89.5 65.4 66.0 64.5 75.0 95.4 99.7 0.44 1.81 1.92
Two-Patterns 99.9 99.9 100.0 99.9 100.0 100.0 100.0 0.78 3.80 3.77
UMD 91.7 92.8 92.8 92.8 99.7 100.0 100.0 1.71 3.00 3.00
UWaveGestureLibraryAll 94.7 87.9 89.0 93.0 95.8 99.9 100.0 0.80 6.91 7.37
synthetic-control 97.3 95.5 95.0 97.6 99.4 100.0 100.0 0.90 2.84 2.78
uWaveGestureLibrary-X 80.2 75.8 75.1 75.6 91.3 99.6 99.6 1.34 5.47 5.17
uWaveGestureLibrary-Z 70.3 65.2 65.3 69.3 85.8 99.9 99.9 1.33 7.06 7.12
wafer 98.9 98.7 98.7 97.2 99.8 100.0 100.0 0.88 1.93 1.94
yoga 75.3 67.5 67.3 67.4 72.4 99.9 99.8 1.04 1.98 1.96

Overall 84.1 74.1 74.4 75.3 85.9 98.7 98.0 1.09 4.32 4.28
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