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Abstract
Machine translation (MT) evaluation often fo-001
cuses on accuracy and fluency, without paying002
much attention to translation style. This means003
that, even when considered accurate and flu-004
ent, MT output can still sound less natural005
than high quality human translations or text006
originally written in the target language. Ma-007
chine translation output notably exhibits lower008
lexical diversity, and employs constructs that009
mirror those in the source sentence. In this010
work we propose a method for training MT011
systems to achieve a more natural style, i.e.012
mirroring the style of text originally written013
in the target language. Our method tags par-014
allel training data according to the naturalness015
of the target side by contrasting language mod-016
els trained on natural and translated data. Tag-017
ging data allows us to put greater emphasis on018
target sentences originally written in the tar-019
get language. Automatic metrics show that020
the resulting models achieve lexical richness021
on par with human translations, mimicking a022
style much closer to sentences originally writ-023
ten in the target language. Furthermore, we024
find that their output is preferred by human ex-025
perts when compared to the baseline transla-026
tions.027

1 Introduction028

Machine translation has made tremendous progress029

in recent years with the advent of neural methods030

(Bahdanau et al., 2015; Vaswani et al., 2017). This031

is especially true for language pairs with a large032

amount of available bilingual text for training (Bar-033

rault et al., 2020a). However MT output still can be034

improved: it currently trails human translators in035

expert evaluation (Toral et al., 2018; Freitag et al.,036

2021) and its language is perceived as poorer and037

more synthetic (Vanmassenhove et al., 2021). In038

this work, we aim to produce machine translation039

output that has a more natural style.040

Although difficult to define precisely, we con-041

sider a translation to be natural if it is an adequate042

Source Es wird befürchtet, dass die Opferzahlen
noch deutlich in die Höhe gehen.

Translationese It is feared that the number of
victims will increase significantly.

Natural It is feared that the death toll will rise
significantly.

Figure 1: Example De→En translations: This work
sets the goal to generate more natural translations like
death toll/rise in comparison to literal translations like
number of victims/increase.

and fluent translation, whose style matches that 043

of high quality monolingual text. Such a transla- 044

tion should contain few translationese constructs 045

and use a rich vocabulary. This is exemplified 046

in Figure 1. The translationese sentence uses the 047

construct “number of victims”, which is a literal 048

translation for the German “Opferzahlen”. Al- 049

though correct (i.e. adequate and fluent), “death 050

toll” shows a much more natural word choice for 051

this translation. 052

Our objective in this paper is to study how the 053

naturalness of machine translation output can be 054

improved. In particular, we focus on how available 055

measures can guide the translation process towards 056

this goal. There have been several studies analyzing 057

the naturalness of generated texts (see Section 2), 058

but in contrast we concentrate on actively improv- 059

ing this aspect by modifying how NMT output is 060

produced. 061

Our methodology follows a simple intuition: 062

training data whose target side resembles high- 063

quality text naturally written in the target language 064

can bring model outputs closer to this style of 065

text. We exploit the fact that bilingual training 066

sets typically mix examples originating from both 067

translation directions: source-to-target and target- 068

to-source. We rely on contrasting language mod- 069

els (LMs) (Manning and Schütze, 1999; Moore and 070

Lewis, 2010) to identify natural data: we train sep- 071
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arate models on target-language data known to be072

translations, and on data known to be mostly orig-073

inally written in the target language. We then use074

these LMs to tag parallel training data as having a075

natural or translated target side. Comparing to hard076

filtering of the data, tagging offers more flexibility077

without sacrificing coverage (Caswell et al., 2019).078

Our contributions are as follows: (1) We use con-079

trastive language model scoring to separate natural080

from translated text. (2) We demonstrate that opti-081

mizing BLEU scores on tgt-original test sets while082

avoiding high BLEU scores on src-original test set083

is a valid strategy to improve the naturalness of084

MT output. (3) We show that our more natural MT085

output is more similar to natural sentences based086

on lexical diversity. (4) Human evaluations show087

that the style of our more natural translations are088

preferred by humans, albeit with minimal loss in089

translation accuracy.090

2 Related Work091

2.1 Translationese092

Translations differ from text originally written in093

the target language due to a combination of factors094

that may include the intentional use of explicitation095

and normalization, or unintentional lexical or struc-096

tural artifacts. The style resulting from the combi-097

nation of these factors is often referred to as trans-098

lationese. The effects of translationese in training099

data on MT quality and evaluation have been in-100

vestigated by many authors (Kurokawa et al., 2009;101

Lembersky et al., 2012; Toral et al., 2018; Zhang102

and Toral, 2019; Graham et al., 2020; Freitag et al.,103

2019; Edunov et al., 2020; Freitag et al., 2020b).104

Several papers (Kurokawa et al., 2009; Koppel and105

Ordan, 2011; Shen et al., 2019; Riley et al., 2020)106

proposed to train classifiers to detect translationese107

sentences in monolingual corpora. Similar to our108

work, Kurokawa et al. (2009) used their classi-109

fier to preprocess MT training data, but they re-110

moved target-original pairs while we emphasize111

them. Lembersky et al. (2012) kept both types of112

data but introduced entropy-based measures that113

allowed their phrase-based decoder to favor lower114

entropy translationese entries. Riley et al. (2020)115

used a convolutional classifier to distinguish natu-116

ral from translationese text. We train contrastive117

language models to partition the training data into118

original and translated sentences to bias the model119

to generate more natural translations.120

2.2 Training Data Tagging for NMT 121

We use tags to differentiate subsets of the training 122

data, with the objective of training a model that will 123

decode differently depending on the tag provided 124

at inference. This strategy has been explored with 125

various objectives in prior work. Tagging to control 126

inference has notably been used to indicate target 127

language in multilingual models (Johnson et al., 128

2016), formality level (Yamagishi et al., 2016), po- 129

liteness (Sennrich et al., 2016a), gender from a 130

gender-neutral language (Kuczmarski and John- 131

son, 2018), backtranslation (Caswell et al., 2019), 132

as well as to produce domain-targeted translation 133

(Kobus et al., 2017). Shu et al. (2019) use tags at 134

training and inference time to increase the syntactic 135

diversity of their output while maintaining transla- 136

tion quality; similarly, Agrawal and Carpuat (2019) 137

and Marchisio et al. (2019) use tags to control the 138

reading level (simplicity/complexity) of the output. 139

2.3 Evaluation of Naturalness 140

Evaluation of MT usually focuses on accuracy 141

and/or fluency (Barrault et al., 2020a; Läubli et al., 142

2020). Recent work has started to look at the rich- 143

ness and complexity of MT output. Vanmassen- 144

hove et al. (2019, 2021) address the effects of sta- 145

tistical bias on language generation. They assess 146

lexical diversity and sophistication, and conclude 147

that the translations produced by MT systems are 148

consistently less diverse than the original training 149

data, containing more frequent patterns and fewer 150

infrequent ones. Toral (2019) compared MT output 151

with human generated translations and found that 152

there is a measurable difference between the two. 153

In this work we use the diversity metrics introduced 154

by Vanmassenhove et al. (2021) to demonstrate that 155

we can build an MT system with lexical diversity 156

similar to human translations (HT). We also incor- 157

porate the findings of Freitag et al. (2019), and 158

show how to reliably evaluate more natural transla- 159

tions on target-original test sets while allowing the 160

model to decrease BLEU scores on source-original 161

test sets. 162

3 Approach 163

Our first objective is to distinguish text originally 164

written in the target language (natural text) from 165

translations. For that purpose, we train a pair of 166

sentence-level language models to contrast their 167

likelihood, a proven method for domain adapta- 168

tion (Moore and Lewis, 2010; Axelrod et al., 2011). 169
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These language models are then used to tag MT170

training data as natural target (<nat>) or transla-171

tionese target (<trans>), in order to train an MT172

system which can favor natural hypotheses.173

3.1 Inferring Naturalness Tags174

Our natural language model is trained on the mono-175

lingual newscrawl dataset from WMT (Barrault176

et al., 2020a). This data consists of web-crawled177

sentences from newspapers and other news sites178

from the countries speaking the corresponding lan-179

guage (e.g. Germany, Austria and Switzerland for180

German). Although it is not unusual to have contri-181

butions from foreign reporters or even translations182

of articles from foreign newspapers, we expect that183

the majority of the data collected this way will be184

natural text.185

Our translationese LM is trained on machine-186

translated newscrawl data, as a proxy for human187

translated data. This approach does not require188

finding large amounts of existing text in the target189

language known to be translations, which is a chal-190

lenging problem as the necessary metadata is not191

available for most corpora.192

For our language models, we use a decoder-193

only transformer architecture comparable to194

transformer-big (Vaswani et al., 2017). We classify195

new sentences by thresholding the difference in196

average log probability under the two models.197

For training our MT system we label each bilin-198

gual training example by prepending a special to-199

ken in the source sentence denoting the class of the200

target sentence (<nat> or <trans>). At infer-201

ence, we favor natural generation by prepending the202

natural token (<nat>) to the input. We call these203

models natural-to-natural (N2N) as their ultimate204

purpose is to translate natural source sentences into205

natural target sentences.206

3.2 Synthetic and Topical Biases207

The training corpus for our translation LM is syn-208

thetically generated using MT in order to bypass209

the difficulty of tracing the translation direction in210

true parallel data. This is not ideal for our purpose211

since machine and human translations might dif-212

fer, and we are primarily interested in identifying213

human translated text. In other words, our LM214

training condition (train on MT) differs from the215

inference condition (identify HT). Prior to training216

our translation LM, we measured the lexical char-217

acteristics of each type of text using the metrics218

from (Vanmassenhove et al., 2021), as shown in Ta- 219

ble 1. This table has two main messages: First, MT 220

and HT are similar to each other and both are quite 221

different from natural text (NAT), which motivates 222

our use of MT data for LM training as a proxy for 223

HT. Second, a clear difference between the lexical 224

diversity between HT and natural test (NAT) can be 225

seen across all metrics. This supports our intuition 226

that the MT output can be made be more natural 227

and lexically diverse by putting more emphasis on 228

training data with natural target side. 229

One counter-intuitive finding in Table 1 is that 230

NAT sentences actually have less inflectional diver- 231

sity than HT and MT, as measured by H and D. 232

It is unclear why this should be the case, but it 233

could be due the news commentary domain of the 234

dataset (newstest2011-2019) we used to measure 235

these metrics, which has perhaps a more consistent 236

style and more careful editing than the data used for 237

Vanmassenhove et al. (2021)’s experiments, which 238

were conducted over the entire training set. 239

Topical bias might also arise with our strategy. 240

Our translated data originates from source language 241

news and focuses on topics of interest to a source- 242

language speaker, while our natural data originates 243

from target language news and therefore focuses 244

on topics of interest to a target-language speaker. 245

These differences are not necessarily problematic 246

in our case (or might even be beneficial) but it 247

might be worthwhile to investigate solutions to 248

topical biases in later work. 249

4 Experimental Setup 250

We experiment on the WMT news translation tasks 251

for evaluation (Bojar et al., 2016; Barrault et al., 252

2020b), focusing on the German↔English lan- 253

guage pair. For this language pair there is abundant 254

training data available, and MT systems achieve 255

high quality translations. This is a good setting 256

for our work since improving naturalness becomes 257

a worthwhile endeavor only if high accuracy and 258

fluency levels are reached. 259

4.1 Training Data 260

We use news-commentary-v15, paracrawl-v5.1, 261

europarl-v10 and commoncrawl as training cor- 262

pora (see Table 2). Noisy data is filtered out with 263

contrastive data selection as proposed by Wang 264

et al. (2018). Finally, we add back-translated 265

data (Sennrich et al., 2016b) from the mono- 266

lingual newscrawl (2007-2018) dataset for each 267
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Diversity Metrics
model B1↓ B2 B3↑ TTR↑ Yule’s I↑ MTLD↑ H↑ D↓ PTF↓ CDU↓ SynTTR↑ cLM ↓

MT 68.55 6.31 25.13 0.1028 0.9375 144.07 12.64 92.22 0.7637 0.3938 0.1587 1.21

HT 68.25 6.30 25.44 0.1184 1.3980 148.08 12.93 92.00 0.7450 0.3781 0.1621 1.16

NAT 65.98 6.12 27.90 0.1553 2.9612 169.93 11.13 93.04 0.7133 0.3861 0.2108 0.77

Table 1: En→De: Diversity metrics calculated on the concatenation of newstest2011-2020 (∼25k sentences). HT
scores are calculated on the src-orig half while NAT is calculated on the tgt-orig half. The cLM shows the ratio
between the contrastive translationese and natural LMs. The arrows by the metric names indicate the desired
behaviour towards more natural style. B2 does not have a clear desired behaviour.

target language, and mark synthetic source sen-268

tences with an additional special tag on the source269

side (<bt>) (Caswell et al., 2019).270

4.2 Automatic Evaluation271

4.2.1 Translation Quality272

We use sacreBLEU (Post, 2018)1 to automatically273

evaluate translation quality with BLEU, with the274

primary goal of improving scores on the target-275

original test sets. Since 2019, all WMT test sets276

have been composed only of source original (src-277

orig) sentence pairs. To create target original (tgt-278

orig) sets, we just flip the source and target of the279

test sets for the reverse direction. In previous years,280

the WMT test sets were a mixture of source- and281

target-original texts, each human-translated into282

the other language. For these years we split the283

test sets based on their original language and report284

results on the two subsets. Optimizing MT sys-285

tems on these two settings can yield very different286

conclusions.287

src-orig Beyond a certain level, BLEU scores on288

src-orig test sets are biased in favor of simpler and289

more literal translations (Freitag et al., 2020b); in-290

creasing scores above this threshold can have a neg-291

ative impact on translation quality. Consequently,292

our goal is to avoid very high src-orig BLEU scores293

while increasing tgt-orig scores, a strategy that Fre-294

itag et al. (2020a) have demonstrated to be effective295

for improving translation quality.296

tgt-orig Freitag et al. (2019); Edunov et al.297

(2020) found that MT systems trained with back-298

translated training data mostly improve on tgt-orig299

test sets. One explanation is that backtranslation in-300

creases the fluency and naturalness of MT output, a301

property that can more easily be measured by com-302

paring to natural target-language text than typical303

1sacreBLEU signatures: BLEU+case.mixed+lang.LP
+numrefs.1+smooth.exp+SET+tok.13a+version.1.5.1

human translations, which have lower lexical diver- 304

sity. Contrary to src-original test sets, generating 305

literal, simple translation output decreases BLEU 306

scores on tgt-orig test sets and cannot be used as 307

a strategy to inflate BLEU scores. To further our 308

main goal of generating more natural translations, 309

we focus on improving BLEU scores on tgt-orig 310

test sets. 311

4.2.2 Diversity Scores 312

Vanmassenhove et al. (2021) proposed a series of 313

metrics to measure the lexical diversity of a text. 314

They range from known measures like type-to- 315

token ratio (TTR) or the entropy of word forms 316

given a lemma, to novel metrics that analyse syn- 317

onym frequencies. They show that MT text has 318

a lower degree of diversity than human-generated 319

text but do not distinguish between original text 320

and HT. 321

We refer the reader to the original paper for the 322

metric definitions. For better interpretability, in the 323

results table we provide an indication of the desired 324

direction for each metric.. Note however that our 325

goal is not to optimize these metrics, rather we want 326

to build an MT system whose output is most simi- 327

lar to natural sentences. To illustrate this, assume 328

we have a “translation model” that just generates 329

random words. Such a system will certainly score 330

high in diversity metrics (e.g. it will have a high 331

entropy), but the resulting text will certainly not 332

be natural. In fact, for a few metrics, our baseline 333

system already gets a “better” score than natural 334

sentences. Thus, for those metrics we should steer 335

them in the “wrong” direction to achieve a style 336

most closely to natural sentences. 337

We used the implementation provided by the 338

authors except for the “Synonym Frequency Anal- 339

ysis” metrics, which we reimplemented using an 340

in-house synonym dictionary. Note also that some 341

of these metrics are sensitive to the corpus size they 342
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are applied on (e.g. TTR, the type-to-token ratio,343

decreases as the corpus size increases). Thus not344

all numbers are in the same range as the results345

reported by Vanmassenhove et al. (2021).346

4.3 Human Evaluation347

We hired 4 professional translators and conducted348

2 types of human evaluations to evaluate (a) over-349

all translation quality, and (b) the naturalness of350

our MT output. We randomly chose 62 documents351

(comprising roughly 1,000 sentences) from the src-352

original halves of newstest2019 for human evalu-353

ation to avoid human translated source sentences354

(Läubli et al., 2020).355

Quality We measure quality with an in-context356

version of MQM (Lommel et al., 2014) which mim-357

ics the setup proposed in Freitag et al. (2021). This358

includes using the same error categories, severity359

levels and error weighting schema, which were360

adapted for the MT use case. As suggested in the361

study, we weight each major error with 5 and each362

minor error with 1, except for minor punctuation363

errors which get a score of 0.1.364

Naturalness The preferred setup to evaluate nat-365

uralness is to present two translations of the same366

source sentence to native speakers without showing367

the actual source sentence. We then ask the raters368

whether they prefer one of the outputs or rate them369

equally based on naturalness and natural phrasing.370

We emphasize that this evaluation is carried out371

in a monolingual manner, as showing the source372

can bias the human judges towards the translation373

that mimics the original sentence, as it is easier to374

evaluate.375

4.4 Training Details376

We train transformer models with the transformer-377

big (Vaswani et al., 2017) architecture. All our378

models are trained for 250k updates with a batch379

size of 32k sentences. The baseline system uses380

only the <bt> tags, our proposed system (de-381

noted as N2N) is enhanced with the <nat> and382

<trans> tags described above. During inference,383

in order to produce more natural output we tag the384

input sentence with the <nat> tag. For compari-385

son purposes, we also analyze the output of the test386

sets when using the <trans> tag instead.387

5 Experimental Results388

Due to space constraints and German being the389

more morphologically rich language, we focus our390

size NAT

news-commentary 251k 15.3%
commoncrawl 1.5M 39.6%
europarl 452k 44.1%
paracrawl 54.7M 30.4%
newscrawl-de 271M 92.0%∗

Table 2: En→De: Training data statistics and fraction
of natural target sentences. ∗This fraction is overesti-
mated since this set is used for LM training.

analysis mainly on the English→German (En→De) 391

translation direction, but we provide translation 392

results for the reverse direction (De→En) as well. 393

5.1 Naturalness Classification 394

Our naturalness classifier contrasts the natural and 395

translation LMs introduced in Section 3. We need 396

to find a threshold to be able to classify the training 397

data based on their target side as natural or transla- 398

tion. We chose 0.95 for both directions, resulting 399

in ∼ 90% sentence-level classification accuracy on 400

newstest2018. Table 1 (last column) shows the con- 401

trastive language model (cLM) scores for the con- 402

catenation of newstest 2011-20 for En→De for nat- 403

ural, (human) translated (HT) and machine trans- 404

lated (MT) sentences and shows that 0.95 seems a 405

reasonable decision. 406

Table 2 reports the fraction of data classified as 407

natural for each subset of the German side of our 408

training corpus along with subset sizes. The frac- 409

tion of natural target sentences per dataset varies 410

between 30.4% and 44.1%, except for newscrawl- 411

de (92.3%) which is our training set to define natu- 412

ral language and news commentary (15.3%) which 413

mostly seems to have translations on the target side. 414

The 44.1% of natural German sentences for Eu- 415

roparl is probably an overestimate and reflects the 416

high quality of the translations in this particular 417

corpus. Overall, the parallel corpora have less than 418

50% natural target sentences which means that the 419

training data in this translation direction is domi- 420

nated by translated text on the target side. 421

Table 3 shows the diversity metrics on a 15k 422

sample of the training data. We can clearly see that 423

the sentences considered natural are more lexically 424

diverse than the sentences marked as translations, 425

suggesting a valid classification by our model. Note 426

that, as pointed out above, the lack of labelled data 427

hinders reporting classification accuracy measures 428

for the training data. 429
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classified B1↓ B2 B3↑ TTR↑ Yule’s I↑ MTLD↑ H↑ D↓ PTF↓ CDU↓ SynTTR↑

TRANS 70.74 6.98 22.28 0.0918 0.9484 211.73 15.13 90.75 0.7296 0.3528 0.1328
NAT 68.91 7.16 23.93 0.1103 1.3501 303.05 14.94 90.69 0.7140 0.3726 0.1636

Table 3: En→De: Diversity metrics calculated on a 15k sample of the classified training data.

5.2 Translation Results430

We evaluate three types of translations: the out-431

put of a regular baseline MT system and the out-432

puts of our natural-to-natural (N2N) system trained433

with tags, decoding with either the <nat> or the434

<trans> tag. BLEU scores are reported in Ta-435

ble 4. We report average scores over all test sets436

(newstest 2011 through 2020), separate results for437

each set can be found in the appendix.438

Focusing on En→De, for the src-orig half of439

the test sets, we obtain an average drop of 4.6440

BLEU points when using the <nat> tag. For src-441

orig data, the references are translated text and the442

BLEU evaluation does not strongly reward text443

which does not adopt a translation style. When444

we instruct the system to produce translationese445

text using the <trans> tag, we recover the BLEU446

score of the baseline system. We thus have a clear447

indication that the system is learning to produce448

different texts depending on the given tag. This449

behaviour is consistent across all test sets, it is not450

just an effect due to averaging (see the Appendix451

for the detailed numbers).452

We now turn our attention to the results on target-453

original data. In this situation the BLEU scores454

show a behaviour opposite to the previous case.455

Using the <nat> tag for translation, we get an456

improvement of 1.0 BLEU on average compared457

to the baseline. Remember that for this condition,458

the original text is on the target side, i.e. on the459

references we are evaluating against. This is thus460

an indication that we are indeed generating text that461

is closer to human natural text. When switching to462

<trans> translation, we see a drop of 2.4 points.463

For the opposite direction we see a similar trend464

for both conditions (right part of Table 4).465

5.3 Lexical Diversity Scores466

In Section 5.2 we showed how BLEU scores467

change when applying our proposed method, and468

we observed an improvement on the target-original469

test sets, which may indicate improved naturalness470

in the output text. This evaluation setting is how-471

ever artificial since it relies on translated source text472

while MT systems generally need to translate text473

originally written in the source language. We thus 474

turn to a more detailed analysis of the produced 475

translations, focusing on the src-original test sets. 476

Table 5 shows the diversity metrics computed on 477

the concatenation of all the source-original test sets. 478

It can be seen that the N2N system gets diversity 479

scores much closer to ones calculated on natural 480

sentences (NAT) when compared to the baseline 481

system in all categories. In fact, it even obtains 482

better scores than the human translations for some 483

of them. We do not claim to outperform humans on 484

translation quality: natural text shows certain char- 485

acteristics that can be measured by these metrics, 486

but improving on these metrics alone does not nec- 487

essarily imply better translations. However, these 488

results combined with the metrics from the previ- 489

ous section are positive indicators which motivate 490

a human evaluation. 491

6 Human Evaluation 492

6.1 MQM 493

We carry out a human evaluation using the MQM 494

framework (Lommel et al., 2014), which provides 495

a detailed categorization of errors found in the text. 496

The evaluation was carried out by professional 497

translators. The results comparing the baseline 498

output with the output of our N2N models with 499

<nat> tag can be found in Tables 6 and 7. 500

Looking into the error categorization for 501

En→De, we see a clear advantage of the N2N sys- 502

tem for the style metrics, halving the number of 503

major errors and reducing the number of minor er- 504

rors by one third. The number of grammar errors 505

has also been significantly reduced, from 56 minor 506

errors in the baseline system to 29 in the N2N sys- 507

tem, although with an increase of 6 major errors. 508

For N2N we observe an increase in minor punctua- 509

tion errors (mainly repetition of punctuation signs) 510

and spelling errors, which can be traced back to 511

the German orthography reform: the N2N seems to 512

prefer the old writing form2 which is now officially 513

considered incorrect.3 514

2E.g. the N2N seems to generate more occurrences of
“daß” instead of “dass”.

3These errors could easily be corrected in a rule-based
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En→De De→En
src-orig tgt-orig src-orig tgt-orig

Base 38.0 37.0 36.4 45.4

N2N
<nat> 33.4 38.0 31.8 46.3
<trans> 38.0 34.6 36.3 43.4

Table 4: Average BLEU scores for the WMT news datasets from 2011 to 2020.

Mode B1↓ B2 B3↑ TTR↑ Yule’s I↑ MTLD↑ H↑ D↓ PTF↓ CDU↓ SynTTR↑ cLM ↓

En→De

NAT 65.98 6.12 27.90 0.1553 2.9612 169.93 11.13 93.04 0.7133 0.3861 0.2108 0.77
HT 68.25 6.30 25.44 0.1184 1.3980 148.08 12.93 92.00 0.7450 0.3781 0.1621 1.16

Base 68.55 6.31 25.13 0.1028 0.9375 144.07 12.64 92.22 0.7637 0.3938 0.1587 1.21

N2N <nat> 67.48 6.21 26.31 0.1099 1.1672 156.19 12.56 92.26 0.7363 0.3915 0.1744 1.11
<trans> 68.53 6.32 25.16 0.1031 0.9446 145.88 12.72 92.17 0.7646 0.3948 0.1588 1.22

De→En

NAT 70.17 7.61 22.22 0.0835 0.7706 100.32 10.54 93.39 0.7888 0.3872 0.1847 0.83
HT 71.28 7.66 21.06 0.0878 0.6884 92.52 9.44 94.05 0.7752 0.4194 0.2431 1.14

Base 70.97 7.70 21.34 0.0982 0.8278 92.38 9.45 94.03 0.8023 0.4294 0.2399 1.25

N2N <nat> 69.88 7.60 22.53 0.1057 1.0220 98.49 9.76 93.84 0.7813 0.4283 0.2592 1.14
<trans> 70.97 7.71 21.32 0.0979 0.8235 93.42 9.46 94.02 0.8026 0.4280 0.2378 1.25

Table 5: En→De: Diversity metrics computed on the concatenation of newstest2011 to newstest2020, source-
original test sets. Both the base and the N2N include backtranslated data. The arrows by the metric names indicate
the desired behaviour towards more natural style. B2 does not have a clear desired behaviour.

For the accuracy errors, we also see an important515

reduction of mistranslation errors, from 79 to 26,516

but at the cost of increasing the number of major517

errors from 44 to 51. The other categories show518

comparable results between the two systems. Look-519

ing at the total number of errors, we see that the520

total number of errors decreases for the N2N sys-521

tem, from 508 for the baseline to 407 for the N2N522

system. The shift in errors is however not uniform523

across major and minor errors: while we achieve a524

drop of 30% in the number of minor errors (from525

395 to 275), we increase the number of major er-526

rors by 16% (from 113 to 132). Overall, using527

the weighting approach proposed by (Freitag et al.,528

2021),4 N2N achieves a better global score of 0.88,529

compared to 0.91 for the baseline system.530

For the De→En translation direction, the results531

are mixed: we again obtain an important reduc-532

tion in the number of minor style and grammar533

errors, but with with a slight increase of major er-534

rors. However the number of accuracy errors is535

also increased, which leads to a worse global score536

post-processing step.
4This weighting approach has been adapted for the ma-

chine translation use case, and differs from the standard
weighting scheme used for human-produced translations.

for the N2N system (0.49 vs. 0.55). 537

6.2 Side-by-side 538

The MQM analysis shows that the N2N system 539

is able to produce grammatically better sentences, 540

with some slight degradation in accuracy when 541

compared with the baseline system. But, as pointed 542

out before, a natural text might require more than 543

grammatical and fluent text. In order to judge 544

the naturalness, we carry out an additional evalua- 545

tion where we present the translations produced by 546

the baseline system and the N2N system to native 547

speaker crowdworkers, and ask them to choose the 548

better sounding one. Since MQM already judges 549

the accuracy of the translations, this evaluation is 550

monolingual and focuses solely on the naturalness 551

of the sentences. Showing the source sentence may 552

steer the human judges to choose the translation 553

that is closer to it, as it is easier to judge, and we 554

wanted to avoid this bias. The results can be found 555

in Table 8. It can be seen that the human evaluators 556

do have a preference for sentences generated by 557

our N2N system. The difference is particularly im- 558

portant for the De→En translation direction. Some 559

example translations are given in the Appendix. 560
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base <nat>
M m M m

Acc/Mistrans. 44 79 51 26
Acc/Omission 6 0 2 0
Acc/Addition 3 1 1 1
Acc/Untranslated 3 6 8 4

Fl/Grammar 14 56 20 29
Fl/Register 3 9 0 4
Fl/Inconsistency 0 2 1 0
Fl/Punctuation 0 57 2 72
Fl/Spelling 0 1 0 13
Fl/Display 1 10 8 4

St/Awkward 14 143 7 95

Ter/Inappr. 25 31 29 27
Other 0 0 1 2

Total Errors 113 395 132 275
Global Score 0.91 0.88

Table 6: MQM scores for English-to-German of the
baseline model compared to our N2N model with
<nat> decode. The global score is a weighted com-
bination of the error counts of all the categories. Lower
scores are better. Major errors are under the ‘M’ col-
umn, minor errors under the ‘m’ column. Abbrevia-
tions are as follows: “Acc”: Accuracy, “Fl”: Fluency,
“St”: Style, “Ter”: Terminology.

7 Conclusion561

We propose a method for achieving more natural562

translations, i.e. translations which adopt a style563

closer to text originally written in the target lan-564

guage. Using contrastive language model scoring565

we classify our training data depending on whether566

the target side was originally written in the target567

language or whether it is a translation. This in-568

formation is given to the translation system via569

an input tag, so that we can bias the generation570

process towards producing output closer to natural571

text. We demonstrate that building an MT system572

focusing on natural translations can be evaluated by573

optimizing BLEU on target-original test sets while574

avoiding high BLEU scores on src-original test sets.575

Through automatic metrics we show that the N2N576

method achieves lexical diversity closer to that of577

natural sentences indicative of more natural text.578

Indeed, human evaluations show that the produced579

translations are preferred by human judges when580

asked to choose the more natural translation. There581

is some drop in translation accuracy, as shown by582

base <nat>
M m M m

Acc/Mistrans. 6 4 9 14
Acc/Omission 6 3 11 12
Acc/Addition 0 0 3 4
Acc/Untranslated 3 2 0 2

Fl/Grammar 1 31 4 9
Fl/Register 0 0 0 0
Fl/Inconsistency 4 3 2 2
Fl/Punctuation 1 3 5 4
Fl/Spelling 1 1 4 1
Fl/Display 0 0 0 2

St/Awkward 12 119 16 75

Ter/Inappr. 18 10 19 13
Other 0 0 0 0
Source Error 3 0 2 0
Locale/Date 0 1 0 0

Total Errors 55 177 75 138
Global Score 0.49 0.55

Table 7: MQM scores for German-to-English of the
baseline model compared to our N2N model with
<nat> decode. Refer to Table 6 for a list of abbre-
viations.

Lang. Preferences (%) Num.
<nat> neutral base Ratings

EnDe 33.3 41.3 25.4 1000
DeEn 44.6 29.3 26.1 1000

Table 8: Human Evaluation: natural side-by-side of
the baseline model compared to our N2N model with
<nat> decode.

the MQM analysis, however this can be an accept- 583

able trade-off for some applications. For example, 584

when considering post-editing, a more natural ini- 585

tial proposal will most certainly result in a more 586

natural final output, while accuracy errors are usu- 587

ally easier to detect and fix for human post-editors. 588

The main contribution of this work lies in high- 589

lighting the potential for more natural translations 590

by appropriate manipulation of the training data 591

and evaluation measures. Our approach for using 592

this information through tagging is a good first step, 593

but it is a straightforward data manipulation. Other 594

techniques that modify the model architecture or 595

training objective may allow us to achieve the same 596

improvements in naturalness without loss in trans- 597

lation accuracy. 598
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A Additional Results832

A.1 Accuracy of Contrastive LM833

The accuracy of the contrastive language model834

for all test sets for English→German are shown in835

Table 9. The accuracy is mostly around 90% for all836

test sets. In 2020, the test sets have been generated837

on the paragraph-level which could be the reason838

for the lower precision on the natural half. Some of839

the reference translations in earlier years have been840

post-edited from MT output which could be the841

reason why newstest2011 and newstest2013 have842

lower accuracy numbers for the natural sentences.843

A.2 Per Test-set Results844

Table 10 shows BLEU results for each separate845

test. It can be seen that all test set exhibit the846

same behaviour: increase tgt-orig and decrease847

in src-orig when using <nat>, the opposite for848

<trans>.849

A.3 Results Without Backtranslation850

Table 11 shows BLEU scores for the851

English→German translation direction, without852

using backtranslated data. We confirm that the853

N2N system using the <nat> also outperforms the854

baseline system on the tgt-original condition, while855

obtaining worse BLEU scores on the src-original856

evaluation. Using the <trans> tag, the score of857

the baseline system on the src-orig conditional is858

recovered.859

Comparing the base system from Table 11 with860

the base system in the original paper, we see that861

the addition of backtranslated data, which is by con-862

struction natural on the target side, also behaves863

differently for the two evaluation conditions. Al-864

though it achieves improvements for both source865

and target original data, for the source-original con-866

dition it is only a minor improvement of 0.5 BLEU.867

On the other hand, for the target-original data we868

see a big gain of 3.1 points, further pointing to-869

wards the fact that the system generates more natu-870

ral text.871

B Translation Examples872

Table 12 shows translation examples for the873

German-to-English translation direction. The N2N874

translations have a more natural sentence structure875

when compared to the baseline translations. Fur-876

ther, N2N uses wordings that are more typically in877

natural written English text.878
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nt11 nt12 nt13 nt14 nt15 nt16 nt17 nt18 nt19 nt20 avg

NAT 77.9% 91.3% 67.8% 91.5% 91.8% 92.7% 88.1% 91.7% 93.0% 76.6% 86.2%
HT 81.4% 87.7% 79.4% 86.6% 85.7% 94.6% 87.2% 97.1% 93.6% 93.7% 88.7%

Table 9: English→German: Accuracy for all test sets.

nt11 nt12 nt13 nt14 nt15 nt16 nt17 nt18 nt19 nt20 avg

Base 29.9 35.9 33.1 32.1 37.5 43.9 36.4 53.8 44.0 33.6 38.0

N2N
<nat> 27.4 31.5 30.9 30.0 34.0 36.1 32.0 44.5 37.8 29.9 33.4
<trans> 30.0 35.2 33.3 32.4 37.9 44.1 36.3 53.1 44.1 33.1 38.0

(a) En→De: Source original side of test sets.

nt11 nt12 nt13 nt14 nt15 nt16 nt17 nt18 nt19 nt20 avg

Base 33.3 33.5 42.8 37.5 31.7 39.4 32.8 45.8 41.8 31.1 37.0

N2N
<nat> 33.2 35.0 43.2 38.3 33.5 40.6 34.0 46.5 43.1 32.5 38.0
<trans> 31.1 30.9 40.7 34.3 30.0 36.7 30.8 42.1 39.4 30.1 34.6

(b) En→De: Target original side of the test sets.

mode nt11 nt12 nt13 nt14 nt15 nt16 nt17 nt18 nt19 nt20 avg

Base 36.0 35.8 42.0 35.3 29.2 37.9 34.0 39.5 41.7 32.6 36.4

N2N
<nat> 33.5 32.7 36.9 29.9 25.3 32.5 30.3 33.9 34.5 28.3 31.8
<trans> 36.3 35.2 42.1 34.9 29.2 37.8 33.6 39.8 41.7 32.7 36.3

(c) De→En: Source original side of test sets.

nt11 nt12 nt13 nt14 nt15 nt16 nt17 nt18 nt19 nt20 avg

Base 39.2 44.1 39.6 39.9 44.0 54.9 47.2 58.6 48.2 38.1 45.4

N2N
<nat> 40.0 44.5 40.1 42.8 44.5 54.8 47.5 58.1 49.7 41.0 46.3
<trans> 37.7 42.3 37.7 38.8 42.2 51.6 45.5 55.3 46.0 36.8 43.4

(d) De→En: Target original side of the test sets.

Table 10: BLEU scores for the WMT news datasets translation direction.

nt11 nt12 nt13 nt14 nt15 nt16 nt17 nt18 nt19 nt20 avg

Base system 30.0 35.0 32.4 31.4 37.0 43.3 35.8 53.2 44.2 32.6 37.5

N2N
<nat> 28.0 31.1 29.9 29.2 33.3 36.4 31.7 44.9 38.1 29.7 33.2
<trans> 29.9 34.9 32.5 30.9 36.8 43.2 36.1 53.7 44.4 32.0 37.4

(a) Source-original, no backtranslated data.

nt11 nt12 nt13 nt14 nt15 nt16 nt17 nt18 nt19 nt20 avg

Base system 30.8 29.0 41.1 34.3 30.2 35.8 30.1 41.9 37.2 28.6 33.9

N2N
<nat> 32.2 31.3 42.6 35.7 30.9 36.6 31.0 42.6 38.6 29.6 35.1
<trans> 30.5 29.2 40.3 32.0 28.3 34.0 28.4 39.2 36.1 27.9 32.6

(b) Target-original, no backtranslated data.

Table 11: BLEU scores for the English→German translation direction, without backtranslated data.
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Source Es wird befürchtet, dass die Opferzahlen noch deutlich in die Höhe gehen.
Baseline It is feared that the number of victims will increase significantly.
N2N It is feared that the death toll will rise significantly.

Source Der Neubau sollte möglichst freundlich und hell gestaltet werden, damit sich die
Bewohner darin wohlfühlen können, so der Architekt.

Baseline The new building should be designed as friendly and bright as possible so that the
residents can feel comfortable in it, according to the architect.

N2N According to the architect, the new building should be made as friendly and bright as
possible so that the residents can feel at ease in it.

Source Deren effektivste Aktion bestand in einem frühzeitigen Wechsel.
Baseline Their most effective action was an early change.
N2N Their most effective action was to switch early.

Source Musiker wie Janet Jackson, John Legend, Shawn Mendes und Cardi B haben bei
einem gemeinsamen Konzert im New Yorker Central Park für mehr Engagement im
Kampf gegen Armut und Krankheiten geworben.

Baseline Musicians such as Janet Jackson, John Legend, Shawn Mendes and Cardi B have
campaigned for more commitment in the fight against poverty and disease at a joint
concert in New York’s Central Park.

N2N Musicians such as Janet Jackson, John Legend, Shawn Mendes and Cardi B joined
forces at a concert in New York’s Central Park to promote greater commitment to
fighting poverty and disease.

Source Bundesgesundheitsminister Jens Spahn hat sich für eine Neuregelung der Organspende
ausgesprochen.

Baseline Federal Health Minister Jens Spahn has spoken out in favour of a new regulation on
organ donation.

N2N Jens Spahn, Germany’s Minister of Health, has called for a new regulation of organ
donation.

Source Grüß war schon vor zwei Jahren als damals 14-Jähriger in Bielefeld dabei.
Baseline Grüß was already there two years ago as a 14-year-old in Bielefeld.
N2N Grüß was in Bielefeld, Germany two years ago when he was 14 years old.

Table 12: Example translations for the German→English direction.
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