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Abstract

Inference-time alignment provides an efficient001
alternative for aligning LLMs with humans.002
However, these approaches still face challenges,003
such as limited scalability due to policy-specific004
value functions and latency during the inference005
phase. In this paper, we propose a novel ap-006
proach, Diffusion-styled Preference Optimiza-007
tion (DIFFPO), which provides an efficient008
and policy-agnostic solution for aligning LLMs009
with humans. By directly performing align-010
ment at sentence level, DIFFPO avoids the011
time latency associated with token-level gener-012
ation. Designed as a plug-and-play module,013
DIFFPO can be seamlessly integrated with014
various base models to enhance their align-015
ment. Extensive experiments on AlpacaEval016
2, MT-bench, and HH-RLHF demonstrate that017
DIFFPO achieves superior alignment perfor-018
mance across various settings, achieving a019
favorable trade-off between alignment qual-020
ity and inference-time latency. Furthermore,021
DIFFPO demonstrates model-agnostic scala-022
bility, significantly improving the performance023
of large models such as Llama-3-70B.024

1 Introduction025

The alignment of large language models (LLMs)026

with human preferences has recently emerged027

as a focal area of research (Wang et al., 2023;028

Shen et al., 2023). Prominent techniques such as029

Reinforcement Learning from Human Feedback030

(RLHF) (Ouyang et al., 2022) and Direct Prefer-031

ence Optimization (DPO) (Rafailov et al., 2024)032

have demonstrated substantial efficacy. However,033

these methods require the optimization of individ-034

ual policies, posing challenges such as high con-035

sumption of training resources. Inference-time036

alignment (Mudgal et al., 2023; Han et al., 2024)037

provides an efficient alternative through direct ad-038

justment of the model’s output distribution, thus039

avoiding the need for resource-intensive retraining.040

Despite its advantages, this approach still requires041
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Figure 1: Comparison with Inference-Time Methods.
Points closer to the top-right indicate a superior trade-
off between performance and inference time.

policy-specific value functions, limiting its scala- 042

bility across different models. Additionally, the 043

inference-time latency remains high, presenting 044

further challenges to its practical deployment. 045

In this paper, we investigate an efficient and 046

policy-agnostic preference optimization method. 047

We begin by reconsidering the objective of aligning 048

with humans (Yao et al., 2023; Shen et al., 2023). 049

As illustrated in Fig. 2(a), the alignment process op- 050

erates at the sentence level, focusing on adjusting 051

key components of the generated content, such as 052

style or format, to better reflect human intentions or 053

values. Inspired by the global controllability of the 054

diffusion process (Li et al., 2022; Lyu et al., 2023), 055

we propose Diffusion-styled Preference Optimiza- 056

tion (DIFFPO). DIFFPO draws an analogy from 057

the diffusion-based denoising process to model the 058

iterative adjustment required for aligning human 059

preferences, as shown in Fig. 2(b). By employing 060

parallel decoding (Santilli et al., 2023; Leviathan 061

et al., 2023), DIFFPO directly predicts sentence- 062

level transitions, thus avoiding the time latency 063

associated with token-level generation. During the 064

training phase, we optimize the DIFFPO with an 065

objective that maps generations with varying align- 066
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Figure 2: Illustration of the DIFFPO Framework. (a) The objective of LLM alignment is to adjust the output
of LLMs to reflect human values and intentions. In this process, preferences are considered at the sentence level,
focusing on aspects such as the style and format of the complete output. (b) We propose Diffusion-style Preference
Optimization (DIFFPO), which reconceptualizes the alignment process as a sentence-level denoising process, where
the goal is to transform an unaligned sentence y(0) into an aligned sentence y(T ) step by step. (c) Designed as a
plug-and-play module, DIFFPO can be directly integrated with the base model output and yield better alignment.

ment levels to an aligned target, making it a policy-067

agnostic, plug-and-play module. The optimized068

DIFFPO can then be seamlessly integrated with069

the output of the base model, enhancing its align-070

ment level, as demonstrated in Fig. 2(c).071

We evaluate the performance of DIFFPO on072

several benchmark datasets, including AlpacaEval073

2 (Dubois et al., 2024), MT-bench (Zheng et al.,074

2023), and HH-RLHF (Bai et al., 2022). Empirical075

results demonstrate that DIFFPO achieves supe-076

rior alignment performance across various base077

models and settings. Compared to inference-time078

alignment techniques, DIFFPO strikes an opti-079

mal trade-off between alignment performance and080

inference-time latency, as shown in Fig. 1. Ad-081

ditional experiments highlight the model-agnostic082

scalability of DIFFPO across different base models.083

Specifically, DIFFPO-9B significantly enhances084

the performance of models such as Llama-3-70B085

and GPT-4o, showcasing its capability to improve086

weak-to-strong supervision.087

The advantages of DIFFPO can be summarized as: 088

• Model-agnostic. DIFFPO is optimized to 089

learn sentence-level refinement, independent 090

of the specific base LLMs. This allows it to 091

be applied across a variety of base LLMs. Fur- 092

thermore, DIFFPO does not require access to 093

model parameters, which enhances its com- 094

patibility with API-based models and existing 095

preference-aligned models. 096

• Training and Inference Efficiency. As a post- 097

inference alignment strategy, DIFFPO adopts 098

a one-for-all approach: it involves train- 099

ing one single DIFFPO and applying it for 100

all base models, thus significantly reducing 101

the resource intensiveness associated with 102

policy optimization. Moreover, by fram- 103

ing alignment as sentence-level prediction, 104

DIFFPO bypasses the time latency associated 105

with token-level generation, thereby improv- 106

ing inference-time efficiency. 107
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2 Method108

2.1 Preliminaries: Large Language Models109

Next-Token Prediction. The text generation of110

autoregressive large language models (LLMs) with111

prompt x and response y can be modelled as a next-112

token prediction process. Given the input x, The113

language model π(·|x) autoregressively maps from114

current tokens (x,y1:n−1) to a distribution over115

the next token yn. The maximum token, N , sets116

the length limit for LLM outputs, which conclude117

with an end-of-sentence (EoS) token yN = EoS118

that ends the generation. The generated output y119

consists of predicted tokens (y1,y2, ...,yN ).120

Alignment of LLMs. During the alignment121

of LLMs, the objective is to optimize a lan-122

guage model πθ that maximizes the user’s prefer-123

ence (Christiano et al., 2017; Ouyang et al., 2022;124

Rafailov et al., 2024):125

max
πθ

Ex∼D,y∼πθ(y|x)
y′∼πref(y|x)

[p(y ≻ y′|x)126

− βDKL(πθ∥πref)], (1)127

where p(y ≻ y′|x) represents the preference, i.e.,128

the probability that y is preferred over y′ given the129

context x, which can be generally represented by130

the reward function r. The parameter β controls131

the deviation from the reference policy πref , which132

generally corresponds to the SFT model.133

Parallel Decoding of LLMs. In comparison to134

next-token prediction, where token-level genera-135

tion is performed sequentially to obtain a sentence,136

parallel decoding has demonstrated the capacity137

by enabling sentence-level generation and improv-138

ing content quality (Santilli et al., 2023; Leviathan139

et al., 2023). Concretely, supposing140

f(yn,y<n,x) := yn − argmax
y

π(y|y<n,x),141

parallel decoding re-frames the LLM inference pro-142

cess as solving a system of nonlinear equations143

w.r.t. all tokens in a sentence yn for n = 1, . . . , N .144

It can be solved in a parallel and iterative way:145 

y
(t+1)
1 = argmax

y
π(y | x)

y
(t+1)
2 = argmax

y
π(y | y(t)

1 ,x)

...

y
(t+1)
N = argmax

y
π(y | y(t)

<N ,x)

(2)146

In this way, for one forward pass of the LLM at 147

time t, we can obtain the next sentence y(t+1) 148

based on the previous one y(t). 149

2.2 Diffusion-styled Preference Optimization 150

Motivation. The goal of LLM alignment is to 151

align the outputs of LLMs with human values or 152

intentions (Yao et al., 2023). In this process, pref- 153

erences are defined at the sentence-level, focusing 154

on the style or format of complete generated an- 155

swers, as illustrated in Fig. 2(a). However, the 156

generation of these responses occurs at the token 157

level, following the next-token prediction pattern 158

inherent in LLM modeling. This requires exist- 159

ing alignment techniques to optimize preferences 160

(or rewards) at the token-level, which complicates 161

the learning process (Andrychowicz et al., 2017; 162

Zhong et al., 2024; Zeng et al., 2024). This incon- 163

sistency prompts us to reconsider the formulation 164

of the alignment process. 165

Reformulation. Inspired by the potential ben- 166

efits of the diffusion process in controllable text 167

generation (Gong et al., 2022; Han et al., 2022; Ye 168

et al., 2024b), we draw an analogy between the 169

aligning LLMs and the diffusion process. Specif- 170

ically, we propose Diffusion-styled Preference 171

Optimization (DIFFPO), which reconceptualizes 172

alignment as a sentence-level denoising process. 173

The denoising process π gradually refines the ini- 174

tial unaligned output y(0) by adjusting the format or 175

style as a whole. This process ultimately produces 176

the aligned output y(T ), as illustrated in Fig. 2(b). 177

The sentence-level alignment process can be for- 178

mulated as follows: 179

π(y(0:T )) := p(y(0))

T∏
t=1

π(y(t)|y(t−1),x), (3) 180

where y(0) and y(T ) represent the initial unaligned 181

and final aligned generations, respectively. The in- 182

termediate sequence y(1:T−1) can be viewed as the 183

unaligned generations progressively transitioning 184

along the trajectory from y(0) to y(T ). 185

Assuming the existence of a reward model 186

r(x,y), which captures how well the generated 187

output y aligns with human preferences given the 188

input x, the goal is to optimize a DIFFPO model 189

πθ. This model learns to take a sentence as in- 190

put and predict the next sentence with a higher 191

reward, as illustrated in Fig. 2(c). The goal can be 192
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expressed as follows:193

πθ(y
(t)|y(t−1),x) ∝ p(y(t−1),x)exp(r(x,y(t))).194

By employing parallel decoding, the DIFFPO195

model directly performs sentence-level predictions.196

2.3 Consistency Optimization of DIFFPO197

Inspired by Consistency LLMs (Kou et al., 2024),198

we propose to consistently map any intermediate199

(unaligned) generation y(t) to the aligned genera-200

tion y(T ). We jointly optimize the DIFFPO model201

πθ with two losses: one aligns the intermediate gen-202

eration with the aligned generation, and the other203

prevents the corruption of the autoregressive (AR)204

modeling in the base model, thereby maintaining205

the generation quality.206

Consistency Loss. For a prompt x with an un-207

aligned generation y(t), we directly guide the208

model to output y(T ) with y(t) as the input by min-209

imizing the following loss LCon=210

E(x,y(t),y(T ))∼D

[
N∑
i=1

KL(πθ−(y
(T )
<i ,x)∥πθ(y

(t)
<i,x))

]
(4)

211

where θ− = stopgrad(θ) and N denotes the212

length of generation. KL(·∥·) denotes the forward213

KL distance between two distributions.214

AR Loss. To prevent the corruption of the au-215

toregressive (AR) modeling in the base model and216

maintain the generation quality, we incorporate the217

AR loss based on the generated sequence y(T ):218

LAR = E(x,y(T ))∼D

[
−

N∑
i=1

log πθ(y
(T )
i |y(T )

<i ,x)

]
.

(5)

219

The total loss with weight ω is:220

L(θ) = LAR + ωLCon. (6)221

2.4 The Objective of DIFFPO within RLHF222

In this section, we analyze the role of DIFFPO in223

achieving the goal of RLHF. We start with the224

same RL objective as prior work, Eq. 1, under225

a general reward function r∗. Following prior226

work (Peng et al., 2019; Rafailov et al., 2024),227

the optimal solution to the KL-constrained reward228

maximization objective in Eq. 1 takes the form:229

r∗(x,y) = β log
(

π∗(y|x)
πref(y|x)

)
+ β logZ(x), where230

Z(x) =
∑

y πref(y|x) exp
(

1
β r

∗(x,y)
)

is the par- 231

tition function. With Bradley-Terry model, we can 232

represent the preference function as the difference 233

of rewards for a preferred answer yw and a dispre- 234

ferred answer yl: 235

p(yw ≻ yl|x) = σ(r∗(x,yw)− r∗(x,yl)) 236

= σ

(
β log

π∗(yw | x)
πref(yw | x)

− β log
π∗(yl | x)
πref(yl | x)

)
. 237

Substitute by π∗(y | x) = πDIFFPO(y | y′, x) 238

πref(y
′ | x), we obtain p(yw ≻ yl|x) equals to 239

σ

(
β log

πDIFFPO(yw | yl,x)

πDIFFPO(yl | yl,x)
− β log

πref(yw | x)
πref(yl | x)

)
.

(7)

240

Note that the first term in Eq. 7 is optimized through 241

the consistency loss in Eq. 4 by maximizing the 242

probability of predicting yw. The second term 243

depends only on x, with πref remaining constant. 244

Moreover, the deviation from the base policy can 245

be easily controlled, since yw is derived from yl. 246

In summary, the objective of DIFFPO as defined 247

in Eq. 6 aligns with the RLHF objective in Eq. 1. 248

Furthermore, since πDIFFPO is optimized indepen- 249

dently from the base model πref, it can be deployed 250

in a model-agnostic manner. 251

2.5 Practical Implementations 252

Generate Alignment Trajectories. To imple- 253

ment DIFFPO, we collect the alignment trajectory 254

for each prompt, thereby forming an original train- 255

ing set D. Specifically, for each prompt x from the 256

UltraFeedback dataset (Cui et al., 2023), we gen- 257

erate T responses using different base models. We 258

then employ ArmoRM (Wang et al., 2024) reward 259

model to score these responses. The response with 260

the highest score is selected as y(T ). The remain- 261

ing five responses are ranked based on their scores 262

to form y(0:T−1). T is set to 6. 263

Training and Inference. During the training 264

phase, we initialize our aligning model πθ using 265

three backbones of varying sizes: Gemma-2-it- 266

2B/9B, and Llama-3-8B-Instruct. The DIFFPO 267

model is optimized adhering to the optimization 268

loss in Eq. 6 with parameters N = 256 and 269

w = 103. Given the variable lengths of generations 270

in D, we standardize their lengths through padding 271

or truncation. In the inference phase, the optimized 272

model π∗
θ is employed to align responses from the 273

vanilla generations produced by base models. Ap- 274

pendix B.1 shows more implementation details. 275
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3 Experiment276

3.1 Experiment Setup277

Evaluation Benchmarks and Metrics. We con-278

duct our experiments using two widely recognized279

benchmarks for open-ended instruction-following:280

MT-Bench (Zheng et al., 2023) and AlpacaEval281

2 (Dubois et al., 2024). These benchmarks are de-282

signed to evaluate the conversational abilities of283

models across a diverse set of queries. AlpacaEval284

2 includes 805 questions drawn from five distinct285

datasets, while MT-Bench covers eight categories286

and comprises a total of 80 questions. Additionally,287

we employ the HH-RLHF (Bai et al., 2022) datasets288

to assess how well the models’ generative capabili-289

ties align with human values, particularly empha-290

sizing helpfulness and harmlessness. We adhere to291

each benchmark’s specific evaluation protocol to292

report scores. In AlpacaEval 2, we report both the293

raw win rate (WR) and the length-controlled win294

rate (LC), comparing performance against the GPT-295

4 model. In contrast, we present the average score296

for MT-Bench, also utilizing GPT-4 as the judge297

model. For HH-RLHF, we report scores that reflect298

the models’ helpfulness and harmlessness, as well299

as the overall score. These scores are measured us-300

ing ArmoRM (Wang et al., 2024), a state-of-the-art301

reward model from RewardBench (Lambert et al.,302

2024), designed to align with human preferences.303

Baselines. We compare DIFFPO with two pri-304

mary categories of offline preference optimiza-305

tion methods. In the category of training-306

based methods: Direct Preference Optimization307

(DPO) (Rafailov et al., 2024) reparameterizes re-308

ward functions to simplify and stabilize the prefer-309

ence learning process. SimPO (Meng et al., 2024)310

utilizes the average log probability of a sequence311

as an implicit reward, aligning more closely with312

model generation. For training-free methods:313

Black-Box Prompt Optimization (BPO) (Cheng314

et al., 2024) adapts user prompts to better align315

with LLMs’ input comprehension, achieving user316

intents optimally without altering LLM parameters.317

ARGS (Khanov et al., 2024) integrates alignment318

into the decoding process through reward-guided319

search, eliminating the need for costly RL training.320

Best-of-N sampling (BoN) (Nakano et al., 2021)321

samples N times and selects the highest-scoring322

sample based on the reward model, with N set323

to 4 in our experiments using ArmoRM (Wang324

et al., 2024) as the reward model. Furthermore,325

Aligner (Ji et al., 2024) and MetaAligner (Yang 326

et al., 2024a) employ an additional model to learn 327

corrective residuals between preferred and dispre- 328

ferred responses to refine model generation. 329

Base Models and Inference Settings. We per- 330

form preference optimization primarily on two 331

model families: Llama-3-8B (AI@Meta, 2024) 332

and Mistral-7B (Jiang et al., 2023), under two 333

configurations: SFT and Instruct. In the SFT 334

configuration, we utilize open-source models 335

from SimPO (Meng et al., 2024) that follow 336

Zephyr (Tunstall et al., 2023) to train the base mod- 337

els (i.e., meta-llama/Meta-Llama-3-8B) on the 338

UltraChat-200k (Ding et al., 2023) dataset to derive 339

an SFT model. For the Instruct configuration, we 340

employ an off-the-shelf instruction-tuned models 341

(i.e., meta-llama/Meta-Llama-3-8B-Instruct). 342

To further validate scalability, we conduct ad- 343

ditional experiments using the Llama-3.2 se- 344

ries, Qwen-2.5 series (Team, 2024), and GPT- 345

4o (Achiam et al., 2023) as the base models. 346

During the inference phase of DIFFPO, we ini- 347

tially generate responses using the base models. 348

For each benchmark. In AlpacaEval 2 and HH- 349

RLHF, we employ a sampling decoding strategy 350

with a temperature setting of 0.7. For MT-Bench, 351

we adhere to the official decoding configuration, 352

which specifies varying temperatures for different 353

categories. In our primary experiments, we set the 354

maximum token generation length to 256. Results 355

for experiments conducted at various lengths are 356

provided in Tab. 4. Subsequently, the responses 357

generated by the base models are aligned using 358

the trained DIFFPO. For the main results, parallel 359

decoding is executed with a block size of 256. 360

3.2 Experiment Results 361

DIFFPO significantly outperforms existing pref- 362

erence optimization methods. As shown in Ta- 363

ble 1, while all preference optimization algo- 364

rithms improve performance over the base model, 365

DIFFPO achieves the best overall performance 366

across all benchmarks and settings. These consis- 367

tent and significant improvements underscore the 368

robustness and effectiveness of DIFFPO. Notably, 369

DIFFPO outperforms the training-based baselines 370

(i.e., SimPO and DPO) across various settings, de- 371

spite requiring only a single training session of 372

DIFFPO model and being capable of enhancing 373

the performance of multiple base models. 374
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Method

Llama-3-SFT (8B) Llama-3-Instruct (8B)

MT-bench AlpacaEval 2 HH-RLHF MT-bench AlpacaEval 2 HH-RLHF

GPT-4 LC (%) WR (%) Helpful Harmless GPT-4 LC (%) WR (%) Helpful Harmless

Base Model 6.21 22.09 20.81 0.59 0.91 6.78 36.83 42.12 0.67 0.93
w. DPO 6.59 29.84 36.77 0.68 0.89 6.90 47.20 53.56 0.74 0.92
w. SimPO 6.62 32.27 40.96 0.66 0.86 7.05 52.57 58.33 0.75 0.92
w. BPO 5.84 21.34 22.33 0.60 0.92 6.43 22.39 34.06 0.67 0.92
w. ARGS 6.14 9.06 13.97 0.49 0.86 6.84 31.83 34.74 0.64 0.89
w. BoN 6.79 35.14 32.26 0.62 0.92 6.89 45.10 49.94 0.67 0.92
w. Aligner 4.88 20.41 17.15 0.60 0.91 4.82 32.53 32.69 0.67 0.96
w. MetaAligner 4.46 19.81 18.23 0.52 0.89 4.50 20.75 19.08 0.52 0.91

w. DIFFPO-8B 6.96 36.24 40.96 0.62 0.93 7.02 36.44 41.01 0.68 0.93
w. DIFFPO-9B 7.45 49.72 54.23 0.71 0.98 7.40 55.84 61.88 0.72 0.98

Method

Mistral-SFT (7B) Mistral-Instruct (7B)

MT-bench AlpacaEval 2 HH-RLHF MT-bench AlpacaEval 2 HH-RLHF

GPT-4 LC (%) WR (%) Helpful Harmless GPT-4 LC (%) WR (%) Helpful Harmless

Base Model 5.73 20.15 17.24 0.56 0.87 6.39 32.81 34.86 0.66 0.94
w. DPO 5.91 31.28 32.65 0.66 0.91 6.29 35.60 37.73 0.67 0.92
w. SimPO 6.17 31.16 33.72 0.63 0.86 6.36 35.78 40.21 0.67 0.93
w. BPO 5.55 18.23 17.23 0.64 0.92 5.99 19.61 27.49 0.66 0.93
w. ARGS 5.12 11.07 13.95 0.55 0.87 6.20 26.60 29.68 0.66 0.92
w. BoN 6.21 33.36 27.74 0.64 0.94 6.40 34.75 39.24 0.68 0.94
w. Aligner 4.27 18.27 15.53 0.60 0.95 4.42 28.88 30.30 0.66 0.93
w. MetaAligner 4.08 12.40 9.72 0.51 0.85 3.71 18.55 16.91 0.55 0.91

w. DIFFPO-8B 6.87 34.42 40.08 0.62 0.88 7.04 35.92 40.70 0.68 0.92
w. DIFFPO-9B 7.13 48.99 52.87 0.70 0.96 7.33 56.22 61.71 0.72 0.98

Table 1: Comparison results with baseline methods. DIFFPO achieves the superior alignment performance
across all benchmarks, outperforming the training-based baselines (i.e., SimPO and DPO) in various settings.
Notably, DIFFPO requires only a single training session and is applicable to multiple base models. The best result
is highlighted in bold, while the second-best result is highlighted with underline.

DIFFPO consistently improves the performance375

of base models of various sizes. We report the376

performance of DIFFPO-2B and DIFFPO-9B on377

base models of various sizes, with the results pre-378

sented in Table 2. The results demonstrate that379

both DIFFPO-2B and DIFFPO-9B lead to perfor-380

mance improvements across different base models.381

However, the performance gain of DIFFPO-2B is382

limited, showing notable improvements primarily383

for smaller models. In contrast, DIFFPO-9B en-384

hances the performance of larger models, such as385

Qwen2.5-14B and 32B, as well as black-box GPT-386

4, exhibiting a weak-to-strong improvement pattern.387

Furthermore, the results show that DIFFPO can388

be effectively integrated with existing preference389

optimization methods, such as DPO and SimPO,390

further enhancing alignment performance. These391

results underscore the scalability of DIFFPO.392

DIFFPO achieves a surpassing performance-393

efficiency trade-off. We compare DIFFPO with394

existing inference-time alignment techniques, eval-395

uating both alignment performance and execution396

time. The results are illustrated in Fig. 3, with 397

the execution time measured on a single NVIDIA 398

A100 80GB GPU. Points located closer to the top- 399

right corner indicate a more favorable Pareto fron- 400

tier. BoN and MetaAligner achieves commendable 401

alignment performance and inference time respec- 402

tively. However, when considering both aspects, 403

DIFFPO demonstrates a surpassing performance- 404

efficiency trade-off on all three datasets. The exper- 405

iments are conducted on Llama-3-SFT. 406

3.3 Analysis 407

Performance Under Hybrid Decoding. We in- 408

vestigate the hybrid decoding strategy of DIFFPO, 409

with results provided in Tab 3. We segment the 410

vanilla generation, which has a maximum length 411

of 256, into blocks of varying sizes and sequen- 412

tially apply DIFFPO-8B to each block. This ap- 413

proach allows DIFFPO decoding to be parallel 414

within blocks and auto-regressive between blocks. 415

It can be observed that hybrid decoding signifi- 416

cantly reduces the decoding time, with optimal effi- 417

ciency achieved at a block size of 32. On the other 418
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Base Models MT-bench AlpacaEval 2 HH-RLHF

1-Turn 2-Turn Avg. LC (%) WR (%) Overall Helpful Harmless

Llama-3.2-1B-Instruct 5.32 5.13 5.25 15.57 19.09 0.0955 0.5978 0.9313
w. DIFFPO-2B 6.97 5.97 6.47 39.42 44.20 0.1077 0.6948 0.9728
w. DIFFPO-9B 7.56 6.95 7.30 50.70 56.08 0.1130 0.7059 0.9770

Llama-3.2-3B-Instruct 6.84 6.06 6.45 33.41 37.43 0.1037 0.6533 0.9183
w. DIFFPO-2B 7.13 6.46 6.79 39.94 45.32 0.1069 0.6956 0.9682
w. DIFFPO-9B 7.58 7.00 7.36 54.06 59.30 0.1132 0.7106 0.9875

Llama-3-8B-SFT+DPO 6.70 6.48 6.59 29.84 36.77 0.1044 0.6814 0.8900
w. DIFFPO-9B 7.42 7.03 7.22 54.29 59.51 0.1134 0.7178 0.9765
Llama-3-8B-SFT+SimPO 6.63 6.61 6.62 32.27 40.96 0.1022 0.6640 0.8589
w. DIFFPO-9B 7.59 7.08 7.42 55.66 60.67 0.1121 0.7156 0.9638

Llama-3-8B-it+DPO 6.75 7.05 6.90 47.20 53.56 0.1120 0.7387 0.9154
w. DIFFPO-9B 7.79 6.98 7.39 58.56 63.60 0.1140 0.7211 0.9831
Llama-3-8B-it+SimPO 7.09 7.00 7.05 52.57 58.33 0.1143 0.7483 0.9182
w. DIFFPO-9B 7.43 7.22 7.33 59.66 65.32 0.1142 0.7229 0.9756

Llama-3-70B-Instruct 7.41 7.59 7.5 46.14 51.12 0.1087 0.6928 0.9163
w. DIFFPO-9B 8.23 7.28 7.75 58.18 62.34 0.1137 0.719 0.9757

Qwen2.5-3B-Instruct 6.73 5.59 6.16 35.52 40.42 0.1050 0.6802 0.9587
w. DIFFPO-2B 7.06 6.26 6.66 42.63 47.83 0.1065 0.6973 0.9771
w. DIFFPO-9B 7.58 7.24 7.41 55.71 61.43 0.1132 0.7106 0.9875

Qwen2.5-7B-Instruct 7.11 6.96 7.03 45.03 49.95 0.1095 0.6995 0.9442
w. DIFFPO-2B 7.01 6.34 6.67 43.89 49.07 0.1074 0.7013 0.9659
w. DIFFPO-9B 7.62 7.10 7.35 57.89 63.01 0.1117 0.7100 0.9445

Qwen2.5-14B-Instruct 7.24 6.71 6.98 51.60 57.10 0.1117 0.7100 0.9445
w. DIFFPO-2B 7.08 6.33 6.71 43.70 48.76 0.1078 0.7017 0.9704
w. DIFFPO-9B 7.62 7.35 7.48 55.13 60.65 0.1136 0.7185 0.9759

Qwen2.5-32B-Instruct 7.35 6.95 7.15 54.93 60.95 0.1132 0.7189 0.9594
w. DIFFPO-9B 7.58 7.63 7.60 55.13 61.94 0.1143 0.7248 0.9797

GPT-4o (API) 7.40 7.47 7.43 53.64 62.01 0.1119 0.6974 0.9669
w. DIFFPO-9B 7.66 7.37 7.51 58.91 64.30 0.1129 0.7167 0.9893

Table 2: Performance of DIFFPO models. The results demonstrate that both DIFFPO-2B and DIFFPO-9B lead to
performance improvements across different base models. DIFFPO-9B enhances the performance of larger models,
such as Qwen2.5-14B and 32B, as well as black-box GPT-4o, exhibiting a weak-to-strong improvement pattern.
Furthermore, the results show that DIFFPO can be effectively integrated with existing preference optimization
methods, such as DPO and SimPO, further enhancing alignment performance.

hand, performance is enhanced when the block size419

is set to 256, which corresponds to purely paral-420

lel decoding, indicating a feasible trade-off. The421

experiments are conducted on Llama-3-SFT.422

Scaling towards Longer Generation Lengths.423

We validate the scalability of the DIFFPO model424

in response to increasing generation lengths, with425

results presented in Tab 4. Using base mod-426

els, we generate outputs on MT-Bench under vari-427

ous maximum length settings and observe a posi-428

tive correlation between increased text length and429

higher scores. Subsequently, the same optimized430

DIFFPO-8B and 9B is applied to these outputs431

using the hybrid decoding strategy described in432

the previous section. This approach consistently 433

yields enhanced alignment performance, demon- 434

strating DIFFPO’s robust scaling capabilities to- 435

wards longer generation lengths. 436

Loss and Hyperparameter Ablation. We eval- 437

uate the effectiveness of the training loss of 438

DIFFPO in Section 2.3 and the inference strat- 439

egy in Section 2.5. The results are presented in 440

Table 5. We report on two decoding strategies: 441

vanilla decoding of a single model and DIFFPO de- 442

coding, which applies the optimized DIFFPO-9B 443

on the output of the base model. The findings in- 444

dicate that applying DIFFPO to the base model 445

achieves performance superior to that of single 446
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Figure 3: Comparison of Inference-Time Efficiency. We compare DIFFPO with existing inference-time alignment
techniques, evaluating both alignment performance and execution time. Points located closer to the top-right corner
indicate a better trade-off. When considering both aspects, DIFFPO demonstrates a surpassing performance-
efficiency trade-off on all three datasets.

Block Size 16 32 64 128 256

MT (GPT-4) 6.86 6.96 6.84 6.81 6.77
Time (s) 1080 1012 1390 1520 1937

AE2 (LC) 33.52 33.54 33.46 32.98 36.24
Time (s) 3712 3471 4614 5510 7520

HH (Avg.) 0.7742 0.7749 0.7743 0.7741 0.7761
Time (s) 1564 1551 1620 1816 2684

Table 3: Performance Under Hybrid Decoding. We
segment the vanilla generation into blocks of varying
sizes and sequentially apply DIFFPO-8B to each block.
This approach allows DIFFPO decoding to be parallel
within blocks and auto-regressive between blocks. Hy-
brid decoding significantly reduces the decoding time,
indicating a feasible trade-off for performance.

models alone, thus demonstrating the effectiveness447

of the DIFFPO strategy. Furthermore, we report448

the results of an ablation study on the hyperparam-449

eter w in Eq. 6. When using DIFFPO decoding,450

employing LCon with larger values of w lead to a451

more pronounced improvement in performance.452

4 Conclusion453

This paper introduces a novel inference-time454

alignment framework for large language models,455

DIFFPO. DIFFPO achieves alignment at the sen-456

tence level to better model human preferences,457

drawing inspiration from the denoising process.458

DIFFPO outperforms both strong training-based459

and inference-time alignment techniques in terms460

of alignment performance and inference speed. Ex-461

periments scaling DIFFPO from 2B to 9B param-462

eters, expanding the base model from 1B to 70B,463

and increasing the context length from 256 to 2,048464

demonstrate that DIFFPO is a robust and scalable465

framework for LLM alignment.466

Generation Length 256 512 1,024 2,048

Llama-3-SFT 6.21 6.61 6.76 6.71
w. DIFFPO-8B (∆) +0.75 +0.81 +0.93 +1.05
w. DIFFPO-9B (∆) +1.24 +1.64 +1.48 +0.50

Llama-3-Instruct 6.78 7.87 7.99 8.00
w. DIFFPO-8B (∆) +0.24 -0.12 +0.01 +0.02
w. DIFFPO-9B (∆) +0.62 +0.68 +0.34 +0.62

Mistral-SFT 5.73 6.42 6.50 6.36
w. DIFFPO-8B (∆) +1.14 +1.16 +1.25 +1.51
w. DIFFPO-9B (∆) +1.40 +1.47 +1.71 +1.86

Mistral-Instruct 6.39 7.47 7.68 7.64
w. DIFFPO-8B (∆) +0.65 +0.06 +0.13 +0.17
w. DIFFPO-9B (∆) +0.94 +0.59 +0.58 +0.78

Table 4: Scaling towards Longer Generation Lengths.
We evaluate the performance of DIFFPO under various
maximum length settings. When the same optimized
DIFFPO-8B and 9B is applied to these outputs, consis-
tently enhanced performance demonstrates DIFFPO’s
robust scaling capabilities.

Loss MT AE2 HH

GPT-4 LC (%) Avg.

Vanilla Decoding
Gemma-2-9B-it 7.37 54.15 0.8265
DIFFPO-9B 7.42 58.19 0.8279

Gemma-2-9B-it w. DIFFPO-9B
LAR only 7.41 58.01 0.8301
10× LCon + LAR 7.56 59.27 0.8389
100× LCon + LAR 7.55 59.43 0.8435
1, 000× LCon + LAR 7.60 60.56 0.8438

Table 5: Loss and Hyperparameter Ablation. The
results indicate that applying DIFFPO-9B to the base
model (i.e., gemma-2-9B) yields outperforming per-
formance than vanilla decoding of any single models,
demonstrating the effectiveness of DIFFPO strategy.
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Limitations467

We acknowledge the presence of certain limitations.468

While DIFFPO has demonstrated a superior trade-469

off between performance and inference-time cost,470

it still introduces additional inference latency due471

to the need for an extra model for alignment. More-472

over, we observe that the performance of DIFFPO473

scales with its size, which presents challenges for474

cost-effectiveness during deployment. Addition-475

ally, despite the empirical success and intuitive476

motivation behind DIFFPO, a more rigorous the-477

oretical analysis is required to fully understand its478

effectiveness. Future work could explore how to479

combine the diffusion process (i.e., the denoising480

process) with the alignment task more effectively.481

This paper draws insights from the analogy be-482

tween the denoising process and alignment. We483

hope our findings will facilitate future exploration484

of existing successful techniques in the natural lan-485

guage processing domain.486

Potential Risks487

As an inference-time alignment technique,488

DIFFPO aims to develop AI assistants that align489

with positive human intentions and social values.490

However, there is a potential risk that DIFFPO491

could be misused to align with harmful or negative492

values. We strongly oppose any such misuse, as it493

could hinder human progress, and advocate for the494

responsible and ethical use of DIFFPO.495

References 496

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama 497
Ahmad, Ilge Akkaya, Florencia Leoni Aleman, 498
Diogo Almeida, Janko Altenschmidt, Sam Altman, 499
Shyamal Anadkat, et al. 2023. Gpt-4 technical report. 500
arXiv preprint arXiv:2303.08774. 501

Arash Ahmadian, Chris Cremer, Matthias Gallé, 502
Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin, 503
Ahmet Üstün, and Sara Hooker. 2024. Back to ba- 504
sics: Revisiting reinforce style optimization for learn- 505
ing from human feedback in llms. arXiv preprint 506
arXiv:2402.14740. 507

AI@Meta. 2024. Llama 3 model card. 508

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas 509
Schneider, Rachel Fong, Peter Welinder, Bob Mc- 510
Grew, Josh Tobin, OpenAI Pieter Abbeel, and Woj- 511
ciech Zaremba. 2017. Hindsight experience replay. 512
Advances in neural information processing systems, 513
30. 514

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda 515
Askell, Anna Chen, Nova DasSarma, Dawn Drain, 516
Stanislav Fort, Deep Ganguli, Tom Henighan, et al. 517
2022. Training a helpful and harmless assistant with 518
reinforcement learning from human feedback. arXiv 519
preprint arXiv:2204.05862. 520

Souradip Chakraborty, Soumya Suvra Ghosal, Ming 521
Yin, Dinesh Manocha, Mengdi Wang, Amrit Singh 522
Bedi, and Furong Huang. 2024. Transfer q star: Prin- 523
cipled decoding for llm alignment. arXiv preprint 524
arXiv:2405.20495. 525

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, 526
Jean-Baptiste Lespiau, Laurent Sifre, and John 527
Jumper. 2023. Accelerating large language model 528
decoding with speculative sampling. arXiv preprint 529
arXiv:2302.01318. 530

Jiale Cheng, Xiao Liu, Kehan Zheng, Pei Ke, Hongning 531
Wang, Yuxiao Dong, Jie Tang, and Minlie Huang. 532
2024. Black-box prompt optimization: Align- 533
ing large language models without model training. 534
Preprint, arXiv:2311.04155. 535

Paul F Christiano, Jan Leike, Tom Brown, Miljan Mar- 536
tic, Shane Legg, and Dario Amodei. 2017. Deep 537
reinforcement learning from human preferences. Ad- 538
vances in neural information processing systems, 30. 539

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, 540
Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu, and 541
Maosong Sun. 2023. Ultrafeedback: Boosting lan- 542
guage models with high-quality feedback. Preprint, 543
arXiv:2310.01377. 544

Prafulla Dhariwal and Alexander Nichol. 2021. Diffu- 545
sion models beat gans on image synthesis. Advances 546
in neural information processing systems, 34:8780– 547
8794. 548

9

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://arxiv.org/abs/2311.04155
https://arxiv.org/abs/2311.04155
https://arxiv.org/abs/2311.04155
https://arxiv.org/abs/2310.01377
https://arxiv.org/abs/2310.01377
https://arxiv.org/abs/2310.01377


Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi549
Zheng, Shengding Hu, Zhiyuan Liu, Maosong Sun,550
and Bowen Zhou. 2023. Enhancing chat language551
models by scaling high-quality instructional conver-552
sations. arXiv preprint arXiv:2305.14233.553

Yann Dubois, Balázs Galambosi, Percy Liang, and Tat-554
sunori B Hashimoto. 2024. Length-controlled al-555
pacaeval: A simple way to debias automatic evalua-556
tors. arXiv preprint arXiv:2404.04475.557

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff,558
Dan Jurafsky, and Douwe Kiela. 2024. Kto: Model559
alignment as prospect theoretic optimization. arXiv560
preprint arXiv:2402.01306.561

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang.562
2024. Break the sequential dependency of llm in-563
ference using lookahead decoding. arXiv preprint564
arXiv:2402.02057.565

Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu,566
and LingPeng Kong. 2022. Diffuseq: Sequence to se-567
quence text generation with diffusion models. arXiv568
preprint arXiv:2210.08933.569

Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu,570
and Lingpeng Kong. 2023. Diffuseq-v2: Bridg-571
ing discrete and continuous text spaces for accel-572
erated seq2seq diffusion models. arXiv preprint573
arXiv:2310.05793.574

Ishaan Gulrajani and Tatsunori B Hashimoto. 2024.575
Likelihood-based diffusion language models. Ad-576
vances in Neural Information Processing Systems,577
36.578

Seungwook Han, Idan Shenfeld, Akash Srivastava,579
Yoon Kim, and Pulkit Agrawal. 2024. Value aug-580
mented sampling for language model alignment and581
personalization. arXiv preprint arXiv:2405.06639.582

Xiaochuang Han, Sachin Kumar, and Yulia Tsvetkov.583
2022. Ssd-lm: Semi-autoregressive simplex-based584
diffusion language model for text generation and585
modular control. arXiv preprint arXiv:2210.17432.586

Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. De-587
noising diffusion probabilistic models. Advances588
in neural information processing systems, 33:6840–589
6851.590

Jiwoo Hong, Noah Lee, and James Thorne. 2024. Orpo:591
Monolithic preference optimization without refer-592
ence model. In Proceedings of the 2024 Conference593
on Empirical Methods in Natural Language Process-594
ing, pages 11170–11189.595

James Y Huang, Sailik Sengupta, Daniele Bonadiman,596
Yi-an Lai, Arshit Gupta, Nikolaos Pappas, Saab Man-597
sour, Katrin Kirchhoff, and Dan Roth. 2024. Deal:598
Decoding-time alignment for large language models.599
arXiv preprint arXiv:2402.06147.600

Jiaming Ji, Boyuan Chen, Hantao Lou, Donghai Hong, 601
Borong Zhang, Xuehai Pan, Juntao Dai, Tianyi 602
Qiu, and Yaodong Yang. 2024. Aligner: Efficient 603
alignment by learning to correct. arXiv preprint 604
arXiv:2402.02416. 605

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men- 606
sch, Chris Bamford, Devendra Singh Chaplot, Diego 607
de las Casas, Florian Bressand, Gianna Lengyel, Guil- 608
laume Lample, Lucile Saulnier, et al. 2023. Mistral 609
7b. arXiv preprint arXiv:2310.06825. 610

Maxim Khanov, Jirayu Burapacheep, and Yixuan Li. 611
2024. Args: Alignment as reward-guided search. 612
Preprint, arXiv:2402.01694. 613

Siqi Kou, Lanxiang Hu, Zhezhi He, Zhijie Deng, and 614
Hao Zhang. 2024. Cllms: Consistency large lan- 615
guage models. arXiv preprint arXiv:2403.00835. 616

Nathan Lambert, Valentina Pyatkin, Jacob Morrison, 617
LJ Miranda, Bill Yuchen Lin, Khyathi Chandu, 618
Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, 619
et al. 2024. Rewardbench: Evaluating reward 620
models for language modeling. arXiv preprint 621
arXiv:2403.13787. 622

Yaniv Leviathan, Matan Kalman, and Yossi Matias. 623
2023. Fast inference from transformers via spec- 624
ulative decoding. In International Conference on 625
Machine Learning, pages 19274–19286. PMLR. 626

Xiang Li, John Thickstun, Ishaan Gulrajani, Percy S 627
Liang, and Tatsunori B Hashimoto. 2022. Diffusion- 628
lm improves controllable text generation. Advances 629
in Neural Information Processing Systems, 35:4328– 630
4343. 631

Yuhui Li, Fangyun Wei, Jinjing Zhao, Chao Zhang, and 632
Hongyang Zhang. 2023a. Rain: Your language mod- 633
els can align themselves without finetuning. arXiv 634
preprint arXiv:2309.07124. 635

Ziniu Li, Tian Xu, Yushun Zhang, Zhihang Lin, Yang 636
Yu, Ruoyu Sun, and Zhi-Quan Luo. 2023b. Re- 637
max: A simple, effective, and efficient reinforcement 638
learning method for aligning large language models. 639
In Forty-first International Conference on Machine 640
Learning. 641

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri 642
Edwards, Bowen Baker, Teddy Lee, Jan Leike, 643
John Schulman, Ilya Sutskever, and Karl Cobbe. 644
2023. Let’s verify step by step. arXiv preprint 645
arXiv:2305.20050. 646

Justin Lovelace, Varsha Kishore, Chao Wan, Eliot 647
Shekhtman, and Kilian Q Weinberger. 2024. La- 648
tent diffusion for language generation. Advances in 649
Neural Information Processing Systems, 36. 650

Yiwei Lyu, Tiange Luo, Jiacheng Shi, Todd C Hollon, 651
and Honglak Lee. 2023. Fine-grained text style trans- 652
fer with diffusion-based language models. arXiv 653
preprint arXiv:2305.19512. 654

10

https://arxiv.org/abs/2402.01694


Yu Meng, Mengzhou Xia, and Danqi Chen. 2024.655
Simpo: Simple preference optimization with a656
reference-free reward. Preprint, arXiv:2405.14734.657

Sidharth Mudgal, Jong Lee, Harish Ganapathy,658
YaGuang Li, Tao Wang, Yanping Huang, Zhifeng659
Chen, Heng-Tze Cheng, Michael Collins, Trevor660
Strohman, et al. 2023. Controlled decoding from661
language models. arXiv preprint arXiv:2310.17022.662

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,663
Long Ouyang, Christina Kim, Christopher Hesse,664
Shantanu Jain, Vineet Kosaraju, William Saunders,665
et al. 2021. Webgpt: Browser-assisted question-666
answering with human feedback. arXiv preprint667
arXiv:2112.09332.668

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,669
Carroll Wainwright, Pamela Mishkin, Chong Zhang,670
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.671
2022. Training language models to follow instruc-672
tions with human feedback. Advances in neural in-673
formation processing systems, 35:27730–27744.674

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey675
Levine. 2019. Advantage-weighted regression: Sim-676
ple and scalable off-policy reinforcement learning.677
arXiv preprint arXiv:1910.00177.678

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-679
pher D Manning, Stefano Ermon, and Chelsea Finn.680
2024. Direct preference optimization: Your language681
model is secretly a reward model. Advances in Neu-682
ral Information Processing Systems, 36.683

Andrea Santilli, Silvio Severino, Emilian Postolache,684
Valentino Maiorca, Michele Mancusi, Riccardo685
Marin, and Emanuele Rodolà. 2023. Accelerating686
transformer inference for translation via parallel de-687
coding. arXiv preprint arXiv:2305.10427.688

John Schulman, Filip Wolski, Prafulla Dhariwal,689
Alec Radford, and Oleg Klimov. 2017. Proxi-690
mal policy optimization algorithms. arXiv preprint691
arXiv:1707.06347.692

Tianhao Shen, Renren Jin, Yufei Huang, Chuang Liu,693
Weilong Dong, Zishan Guo, Xinwei Wu, Yan Liu,694
and Deyi Xiong. 2023. Large language model align-695
ment: A survey. arXiv preprint arXiv:2309.15025.696

Jiaming Song, Chenlin Meng, and Stefano Ermon. 2020.697
Denoising diffusion implicit models. arXiv preprint698
arXiv:2010.02502.699

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya700
Sutskever. 2023. Consistency models. arXiv preprint701
arXiv:2303.01469.702

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel703
Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,704
Dario Amodei, and Paul F Christiano. 2020. Learn-705
ing to summarize with human feedback. Advances706
in Neural Information Processing Systems, 33:3008–707
3021.708

Qwen Team. 2024. Qwen2.5: A party of foundation 709
models. 710

Lewis Tunstall, Edward Beeching, Nathan Lambert, 711
Nazneen Rajani, Kashif Rasul, Younes Belkada, 712
Shengyi Huang, Leandro von Werra, Clémentine 713
Fourrier, Nathan Habib, et al. 2023. Zephyr: Di- 714
rect distillation of lm alignment. arXiv preprint 715
arXiv:2310.16944. 716

Haoxiang Wang, Wei Xiong, Tengyang Xie, Han Zhao, 717
and Tong Zhang. 2024. Interpretable preferences 718
via multi-objective reward modeling and mixture-of- 719
experts. In EMNLP. 720

Yufei Wang, Wanjun Zhong, Liangyou Li, Fei Mi, 721
Xingshan Zeng, Wenyong Huang, Lifeng Shang, 722
Xin Jiang, and Qun Liu. 2023. Aligning large lan- 723
guage models with human: A survey. arXiv preprint 724
arXiv:2307.12966. 725

Kailai Yang, Zhiwei Liu, Qianqian Xie, Jimin Huang, 726
Tianlin Zhang, and Sophia Ananiadou. 2024a. 727
Metaaligner: Towards generalizable multi-objective 728
alignment of language models. In The Thirty-eighth 729
Annual Conference on Neural Information Process- 730
ing Systems. 731

Shentao Yang, Shujian Zhang, Congying Xia, Yihao 732
Feng, Caiming Xiong, and Mingyuan Zhou. 2024b. 733
Preference-grounded token-level guidance for lan- 734
guage model fine-tuning. Advances in Neural Infor- 735
mation Processing Systems, 36. 736

Jing Yao, Xiaoyuan Yi, Xiting Wang, Jindong Wang, 737
and Xing Xie. 2023. From instructions to intrinsic 738
human values–a survey of alignment goals for big 739
models. arXiv preprint arXiv:2308.12014. 740

Jiacheng Ye, Jiahui Gao, Shansan Gong, Lin Zheng, 741
Xin Jiang, Zhenguo Li, and Lingpeng Kong. 2024a. 742
Beyond autoregression: Discrete diffusion for com- 743
plex reasoning and planning. arXiv preprint 744
arXiv:2410.14157. 745

Jiacheng Ye, Shansan Gong, Liheng Chen, Lin Zheng, 746
Jiahui Gao, Han Shi, Chuan Wu, Xin Jiang, Zhen- 747
guo Li, Wei Bi, et al. 2024b. Diffusion of thoughts: 748
Chain-of-thought reasoning in diffusion language 749
models. arXiv preprint arXiv:2402.07754. 750

Yongcheng Zeng, Guoqing Liu, Weiyu Ma, Ning 751
Yang, Haifeng Zhang, and Jun Wang. 2024. Token- 752
level direct preference optimization. arXiv preprint 753
arXiv:2404.11999. 754

Yizhe Zhang, Jiatao Gu, Zhuofeng Wu, Shuangfei Zhai, 755
Joshua Susskind, and Navdeep Jaitly. 2024. Planner: 756
generating diversified paragraph via latent language 757
diffusion model. Advances in Neural Information 758
Processing Systems, 36. 759

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan 760
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, 761
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023. 762
Judging llm-as-a-judge with mt-bench and chatbot 763

11

https://arxiv.org/abs/2405.14734
https://arxiv.org/abs/2405.14734
https://arxiv.org/abs/2405.14734
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/


arena. Advances in Neural Information Processing764
Systems, 36:46595–46623.765

Han Zhong, Guhao Feng, Wei Xiong, Xinle Cheng,766
Li Zhao, Di He, Jiang Bian, and Liwei Wang. 2024.767
Dpo meets ppo: Reinforced token optimization for768
rlhf. arXiv preprint arXiv:2404.18922.769

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B770
Brown, Alec Radford, Dario Amodei, Paul Chris-771
tiano, and Geoffrey Irving. 2019. Fine-tuning lan-772
guage models from human preferences. arXiv773
preprint arXiv:1909.08593.774

A Related Works 775

A.1 Align LLM with Human Preference. 776

A prominent approach to learning from human pref- 777

erences is RLHF (Ouyang et al., 2022; Stiennon 778

et al., 2020; Christiano et al., 2017; Bai et al., 2022). 779

In this framework, a reward model is first trained, 780

followed by the training of a bandit policy using 781

Proximal Policy Optimization (PPO) (Schulman 782

et al., 2017). Recent advancements such as di- 783

rect preference optimization (DPO) (Rafailov et al., 784

2024; Meng et al., 2024; Ethayarajh et al., 2024) op- 785

timize the bandit policy directly from human pref- 786

erences, bypassing the need for a reward model. 787

These approaches are simpler to implement and 788

require fewer computational resources. Inference- 789

time approaches, on the other hand, achieve align- 790

ment by customizing the output of large language 791

models (LLMs) during the decoding phase, with- 792

out the need for parameter optimization. This re- 793

sults in enhanced flexibility and efficiency (Khanov 794

et al., 2024; Mudgal et al., 2023). One represen- 795

tative method treats the text-generation process 796

as a search problem, guided by external rewards 797

(Huang et al., 2024; Han et al., 2024; Chakraborty 798

et al., 2024). Another category of methods focuses 799

on learning to refine the generated text (Li et al., 800

2023a; Ji et al., 2024; Yang et al., 2024a). 801

Token and Sentence-level. Existing training- 802

based or inference-time alignment approaches typ- 803

ically rely on token-level rewards, while human 804

preferences are generally provided and defined at 805

the sentence level (Li et al., 2023b; Ahmadian et al., 806

2024; Zeng et al., 2024). To address this discrep- 807

ancy, some works (Lightman et al., 2023; Yang 808

et al., 2024b; Zeng et al., 2024) leverage token- 809

wise or step-wise information to improve align- 810

ment performance. In contrast, this paper proposes 811

modeling alignment as a sentence-level denoising 812

process. We introduce a model-agnostic, inference- 813

time alignment method, and our empirical results 814

demonstrate its superiority in both performance 815

and efficiency. 816

A.2 Parallel Decoding and Diffusion Process. 817

Parallel Decoding of LLMs Parallel decoding 818

has been increasingly utilized and developed in re- 819

cent research to accelerate the inference processes 820

of large language models (LLMs). One line of re- 821

search, including works by Leviathan et al. (2023); 822

Chen et al. (2023), focuses on speculative decoding. 823
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These techniques enhance LLM decoding speed824

by employing a smaller draft model to predict the825

outputs, which are then verified in parallel by a826

larger target model. Another research trajectory ex-827

plores parallel decoding strategies that do not rely828

on a draft model. Methods such as conditioning on829

“look-ahead” tokens or employing Jacobi iterations830

have been investigated by Santilli et al. (2023); Fu831

et al. (2024). These approaches allow the target832

model to produce several tokens simultaneously,833

aiming for rapid convergence to a fixed point on a834

Jacobi trajectory. CLLMs (Song et al., 2023) de-835

velop a novel approach, refining the target LLM to836

consistently predict the fixed point from any given837

state.838

Text Diffusion Models Diffusion models have839

demonstrated significant diversity and controllabil-840

ity in image generation (Ho et al., 2020; Song et al.,841

2020; Dhariwal and Nichol, 2021). Recently, these842

models have been extended to text generation, as843

evidenced by the works of (Li et al., 2022; Gong844

et al., 2022; Lovelace et al., 2024). In essence,845

diffusion models execute a multi-step denoising846

process that progressively transforms random noise847

into a coherent data sample. In the context of text,848

diffusion models can be considered an evolution849

of traditional iterative Non-Autoregressive models,850

as described by Gong et al. (2022). These models851

have demonstrated the ability to match or surpass852

Autoregressive (AR) models in terms of text per-853

plexity (Han et al., 2022; Gulrajani and Hashimoto,854

2024), diversity (Gong et al., 2023; Zhang et al.,855

2024), and various sequence-to-sequence tasks (Ye856

et al., 2024b,a).857

Connection with DIFFPO In this paper, we are858

motivated by the goal of aligning Large Language859

Models (LLMs) with human values or intentions,860

as outlined in (Yao et al., 2023). We define prefer-861

ences at the sentence-level, focusing on the style862

or format of complete answers generated by the863

LLMs. If we consider each iteration of parallel864

decoding as a transition between states, this bears a865

formal resemblance to discrete diffusion models. In866

DIFFPO, we leverage parallel decoding to imple-867

ment sentence-level denoising, thereby enhancing868

the modeling of the alignment process.869

The development of DIFFPO is also inspired870

by Consistency Models (Song et al., 2023) and871

CLLMs (Kou et al., 2024). Consistency models ad-872

dress the limitation of the slow iterative sampling873

process by mapping any point along the probabil-874

ity flow ODE of the diffusion process back to the 875

original point in a single step. CLLMs propose 876

accelerating LLM inference by mapping the in- 877

termediate process of LLM parallel decoding to 878

the final process. Similar to these works, we opti- 879

mize DIFFPO with consistency loss, thus enabling 880

model-agnostic alignment. 881

A.3 Align LLM with Human Preference. 882

A prominent approach to addressing the chal- 883

lenge of learning from human preferences is 884

reinforcement learning from human feedback 885

(RLHF) (Ouyang et al., 2022; Stiennon et al., 2020). 886

The classic RLHF framework, initially proposed in 887

Christiano et al. (2017) and Ziegler et al. (2019), 888

has been further refined in Ouyang et al. (2022) 889

and Bai et al. (2022). In this framework, a reward 890

model is first trained, followed by the training of a 891

bandit policy using Proximal Policy Optimization 892

(PPO) (Schulman et al., 2017). 893

Recent advancements in direct preference opti- 894

mization (DPO) (Rafailov et al., 2024) and related 895

works such as Meng et al. (2024), Ethayarajh et al. 896

(2024), and Hong et al. (2024), optimize the bandit 897

policy directly from human preferences, bypassing 898

the need for a reward model. These approaches are 899

simpler to implement and require fewer computa- 900

tional resources. 901

Inference-time approaches, on the other hand, 902

achieve alignment by customizing the output of 903

large language models (LLMs) during the decod- 904

ing phase, without the need for parameter opti- 905

mization. This results in enhanced flexibility and 906

efficiency (Khanov et al., 2024; Mudgal et al., 907

2023). One representative method treats the text- 908

generation process as a search problem, guided by 909

external rewards (Huang et al., 2024; Han et al., 910

2024; Chakraborty et al., 2024). Another category 911

of methods focuses learning to refine the generated 912

text (Li et al., 2023a; Ji et al., 2024; Yang et al., 913

2024a). 914

B Experiment 915

B.1 Experimental Setups 916

Training Details. As for the training set, 917

we collect 6 generations from 6 base mod- 918

els (i.e., Llama-3-8B-Instruct, Llama-3-8B-SFT, 919

Mistral-7B-SFT, Mistral-7B-Instruct, Gemma-2- 920

2B-Instruct, Gemma-2-9B-Instruct). We then em- 921

ploy ArmoRM (Wang et al., 2024) to score these 922

responses. The response with the highest score 923
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Table 6: Comparison results of DIFFPO models. The experiments are conducted on base models of Qwen-2.5-7B
and 14B. It shows that DIFFPO consistently achieves superior performance across various base models.

Base Models MT-bench AlpacaEval 2 HH-RLHF

1-Turn 2-Turn Avg. LC (%) WR (%) Overall Helpful Harmless

Qwen2.5-7B-Instruct 7.11 6.96 7.03 45.03 49.95 0.1095 0.6995 0.9442
w. DPO 7.37 6.96 7.17 50.55 55.00 0.1109 0.7061 0.9460
w. SimPO 7.41 6.98 7.20 48.76 52.75 0.1100 0.7047 0.9387
w. BPO 6.90 6.16 6.53 29.44 39.85 0.1086 0.6765 0.9418
w. BoN 7.50 7.10 7.30 50.42 55.43 0.1159 0.7066 0.9440
w. Aligner 6.24 3.76 5.00 42.15 45.82 0.1088 0.6993 0.9438
w. MetaAligner 6.41 5.13 5.77 36.58 38.45 0.0995 0.6966 0.9422

w. DIFFPO-2B 7.01 6.34 6.67 43.89 49.07 0.1074 0.7013 0.9659
w. DIFFPO-9B 7.62 7.10 7.35 57.89 63.01 0.1117 0.7100 0.9445

Qwen2.5-14B-Instruct 7.24 6.71 6.98 51.60 57.10 0.1117 0.7100 0.9445
w. BPO 7.21 6.82 7.02 37.02 47.51 0.1005 0.6853 0.9323
w. BoN 7.49 6.98 7.24 54.92 59.02 0.1182 0.7163 0.9485
w. Aligner 6.14 4.11 5.13 45.14 47.24 0.1114 0.7099 0.9438
w. MetaAligner 6.24 5.73 5.99 41.25 43.23 0.1092 0.7074 0.9375

w. DIFFPO-2B 7.08 6.33 6.71 43.70 48.76 0.1078 0.7017 0.9704
w. DIFFPO-9B 7.62 7.35 7.48 55.13 60.65 0.1136 0.7185 0.9759

is selected as y(T ). The remaining five responses924

are ranked according to their scores to serve as925

y(0:T−1). In the training process, at each iteration,926

we randomly sample yt from y(0:T−1) for optimiza-927

tion. We train DIFFPO models using the following928

hyperparameters: a learning rate of 1e-9, a batch929

size of 1 and gradient accumulation steps of 4, a930

max sequence length of 1024, and a cosine learning931

rate schedule with 3% warmup steps for 1 epoch.932

All the models are trained with an Adam optimizer.933

All the training experiments in this paper were con-934

ducted on 8×A100 GPUs.935

Evaluation Details. For the MT-bench, we use936

GPT-4 as the judge model, following the default937

settings. The scores are based on a single-answer938

rating scale from 1 to 10. For AlpacaEval, we939

use GPT-4 Turbo as the judge model, which per-940

forms pairwise comparison of responses generated941

by GPT-4, each with the same maximum length.942

For HH-RLHF, we use ArmoRM for single-answer943

rating and report the overall score, along with the944

“helpful" and “harmless" scores, which are provided945

in dimensions 9 and 10, respectively.946

Baseline Details. Implementation details for dif-947

ferent baselines are as follows:948

• MetaAligner: we use the open-949

sourced MetaAligner-7B model https:950

//huggingface.co/MetaAligner/951

MetaAligner-HH-RLHF-7B on Huggingface 952

and follow its guideline on Huggingface. 953

• DPO, SimPO: we directly use open- 954

sourced models https://huggingface.co/ 955

princeton-nlp on Huggingface. 956

• Args: We reproduce Args according to https: 957

//github.com/deeplearning-wisc/args/ 958

tree/main by replacing the reward model 959

with ArmoRM (Wang et al., 2024). 960

• Aligner: we use the open-sourced Aligner- 961

7B https://huggingface.co/aligner/ 962

aligner-7b-v1.0 on Huggingface and 963

follow its guideline on Huggingface. 964

• BPO: we use the open-sourced BPO 965

model https://huggingface.co/THUDM/ 966

BPO on Huggingface and follow its guideline 967

on Huggingface. 968

B.2 Experimental Results 969

DIFFPO significantly outperforms existing pref- 970

erence optimization methods. We provided 971

additional comparison with baselines, with re- 972

sults presented in Table 6. The experiments 973

are conducted on base models of Qwen-2.5-7B 974

and 14B. While all preference optimization algo- 975

rithms improve performance over the base model, 976

DIFFPO achieves the best overall performance 977
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Figure 4: Illustration of the Speedup of DIFFPO.

Table 7: Loss and Hyperparameter Ablation. We re-
port the results of vanilla decoding from the base model
and the optimized DIFFPO model. The results indicate
that applying DIFFPO to the base model yields outper-
forming performance than single models, demonstrating
the effectiveness of DIFFPO strategy.

Loss MT AE2 HH

GPT-4 LC (%) Avg.

Vanilla Decoding
Llama-3-Instruct 6.78 36.83 0.7985
LAR 6.90 36.35 0.7971
1, 000× LCon + LAR

Llama-3-it w. DIFFPO-8B
LAR only 6.75 35.84 0.7968
10× LCon + LAR 6.85 35.96 0.7997
100× LCon + LAR 6.86 35.92 0.7998
1, 000× LCon + LAR 7.02 36.44 0.7998

across all benchmarks and settings. These consis-978

tent and significant improvements underscore the979

robustness and effectiveness of DIFFPO. Notably,980

DIFFPO outperforms the training-based baselines981

(i.e., SimPO and DPO) across various settings, de-982

spite requiring only a single training session of983

DIFFPO model and being capable of enhancing984

the performance of multiple base models.985

C Analysis986

C.1 Loss and Hyperparameter Ablation.987

We supplement the ablation results for DIFFPO-988

8B, presented in Table 7. We report on two de-989

coding strategies: vanilla decoding of the single990

base model and the optimized DIFFPO-8B, and 991

DIFFPO decoding, which applies the optimized 992

DIFFPO-8B on the output of the base model. The 993

findings indicate that applying DIFFPO to the base 994

model achieves performance superior to that of 995

single models alone, thus demonstrating the effec- 996

tiveness of the DIFFPO strategy. Furthermore, we 997

report the results of an ablation study on the hyper- 998

parameter w in Eq. 6. When using DIFFPO decod- 999

ing, employing LCon with larger values of w lead to 1000

a more pronounced improvement in performance. 1001

C.2 Illustration of the Speed-up of DIFFPO 1002

As shown in Figure 4, AR decoding (e.g., 1003

Aligner (Ji et al., 2024)) typically generates only 1004

one aligned token per iteration. In contrast, 1005

DIFFPO enables the skipping of satisfied tokens, 1006

thereby avoiding the time latency associated with 1007

token-level generation. As a result, DIFFPOcan 1008

predict the modified subsequence in 3 iterations, 1009

achieving the same result as 11 iterations of AR 1010

decoding. 1011
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