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Cost-Sensitive Active Learning for Incomplete Data
Min Wang , Chunyu Yang, Fei Zhao, Fan Min , Member, IEEE, and Xizhao Wang , Fellow, IEEE

Abstract—Practical data often suffer from missing attribute
values and lack of class labels. A reasonable machine learning
scenario involves obtaining certain values and labels at cost on
request. In this article, we propose the cost-sensitive active learn-
ing through unified evaluation and dynamic selection (CALS)
algorithm to handle the learning task in this new scenario.
For data representation, we consider misclassification cost, label
query cost, and attribute query cost. For the cost/benefit esti-
mation, we design a unified assessment of attribute values and
labels with softmax regression. For the selection of attribute value
and label, we propose an optimal acquisition scheme with per-
mutation and greedy strategies. We perform experiments with
synthetic, benchmark, and domain datasets. The results of the
significance test verify the effectiveness of CALS and its superior-
ity over cost-sensitive active learning and missing data imputation
algorithms.

Index Terms—Active learning, cost sensitive, incomplete data,
unified evaluation and dynamic selection.

I. INTRODUCTION

M ISSING data exist widely in many domains, such as
gene expression [1], electricity distribution systems [2],

and speech recognition [3]. Various missing value processing
methods have been proposed to improve data availability and
learnability. One popular approach is the missing value impu-
tation [4]. Some classic methods, such as regression [5] and
correlation analysis [4], are employed for this issue. Frequency
distribution [6] and energy dependence [7] are also helpful in
designing sophisticated schemes. Another approach is active
feature acquisition (AFA) [8], [9], which is the most reli-
able way when feature values are severely missing [10]. In
this case, missing attribute values can be obtained at a cost
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upon request, such as running additional diagnostic proce-
dures. A common approach is to train the classifier and query
the most valuable features of the misclassification instance [8],
[9]. Advanced classification methods employed in this process
include hidden Markov models (HMMs) [11] and decision
trees [12].

Another challenge for task learning is the absence of label-
ing. According to Settles [13], “labeled instances are often
difficult, expensive, or time consuming to obtain, as they
require the efforts of experienced human annotators.” For
information extraction, it may take 1 h or more to determine
entities and relationships, even for simple news reports [14].
Semisupervised learning [15], [16] and active learning [17],
[18] attempt to break the label bottleneck from different
directions. In semisupervised learning [15], the self-training
technique trains learners with a few labeled instances to
classify the remaining instances. Furthermore, the generative
model [19], cluster assumption [15], and manifold assump-
tion [20] are used to construct the relationship between the
unlabeled instance distribution and the learning objective. In
active learning [17], [18], the fundamental issue is how to
select the most critical instances [17]. There are two main cri-
teria: 1) informativeness [17] and 2) representativeness [18].
Relevance and diversity are also incorporated into the process
of instance selection [21], [22].

Real-world data may suffer from both attribute value miss-
ing and label scarcity. For example, speech utterances are
prone to a large number of missing attributes. Meanwhile,
speech utterances labeling requires experienced experts, result-
ing in label scarcity [3]. To classify these complex data,
a reasonable scenario is to actively query missing attribute
values and labels with cost.

In this article, we propose the cost-sensitive active learning
through a unified evaluation and dynamic selection (CALS)
algorithm to handle the learning task in the new scenario.
First, we define a 5-tuple incomplete decision system data
model and propose a cost-sensitive active learning problem.
The inputs include an incomplete dataset without initial labels,
attribute query cost, and label query cost. The outputs include
the critical attribute values and labels for the query, as well
as predicted instance labels. The optimization objective is to
minimize the total cost.

Second, we develop an optimization method to uniformly
evaluate and dynamically select critical attribute values and
labels. We use softmax regression to build a probabilis-
tic model to obtain the classification probability. Then, we
consider the cost/benefit of attribute values and labels and
calculate different types of cost, such as expected misclassi-
fication cost. With a greedy search of different missing value
filling schemes, we obtain the optimal instance–attribute pairs
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to be queried. By calculating the completeness and significance
of each instance, we obtain the label cost/benefit evaluation.

Third, we design a new CALS algorithm. Fig. 1 illustrates
the CALS process using a running example. We select the ini-
tial training set based on the product of density and distance.
Then, we train a probabilistic model to obtain the solution
parameter. With the cost minimal method, we will select the
critical instance xs∗ to perform the corresponding prediction
or query and incrementally update the training model. Finally,
we adjust the algorithm to avoid nonunique solutions and
numerical overflows.

Experiments were performed on synthetic, benchmark, and
practical logging interpretation datasets. The datasets include
continuous, discrete, and mixed attribute types, with the num-
ber of instances ranging from 150 to 245 057. We compared
the CALS algorithm with state-of-the-art cost-sensitive, cost-
sensitive active learning, missing value imputation, and AFA
algorithms. We adopt the Friedman test and the Nemenyi post
hoc test to verify significant differences between CALS and
comparison algorithms. The results indicate CALS outper-
forms all of these competing algorithms in terms of average
cost.

In summary, our contribution is as follows.
1) We propose a cost-sensitive active learning problem that

considers a new but meaningful classification scenario.
It is dedicated to solving complex data (attribute values
missing and label scarcity) classification issue.

2) We present a cost/benefit optimization method that pro-
vides the unified evaluation of attribute values and
labels. It considers the interaction of attribute values and
label cost/benefit.

3) We design an optimal query scheme for obtaining critical
attribute values and labels. It guarantees dynamic selec-
tion of attribute values and labels, as well as incremental
updates to the model.

The remainder of this article is organized as follows.
Section II briefly reviews two practical classification scenarios
and solutions. Section IV describes the new problem and the
CALS algorithm. Section V discusses the experimental results
and Section VI makes a conclusion.

II. RELATED WORK

Real-world data are noisy and may suffer from missing
attribute values or label scarcity. In this section, we will intro-
duce two typical classification scenarios, including missing
data and label scarcity. Meanwhile, we will discuss some
related solutions, including missing values imputation, AFA,
semisupervised learning, and active learning.

A. Dealing With Missing Data

Missing data are a serious problem that may lead to poor
quality of training data and further significantly degrade the
model performance. Missing attribute values can be addressed
by deleting them directly, such as “complete deletion,” “list-
wise deletion,” or “specific deletion.” However, simple deletion
generally degrades the performance of the model.

Missing data imputation [23], [24] considers the correla-
tion among features to complete missing attribute values. The
common imputation method is regression imputation [23],
including multiple linear regression, logistic regression, and
multinomial logistic regression [24]. These methods explore
existing relationships between features to approximate miss-
ing attribute values. Improved kNN [25], artificial neural
network [24], and genetic programming [26] have also been
used to complete missing values. Since a single imputation
algorithm may not be able to consider all data distribution
characteristics [10], multiple imputation [27] obtains “m” com-
plete datasets, and adopts the weighted average to impute
missing attribute values.

AFA [8], [28] assumes that true attribute values can be
obtained at a cost. This is a more reliable method when the
attribute values are severely missing [29]. It selects the most
informative features to obtain, rather than randomly or exhaus-
tively acquire all new features. Zheng and Padmanabhan [8]
proposed a “single-pass” approach to acquire an attribute
value with the least confidence. Similarly, Melville et al. [28]
attempted to calculate the expected function for selecting the
top feature. Instead of querying one specific feature value,
the incremental AFA [30] query some significant feature val-
ues at once. For example, Saar-Tsechansky et al. [31] took a
decision-theoretic approach to acquire a few feature values. In
addition, model confidence [9] and cost-sensitive learning [32]
are also incorporated into the AFA.

B. Dealing With Label Scarcity

Label scarcity is another challenging classification scenario.
In practice, labeled data are costly and difficult to obtain since
the labeling procedure may require human experts, expen-
sive devices, or too much time. For example, labeling genes
and diseases in biomedical texts often requires a Ph.D.-level
biologist.

Semisupervised learning is proposed to address the labeled
data scarcity issue [33]. According to Zhou [34], “Semi-
supervised learning attempts to automatically exploit unla-
beled data in addition to labeled data to improve learn-
ing performance, where no human intervention is assumed.”
Miller and Uyar [19] gave the reasons why unlabeled instances
can improve learning performance. The key is to determine
the relationship between the unlabeled instance distribution
and the learning objectives. Common approaches include the
generative model [19], self-training [16], and co-training [20].
In addition, multiview learning [35] adopts the ensemble for
semisupervised learning, while entropy regularization [36]
considers the confidence.

Active learning [18] assumes that the algorithm is able to
interactively query an oracle to obtain the desired true label.
Since obtaining each class label is difficult, it is reasonable to
select informative instances whose labels will shrink the ver-
sion space as fast as possible [37]. The common approaches
include query-by-committee [37], uncertainty sampling [38],
and optimal experimental design [39]. Another approach is to
select the instances that best represent the unlabeled data [18].
This may require a relatively large number of instances to
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Fig. 1. Running example of the CALS algorithm. The top part is the input with a binary class dataset containing 15 instances, and the cost settings. The
middle part is the dynamic evaluation and incremental learning method, which iteratively guides attribute values and instances selection. With the minimal
total cost optimization strategy, we obtain the critical attribute values and labels to be queried. In this way, all labels are either queried or predicted. The
bottom is the output that calculates the total cost and average cost.

be queried before the optimal decision boundary is found.
Deploying one of these two criteria may significantly limit
the performance of active learning. Therefore, several active
learning algorithms [17], [40] have been developed to find
critical instances that are both informative and representative.

For high-dimensional data, because the p-norm is affected
by the curse of dimensionality, the distance-based query strat-
egy seems to be ineffective. Therefore, Sinha et al. [41]
adopted the variational autoencoder to learn the latent space
to select critical instances. Additionally, for more practi-
cal scenarios, the cost of labeling needs to be considered.
Xiao et al. [42] proposed a cost-sensitive semisupervised inte-
grated active learning model. Furthermore, active learning has
been deeply integrated with related technologies for various
application requirements. For example, Ma and Chang [43]
integrated active learning with iterative training sam-
pling to obtain the accurate classification of hyperspectral
images.

III. PROBLEM STATEMENT

In this section, we discuss the data model, problem defini-
tion, and solution framework.

A. Data Model

Active learning becomes cost sensitive [40] when one or
more types of costs are considered. Misclassification cost
refers to the cost of classifying instances with label i as j.
Attribute query cost refers to the expenses paid for obtain-
ing more complete feature information. Label query cost
(teacher cost) refers to the expenses paid to experts for label-
ing data. Considering various costs, we build the data model.
Let wi = {j|xij is missing} indicate the missing value index of
instance xi.

Definition 1: An incomplete cost-sensitive decision system
(ICS-DS) is the 5-tuple

S = (X, y, W, M, q) (1)
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where X = (xij)n×d is the data matrix, xi = (xi1, xi2, . . . , xid) is
the ith instance; n is the number of instances; d is the number
of conditional attributes; y = (y1, y2, . . . , yn)

T where yi ∈
[1, . . . , k] is the class label vector; W = {(i, j)|xij is missing}
is the set of missing value positions; M = (mij)k×k is the
misclassification cost matrix; and q = (q1, q2, . . . , qd+1) is
the query cost vector, qi where 1 ≤ i ≤ d is the query cost
for the ith attribute, and qd+1 is the label query cost.

We present an example to facilitate an intuitive under-
standing of the specific scenario (missing attributes and
label scarcity) and corresponding costs. Credit card compa-
nies predict the most profitable customers. Due to author-
ity reasons, some bank card access transaction data cannot
be obtained. The attributes of the instances are missing.
Meanwhile, high-quality customers need to be labeled by
experienced experts, which results in label scarcity. Therefore,
we consider actively querying critical attribute values and
instance labels. Missing attribute characteristics are obtained
from lease transaction records. The rental fee corresponds to
the attribute query cost qi, 1 ≤ i ≤ d. The selected critical cus-
tomers are assigned evaluation labels by experienced experts.
Experts are paid for each evaluation of the customer, which
corresponds to the label query cost qd+1.

For classic active learning, learners interact with experts to
actively obtain instance labels [18]. The fundamental issue is
to select the most critical instances. We consider high-quality
customer classification as an example, in which there are no
missing bank card access transaction data. We only consider
how to select critical customers, and then hand them over to
experts for labeling. Additionally, another scenario is AFA [8].
The assumption is that additional features can be obtained at a
cost, such as leasing transaction records from other credit card
companies. However, this scenario does not consider obtaining
labels through queries.

Finally, we discuss the most recent cost-sensitive learning
scenario. Zhang and Zhang [44] proposed an evolutionary
cost-sensitive extreme learning machine. The misclassification
cost matrix is unknown. The proposed evolutionary cost-
sensitive framework guides users to freely and automatically
determine task-specific cost matrices. In contrast, we consider
the fixed misclassification cost matrix provided by the user.

B. Problem Definition

Now, we present the problem definition.
Problem 1: Cost-Sensitive Active Learning for Incomplete

Data
Input: An ICS-DS S = (X, y, W, M, q).
Output: The set of queries Q ⊂ [1, . . . , n]× [1, . . . , d+ 1],

and the predicted/queried label vector y′ = (y′1, y′2, . . . , y′n)T .
Optimization Objective:
min total cost =∑

(i,j)∈Q qj +∑n
i=1 myiy′i .

Here, the input is an ICS-DS, where missing attribute values
and labels can be obtained at a cost. The outputs include the
set of queried attribute values Q, and the predicted/queried
label vector y′. The optimization objective is to minimize the
total cost. Here,

∑
(i,j)∈Q qj includes the query cost of both

attribute values and labels. myiy′i is the misclassification cost

TABLE I
VARIOUS COST REPRESENTATIONS

of classifying an instance with the label yi as y′i. It is 0 when
yi = y′i; hence, we do not distinguish queried instances from
the predicted ones.

IV. PROPOSED ALGORITHM

In this section, we present our CALS algorithm. First, we
define a new data model and propose the cost-sensitive active
learning problem. Second, we discuss three key technologies
of our approach, including the initial training set construction,
attribute value and label cost/benefit evaluation, and train-
ing set incremental upgrades. Finally, we present the CALS
algorithm with complexity analysis.

A. Framework

In the learning process, we should obtain the values of some
attributes or labels which are more important. Therefore, the
key issue is: how to uniformly evaluate the cost/benefit of
attribute values and labels, and dynamically select them for
query?

We present a cost minimization method to address the afore-
mentioned issue. In each iteration, the new method selects
an instance xs∗ from the unlabeled set UII with the minimal
instance cost, that is

s∗ = arg min
i∈UII

f (xi) (2)

where

f (xi) = min{fa(xi), fl(xi)} (3)

is called the instance cost, fa(xi) is the minimal instance cost
with attribute query, and fl(xi) is the instance cost with label
query. Note that U is the instance set, UI is the training set,
and UII is the unlabeled set.

The cost minimization method solves the proposed issue
from the following two aspects. The designed cost functions
fa(xi), fl(xi) obtain a unified evaluation of the cost/benefit of
the attribute/label query. fa(xi) considers the tradeoff between
the misclassification cost and attribute filling cost, and selects
the optimal attribute filling scheme. We elaborate on the above
steps in Sections IV-C1–IV-C3. fl(xi) considers the label query
cost qd+1, and instance completeness and representativeness
to achieve an overall evaluation of the label cost/benefit. We
describe this technique in detail in Section IV-C4. The general
calculation process includes various cost types, as detailed in
Table I.

In contrast, (2) and (3) indicate the dynamic selection of
attribute values and labels. Equation (3) compares the attribute
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and label cost/benefit for each instance and records the min-
imal cost scheme. Equation (2) selects the minimal cost
instance in each iteration and performs the corresponding oper-
ation. In subsequent iterations, the model is retrained and the
attributes and label cost/benefit are reevaluated. We describe
this technique in Section IV-D.

B. Construct the Initial Training Set

According to Problem 1, the extreme case of label scarcity
is that there is no class label at all. Therefore, for a more
general situation, the first key issue is: how to construct the
initial training set? Inspired by density peak clustering [45],
we define the significance γ (xi) of each instance.

The labels of min{√n, 0.1n} instances with the largest γ

are queried. Such a setting is adaptive to both small and big
datasets. Respective instances form the initial training set UI ,
which is represented by their indices. Let U = [1, . . . , n] indi-
cates the set of all instances. The unlabeled instance set is
UII = U−UI . Note that UI and UII will change in the learning
process.

The calculation of instance significance consists of the
following three steps. First, the instance density is given
by [45]

ρ(xi) =
∑

j∈[1..n],i 	=j

e
−

(
dist(xi,xj)

dc

)2

(4)

where dist(xi, xj) is the distance between xi and xj, and dc is
the cutoff distance.

Second, the instance minimal distance is given by [45]

δ(xi) =
{

maxj∈[1,...,n](dist(xi, xj)), ρ(xi)is maximal
minj:ρ(xi)>ρ(xj)(dist(xi, xj)), otherwise.

(5)

Third, the instance significance is given by

γ (xi) = ρ(xi) · δ(xi). (6)

C. Unified Evaluation and Dynamic Selection of Attribute
Values and Labels

1) Train a Softmax-Based Probabilistic Model: First, we
build a softmax-based probabilistic model [46] to establish
the association between attributes and labels, that is

P
(
y′i = j|xi; θ

) = eθT
j xi

∑k
l=1 eθT

l xi
(7)

where θ = (θij)k×(d+1) is the parameter matrix, and θi =
(θi1, . . . , θi(d+1)). Equation (7) obtains the conditional prob-
ability of xi belonging to class y′i.

Second, the cost function is given by

J(θ) = − 1

|UI|
∑

i∈UI

∑

j∈[1..k]

I
(
y′i = j

)
log P

(
y′i = j|xi; θ

)
. (8)

i represents the ith instance, and j represents the category. The
indicator function I(·) = 1 when · is true and 0 otherwise.
The cost function J(θ) represents the deviation between the
predicted value and the true value. We solve the cost function
J(θ) to obtain the optimal parameter θ .

Finally, we obtain the optimal parameter θ by minimizing
J(θ). Gradient descent [47] is employed for this purpose with
the following iteration:

θj := θj − α∇θj J(θ), j = 1, 2, . . . , k (9)

where α is the step size, and ∇θj J(θ) is the gradient. The
iteration repeats until θ does not change, or the number of
iterations reaches a predefined value.

2) Calculate the Instance Cost With Attribute Value
Filling: Different attribute value filling schemes have different
cost/benefit. We design a function ff (xi) to consider various
attribute value filling schemes.

First, for (i, j) ∈ W, we adopt the method in [48] to esti-
mate the expected value. In addition, we provide a variety of
missing value estimation methods, including average filling,
segmented cubic spline interpolation filling, or conformal seg-
mented cubic spline interpolation filling. For example, for the
average filling, the expected value of the jth attribute is

x·j =
∑

(i,j) 	∈W xij

|{(i, j) 	∈W}| . (10)

For (i, j) ∈W, we fill xij with the expected value x·j.
Any F ⊆ wi corresponds to an attribute filling scheme for

instance xi. Naturally, there are 2|wi| attribute filling schemes
for xi. An example of attribute filling is presented at the mid-
dle of Fig. 1. For instance x3, |w3| = 3, we obtain eight
attribute filling schemes, i.e., ∅, {1}, {2}, {4}, {1, 2}, {1, 4},
{2, 4}, {1, 2, 4}.

Second, we calculate the expected misclassification cost for
any given filling method. We compute the hypothesis function
hθ (xi) with the optimal θ obtained through (8) and (9). The
hypothesis function is

hθ (xi) =

⎡

⎢
⎢
⎢
⎣

P
(
y′i = 1|xi; θ

)

P
(
y′i = 2|xi; θ

)

...

P
(
y′i = k|xi; θ

)

⎤

⎥
⎥
⎥
⎦
= 1

∑k
l=1 eθT

l xi

⎡

⎢
⎢
⎢
⎢
⎣

eθT
1 xi

eθT
2 xi

...

eθT
k xi

⎤

⎥
⎥
⎥
⎥
⎦

. (11)

Denoting the filled instance by xF
i , the prediction should

maximize the probability. Hence, the predicted label is

j∗ = arg max
1≤j≤k

P
(
y′i = j

∣
∣xF

i ; θ
)
. (12)

With this prediction, the expected misclassification cost is

fm
(
xF

i

) =
∑

1≤j≤k

P
(
y′i = j

∣
∣xF

i ; θ
)

mjj∗ . (13)

Third, we calculate the instance cost with attribute filling.
The instance cost with attribute filling is

ff
(
xF

i

) = fm
(
xF

i

)+
∑

j∈F

qj (14)

where fm(xF
i ) is the expected misclassification cost with the

filled values in F.
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3) Obtain the Minimal Instance Cost With Attribute Filling:
Which attribute values should be actually queried for vari-
ous attribute filling schemes? The scheme with a minimum
ff (xF

i ) is optimal. We obtain the cost function fa(xi) by using
a greedy search strategy. Therefore, the minimal instance cost
with attribute filling is given by

fa(xi) = min
F⊆wi

ff
(
xF

i

)
. (15)

In the meanwhile, we obtain the optimal missing value index
subset

F∗ = arg min
F⊆wi

ff
(
xF

i

)
. (16)

Attribute values in the subset F∗ are considered as critical
attribute values to be queried. Note that ff (xF

i ) is the instance
cost with attribute filling, fa(xi) is the minimal instance cost
with attribute filling, and F∗ is the subset of critical attribute
values to be queried.

4) Calculate the Instance Cost With Label Query: The
query of a label not only obtains the true class of the current
instance but also increases the training set. Hence, there is an
additional benefit of the label query. The benefit is influenced
by the completeness of the instance, as well as its significance.

Definition 2: Let γ (xi) be the significance of instance xi.
The benefit of label yi is

b(yi) = d − |wi|
d

γ (xi)

γ ∗
(17)

where (d − |xi|/d) is the completeness of xi and γ ∗ =
max γ (xi) is the maximal value of γ .

Therefore, the instance cost with label query is given by

fl(xi) = (1− b(yi))qd+1 (18)

where the benefit is expressed as a negative cost.

D. Update the Training Set

We select the minimal cost instance through a unified
cost/benefit evaluation. Therefore, the third key issue is: con-
sidering the impact of the cost/benefit of attributes/labels, how
to classify the selected instance to enhance the model?

Here, we classify the selected instance xs∗ . If fa(xs∗) <

fl(xs∗), we query the critical attribute values according to the
corresponding strategy, and calculate the probability P(y′i =
j|xs∗; θ) to predict the label. Otherwise, we query the label
directly. If xs∗ is completed after querying the instance label,
it will be added to the training set UI. With the new training
set, we retrain the model and update the parameter θ . The
cost and benefit of the attribute/label will change. This pro-
cess continues until all labels are obtained through query or
prediction.

E. Algorithm Design

Algorithm 1 describes the CALS algorithm. It consists of
model building, unified evaluation and dynamic selection of
attribute values and labels, and model updating.

Line 5 calculates P(y′i = j|xi; θ). We focus on nonunique
solutions and overflow issues. First, according to (19), θj − ϕ

Algorithm 1 CALS
Input: An ICS-DS S = (X, y, W, M, q).
Output: Predicted labels y′ = [y′i]n×1.

1: UI ← ∅; U← {1, 2, . . . , n}; UII ← {1, 2, . . . , n};
2:

[
y′i

]
n×1 ← [− 1, . . . ,−1];

//Step 1. Select the initial training set UI
3: UI ← select(X, min{√n, 0.1n}); // select critical instances

by Eq. (6)
4: UII ← U − UI;

//Step 2. Unified evaluation and dynamic selection
5: repeat
6: Obtain the parameter [θ ]k×(d+1) by Eq. (9);
7: for (i← 1 to |UII|) do
8: Obtain fa(xi) and F∗ by Eqs. (15) and (16);
9: Obtain fl(xi) by Eq. (18);

10: Obtain f (xi);
11: end for
12: s∗ = arg mini∈UII

f (xi);
//Step 3. Classify instance xs∗ and updating UI

13: y′s∗ ← classify(xs∗ , F∗);
14: UII ← UII − s∗;
15: if (xs∗ is complete) then
16: UI ← UI ∪ s∗;
17: end if
18: until (UII == ∅)
19: return y′ ← [y′i]n×1;

is another optimal solution. The solution θj is not unique

e(θj−ϕ)T xi

∑k
l=1 e(θl−ϕ)T xi

= eθT
j xi e−ϕT xi

∑k
l=1 eθT

l xi e−ϕT xi
= eθT

j xi

∑k
l=1 eθT

l xi
. (19)

To solve the nonunique problem, we use the method in [49]
to add the weight attenuation term (λ/2)

∑k
i=1

∑d
j=0 θ2

ij .
Therefore, the improved cost function

J(θ) = − 1

|UI|
∑

i∈UI

∑

j∈[1..k]

I(yi = j) log P(yi = j|xi; θ )+ λ

2

k∑

i=1

d∑

j=0

θ2
ij

(20)

is strictly convex. We can obtain a unique solution.
In addition, overflow and underflow can be resolved by

eθT
j xi−A

∑k
l=1 eθT

l xi−A
=

e
θT
j xi

eA

∑k
l=1 eθT

l xi

eA

= P
(
y′i = j|xi; θ

)
(21)

where A is the largest of all θT
j xi. The maximum value of

θT
j xi − A is 0 to avoid overflow. In ([

∑k
l=1 eθ

Txi
l ]/eA), at least

one entry is 1 to avoid underflow. Therefore, no overflow and
underflow will occur.

Table II presented the time complexity of CALS. The time
complexity of Algorithm 1 is

O
(

dn2
)
+ O

(
n2

)
+ O

(
2|ωi|n

)
+ O(n) = O

(
dn2 + 2|ωi|n

)

(22)

where d and n are the number of attributes and instances,
respectively.
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TABLE II
COMPUTATIONAL COMPLEXITY OF ALGORITHM 1

TABLE III
DATASET INFORMATION

V. EXPERIMENTS

In this section, we compare CALS with four sets of
algorithms, including cost-sensitive learning algorithms, cost-
sensitive active learning algorithms, missing value filling
algorithms, and AFA algorithms. Test data includes synthetic,
benchmark, and field datasets. The CALS source code is
available at https://github.com/FanSmale/CALS.

A. Datasets and Evaluation

Table III lists 12 datasets, including three synthetic datasets,
eight UCI datasets, and one obtained from the literature [50].
Data types include continuous and discrete, as well as mixed
types.

The performance of the CALS algorithm is evaluated by the
accuracy and the average cost

average cost =
∑

(i,j)∈Q qj +∑n
i=1 myiy′i

n
. (23)

Generally, the cost matrix is set by the user according to the
actual scenario [51], [52]. For example, Zhou and Liu [52]
provided three cost matrix setting methods considering vari-
ous scenarios. For balanced data, the cost of misclassification
is the same for all categories. For imbalanced data, the cost
of misclassification is inversely proportional to the number of
instances in its category. Considering the most common sce-
nario, we set the cost mi,j = 2, and q1 = q2 = · · · = qd = 0.2,
qd+1 = 1. We adopt the same cost setting for both CALS and
the comparison algorithms.

B. Comparison With Cost-Sensitive Learning Algorithms

For the completeness of the experiment, we first compare
the CALS algorithm with nine supervised cost-sensitive learn-
ing algorithms: 1) naïve Bayes (NB); 2) sequential minimal
optimization (SMO); 3) IBK; 4) attribute selected classi-
fier (ASC); 5) multiclass classifier (MCC); 6) decision table
(DT); 7) J48; 8) random forest (RF); and 9) Hoeffding tree
(HT). Nine cost-sensitive learning algorithms are tested using
Weka’s [53] built-in codes. The missing data first perform
simple mean filling.

Fig. 2 shows the comparison of the average cost of ten
algorithms at 10%, 20%, 30%, 40%, and 50% missing rates.
For Jain, Sizes5, Iris, Cleveland, Led7digit, Skin, and Titanic
datasets, the average cost of CALS is significantly lower than
other algorithms. For example, for Size5, the average cost is
0.3136 at the 50% missing rates. Only for MovementAAL, the
average cost is higher than the other comparison algorithms.

C. Comparison With Cost-Sensitive Active Learning
Algorithms

Next, we compare the CALS algorithm with six cost-
sensitive active learning algorithms: 1) undersampling
(US) [54]; 2) SMOTE [55]; 3) oversampling (OS) [56];
4) threshold moving (TM) [57]; 5) hard ensemble (HE) [58];
and 6) soft ensemble (SE) [58]. First, we run the active learner
to obtain the training set. Second, the training set is provided
to comparison algorithms to construct a classifier. Third, the
results of our algorithm and the comparison classifiers are
compared. The missing data perform simple mean filling.

Fig. 3 shows the average cost comparison of CALS and six
cost-sensitive active learning algorithms at 10%, 20%, 30%,
40%, and 50% missing rates. For Pathbased, Jain, Sizes5,
Iris, Cleveland, Led7digit, Australian, and Skin datasets, the
CALS algorithm is significantly better than the other six algo-
rithms. Meanwhile, CALS is more stable than the other six
cost-sensitive active learning algorithms. CALS performance
fluctuates only on the Pathbased and Breast datasets.

Table IV compares the accuracy and average cost of six
algorithms at 50% missing rate. The Friedman and Nemenyi
post hoc tests [59] were used to analyze the performance of
the algorithms. For average cost, the average ranking obtained
through the Friedman test is 3.8750, 2.8750, 4.1250, 4.5417,
5.7917, 5.4583, and 1.3333, respectively. For accuracy, the
average ranking obtained through the Friedman test is 3.8570,
3.2917, 4.0417, 4.517, 5.7917, 5.4583, and 1.0000, respec-
tively. In terms of average cost and accuracy, CALS obtains
the first place in the ranking computed by Friedman’s test.
For average cost, CALS has the lowest average cost in nine
datasets, such as Jain, Sizes5, etc.

For MovementAAL, SMOTE performance is better than
CALS. MovementAAL contains a time stream of measured
radio signal strength. This is typical time-series data. CALS
considers only one instance at a time, and each instance is con-
sidered independently. Therefore, for MovementAAL, CALS
cannot achieve the best performance.

Furthermore, we use the Nemenyi post test to analyze
whether there are significant differences. Table V presents
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 2. Comparison of the average cost between CALS and nine supervised cost-sensitive classifier algorithms at 10%–50% missing rate. (a) Pathbased.
(b) Jain. (c) Sizes5. (d) Iris. (e) Breast. (f) Cleveland. (g) Led7digit. (h) Australian. (i) Tic-tac-toe. (j) MovementAAL. (k) Skin. (l) Titanic.

TABLE IV
AVERAGE COST BETWEEN CALS AND SIX COST-SENSITIVE ACTIVE LEARNING ALGORITHMS WHEN THE DATASETS ARE MISSING AT 50%. THE

BEST RESULTS ARE HIGHLIGHTED IN BOLDFACE

TABLE V
COMPARISON OF POST HOC BETWEEN CALS AND SIX COST-SENSITIVE

ACTIVE LEARNING ALGORITHMS

the p values obtained for the Nemenyi test. The significance
level of α = 0.05. In terms of average cost and accuracy,
CALS is significantly better than HE, SE, TM, US, and OS.

For example, for average cost, for CALS against the HE,
p = 0.000000; for CALS against the SE, p = 0.000003.

D. Comparison With Missing Value Imputation and Active
Feature Acquisition Algorithms

Finally, we compare the CALS algorithm with two miss-
ing value filling algorithms: 1) BPCA [48] and 2) GESI [60]
and two AFA algorithms: 1) CALF [61] and 2) AFASMC[62].
BPCA [48] is a well-known microarray missing value estima-
tion method. GESI [60] is the typical nonparametric neural
network ensemble method of multiple imputation. CALF [61]
is an active feature value acquisition method. AFASMC [62]
is a method of AFA through a supervision matrix.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Southwest Petroleum University. Downloaded on June 25,2022 at 00:47:43 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: COST-SENSITIVE ACTIVE LEARNING FOR INCOMPLETE DATA 9

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 3. Comparison of the average cost between CALS and six cost-sensitive active learning algorithms at different missing rates. (a) Pathbased. (b) Jain.
(c) Sizes5. (d) Iris. (e) Breast. (f) Cleveland. (g) Led7digit. (h) Australian. (i) Tic-tac-toe. (j) MovementAAL. (k) Skin. (l) Titanic.

TABLE VI
AVERAGE COST OF CALS AND MISSING VALUE FILLING ALGORITHMS WHEN THE DATASETS ARE MISSING AT 50%. THE BEST RESULT IS

HIGHLIGHTED IN BOLDFACE

Fig. 4 shows the average cost comparison of CALS, CALF,
GESI, BPCA, and AFASMC algorithms at 10%, 20%, 30%,
40%, and 50% missing rate. For Jain, Sizes5, Iris, Cleveland,
Led7digit, Skin, and Titanic, the CALS algorithm is signifi-
cantly better than GESI, BPCA, and CALF. For example, for
Titanic, the average cost of CALS is 0.5867 at 50% missing
rate. For Jain, the average cost of CALS is only 0.8733 at
50% missing rate.

Table VI compares the accuracy and average cost at the 50%
missing rate. For average cost, the average ranking obtained

by the Friedman test is 4.0833, 3.25, 3.1667, 2.7500, and 1.75,
respectively. For accuracy, the average ranking obtained by the
Friedman test is 3.1667, 3.1667, 3.1667, 3.3333, and 2.1667,
respectively. In terms of average cost and accuracy, CALS
obtain the first place in the ranking computed by Friedman’s
test. The CALS algorithm has the lowest average cost in seven
datasets, such as Jain, Sizes5, etc.

Furthermore, we adopt the Nemenyi post hoc test to analyze
whether there are significant differences. Table VII presents
the p values obtained for the Nemenyi test. The significance
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 4. Comparison of the average cost between CALS and missing value filling algorithms at different missing rates. (a) Pathbased. (b) Jain. (c) Sizes5.
(d) Iris. (e) Breast. (f) Cleveland. (g) Led7digit. (h) Australian. (i) Tic-tac-toe. (j) MovementAAL. (k) Skin. (l) Titanic.

TABLE VII
COMPARISON OF POST HOC BETWEEN CALS AND MISSING VALUE

FILLING ALGORITHMS

level of α = 0.05. For average cost, for CALS against the
CALF, p = 0.0003, for CALS against the GESI, p = 0.0201;
for CALS against BPCA, p = 0.0282; and for CALS against
AFASMC, p = 0.1213. CALS significant better than CALF,
GESI, BPCA, and AFASMC.

E. Comparison on Practical Logging Interpretation Data

We adopt the actual logging interpretation data, which con-
tain 4149 instances and seven attributes. The decision attribute
is binary: gas layer or not.

The decision attributes are gas and nongas layers. The
objective is to predict the geological stratification. The actual
missing rate is 28%. For these data, if the traditional NB clas-
sifier is used, the prediction accuracy is only 0.6510. A large
number of missing attribute values hinder the availability and

TABLE VIII
COMPARISON OF ON LOGGING INTERPRETATION DATA BETWEEN CALS

AND MISSING VALUE FILLING ALGORITHMS

learnability of data. We adopt CALS, CALF, GESI, BPCA,
and AFASMC algorithms to classify the logging interpretation
to improve prediction accuracy. Table VIII shows the accuracy
and average cost of several comparison algorithms. The CALS
algorithm increases the prediction accuracy to 0.8002 and the
cost is reduced to 0.4242. CALS has good performance in the
actual field data.

F. Discussion

We are now able to analyze and summarize the experimental
results. CALS was more accurate than popular cost-sensitive,
cost-sensitive active learning, missing value imputation, and
AFA algorithms. It was effective for most datasets with
different distributions and shapes. It obtained excellent clas-
sification performance through querying few critical attributes
and instances.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Southwest Petroleum University. Downloaded on June 25,2022 at 00:47:43 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: COST-SENSITIVE ACTIVE LEARNING FOR INCOMPLETE DATA 11

However, the performance of CALS was influenced by the
selection of the initial instances. The initial training set needed
to have instances of all category labels; otherwise, it was
impossible to obtain an accurate cost evaluation model. This
is the reason that the datasets Skin and Titanic did not achieve
the best performance.

VI. CONCLUSION AND FURTHER WORKS

Accurately classifying data with label acquisition expen-
sive and attributes missing is a challenging but meaningful
issue. We proposed the CALS algorithm to resolve this issue.
First, we defined the new data model to consider the incom-
plete data, attribute query cost, and label query cost. Second,
we designed the new problem to consider various inputs,
outputs, and the optimization objective. Third, we discussed
the optimization method to obtain a unified evaluation of
attributes/labels. Finally, we presented the CALS algorithm to
consider the specific implementation of the method. Extensive
empirical studies on both benchmark datasets and real-world
applications demonstrated the superiority and robustness of
our proposed method.

From the viewpoint of algorithms and applications, the
following research problems merit further investigation.

1) Optimize the Selection of Initial Instances: The selec-
tion of the initial training set affects the quality of the
model. Therefore, the selection strategy needs to be
further optimized to improve the performance of CALS.

2) Deal With Incomplete and Noisy Data: Real data typ-
ically contain a certain proportion of noise. Naturally,
it is desirable to extend the CALS algorithm to handle
more complex classification scenarios, including noise
labels.

3) Consider More Uncertainty: A large number of appli-
cations will be in open scenarios and encounter many
uncertainties. An important aspect of future work will
be to keep the algorithm in an open environment, con-
sider uncertainty as much as possible, and obtain a set
of solutions.
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