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Abstract

In this work, we identify the “2D-Cheating”001
problem in 3D LLM evaluation, where these002
tasks might be easily solved by VLMs with003
rendered images of point clouds, exposing in-004
effective evaluation of 3D LLMs’ unique 3D005
capabilities. We test VLM performance across006
multiple 3D LLM benchmarks and, using this007
as a reference, propose principles for better as-008
sessing genuine 3D understanding. We also009
advocate explicitly separating 3D abilities from010
1D or 2D aspects when evaluating 3D LLMs.1011

1 Introduction012

Recent advances in Large Language Models (Ope-013

nAI, 2022, 2023) have led to the development of014

Vision-Language Models (VLMs) (Liu et al., 2023;015

OpenAI, 2024). To overcome their lack of ground-016

ing in the real 3D physical world (Hong et al.,017

2023), researchers developed 3D LLMs (Qi et al.,018

2024; Xu et al., 2023) for 3D processing.019

Given the extreme scarcity of 3D training020

data (Hong et al., 2023; Zhu et al., 2024), many021

approaches leverage existing LLMs and VLMs to022

generate annotations for 3D data (Hong et al., 2023;023

Qi et al., 2023; Xu et al., 2023). This reliance on024

2D and language (1D) priors raises a fundamental025

question: What capabilities do 3D LLMs possess026

that truly differentiate them from 2D VLMs?027

To explore this, we revisit some benchmarks028

used for 3D LLM evaluation. Current 3D LLMs029

are primarily evaluated on Q&A or captioning030

tasks (Ma et al., 2024), rather than specific down-031

stream tasks like object detection (Caesar et al.,032

2020; Wang et al., 2021), as LLMs provide a033

general-purpose language interface (Hao et al.,034

2022). As shown in Figure 1, we find some tasks035

can be easily solved by 2D VLMs, indicating that036

they fail to effectively assess the unique capabili-037

1Code and data are available at anonymous github

Figure 1: Example of 2D-Cheating. With rendered
images of the point cloud, VLMs could easily solve
some 3D tasks, and even outperform 3D LLMs.

ties of 3D models. We refer to this phenomenon as 038

2D-Cheating. 039

Specifically, we render point clouds into images 040

to test the performance of VLMs on 3D LLM 041

benchmarks. Experimental results indicate that 042

VLMs can significantly exceed the state-of-the- 043

art performance of 3D models on certain bench- 044

marks. However, on other benchmarks, even with 045

enhanced information, they still fail to achieve the 046

best performance. 047

We argue that tasks where VLMs perform poorly 048

compared to 3D LLMs are those that truly involve 049

unique 3D capabilities. Based on analysis, we 050

(1) propose several principles for designing bench- 051

marks that effectively evaluate true 3D capabilities, 052

and (2) advocate for separating the evaluation of 053

3D capabilities from 2D and 1D aspects when as- 054

sessing 3D LLMs. 055

2 Method 056

2.1 VLM3D 057

As shown in Figure 2, we propose VLM3D, a sim- 058

ple yet general pipeline that adapts VLMs to 3D 059

tasks. Specifically, it first renders point clouds into 060

images and augments queries with few-shot, then 061

feeds them into a VLM. 062
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Figure 2: The VLM3D pipeline. For a given task, we
render the point cloud into images and feed both the
images and the query into a VLM.

2.2 Viewpoint Selection063

Viewpoint of image rendering significantly impacts064

VLM’s input information about the 3D asset. We065

hypothesize that a key limitation of 2D models066

in 3D understanding stems from the viewpoint-067

specific nature of images, whereas point clouds in-068

herently provide a holistic 3D representation. The069

challenges posed by viewpoint dependency include:070

(1) blind spots in areas outside the selected view-071

point; (2) occlusion and overlap of objects; and072

(3) single-surface capture that lacks multifaceted073

geometry. Based on this, we set different viewpoint074

rendering configurations for object and scene point075

cloud benchmarks.076

Object Object point clouds are relatively simple,077

so we use a fixed viewpoint for each benchmark,078

typically the front or side view of most objects.079

Scene Scene point clouds present greater com-080

plexity. To systematically investigate viewpoint081

impacts, we conducted the following experimental082

settings, as all viewpoints illustrated in Figure 3.083

2.2.1 Single View084

In this setting, we follow the common practice (Ma085

et al., 2022) to render images from BEV.086

2.2.2 Multi View087

In this setting, we render images from four fixed088

viewpoints (East, South, West, and North) and com-089

bine them into a multi-view image.090

2.2.3 Oracle View091

In this setting, we conducted experiments on092

the validation set to explore the upper limits of093

VLM3D’s capabilities. We first rendered images094

from all five viewpoints shown in Figure 3, and095

then used the Best-of-N (BoN) method to select096

the optimal view for each question.097

Since LLMs are probabilistic, simply taking the098

highest evaluation score risks inflating the likeli-099

hood of randomly guessing the correct answer. To100

address this, we sampled multiple responses for101

Figure 3: All five viewpoints of an example scene.

Benchmark Metric 3D SOTA VLM3D (GPT-4o)

3D MM-Vet LLM-eval 43.2 58.1 (+14.9)

ObjaverseXL- BLEU-1 32.2 36.2 (+4.0)

LVIS Caption ROUGE-L 35.5 36.8 (+1.3)

CIDEr 78.0 79.3 (+1.3)

Table 1: Results on object benchmarks. The 3D SOTA
models are ShapeLLM-13B and GPT4Point, respec-
tively.

each viewpoint and calculated the average score. 102

The highest average score among all viewpoints 103

was then selected as the oracle view score. 104

2.3 Other Rendering Factors 105

While other factors like rendering style may af- 106

fect image quality, viewpoint selection remains the 107

trickiest due to the difficulty of a unified optimal 108

setup. For each benchmark, we applied a consis- 109

tent set of other rendering configurations across all 110

point clouds to ensure high-quality results. 111

3 Experiments 112

We conducted experiments on the benchmarks in 113

Figure 4, which covered major benchmarks used 114

for evaluating 3D LLMs. 115

3.1 Object Point Cloud Benchmark 116

For object point cloud benchmarks, we use 117

3D MM-Vet (Qi et al., 2024) for Q&A and 118

ObjaverseXL-LVIS Caption (Deitke et al., 2022) 119

for captioning, with results presented in Table 1. 120

3.2 Scene Point Cloud Benchmark 121

We conducted experiments on two widely used 122

scene point cloud benchmarks, ScanQA (Azuma 123

et al., 2021) and SQA3D (Ma et al., 2022). ScanQA 124

evaluates general Q&A, while SQA3D further as- 125

sesses situation understanding. We chose the 3D 126

Baseline as the best-performing model at the time 127

of the benchmark’s release. 128

3.2.1 Single View Evaluation 129

We first conducted the single view evaluation men- 130

tioned in Section 2.2.1, with results in Table 2. 131
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Figure 4: 3D LLM benchmarks tested in our experiments, see detailed introduction in Appendix A.

Benchmark Metric VLM3D VLM3D 3D Baseline 3D SOTA(Qwen2-VL) (GPT-4o)

METEOR 12.8 (-0.3) 14.7 (+1.6) 13.1 20.0 (+6.9)

ScanQA(val) ROUGH 27.9 (-5.4) 25.8 (-7.5) 33.3 49.2 (+15.9)

CIDEr 51.2 (-13.7) 47.2 (-17.7) 64.9 101.4 (+36.5)

SQA3D(test) EM 42.2 (-5.0) 44.8 (-2.4) 47.2 52.6 (+5.4)

Table 2: Single-view results: For ScanQA, baseline
is ScanQA, SOTA is LEO (Huang et al., 2023). For
SQA3D, baseline is SQA3D, SOTA is SIG3D (Man
et al., 2024). Red and green indicate decrease and in-
crease relative to the 3D baseline, respectively.

We observed that these benchmarks often focus132

on specific objects within intricate scenes, with133

single view images frequently missing required134

information. To further explore the upper bound of135

VLMs, we conducted experiments using different136

viewpoints on Qwen2-VL-72B (Wang et al., 2024).137

3.2.2 Multi View Evaluation138

We conducted multi-view evaluation based on the139

settings in Section 2.2.2, with results in Table 3.140

Benchmark Metric SV MV 3D Baseline 3D SOTA

METEOR 12.8 (-0.3) 13.1 (+0.0) 13.1 20.0 (+6.9)

ScanQA(val) ROUGH 27.9 (-5.4) 29.1 (-4.2) 33.3 49.2 (+15.9)

CIDEr 51.2 (-13.7) 54.0 (-10.9) 64.9 101.4 (+36.5)

SQA3D(test) Overall 42.2 (-5.0) 43.2 (-4.0) 47.2 52.6 (+5.4)

Table 3: The result of multi-view. Baseline and SOTA
models are the same in Table 2. SV refers to single-view,
and MV refers to multi-view.

3.2.3 Oracle View Evaluation141

We performed oracle view evaluation using the142

Best-of-N method in Section 2.2.3. For each ques-143

tion, we rendered images from k viewpoints and144

sampled n responses per viewpoint. As shown in145

Figure 5, the result decreases as n increases and146

converges around n = 20, indicating that random-147

ness from selecting the maximum score is effec-148

tively mitigated. The scores are detailed in Table 4.149

Besides the Best-of-N, we explored another150

method called Human-Intuition-Selection (HIS).151

We calculate the centroids of all relevant objects152

of each question and use a heuristic algorithm to153

select the best viewpoint that captures the centroids154

effectively. Details and results are in Appendix B.1.155

Figure 5: Result of BoN on ScanQA(val) with k = 5.
The dashed line represents the 3D baseline ScanQA,
and the solid line shows VLM3D’s performance.

Metric SV BoN(k=4) BoN(k=5) 3D Baseline 3D SOTA

METEOR 12.8 (-0.3) 27.0 (+13.9) 28.2 (+15.1) 13.1 20.0 (+6.9)

ROUGH 27.9 (-5.4) 35.6 (+2.3) 36.9 (+3.6) 33.3 49.2 (+15.9)

CIDEr 51.2 (-13.7) 68.4 (+3.5) 71.2 (+16.3) 64.9 101.4 (+36.5)

Table 4: Result of oracle view on ScanQA(val). the
sample number of BoN is n = 20.

4 Analysis 156

Results reveal that VLM outperforms 3D LLMs us- 157

ing only single view images on these object bench- 158

marks. This suggests that these tasks can be easily 159

solved without specialized 3D representations, indi- 160

cating a lack of effective 3D capability assessment. 161

The limitation may arise from (1) • the inherent 162

simplicity of these object point clouds, and (2) • 163

these tasks primarily require only surface-level in- 164

formation that could be equally extracted from a 165

simple rendered image. See more task examples in 166

Appendix A.1 and Appendix A.2. 167

4.1 Scene Point Cloud 168

4.1.1 Poor Performance with Single View 169

In these scene benchmarks, even the most advanced 170

VLMs consistently underperform top 3D models, 171

• revealing their limitations in handling complex 172

3D scenes. 173

Besides, • many benchmarks rely on text simi- 174

larity metrics for evaluation, which is overly rigid 175

given the flexible nature of natural language. See 176

case study in Appendix C.1. 177
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Figure 6: An example of task redesign, with the original task on the left and the new task on the right.

4.1.2 Challenges of Multi View Understanding178

As shown in Table 3 & 4, providing multi-view179

images only brings a slight improvement. In con-180

trast, oracle view leads to a significant boost. No-181

tably, when setting k = 4, all candidate viewpoints182

of Best-of-N are included in the multi-view in-183

puts, theoretically providing sufficient information.184

However, • results indicate that VLMs struggle185

to form a unified understanding of a scene from186

multi-view.187

4.1.3 Enhancement with Oracle View188

As shown in Table 4, oracle view performance sig-189

nificantly surpasses the 3D baseline, confirming190

that providing good viewpoints greatly enhances191

VLM’s potential to solve these tasks through 2D-192

Cheating. However, dynamically providing the193

oracle viewpoint for each question considerably194

simplifies the task by identifying and presenting195

the key information from the complete scene.196

Besides, the performance of BoN still lags be-197

hind the 3D SOTA. This suggests that, • even198

provided with a favorable view, VLMs still strug-199

gle to match the best performance of 3D LLMs in200

some tasks.201

4.1.4 Failure of HIS Method202

Table 5 shows that HIS performs significantly203

worse than Best-of-N. Through case studies, we204

identify three key factors: (1) • Selecting the best205

viewpoint for detail items in complex scenes with206

intuition is challenging, often leading to occlusions.207

(2) • Limited ground truth reveals a clear pref-208

erence, as shown in Appendix C.2. While multi-209

ple viewpoints all provide sufficient information,210

BoN selects the one that aligns most closely with211

the ground truth. (3) • Many questions rely on212

common sense, not the specific details of the point213

cloud, as shown in Appendix C.3. Specific informa-214

tion in HIS viewpoints might even lead to a worse215

score, compared to answering leveraging world216

knowledge with an unrelated viewpoint in BoN.217

5 Principles For Effective 3D Evaluation 218

Based on the analysis, we propose the following 219

principles for effective 3D capabilities evaluation 220

of 3D LLMs.2 We applied these principles to re- 221

design a task, as shown in Figure 6. 222

• Point Cloud Selection A complex point cloud 223

should be selected, such as a point cloud of scenes 224

or objects with more intricate structures. 225

• Task Focus Tasks should go beyond general 226

surface-level information, diving into the intricate 227

details of 3D assets. This includes the structural 228

specifics of individual objects and the finer items 229

within complex scenes. Furthermore, questions 230

should prioritize aspects that cannot be easily an- 231

swered with images from any viewpoints. 232

• Context Specific Inquiry Avoid overly gen- 233

eral questions, ask the unique aspects of the current 234

3D asset, and try to “violate common sense” to test 235

genuine understanding of 3D input. 236

• Evaluation Methodology For problems with 237

multiple reasonable answers, include various pos- 238

sible answers to accommodate more reasonable 239

results and varying detail levels. Besides, avoid 240

text similarity metrics and instead rely on LLMs 241

for more flexible assessments. 242

6 Conclusion 243

This paper identifies the 2D-Cheating problem in 244

current 3D LLM evaluation, compares VLM perfor- 245

mance with 3D LLMs across various benchmarks, 246

and provides principles for assessing real 3D ca- 247

pabilities in 3D LLMs. However, this does not 248

imply that 3D LLMs can ignore the ability to solve 249

tasks vulnerable to 2D-Cheating. Therefore, we 250

emphasize the need to deliberately decouple the 251

evaluation of 3D capabilities from 1D and 2D ca- 252

pabilities to ensure that core 3D evaluations are not 253

confused or overlooked. 254

2The analyses leading to each principle are marked with
corresponding colored circular markers in the preceding text.
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7 Limitations255

Our evaluation may not fully capture the capabil-256

ities of VLMs. First, the 3D LLMs were trained257

on the benchmark’s training set or similar tasks,258

whereas we only adapted VLMs to these bench-259

marks through few-shot prompting. Additionally,260

rendering point clouds into images inherently loses261

information compared to using real photographs.262

These factors could limit the assessment of VLMs’263

real capability and may have weakened the ob-264

served 2D-Cheating issue.265

Furthermore, our experiments were conducted266

solely on the Qwen2-VL and GPT-4o, which may267

not fully represent the performance of all available268

VLMs. The number of benchmarks we tested was269

limited, meaning the results might not generalize270

across a broader set of tasks. Ideally, a new bench-271

mark that aligns with these principles would be de-272

veloped, but due to constraints in space, resources,273

and other practical considerations, we leave this for274

future work.275

8 Ethics Statement276

This research on 3D LLM benchmarks adheres277

to ethical principles by exclusively utilizing pub-278

licly available data and maintaining transparency279

through open-source code. Our study does not in-280

volve any human annotation or privacy concerns.281

We do not anticipate any potential risks from this282

methodological study.283
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A Benchmarks in Experiments374

To the best of our knowledge, given the nascent de-375

velopment of 3D LLMs, there is currently no dedi-376

cated and representative benchmark for their evalu-377

ation. We select representative benchmarks for 3D378

LLM evaluation: 3D MM-Vet and ObjaverseXL-379

LVIS Caption were proposed by model creators (Qi380

et al., 2024, 2023), while ScanQA and SQA3D381

are previously established 3D question-answering382

benchmarks (Azuma et al., 2021; Ma et al., 2022)383

that have been widely adopted in 3D LLM assess-384

ments.385

A.1 3D MM-Vet386

3D MM-Vet (Qi et al., 2024) is a benchmark de-387

signed to evaluate multi-modal large language mod-388

els in the context of 3D comprehension, particu-389

larly for embodied scenarios. The benchmark in-390

cludes the following categories: General Recogni-391

tion, Knowledge, Language Generation, Spatial392

Awareness, and Embodied Interaction.393

Examples of each task type are shown below, us-394

ing the same point cloud input depicted in Figure 7.395

Figure 7: Example rendered image of a point cloud in
3D MM-Vet

• General Visual Recognition:396

Question: What is this?397

Answer: There’s a board, on which are differ-398

ent kinds of sushi, one dish of Soy sauce, one399

dish of wasabi and chopsticks.400

• Knowledge:401

Question: How many sushi will there be if 2402

more sushi are added?403

Answer: There will be 8 sushi if 2 are added.404

• Language Generation:405

Question: Describe its cuisine culture in de-406

tail.407

Answer: Sushi is a kind of Japanese cuisine,408

the main material is vinegar, sugar, salt sea- 409

soning, fat, and slightly sweet Japanese pearl 410

rice cooked into vinegar rice, after cooling 411

with fish, seafood, vegetables, eggs, or other 412

meat and other ingredients. 413

• Spatial Recognition: 414

Question: Which sushi is closer to the chop- 415

sticks, The white sushi or the black sushi? 416

Answer: The black sushi is closer to the chop- 417

sticks. 418

• Embodied Interaction: 419

Question: Give me steps to feed me eat this 420

dish. 421

Answer: Step 1: Pick up chopsticks. Step 2: 422

Pick up the sushi with chopsticks. Step 3: Dip 423

in soy sauce and mustard. Step 4: Move the 424

chopsticks to get the sushi into your mouth. 425

A.2 ObjaverseXL-LVIS Caption 426

GPT4Point (Qi et al., 2023) utilizes the Objaverse 427

dataset, aligning it with LVIS categories (Gupta 428

et al., 2019), to create the Objaverse-LVIS dataset. 429

In this dataset, scenes featuring complex environ- 430

ments such as indoor houses or outdoor parks are 431

excluded, focusing instead on scenarios involving 432

individual objects or combinations of multiple ob- 433

jects. 434

The ObjaverseXL-LVIS benchmark consists of 435

two tasks: 3D object point cloud captioning and 436

3D point cloud question answering. Since only 437

the captioning portion of the dataset is open-source, 438

our experiments were conducted solely on this part. 439

Figure 8 and 9 show two examples of captions. 440

Figure 8: Caption: A red and blue gradient teapot with
three spouts.

Figure 9: Caption: A Mexican food cart decorated with
traditional Mexican cuisine, topped with a sombrero
hat.
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Figure 10: Examples from SQA3D. Image from Ma et al., “SQA3D: Situated Question Answering in 3D Scenes”,
ICLR 2023, used under CC BY 4.0 license.

A.3 ScanQA441

ScanQA (Azuma et al., 2021) was created for the442

3D-QA task using RGB-D scans of indoor scenes443

and annotations from the ScanNet dataset. The444

dataset includes both question-answer pairs and445

3D object localization annotations, making it one446

of the largest datasets for specifying object prop-447

erties in 3D scenes via question-answering. The448

benchmark includes the following task categories:449

Place, Number, Color, Object nature, Object450

and Other.451

Examples of each task type are shown below,452

using the same point cloud input depicted in Fig-453

ure 11.454

Figure 11: Example rendered image of a point cloud of
the scene in ScanQA

• Place:455

Question: Where is the couch located?456

Answer: behind tables/ near small table/457

against wall/ behind small round tables458

• Number:459

Question: How many wooden tables are on460

either side of the blue couch?461

Answer: 3462

• Color:463

Question: What color is the couch? 464

Answer: blue/ dark blue 465

• Object nature: 466

Question: What type of chair is next to the 467

round brown table? 468

Answer: dark blue couch / red ottoman chair 469

Question: What kind of table is right behind a 470

long black chair? 471

Answer: round table / light brown round table 472

Question: What shape is the wooden table? 473

Answer: round/ circular round shape 474

• Object: 475

Question: What is the red squared chair un- 476

der? 477

Answer: table/ round table in middle 478

A.4 SQA3D 479

SQA3D (Ma et al., 2022) is a benchmark that tests 480

scene understanding of embodied agents. Given a 481

3D scene and a description of its position, the agent 482

must first understand its situation and then reason 483

and answer the question. The benchmark examines 484

a wide spectrum of reasoning capabilities for an 485

intelligent agent, ranging from spatial relation com- 486

prehension to commonsense understanding, navi- 487

gation, and multi-hop reasoning, with examples in 488

Figure 10. 489
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B Human-Intuition-Selection Method For490

Oracle View Evaluation491

B.1 Method Introduction492

Figure 12: Illustration of the Human-Intuition-Selection
Oracle Viewpoint Method: When the centroid of all rel-
evant objects falls within a colored region, the viewpoint
corresponding to the same color camera is selected as
the oracle view.

ScanQA provides the object_id in Scan-493

Net (Dai et al., 2017) for all relevant objects of494

each question. Based on this information, the HIS495

method retrieves the bounding box and center coor-496

dinates for each relevant object and calculates the497

centroid of all relevant objects. As shown in Figure498

12, the scene is divided into four regions based on499

the camera angles (East, South, West, and North)500

for viewpoint number k = 4. When the overall501

centroid falls within a specific region, the opposite502

viewpoint is selected as the oracle view. For view-503

point number k = 5, we introduce an additional504

central region, and if the centroid falls within this505

area, the BEV viewpoint is chosen as the oracle506

view.507

B.2 Experimental Result508

Metric Single View Oracle View (HIS) Oracle View (BoN)

METEOR 12.8 13.2 30.8
ROUGH 27.9 29.1 39.7
CIDEr 51.2 53.9 77.7

Table 5: Results of Different Oracle View Methods on
ScanQA(val). HIS refers to Human-Intuition-Selection.

C Case Study 509

C.1 Limitations of Text Similarity Metrics 510

Using text similarity metrics for evaluation is too 511

strict and often struggles to fully capture the nu- 512

ances of model responses due to the openness and 513

flexibility of natural language. Following are some 514

examples from SQA3D and ScanQA, which use 515

different text similarity metrics for evaluation: 516

• Task1 (From SQA3D) 517

– Question: “Is the table in front or at my 518

back?” 519

– Ground truth: “back” 520

– VLM3D’s answer: “at my back” 521

– Score: 0 (EM) 522

• Task2 (From ScanQA) 523

– Question: “What shape is the window 524

behind the table?” 525

– Ground truth: “rectangular window”, 526

“rectangular” 527

– VLM3D’s answer: “rectangle” 528

– Score: 0 (BLUE_1), 0 (METEOR), 0 529

(CIDEr), 0 (ROUGE_L) 530

Besides, benchmarks like ObjaverseXL-LVIS 531

and Scan2Cap also employ text similarity metrics 532

that rigidly evaluate syntactic patterns rather than 533

semantic correctness. Such metrics fail to accom- 534

modate the open-domain nature of LLM responses, 535

particularly for VLMs untrained on task-specific 536

datasets to align with prescribed response styles. 537

C.2 Ground Truth Preference 538

C.2.1 3D MM-Vet 539

Figure 13 presents an example from 3D MM-Vet, 540

where the task is to determine if a rusty barrel is 541

perfectly round. The correct answer is “No”, as 542

the barrel is not perfectly round. Both ShapeLLM 543

and GPT-4o reached similar conclusions, with 544

ShapeLLM providing a brief answer that aligns 545

more closely with the ground truth. However, 546

VLM3D(GPT-4o) offered a more detailed explana- 547

tion, resulting in a significantly lower score. It’s 548

worth noting that this benchmark already uses large 549

models to evaluate the answers. 550

C.2.2 ScanQA 551

Here is an example where the Best-of-N method 552

achieved a significantly better score due to its align- 553

ment with ground truth preference: the question 554
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Figure 13: A case of ground truth preference from 3D
MM-Vet.

is “Where is the brown chair located?” and the555

ground truths are “under the circular table” and556

“next to the left table”. The answer provided by the557

Best-of-N method is “on the right side of the ta-558

ble”, based on the input image shown in Figure 14559

(a). The Human-Intuition-Selection method gives560

the answer “on the right side of the table”, using561

the input image shown in Figure 14 (b).562

It is evident that there are many reasonable an-563

swers to this question; however, the ground truth564

prefers responses related to the table. While both565

viewpoints depict the chair, the answer from the566

Human-Intuition-Selection method is influenced567

by the nearby cabinet in its chosen viewpoint, re-568

sulting in a lower score.569

(a) The viewpoint selected by Best-of-N.

(b) The viewpoint selected by Human-Intuition-Selection.

Figure 14: Images used for each oracle view method.
To better present the details, some blank areas in the
images have been cropped.

C.3 General Knowledge Over Specific Details 570

Figure 15 presents several examples from the case 571

study. It is evident that the questions can be re- 572

solved through general world knowledge, without 573

relying on the unique characteristics of the scenes 574

involved. 575

Figure 15: Example tasks from ScanQA.

Besides, here is an example where the Best-of-N 576

method answers the question using an irrelevant 577

viewpoint and still achieves better results. The 578

reason is that the question is too general and can 579

be answered solely based on world knowledge; 580

however, the Human-Intuition-Selection method 581

provides a more specific answer. The question is 582

“What is under the long kitchen counter?” and the 583

ground truths are “brown rectangular kitchen cabi- 584

nets” and “brown kitchen cabinets”. The answer 585
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provided by the Best-of-N method is “kitchen cabi-586

net”, based on the input image shown in Figure 16587

(a). The Human-Intuition-Selection method gives588

the answer “black dishwasher”, using the input589

image shown in Figure 16 (b).590

(a) The viewpoint selected by Best-of-N.

(b) The viewpoint selected by Human-Intuition-Selection.

Figure 16: Images used for each oracle view method.
To better present the details, some blank areas in the
images have been cropped.

In the image used by the Best-of-N method, nei-591

ther the kitchen counter nor kitchen cabinets are592

explicitly shown. However, in a typical kitchen593

layout, the area beneath the kitchen counter is com-594

monly referred to as ’kitchen cabinets’. This can be595

answered using general world knowledge, which596

allows the method to successfully address the597

vague question. In contrast, the Human-Intuition-598

Selection method employs a viewpoint that clearly599

presents the objects related to the question, pro-600

viding a more specific answer: ‘black dishwasher’.601

However, the question is intended to assess the gen-602

eral area beneath the counter as a whole, which603

results in this more specific answer receiving a604

lower score.605

D Experimental Details 606

D.1 Model Size 607

We use Qwen2-VL with 72B parameters in all ex- 608

periments. 609

D.2 Rendering 610

For the two object point cloud benchmarks, we 611

used the Mitsuba renderer due to its efficiency 612

and lightweight nature. For the two scene point 613

cloud benchmarks, which utilize mesh-based point 614

clouds, we used the Blender rendering engine, con- 615

sistent with the methodology used in the original 616

work (Azuma et al., 2021; Ma et al., 2022). 617

We optimized the rendered images by adjusting 618

key parameters such as lighting configurations and 619

point cloud particle size. For more specific details, 620

please refer to our code repository. 621

D.3 Evaluation 622

We replaced the GPT-3.5 model originally used 623

for evaluation in the 3D-MM-Vet benchmark with 624

GPT-4o-mini. 625
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