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Abstract

Previous methods for image geo-localization have typically treated the task as
either classification or retrieval, often relying on black-box decisions that lack
interpretability. The rise of large vision-language models (LVLMs) has enabled
a rethinking of geo-localization as a reasoning-driven task grounded in visual
cues. However, two major challenges persist. On the data side, existing reasoning-
focused datasets are primarily based on street-view imagery, offering limited scene
diversity and constrained viewpoints. On the modeling side, current approaches
predominantly rely on supervised fine-tuning, which yields only marginal im-
provements in reasoning capabilities. To address these challenges, we propose a
novel pipeline that constructs a reasoning-oriented geo-localization dataset, MP16-
Reason, using diverse social media images. We introduce GLOBE, Group-relative
policy optimization for Localizability assessment and Optimized visual-cue rea-
soning, yielding Bi-objective geo-Enhancement for the VLM in recognition and
reasoning. GLOBE incorporates task-specific rewards that jointly enhance localiz-
ability assessment, visual-cue reasoning, and geolocation accuracy. Both qualitative
and quantitative results demonstrate that GLOBE outperforms state-of-the-art open-
source LVLMs on geo-localization tasks, particularly in diverse visual scenes,
while also generating more insightful and interpretable reasoning trajectories. The
data and code are available at https://github.com/lingli1996/GLOBE.

1 Introduction

The Background of Geo-localization. The rapid growth of visual content on social media and mobile
devices, has made image geo-localization (determining where an image was taken) increasingly
important for downstream applications such as autonomous navigation [1, 2, 3] and crisis response [4].
Given that metadata (i.e., GPS coordinates) is frequently unavailable in practice [5], predicting
geographic location from visual content remains a crucial capability. This demand has led to growing
interest in the image geo-localization task [6].

Limitations in Existing Geo-localization Approaches. Traditional image geo-localization ap-
proaches fall into two main categories: classification and retrieval. Classification-based meth-
ods [7, 8, 9, 10, 11] treat geo-localization as a discrete prediction task, assigning each image to a
predefined set of geographical regions or cells. Retrieval-based methods [12, 13, 14, 15, 16, 17, 18]
estimate location by comparing the query image to a large geo-tagged reference database, retrieving
the closest match in terms of visual features, geographic coordinates, or semantic labels (e.g., city or
country names). In practice, retrieval-based approaches can achieve higher accuracy at fine-grained
precision [19, 20], making them particularly effective when exact localization is required. Although
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these methods perform well on standard benchmarks, they typically require training on millions of
samples and lack interpretability, offering little insight into their underlying reasoning process.

When LVLMs Meet Geo-localization. The emergence of Large Vision-Language Models
(LVLMs) [21, 22, 23, 24, 25, 26, 27] has introduced a new paradigm to tackle image geo-localization.
Equipped with powerful multimodal reasoning capabilities and extensive world knowledge encoded
through large-scale pretraining, LVLM-based methods [28, 19, 29] have been explored through
various strategies, including few-shot prompting, retrieval-augmented generation (RAG), and su-
pervised fine-tuning (SFT). These methods are capable of generating both location predictions and
explanations, offering greater interpretability in how decisions are made.
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Figure 1: Overview of data and modeling limitations in LVLM-based image geo-localization.

Limitations in LVLM-based Image Geo-localization. Notably, geo-localization requires deeper
reasoning than typical vision-language tasks. Success depends on more than recognition, as models
must often draw on domain knowledge to infer plausible locations from subtle visual cues such as
vegetation, architecture, or language, especially when iconic landmarks are absent. While LVLMs
offer a promising path toward such reasoning-driven geo-localization, two fundamental challenges
persist, as illustrated in Figure 1. On the data side, existing datasets rarely provide explicit reasoning
supervision, such as interpretations of visual evidence and contextual justifications supporting the
final location decision. Recent efforts [28, 30, 31] to incorporate reasoning into geo-localization
datasets have primarily relied on street-view imagery, which offers limited scene diversity and fixed
viewpoints. As a result, models trained on such data often struggle to generalize to diverse, real-world
visual conditions. On the modeling side, most current approaches depend on supervised fine-tuning
with instruction-style data, which tends to encourage pattern replication rather than the development
of a grounded understanding of visual-geographic relationships. Without verification mechanisms,
these models rely heavily on correlation rather than structured inference, reducing their ability to
generalize beyond familiar examples.

country: Finland,  city: Helsinki Helsinki, Finland
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Signage and Street Names: The street signs and the building with the "OXYGEROL" sign suggest a 
Swedish city due to the Scandinavian style of architecture and the Scanian brand of vehicles used by the 
fire truck. The red fire truck with "Scania" logo indicates it's a Scania truck commonly used in Sweden.

Signage and Street Names: The street signs and the building with the "OXYGEROL" sign suggest a 
Swedish city due to the Scandinavian style of architecture and the Scanian brand of vehicles used by the 
fire truck. The red fire truck with "Scania" logo indicates it's a Scania truck commonly used in Sweden.

Street Layout and Vegetation: The urban setting with European-style buildings, bare trees suggesting 
winter or early spring, modern streetlights, and urban infrastructure like buses and buildings with 
large windows and cylindrical domes is typical of Helsinki, Finland. 

Street Signs and License Plate: The license plate "MMI-842" resembles Finnish license plates. The 
"Scania" branding on the fire truck is prominent, which is common in Finland.

Architecture: The buildings have a European architectural style with red brickwork, domed towers, and 
ornate details like clock towers and green domes with red domes on top. The "OXYGEROL" sign suggests 
a hotel or building with industrial-style lettering.

Figure 2: Example reasoning trajectories generated by GLOBE, illustrating interpretable and visually
grounded geolocation predictions.

How GLOBE Tackles the Challenges. To address these challenges, we propose a novel pipeline
for reasoning-driven geo-localization consisting of two main components: (1) constructing a geo-
localization dataset from diverse social media images augmented with model-derived reasoning
traces, and (2) fine-tuning a vision-language model using Group Relative Policy Optimization
(GRPO) for enhanced reasoning. We begin by building MP16-Reason, an extension of MP-16 [32],
which contains user-captured photographs with diverse viewpoints and rich contextual content. To
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introduce reasoning supervision, we prompt multiple vision-language models [24, 33, 15] to distill
the geolocation-related knowledge, including localizability assessments, reasoning trajectories, and
predicted locations. To ensure the reliability of these distilled signals, we employ a multi-dimensional
verification process that assesses both the alignment between visual evidence and model-generated
reasoning, and the consistency across different models through self-verification, thereby filtering
out inconsistent or hallucinated outputs. Finally, we fine-tune a pretrained LVLM on the curated
dataset using GRPO [34], guided by task-specific rewards for localizability, visual grounding, and
geolocation accuracy. Our resulting model, GLOBE, achieves state-of-the-art performance among
open-source VLMs on geo-localization benchmarks, while producing more interpretable and visually
grounded reasoning trajectories, as shown in Figure 2. Our main contributions include:

• Reasoning-Oriented Geo-Localization Dataset: We construct MP16-Reason, a diverse geo-
localization dataset enriched with image-grounded reasoning supervision that supports model
interpretability and generalization.

• GRPO-Based Fine-Tuning: We develop a GRPO-based reinforcement learning framework that
fine-tunes LVLMs using task-specific rewards for localizability, visual grounding, and geolocation
accuracy, enabling stronger reasoning capabilities compared to traditional supervised fine-tuning.

• Opensource LVLM: Trained through this pipeline, we opensource GLOBE. Empirical results
demonstrate that GLOBE outperforms state-of-the-art LVLMs on multiple geo-localization bench-
marks, while producing more interpretable and visually grounded reasoning trajectories.

2 Related Work

Image Geo-localization. Image geo-localization aims to predict the geographic location of a given
image and has broad applications in urban analysis [35, 4, 36, 37, 38], navigation [1], and geospatial
data mining [39, 40, 41, 42, 43]. General methods like Visual Place Recognition (VPR) [44, 45, 46,
47] focus on robustness to challenging variations (e.g., illumination and viewpoint). With advances
in multimodal models, research has evolved from classification [7, 8, 9, 10, 11] and retrieval-based
methods [12, 13, 14, 15, 16, 17, 18] to generation-based approaches [48, 28, 29, 19, 49], which aim
to produce location predictions through visual reasoning. Recent studies [28, 29, 19] have pointed
out key limitations of classification (e.g., coarse granularity) and retrieval methods (e.g., dependency
on large reference databases), prompting increased interest in generation-based alternatives. Since the
introduction of the MediaEval Placing Tasks 2016 (MP-16) dataset by [32], recent research [29, 19]
continues to utilize this dataset to model relationships between visual semantics and geographic
locations. In contrast to conventional approaches, current LVLMs [21, 22, 23, 24, 25], which are
typically pre-trained on large-scale datasets, inherently exhibit significant visual reasoning capabilities.
This raises the critical question of whether the continued reliance on millions of labeled samples
for supervised fine-tuning remains necessary to effectively adapt these models to specific tasks.
In this work, we take a data-centric perspective to explore how large-scale datasets can be used to
build higher-quality training data for fine-tuning LVLMs in image geo-localization.

Large Vision-Language Models. Building on recent LLM advancements [50, 51, 52, 53, 54, 55, 56],
LLaVA [21] demonstrated that combining a vision encoder with an LLM and jointly fine-tuning
them improves image-based question answering [57, 58, 59, 60]. Subsequently, various LVLMs have
emerged [22, 23, 24, 25, 26, 27], differing primarily in their visual-language alignment mechanisms
and associated architectural trade-offs. Motivated by these recent advancements, our work further
investigates the shift of image geo-localization from traditional methods to LVLMs. Specifically, we
explore how curated datasets can be effectively leveraged to facilitate more efficient fine-tuning
of these models for geo-localization tasks.

Visual Reasoning and Verification. The emergence of advanced models such as DeepSeek [61]
has heightened expectations for the multimodal reasoning capabilities of LLMs. Most reasoning
research [62, 63] has focused on mathematical tasks, with limited attention to open-ended or visual
scenarios. Thus, these models often suffer from hallucination [64, 65, 66], especially in visual tasks
where they produce seemingly plausible but incorrect outputs. To address hallucination and promote
more faithful reasoning, recent work has explored verification-based strategies [67, 68, 69, 70, 71],
as well as reinforcement learning frameworks [34, 72] that optimize models via structured rewards.
Motivated by these insights, we adopt GRPO as the reinforcement learning framework in our
reasoning-driven geo-localization task.
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3 GLOBE: The Methodology

We propose a novel pipeline based on the original MP-16 [32] dataset, aiming to advance image geo-
localization from single-modal visual recognition to more robust multimodal reasoning. Achieving
this objective requires not only powerful models but also well-curated training data that effectively
capture geographic cues. Our pipeline for reasoning-driven geo-localization consists of two main
components: dataset curation and model fine-tuning. These are implemented in three stages: (1)
dataset curation via strong-to-weak distillation & verification (Section 3.1), (2) reward construction
via task-specific supervision (Section 3.2), and (3) model fine-tuning via GRPO-based reinforcement
learning (Section 3.3).

3.1 Dataset Curation: Data Distillation & Verfication

Raw web-scale datasets contain a diverse range of social media images captured from varied perspec-
tives. However, these datasets suffer from substantial noise [73, 74, 75, 76, 77], such as close-up shots
with limited visual context or generic objects lacking informative localizable cues. To address this
issue and select appropriate images for downstream training, we employ multi-model vision-language
knowledge distillation for data synthesis and multi-dimensional verification for data curation.

+
+

Reasoning Trajectories

Localizability Decisions Self-verification

Visual-semantic Consistency

Threshold-based FilteringCoordinates with Scores

Geolocation Predictions

Data Synthesis Data Curation

Figure 3: The pipeline of data synthesis and curation via multi-model distillation and verification.

Multiple Vision-Language Models Knowledge Distillation. We utilize multiple vision-language
models (e.g., Qwen2.5-VL-72B [24], InternVL3-78B [33], and GeoCLIP [15]) to extract localizability
judgments, visual cues, and geolocation predictions for each image in the MP-16 [32] dataset, inspired
by [48, 28, 78]. The use of three diverse, high-performing VLMs is a deliberate design choice to
mitigate model-specific biases. Rather than relying on a single model, which may reflect its own
systematic preferences or reasoning patterns, combining multiple VLMs allows us to leverage their
consensus and complementarity, thereby enhancing both the robustness and diversity of the distilled
signals [79]. As shown in Figure 3, Qwen2.5-VL-72B [24] and InternVL3-78B [33] produce binary
localizability decisions, step-by-step reasoning trajectories, and textual geolocation predictions.
GeoCLIP [15], in contrast, produces latitude-longitude coordinates along with a confidence score
that quantifies localizability [78]. Collectively, these strong models offer complementary signals,
which we distill into structured supervision for downstream data curation and reward modeling.

Multi-dimensional Verification. Following model inference, we perform multi-dimensional verifica-
tion to curate high-quality data, as illustrated in Figure 3. Initially, we filter out images with negative
localizability decisions or low localizability scores. Subsequently, incorrect geolocation predictions
are discarded by comparing them against ground-truth annotations. To ensure the reliability of
the knowledge distilled from Qwen2.5-VL-72B [24] and InternVL3-78B [33], we introduce a self-
verification step in which the geolocation predictions and reasoning trajectories of both models are
compared for each image. Only those samples exhibiting consistent location outputs (e.g., matching
city- or country-level predictions) and semantically aligned reasoning chains are retained. This
cross-model agreement serves as the reliability proxy in distilled supervision. Furthermore, to enforce
visual grounding of the reasoning process, we employ a general-purpose semantic segmentation
model [80] to extract both the categories and relative proportions of visual elements within each
image. The segmentation produces pixel-level labels across a wide range of semantic categories (e.g.,
sky, building, road, vegetation, and car), providing a dense understanding of the scene composition.
We then assess the consistency between the entities mentioned in the reasoning trajectories and the
detected visual elements, ensuring that the reasoning is supported by actual visual evidence rather than
coincidental correlations. Through this multi-stage validation pipeline, which combines localizability
filtering, self-verification of distilled knowledge, and visual-semantic consistency checks, we curate a
robust and trustworthy dataset tailored for downstream tasks.

4



3.2 Reward Construction: Task-specific Supervision

Building upon the curated dataset introduced in Section 3.1, we develop three task-specific rewards
to assess distinct dimensions of reasoning quality in the geo-localization process. Each reward is
trained with annotated supervision and collectively provides a structured reward signal, which guides
the policy optimization during the reinforcement learning stage described in Section 3.3.

Formally, let D = (Ii, yi, gi, ri)
N
i=1 denote the curated dataset of N samples, where Ii is an image,

yi ∈ {0, 1} is a binary label indicating whether the image is localizable, gi indicates the ground-truth
geolocation, and ri is the associated reasoning trajectory.

Localizability Reward. We introduce a localizability reward to estimate how well an image, together
with its predicted reasoning r̂i, can support reliable localization. In other words, localizability reflects
the joint contribution of the visual content and the reasoning process to the likelihood of correct
localization. To this end, we train a LLM-based reward model on the curated dataset D, where the
objective is to distinguish whether a given pair (Ii, r̂i) corresponds to a localizable case (yi = 1).
Instead of using only the image as input, incorporating the predicted reasoning allows the model to
exploit semantic cues that indicate the interpretability and consistency of the localization process.
Formally, the reward is defined as:

Rloc(Ii, r̂i) = P(yi = 1 | Ii, r̂i; θloc), (1)

where θloc denotes the parameters of the reward model. The resulting probability score serves
as a reward signal for reinforcement learning and as a soft indicator of the localizability of the
image–reasoning pair.

Visual Grounding Consistency Reward. To ensure the model-generated reasoning aligns with the
actual visual content, we introduce a reward model that evaluates entity grounding consistency. For
a given sample (Ii, ri) from the curated dataset, let r̂i denote the predicted reasoning. We extract
a set of entities Ei = {e1, e2, ..., en} from the reasoning trajectory r̂i, and a set of visual elements
Vi = {v1, v2, ..., vm} from both the image Ii (via semantic segmentation) and the text of ri (via
entity extraction). We define a soft matching function Match(ej , Vi) ∈ 0, 1, which returns 1 if entity
ej approximately matches any element in Vi, allowing for partial lexical or semantic overlap. The
visual grounding reward is computed as:

Rvis(Ii, r̂i, ri) =
1

|Ei|

|Ei|∑
j=1

Match(ej , Vi), (2)

where Rvis assigns a higher score when more entities in the reasoning are visually grounded. This
reward penalizes hallucinated entities that do not correspond to visible elements in the image, thereby
encouraging grounded visual reasoning.

Geo-localization Accuracy Reward. To evaluate model predictions at a semantic location level, we
define a classification-based reward that reflects whether the predicted country and city match the
ground truth. Let ĝi = (ĉi, t̂i) denote the predicted country and city for image Ii, and let gi = (ci, ti)
be the corresponding ground-truth geolocation from the curated dataset. The geo-localization reward
Rgeo is defined as:

Rgeo(ĝi, gi) = I[ĉi = ci] ·
(
α · I[t̂i = ti] + (1− α)

)
, (3)

where I[·] is the indicator function and α ∈ [0, 1] is a weighting factor that controls the importance of
city-level correctness, conditional on the country being correct. This reward structure captures the
hierarchical nature of geo-tags. A reward of 0 is assigned when the predicted country is incorrect
(i.e., ĉi ̸= ci). If the country is correct but the city is not (i.e., ĉi = ci, t̂i ̸= ti), the model receives a
partial reward of 1− α. A full reward of 1 is assigned only when both predictions are correct (i.e.,
ĉi = ci, t̂i = ti). This tiered design encourages the model to first learn coarse-grained localization
before refining its predictions to finer spatial resolutions.

3.3 Model Fine-tuning: GRPO-based Reinforcement Learning

With the reward signals defined in Section 3.2, we fine-tune the base model using GRPO [34], a
reinforcement learning algorithm designed for ranking-based reward optimization, as illustrated
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Figure 4: GRPO optimization framework with multi-dimensional reward design. For each prompt,
candidate outputs are scored using three task-specific reward models: Rloc, Rvis, and Rgeo, which
reflect different aspects of geo-localization reasoning. Group-wise advantage values guide policy
updates, while a DKL penalty constrains divergence from the reference model.

in Figure 4. GRPO builds upon Proximal Policy Optimization (PPO)[81], which stabilizes policy
updates by optimizing a clipped surrogate objective using advantage estimates derived from scalar
rewards. Unlike PPO, GRPO introduces group-wise normalization and optimizes relative preferences
among candidates conditioned on each prompt, enhancing robustness to variations in the reward
scale.

Let πθ denote the current policy parameterized by θ, and let B = {(xi, {a(j)
i }kj=1)} represent a batch

of input prompts xi each paired with k candidate completions a(j)
i sampled from the policy. Each

completion a
(j)
i is scored by a composite reward function:

r
(j)
i = λ1Rloc + λ2Rvis + λ3Rgeo, (4)

where λ1, λ2, λ3 ∈ [0, 1] are weights controlling the importance of the three reward components:
localizability (Rloc), visual grounding consistency (Rvis), and geo-localization accuracy (Rgeo).

To encourage the model to prefer higher-reward completions within each group, GRPO computes a
group-normalized advantage for each candidate:

A
(j)
i =

r
(j)
i − µi

σi
, µi =

1

k

k∑
l=1

r
(l)
i , σi =

√√√√1

k

k∑
l=1

(
r
(l)
i − µi

)2
, (5)

which centers rewards within each prompt group. Eqn. (5) guides the policy to optimize relative
ranking rather than absolute scores, making it suitable for scenarios with non-uniform reward scales.

The policy is then updated by maximizing the following clipped surrogate objective:

LGRPO(θ) = E
(xi,a

(j)
i )∼πθref

[
min

(
ρ
(j)
i A

(j)
i , clip(ρ(j)i , 1− ϵ, 1 + ϵ)A

(j)
i

)
− βDKL [πθ∥πref]

]
, (6)

where ρ
(j)
i =

πθ(a
(j)
i |xi)

πθold (a
(j)
i |xi)

is the likelihood ratio between the current and reference policies, and

ϵ is the clipping threshold. The coefficient β controls the strength of the DKL penalty, and πref
is the reference policy used to constrain updates. In practice, the reference policy πref is typically
instantiated as the previous policy snapshot, serving to regularize updates and ensure training stability.

4 Experiments

We conduct both qualitative and quantitative experiments, including ablation studies, to evaluate the
effectiveness of our curated dataset MP16-Reason and the GRPO-based training strategy employed
in GLOBE. Specifically, we examine whether MP16-Reason enables better geo-reasoning (i.e., the
ability to infer geographic locations through interpretable and visually grounded reasoning) compared
to conventional image-only datasets (which lack reasoning supervision) and street-view datasets
(which offer limited visual diversity). We further assess whether GRPO training provides stronger
reasoning capability than supervised fine-tuning, and compare GLOBE against both open- and
closed-source LVLMs.
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4.1 Experimental Setup

Datasets. The curated dataset MP16-Reason is divided into two subsets: MP16-Reason-Train with
33k samples and MP16-Reason-Test with 12k samples, respectively. MP16-Reason-Train is used
to train GLOBE, while MP16-Reason-Test is used to evaluate all baseline methods. The detailed
statistics of these subsets, including sample size, geographic coverage, and scene distribution, are
summarized in Table 1. Notably, MP16-Reason-Test was deliberately constructed to cover a broader
geographic range (e.g., more countries and cities), including locations not present in the training set,
which allows evaluation of how well the model generalizes in geo-reasoning beyond the training
distribution. To ensure a comprehensive comparison, we additionally evaluate all models on the
public geo-localization benchmark IM2GPS3K [82] and OSV-5M [83].

Table 1: Statistics of the proposed MP16-Reason.

Dataset #Samples #Country #City #Indoor Scene #Natural Scene #Urban Scene

MP16-Reason-Train 33721 134 1944 5393 2077 26251
MP16-Reason-Test 12000 145 3012 2096 1092 8812

# denotes the number of instances.

Evaluation Metrics. We follow previous work [15, 16, 19, 28] and report the percentage of predic-
tions whose geographic distance to the ground-truth coordinate falls within fixed thresholds (1km,
25km, 200km, 750km, and 2500km). Since our model outputs discrete place names (e.g., country or
city), we concatenate the predicted city and country into a single string and query Microsoft Azure
Maps 1, which returns the corresponding representative GPS coordinate (e.g., the geographic center
of the region) for evaluation.

Implementation details. For data curation, we deployed Qwen2.5-VL-72B and InternVL3-78B
using 8 × H20 GPUs under the VLLM framework, while GeoCLIP was run separately on a single
H20 GPU. These models were used to perform inference over the original MP16 dataset. We then
built GLOBE on top of Qwen2.5-VL-7B [24], a publicly available LVLM with strong multimodal
understanding capabilities. Instead of using task-specific supervised fine-tuning as a cold start, we
directly fine-tune the model using reinforcement learning based on the GRPO framework described
in Section 3.3. In GRPO training, the 7B model was trained on 8 × H20 GPUs with a batch size of
16, yielding a throughput of approximately 0.44 examples per second. Further implementation details
are provided in Appendix A.1.

4.2 Experimental Results

To assess the impact of the curated dataset and the proposed training strategy, we conduct both
external baseline comparisons and internal ablation studies, as detailed in the following subsections.

4.2.1 Baseline Comparison

We evaluate the geo-localization performance of GLOBE on both MP16-Reason-Test and the public
benchmark IM2GPS3K [82] (see Table 2). For clarity, we organize the baselines into three categories:
(I) Image-only supervision, which relies purely on visual features and coordinate labels without
reasoning signals; (II) Open- and closed-source LVLMs, including general-purpose LVLMs trained on
diverse multimodal data; and (III) Task-specific reasoning supervision, which refers to models trained
on geo-localization datasets with reasoning-oriented annotations, often dominated by street-view
imagery. We further assess generalization on the street-view dataset OSV-5M [83] (mini-3K), with
detailed results provided in Appendix A.2.2. In addition, we examine performance under different
scene conditions to demonstrate the robustness of GLOBE, as reported in Appendix A.2.1.

Image-only supervision. Compared with models trained solely on large-scale image-only supervision
(e.g., MP-16 with over 4M samples), GLOBE achieves comparable or even superior accuracy using
only 33K samples from MP16-Reason. This efficiency gain stems from reasoning-driven supervision,
which provides explicit localizability judgments and visual grounding signals beyond raw coordinates.
These findings suggest that reasoning annotations can substantially compensate for data scale,
enabling more data-efficient geo-localization.

1https://portal.azure.com/
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Table 2: Geo-localization performance comparison on MP16-Reason-Test and IM2GPS3K [82].

Method Dataset, Size
MP16-Reason-Test (% @ km) IM2GPS3K [82] (% @ km)

Street City Region Country Continent Street City Region Country Continent
1km 25km 200km 750km 2500km 1km 25km 200km 750km 2500km

I. Image-only supervision
ISNs [9] MP-16, 4M 26.24 47.38 55.88 68.48 80.92 10.50 28.00 36.60 49.70 66.00
GeoCLIP [15] MP-16, 4M 29.28 52.52 66.85 84.07 93.33 14.11 34.47 50.65 69.67 83.82
Translocator† [10] MP-16, 4M - - - - - 11.80 31.10 46.70 58.90 80.10
PIGEOTTO† [16] MP-16, 4M - - - - - 11.30 36.70 53.80 72.40 85.30
G3 (GPT4V)† [19] MP-16, 4M - - - - - 16.65 40.94 55.56 71.24 84.68
Hybrid [83] OSV-5M, 5M 0.97 16.53 28.72 50.31 71.47 0.83 13.28 25.33 43.84 65.63
RFM-YFCC [49] Flickr, 48M 11.72 46.64 60.46 77.97 91.96 5.41 29.70 44.71 61.83 79.55

II. Open- and closed-source LVLMs
Qwen2.5-VL-7B [24] - 15.42 52.72 62.86 75.11 83.47 8.58 32.53 43.11 58.93 72.37
InternVL3-8B [33] - 12.01 44.17 55.66 75.36 86.98 6.44 25.69 34.57 49.38 61.66
Gemma3-27B [84] - 16.03 55.63 68.07 82.59 91.29 8.48 33.37 46.61 63.63 79.95
InternVL3-78B [33] - 14.72 52.46 65.25 81.73 91.17 8.93 35.05 47.32 64.03 78.64
Qwen2.5-VL-72B [24] - 17.52 59.30 71.01 84.06 91.65 9.11 35.77 48.35 64.96 78.88
Doubao1.5-VL† [85] - 18.89 64.02 76.55 88.33 93.44 11.61 46.21 60.60 75.04 85.09
GPT-4.1† [86] - 20.05 66.76 79.70 89.84 94.53 12.11 46.85 60.36 74.41 85.25

III. Task-specific reasoning supervision
GeoReasoner-7B [28] GSV, 133K 10.06 40.44 50.91 68.01 79.68 7.67 26.94 36.63 52.27 65.39
GaGA† [30] MG-Geo, 5M - - - - - 11.70 33.00 48.00 67.10 82.10

GLOBE-7B (Ours) MP16-Reason, 33K 17.99 62.85 73.83 86.68 92.52 9.84 40.18 56.19 71.45 82.38

† denotes models that are not publicly available. Underlined results indicate test–train overlap. Best open- and closed-source results are in blue and bold, respectively.

Open- and closed-source LVLMs. GLOBE achieves stronger results than open-source LVLMs,
outperforming much larger models such as Qwen2.5-VL-72B [24] and InternVL3-78B [33]. Notably,
GLOBE, built on the Qwen2.5-VL-7B [24] backbone, surpasses Qwen2.5-VL-72B [24], the larger
model originally used to generate the distilled annotations. This outcome highlights the effectiveness
of our distillation and GRPO-based training framework in extracting and refining knowledge rather
than merely replicating model outputs. In addition, qualitative comparisons of reasoning trajectories
are provided in Appendix A.2.5, further illustrating the interpretability advantages of GLOBE.
Compared with closed-source industrial systems such as Doubao1.5-VL [85] and GPT-4.1 [86],
GLOBE remains behind. This gap is expected, as the training data scale and settings of these systems
are not publicly disclosed. We aim to advance open, reproducible, and data-efficient LVLM training
to support sustainable progress.

Task-specific reasoning supervision. Relative to models trained on task-specific reasoning datasets
dominated by street-view imagery, GLOBE demonstrates stronger robustness. By incorporating
different types of scenes during the construction of MP16-Reason, our approach achieves superior
generalization, particularly when evaluated under diverse scene conditions (see Appendix A.2.1).
Under comparable 7B backbones, GLOBE consistently outperforms counterparts (Qwen2.5-VL-
7B [24] and GeoReasoner-7B [28]), confirming the necessity of scene diversity for real-world
geo-localization.

We further evaluate on OSV-5M [83] (mini-3K), a street-view dataset outside the training domain
of MP16-Reason (see Appendix A.2.2). Despite this domain shift, GLOBE surpasses open-source
methods such as ISNs [9] and GeoCLIP [15], which are trained on data distributions similar to
MP16-Reason, as well as counterparts such as Qwen2.5-VL-7B [24] and InternVL3-8B [33]. These
results demonstrate that reasoning-driven supervision enhances in-domain performance while en-
abling superior generalization to unseen domains. Representative failure cases are discussed in
Appendix A.2.3, providing qualitative insights into the model’s limitations. Beyond accuracy and
generalization, we also provide an efficiency comparison in Appendix A.2.4.

4.2.2 Ablation Study

To better understand the contributions of our design choices, we conduct ablation studies along three
dimensions: (I) the reward components used in GRPO training; (II) the backbone models on which
our method is applied; and (III) the distillation datasets employed for supervision. These experiments
allow us to disentangle the effects of supervision signals, model capacity, and data quality, thereby
providing a more comprehensive view of the strengths of GLOBE and MP16-Reason.

Reward components. Table 3 presents ablation results for GRPO training under different reward
configurations, including Localizability (Loc), Visual Grounding Consistency (VGC), and Geo-
localization Accuracy (GA). Using all three rewards yields the highest overall performance (row 9).
Removing any single component (rows 6-8) causes noticeable drops, highlighting the importance of
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Table 3: Ablation on reward components with Qwen2.5-VL-7B [24] backbone.

Model CoT SFT
GRPO MP16-Reason-Test (% @ km)

Loc VGC GA Street City Region Country Continent
Reward Reward Reward 1km 25km 200km 750km 2500km

Qwen2.5-VL-7B [24] 14.37 51.11 61.29 73.67 82.46
Qwen2.5-VL-7B [24] ✓ 15.42 52.72 62.86 75.11 83.47
Qwen2.5-VL-7B [24] ✓ ✓ 16.38 56.76 70.21 83.82 90.75

GLOBE w/o Loc&GA ✓ ✓ 17.01 59.36 71.77 84.44 91.76
GLOBE w/o Loc&VGC ✓ ✓ 17.24 59.24 71.93 84.69 91.54

GLOBE w/o Loc ✓ ✓ ✓ 17.50 59.58 71.23 84.06 91.23
GLOBE w/o VGC ✓ ✓ ✓ 17.52 59.83 72.22 84.72 91.12
GLOBE w/o GA ✓ ✓ ✓ 17.44 59.53 71.41 84.33 91.18

GLOBE ✓ ✓ ✓ ✓ 17.99 62.85 73.83 86.68 92.52

Best results are in blue.

reasoning-driven supervision beyond coordinate accuracy alone. Moreover, GRPO outperforms SFT
(row 9 vs. row 3), delivering stronger consistency and grounding by leveraging reward signals to guide
output quality. Even with partial reward combinations, GRPO still surpasses SFT, demonstrating the
clear advantage of reinforcement learning with reasoning-driven supervision. In addition to the choice
of reward components, the weighting hyperparameters λ1, λ2, and λ3 in the GRPO objective also
play a role in balancing supervision. A detailed discussion of their design rationale and experimental
evaluation is provided in Appendix A.2.6, while an analysis of reward trajectories throughout the
training process is presented in Appendix A.2.7.

Table 4: Ablation on backbone architectures.

Backbone Training Strategy
MP16-Reason-Test (% @ km)

Street City Region Country Continent
1km 25km 200km 750km 2500km

InternVL3-8B [33]
Baseline 12.01 44.17 55.66 75.36 86.98

SFT 12.41 44.68 56.37 75.20 86.32
GRPO 17.47 60.09 72.41 85.02 91.92

Qwen2.5-VL-7B [24]
Baseline 15.42 52.72 62.86 75.11 83.47

SFT 16.38 56.76 70.21 83.82 90.75
GRPO 17.99 62.85 73.83 86.68 92.52

Backbone models. Across both Qwen2.5-VL-7B [24] and InternVL3-8B [33], GRPO consistently
yields clear improvements over SFT at all geographical levels (see Table 4), confirming the robustness
of the training framework. Nevertheless, the absolute performance is influenced by the backbone
itself, with Qwen2.5-VL-7B [24] achieving higher post-GRPO accuracy than InternVL3-8B [33].
These results indicate that GRPO provides stable relative gains across architectures, while the final
performance ceiling is determined by backbone capacity and pretraining quality.

Table 5: Ablation on data curation with Qwen2.5-VL-7B [24] backbone.

Curation Setting Training Strategy
MP16-Reason-Test (% @ km)

Street City Region Country Continent
1km 25km 200km 750km 2500km

Baseline - 15.42 52.72 62.86 75.11 83.47

Random sampling SFT 15.23 52.00 64.56 78.17 85.23
GRPO 17.26 59.22 71.80 84.73 91.26

Single-source validation SFT 15.22 52.47 65.09 78.79 86.15
GRPO 17.37 59.45 71.88 84.74 91.24

Full multi-source validation SFT 16.38 56.76 70.21 83.82 90.75
GRPO 17.99 62.85 73.83 86.68 92.52

Distillation datasets. To evaluate the contribution of our validation steps in data curation (MP16-
Reason-Train), we compare models trained on different curation settings, all standardized to 33K
samples but obtained through different filtering strategies, such as random sampling or validation
by only a single LVLM (InternVL3-78B [33]). As shown in Table 5, these ablated settings lead to
noticeable performance drops compared with the full MP16-Reason-Train, confirming the importance
of comprehensive validation in constructing a high-quality dataset. In addition, GRPO consistently
outperforms SFT across all settings, further highlighting the effectiveness of reinforcement learning
in leveraging reasoning-driven supervision.
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5 Discussion

Toward Fine-Grained Geo-localization: Limits of Pure Reasoning. While our reasoning-driven
framework achieves strong performance at the country and city levels, its effectiveness diminishes
when tasked with fine-grained, coordinate-level localization. This limitation originates from the
inherent nature of the reasoning process: predictions are based on high-level semantic cues such
as language, architectural style, or vegetation, which often lack the spatial specificity required to
differentiate between closely situated locations. For example, multiple European cities may share
similar visual patterns, such as Mediterranean-style architecture, the presence of European Union
flags, or public signage in English, which makes it difficult for the model to resolve fine-grained
geographic ambiguities through reasoning alone. In such cases, even accurate reasoning can only
narrow down a broad region but cannot pinpoint an exact location. This highlights a key challenge in
reasoning-driven geo-localization: the lack of precise visual-geographic anchoring. To overcome
this limitation, future work may explore hybrid approaches that combine reasoning to constrain the
candidate region, followed by local feature-based retrieval within that region to achieve coordinate-
level precision.

Beyond Scale Alone: Data Efficiency in Reasoning-driven Training. Our experiments show that
training GLOBE on just 33K high-quality, reasoning-oriented samples (MP16-Reason) achieves
performance comparable to, and sometimes exceeding, models trained on millions of generic image-
text pairs. This highlights that for reasoning-driven tasks, targeted supervision can be more effective
than sheer data scale. Our results suggest that aligning supervision with task-specific reasoning offers
a more data-efficient path forward for LVLM training.

Beyond Geo-localization: GRPO for Reasoning-driven LVLM Tasks. Our findings suggest
that GRPO, as a training paradigm, is particularly well-suited for reasoning-driven objectives in
LVLMs. Unlike SFT, which often treats outputs as isolated targets, GRPO directly optimizes the
relative quality of outputs through scalar reward signals. This form of supervision allows GRPO to
guide complex reasoning behaviors in a more structured and interpretable manner than traditional
training objectives. While our work focuses on geo-localization, we believe the GRPO paradigm
can be readily extended to other multimodal reasoning tasks, such as visual question answering and
multimodal chain-of-thought generation.

6 Conclusion

In this paper, we present a novel reasoning-driven pipeline for image geo-localization by leveraging
LVLMs. To address the limitations of existing datasets and training paradigms, we introduce MP16-
Reason, a high-quality dataset constructed from diverse social media images and enriched with
automatically distilled localizability labels and reasoning trajectories. Building upon this dataset,
we propose GLOBE, an LVLM trained via GRPO-based reinforcement learning, which jointly
improves three core aspects of geo-localization: localizability assessment, visual-cue reasoning,
and geo-location recognition. In contrast to SFT, our GRPO-based training framework directly
optimizes reasoning quality through structured reward signals, leading to substantial gains in both
interpretability and localization accuracy. Empirical results show that GLOBE, using only 33K data,
achieves performance comparable to or better than state-of-the-art methods trained on millions of
samples.
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A Appendix

A.1 Implementation Details

A.1.1 Prompt Template

To ensure fairness and consistency in both training and evaluation, we standardize the input format
for all LVLMs. Specifically, images are fed into the model along with a unified prompt template.
This prompt is designed to guide the model toward reasoning about geographic cues in a consistent
manner across different stages and model variants. During both fine-tuning and testing, we use the
same prompt format to minimize prompt-induced variance and allow for fair comparison of model
performance.

Prompt Template

You are a geolocation expert. You are participating in a geolocation challenge. Based on the
provided image:
1. Carefully analyze the image for clues about its location (architecture, signage, vegetation,
terrain, etc.)
2. Think step-by-step about what country, and city this is likely to be in and why

Your final answer includes these two lines somewhere in your response:
country: [country name]
city: [city name]

You MUST output the thinking process in <think> </think> and give the answer in <answer>
</answer> tags.

A.1.2 Training Data Example

The example below illustrates a training sample from MP16-Reason. Each instance contains the
image path, a reasoning trajectory generated by vision-language models, ground-truth city and country
labels, and a set of grounded entities extracted from the reasoning text.

Training Data Example

img_path: "3f_e4_302010632.jpg"
reason: "The image shows a large stadium filled with spectators wearing red clothing,
indicating a strong team spirit and possibly a sports event.
There is a scoreboard displaying ‘Ohio State’ and ‘Michigan’, which are well-known college
football teams from the United States. This suggests that the event is an American college
football game.
The presence of cheerleaders, a marching band, and the large crowd further supports the idea
that this is a major sporting event in the United States.
The architecture of the stadium, including the design of the scoreboard and the layout of the
seating, is consistent with large American college football stadiums.
Given the reference to ‘Ohio State’, it is highly likely that this event is taking place in Ohio,
specifically at Ohio State University’s home stadium, which is located in Columbus."
city: "Columbus"
country: "United States"
entities: [{"text": "stadium", "type": "ARCH"}, {"text": "scoreboard", "type": "SIGN"},
{"text": "seating", "type": "ARCH"}]

A.1.3 Hyper-parameter Settings

We summarize the key hyper-parameters used in training GLOBE in Table 6. These settings are
selected based on standard practices in fine-tuning large vision-language models and further adjusted
through preliminary ablation studies on a held-out validation set. Unless otherwise specified, all
experiments are conducted using the same configuration to ensure comparability and reproducibility.
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Table 6: The hyper-parameter settings of the proposed GLOBE.

Hyper Params Value

Learning Rate 1e-6
Total Batch Size 16
Weight Decay 0.1
Warmup Ratio 0.01

Optimizer AdamW
Adam Beta1 0.9
Adam Beta2 0.95

LR Scheduler cosine
Model Max Length 8192

A.2 Experimental Results

A.2.1 The performance of GLOBE across different conditions

Table 7 presents geo-localization performance across three scene types (indoor, nature, and urban). We
compare GLOBE-7B with Qwen2.5-VL-7B [24] and GeoReasoner-7B [28]. Across all conditions,
GLOBE delivers consistently higher accuracy at every geographical level, demonstrating robust
performance in diverse visual environments.

Table 7: Geo-localization performance comparison across different conditions.

Method
MP16-Reason-Test (% @ km)

Street City Region Country Continent
1km 25km 200km 750km 2500km

I. Indoor Scene
Qwen2.5-VL-7B [24] 12.50 46.95 55.30 69.99 81.49
GeoReasoner-7B [28] 12.57 35.93 48.50 65.87 79.04
GLOBE-7B (Ours) 17.65 57.35 64.71 80.88 91.18

II. Nature Scene
Qwen2.5-VL-7B [24] 8.61 42.77 60.07 72.62 80.68
GeoReasoner-7B [28] 5.10 35.71 48.98 67.35 78.57
GLOBE-7B (Ours) 13.95 55.81 81.40 90.70 97.67

III. Urban Scene
Qwen2.5-VL-7B [24] 16.95 55.32 65.00 76.63 84.29
GeoReasoner-7B [28] 10.18 42.23 51.86 68.78 80.19
GLOBE-7B (Ours) 18.61 64.98 74.76 87.38 92.11

Best results are in blue.

Table 8: Geo-localization performance comparison on OSV-5M [83] (mini-3K).

Method
OSV-5M [83] (mini-3K) (% @ km)

Street City Region Country Continent
1km 25km 200km 750km 2500km

ISNs [9] 0.00 1.07 6.77 22.04 44.01
GeoCLIP [15] 0.07 1.57 13.87 44.51 73.26
Qwen2.5-VL-7B [24] 0.00 0.87 5.14 19.81 40.55
InternVL3-8B [33] 0.00 0.73 5.27 19.81 44.01
GLOBE-7B (Ours) 0.00 1.87 14.04 45.01 74.16

Best results are in blue.
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A.2.2 The performance of GLOBE on street-view images

Table 8 reports geo-localization performance on OSV-5M [83] (mini-3K), a benchmark consisting
exclusively of street-view imagery. We compare GLOBE-7B against ISNs [9], GeoCLIP [15], and
backbone-matched LVLMs such as Qwen2.5-VL-7B [24] and InternVL3-8B [33]. GLOBE achieves
the best results at the city, region, country, and continent levels, demonstrating strong generalization
to a domain outside its training distribution.

A.2.3 Failure cases

We categorize failure cases into two types: Error Reasoning and Right Reasoning, with representative
examples illustrated in Table 9. Error Reasoning refers to cases where the model generates incorrect
or irrelevant reasoning steps that misinterpret visual cues or contextual evidence. In contrast, Right
Reasoning describes cases where the reasoning process is logically sound and visually grounded, yet
the final prediction is incorrect (often due to dataset bias or overrepresentation of certain locations).
Our analysis reveals two common patterns: ① visually similar features (e.g., domes, arches) leading
to incorrect landmark attribution, and ② correct reasoning that is nevertheless biased toward locations
more frequently represented in the training data.

Table 9: Representative failure cases.

Type IMG_ID Ground Truth Reasoning Prediction

① eb_80_511397613.jpg Etterbeek, Belgium
Terrain and Urban Setting: The grand scale of the
architecture with large columns and arches resembles
the Louvre Pyramid or the Arc de Triomphe area.

Paris, France

② 98_80_2913796353.jpg Şehitkamil, Turkey

Architecture: The minaret has a cylindrical structure
with multiple levels featuring ornamental details like
intricate carvings, wooden balconies with latticework,
and stone masonry. The domed roof with a pointed
tip and the presence of a crescent moon finial suggests
Ottoman or Islamic architectural style.

Baku, Azerbaijan

A.2.4 Inference efficiency

Table 10 reports the latency, throughput, and streaming metrics, with all models tested under the
same hardware (single H20 GPU) and software settings (e.g., PyTorch, vLLM) as GLOBE. While
GLOBE delivers stronger accuracy, it incurs higher average latency and lower throughput, reflecting
the additional reasoning time required by larger LVLMs.

Table 10: Inference efficiency comparison between different baseline methods.

Model Concurrency Streaming Avg. Latency (s) Throughput (QPS) TTFT (ms) TPOT (ms)

GeoCLIP [15] 1 - 0.1364 7.3313 - -
RFM-YFCC [49] 1 - 0.5852 1.7088 - -
Qwen2.5-VL-7B [24] 1 No 2.9368 0.3405 - -
InternVL3-8B [33] 1 No 3.4886 0.2866 - -
GLOBE (InternVL3-8B [33]) 1 No 4.8742 0.2051 - -
GLOBE (InternVL3-8B [33]) 1 Yes 4.8597 0.2057 64.23 11.70
GLOBE (Qwen2.5-VL-7B [24]) 1 No 4.5684 0.2188 - -
GLOBE (Qwen2.5-VL-7B [24]) 1 Yes 4.5628 0.2191 34.67 11.72
GLOBE (Qwen2.5-VL-7B [24]) 8 No 5.1415 1.5045 - -
GLOBE (Qwen2.5-VL-7B [24]) 8 Yes 5.1589 1.4990 82.16 13.67
GLOBE (Qwen2.5-VL-7B [24]) 32 No 6.2479 4.5370 - -
GLOBE (Qwen2.5-VL-7B [24]) 32 Yes 6.2923 4.5602 161.40 17.12

A.2.5 Qualitative results

Figure 5 shows that GLOBE produces reasoning trajectories with improved coherence and inter-
pretability. In particular, the model engages in structured reasoning to derive geo-location predictions,
systematically incorporating diverse geographic cues such as architectural style, signage, vegetation,
and other contextually informative elements.
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Boston, United States

Boston, United States

Boston, United States

New York, United States

New York, United States

1. Architecture: The architecture features  with high-rise structures, large glass 
windows, and geometrically patterned facades. The building with  
suggests a style common in North American cities like New York or Washington D.C., but 

 with urban parks resembles Boston's Public Garden area.

modern urban buildings
white brickwork and decorative grilles

the urban layout and 
green spaces
2. Signage and Banners: The signs with messages related to "  movement suggest a protest 
against media bias, typical of Occupy protests in major US cities.  reading 

 could represent Occupy encampments similar to those seen in the Boston Common or other 
large city squares like Zuccotti Park in New York City.

Occupy Wall Street"
The tents with colorful banners "1000 

Cities 80 Centres"

3. Vegetation: The urban greenery includes shrubs, trees, and flower beds. The presence of a tree with broad 
leaves and urban landscaping like plants and flowers in city parks points to a temperate climate with deciduous 
trees like maple or oak.  suggests a downtown area with public 
spaces like Boston Common.

The urban park setting with tents and signs

4. Street Layout and Signboards: The urban layout with  like 
squares with protesters and signs suggests a city like Boston with its Freedom Trail or Occupy Boston 
movements. Signs like "Don’t Get Outfoxed" align with Occupy Boston protests.

wide streets, brick sidewalks, and public spaces

5. Background Buildings: L
 resemble Boston's cityscape with Harvard Square or City Hall Plaza areas.

arge red-brick buildings with symmetrical designs and modern office buildings 
with glass facades

The architecture visible includes modern buildings with large windows and geometric patterns, which could be 
found in many urban areas around the world. The presence of signs with English text such as 

 suggests that the event is taking place in an English-speaking region. The style of  
and the casual attire of the participants suggest a contemporary setting, possibly in North America or Europe.

The specific design of the building in the background, with its , 
resembles structures commonly seen in U.S. cities like New York or Boston. The vegetation appears well-
maintained and typical of a temperate climate, further supporting the idea of a developed urban area.

'1000 CITIES SO 
CONTRARY' the protest signs

distinct window pattern and stone facade

First, I notice the signs in the image, like the one that says  That suggests some kind of 
organized movement or event happening across multiple locations. The other sign says 

 which might be a play on words against Fox News, hinting at a protest or public demonstration. 
Looking at the architecture,  in the background are modern with a mix of brick and glass. The style 
isn't overly distinctive, but it's common in many urban areas. There's a tree and some tents, which might 
indicate a public square or park where protests often take place. The people are dressed in casual clothing, 
which is typical for public gatherings. The presence of  makes me think of the Occupy 
Wall Street movement, which started in New York City. The Occupy movement was known for setting up 
encampments in public spaces.  also points towards this being related to that movement. If 
this is Occupy-related, then it's likely in a major city where such events occurred, like New York. The language on 
the signs is in , so it's probably in an English-speaking country. Considering all these factors—Occupy 
movement, urban setting, tents, and the style of the buildings—New York City seems like a strong possibility, 
specifically Zuccotti Park, which was the hub for Occupy Wall Street.

"1000 cities, 80 centres."
"DON'T GET OUTFOXED 

JOIN US,"
the buildings

 tents and the protest signs

The sign "Occupy"

English

1. There are several clues suggesting this is 
an Occupy movement protest, specifically 
"Occupy," "DON'T GET OUTFOXED JOIN US," 
and "1000 Cities 90 Countries."
2. The mix of 

 indicates a major city 
in a developed country.

modern and postmodern 
urban office buildings

3. The  are in , hinting at 
an English-speaking country.

protest signs English

4. The , highly organized , 
and  are reminiscent of the 2011 
Occupy Wall Street movements in the US.

QR codes signage
tents

5. Checking the architecture: The building 
with distinctive square windows (with a 
flower-like pattern) and the rounded white-
black-window building in the background. 
These are very characteristic.
6. The open brick plaza, greenery, and the 
scale of the scene suggest a civic space, 
likely the kind found in downtown areas.
7.  matches 
the "One International Place" building in 
Boston, Massachusetts, USA.

The structure on the right back

8. The protest is typical of Occupy Boston, 
which took place in Dewey Square (part of 
the Rose Kennedy Greenway), with similar 
building surroundings.

GPT-4.1

GLOBE

Qwen2.5-VL-7B w/ SFT

InternVL3-78B

Figure 5: Reasoning comparison of four different models (GPT-4.1 [86], GLOBE, Qwen2.5-VL-
7B [24] with SFT, and InternVL3-78B [33]) on the same input image. Reliable visual cues identified
by the models are marked in text.

A.2.6 Hyperparameters λ1, λ2 and λ3 in GRPO

The weights λ1, λ2, and λ3 are fixed during training and were initially set to 0.2, 0.5, and 1,
respectively. Since the primary objective is accurate prediction of city- and country-level locations,
λ3 (which directly supervises geo-localization accuracy) was assigned the highest weight. To mitigate
hallucinations in the reasoning trajectory, λ2 (consistency) was given a relatively high weight. In
contrast, λ1 (localizability), a binary score that evaluates whether the reasoning is geographically
grounded, was assigned a smaller value to act as auxiliary regularization. As shown in Table 11,
different weight combinations were tested, and the proposed setting (0.2, 0.5, 1) yielded the best
performance.

Table 11: Performance comparison of weight selection (λ1, λ2 and λ3) for the GRPO framework.

λ1 λ2 λ3

MP16-Reason-Test (% @ km)
Street City Region Country Continent
1km 25km 200km 750km 2500km

1.0 0.5 0.2 17.63 59.96 72.11 84.87 91.55
1.0 1.0 1.0 17.67 59.94 71.83 84.80 91.20
0.2 0.5 1.0 17.99 62.85 73.83 86.68 92.52

The chosen configurations of λ1, λ2, and λ3 are marked in bold.

A.2.7 Analysis of Reward Trajectories

The training dynamics of the three reward signals show generally upward trends (see Figure 6). The
Localizability Reward steadily increases and gradually plateaus, showing consistent improvement in
identifying informative inputs. Thanks to the pre-filtering of training data, both the Localizability
Reward and the Geo-localization Accuracy Reward start with relatively high values and maintain
strong performance even in the early training steps. The Visual Grounding Consistency Reward rises
quickly during the initial stage before stabilizing, indicating that the model rapidly learns to associate
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visual entities with their corresponding locations. Overall, the trends of all three rewards suggest
stable and effective learning throughout training.

Figure 6: Training dynamics of three rewards over global steps. From left to right: (a) Localizability
Reward, (b) Visual Grounding Consistency Reward, and (c) Geo-localization Accuracy Reward. Each
curve shows how the corresponding reward evolves as training progresses.

A.3 Limitation

While our reasoning-based framework performs well at country and city levels, its accuracy declines
in fine-grained, coordinate-level geo-localization. This is due to the abstract nature of reasoning,
which relies on high-level semantic cues (e.g., architecture, language, vegetation) that often lack the
spatial precision needed to distinguish between visually similar, nearby locations. As a result, even
correct reasoning may only localize to a broad region. Future work could address this by combining
reasoning with local feature-based retrieval to improve fine-grained accuracy.

A.4 Broader Impacts

This work introduces a reasoning-oriented geo-localization framework that leverages diverse social
media imagery and bi-objective optimization to enhance the reasoning capabilities of large vision-
language models. While this approach improves interpretability and performance in complex visual
scenes, it also raises privacy and misuse concerns. The ability to infer precise locations from user-
shared images may lead to unauthorized tracking, surveillance, or profiling, especially if deployed at
scale without appropriate safeguards.

To mitigate these risks, we recommend restricting access to the model via gated APIs, incorporating
uncertainty estimation in predictions, and clearly documenting limitations and intended use cases.
Special care should be taken when applying the method to user-generated content, including adherence
to data licenses and privacy-preserving practices. Responsible deployment will be essential to ensure
the benefits of improved geo-reasoning do not come at the cost of societal harm.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We summarize the contributions and scope in the abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We have mentioned the limitations of our work in Section 5 and Appendix A.3

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We include detailed derivations and empirical results to validate our underlying
assumptions.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide comprehensive details of both MP16-Reason and GLOBE in the
paper. In addition, our submission includes all necessary materials for reproducing the main
experimental results, including code, dataset, hyperparameter settings, etc.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide a link to the GitHub repository in the paper to ensure open access
to both the dataset and code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Please refer to Section 4
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We performed repeated experiments and reported the averaged results to reduce
variability.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

24

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have included the details of computational resources in Appendix A.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our work conforms with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We mention the societal impact on the Section 1 and Appendix A.4.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The released dataset is built upon the public MP-16 dataset and will adhere to
the same licensing terms.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All assets used in the paper are properly credited, and their licenses and terms
of use are respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: All assets used in the paper are properly credited, and their licenses and terms
of use are respected.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve any crowdsourcing experiments or research with
human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No potential risks are found in this work.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The usage of LLMs as an integral component of the core methodology is
described in Section 3.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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