
ActiView: Evaluating Active Perception Ability for Multimodal Large
Language Models

Anonymous ACL submission

Abstract

Active perception, a crucial human capability,001
involves setting a goal based on the current un-002
derstanding of the environment and performing003
actions to achieve that goal. Despite signif-004
icant efforts in evaluating Multimodal Large005
Language Models (MLLMs), active perception006
has been largely overlooked. To address this007
gap, we propose a novel benchmark named Ac-008
tiView to evaluate active perception in MLLMs.009
We focus on a specialized form of Visual Ques-010
tion Answering (VQA) that eases and quanti-011
fies the evaluation yet challenging for existing012
MLLMs. Given an image, we restrict the per-013
ceptual field of a model, requiring it to actively014
zoom or shift its perceptual field based on rea-015
soning to answer the question successfully. We016
conduct extensive evaluation over 27 models,017
including proprietary and open-source models,018
and observe that restricted perceptual fields019
play a significant role in enabling active per-020
ception. Results reveal a significant gap in the021
active perception capability of MLLMs, indicat-022
ing that this area deserves more attention. We023
hope that ActiView could help develop methods024
for MLLMs to understand multimodal inputs025
in more natural and holistic ways.026

1 Introduction027

The advent of Multimodal Large Language Mod-028

els (MLLMs) has marked a significant milestone029

in the realm of artificial intelligence, demonstrat-030

ing capabilities that are increasingly approaching031

human-like performance (OpenAI, 2023; Liu et al.,032

2023c; Ye et al., 2024b). This advancement, while033

promising, also presents new challenges and oppor-034

tunities for evaluating these models. As a result, the035

landscape of MLLM evaluation is rapidly evolving,036

with numerous benchmarks being developed to ei-037

ther comprehensively evaluate models (Fu et al.,038

2023; Liu et al., 2023d) or to analyze specific as-039

pects of their capabilities (Liu et al., 2023a; Lu040

et al., 2023; Luo et al., 2024; Xiao et al., 2024; Li041

View Shifting View Zooming

I would like to know 
how many signboards
are in this painting.

Active Perception Process

…

Thought:  Nothing here… I 
need to check other places.

Thought:  It seems like there is something 
here, let's zoom in to confirm.

Figure 1: Active perception allows humans or models
to perform more complex tasks by actively seeking and
processing relevant information. In this paper, we eval-
uate two key active perception abilities for MLLMs: 1)
shifting, as real-world scenarios often present limited
views and require shifts to obtain new perspectives, and
2) zooming, which helps enhance perception by zoom-
ing out for a broader view and zooming in for details.

et al., 2024b; Nie et al., 2024; Qian et al., 2024). 042

Despite the extensive efforts devoted to MLLM 043

evaluation, active perception (Bajcsy, 1988; Bajcsy 044

et al., 2018) remains underexplored. Active percep- 045

tion involves understanding the reasons for sensing, 046

choosing what to perceive, and determining the 047

methods, timing, and locations for achieving that 048

perception (Bajcsy et al., 2018). This is important 049

because in the real world, the desired information 050

often does not appear directly in the center of one’s 051

field of vision. Instead, it requires individuals to 052

move their field of view, locate details, and filter 053

out distracting information. For example, in Fig- 054

ure 1, suppose we are looking for information in 055

a giant painting. We need to first shift our view to 056

locate the specific area and then possibly zoom in 057

to gather detailed information. Intuitively, active 058

perception not only enables a person or model to 059

accomplish more complex tasks, but it also has the 060

potential to serve as a good indicator of the level 061

of intelligence of a model. This makes it a critical 062

capability that warrants thorough evaluation. 063
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Benchmarks Evaluation Target
Change of Per. Fields Num.

Img
Evaluation
Instances Annotator

Shifting Zooming

MME (Fu et al., 2023) Visual comprehension ✘ ✘ 1.1k 1.3k Manual
MMBench (Liu et al., 2023d) Visual comprehension ✘ ✘ 1.8k 1.8k Manual + Auto
MM-Vet (Yu et al., 2023) Integrated capabilities ✘ ✘ 200 218 Manual*
Seed-Bench (Li et al., 2023b) Visual comprehension ✘ ✘ 1.9k* 24k Auto
Video-MME (Fu et al., 2024a) Visual comprehension ✘ ✘ 0.9k 2.7k Manual
BLINK (Fu et al., 2024b) Visual perception ✓ ✘ 7.3k 3.8k Manual

ViP-Bench (Biernacki et al., 2021) Understanding of visual prompt ✘ ✘ 303 303 Manual
HallusionBench (Liu et al., 2023a) Hallucination ✘ ✘ 346 1.1k Manual + Auto
CODIS (Luo et al., 2024) Context-dependent visual comprehension ✘ ✘ 377 754 Manual
LogicVista (Xiao et al., 2024) Visual logical reasoning ✘ ✘ 448 448 Manual
CNT (Roberts et al., 2023) Geographic and Geospatial ✘ ✓ 345 345 Manual
V* (Wu and Xie, 2023) Fine-grained visual search ✘ ✓ 191 191 Manual

ActiView (Ours) Active perception ✓ ✓ 314 1,625 Manual

Table 1: Comparison with other benchmarks for MLLMs. “Per. Fields”: Perceptual Fields. 1.9k*: Videos.
Manual*: A mixture of manual annotation and data from existing benchmarks. Our benchmark concentrates on
evaluating active perception abilities via the change of visual perceptual fields, including shifting to different fields
for compensating missing information, and zooming for fine-grained details in the current fields.

However, existing multimodal evaluation bench-064

marks are not well-suited for measuring active per-065

ception capabilities. We summarize several widely066

used or recently proposed multimodal evaluation067

benchmarks in Table 1. Most of these benchmarks068

assess models in static perceptual field settings,069

evaluating how well a model can process infor-070

mation presented directly to it without requiring071

active exploration or dynamic adjustments to its072

field of view. BLINK (Fu et al., 2024b), V* (Wu073

and Xie, 2023), and CNT (Roberts et al., 2023) are074

the only exceptions, as they utilize dynamic per-075

ceptual fields. However, they only consider either076

shifting or zooming of the field of view in specific077

scenarios, which are insufficient for measuring ac-078

tive perception capabilities. Therefore, there is a079

clear need for new evaluation frameworks that can080

adequately assess active perception abilities across081

diverse and dynamic environments.082

To fill this gap, we introduce a novel benchmark083

specifically designed for evaluating Active percep-084

tion through View changes (ActiView). Given the085

difficulty of comprehensively evaluating active per-086

ception capabilities across all possible scenarios,087

ActiView concentrates on a series of tasks that are088

currently feasible to evaluate yet still present signif-089

icant challenges to current models. The evaluation090

instances in ActiView follow the Visual Question091

Answering (VQA) (Antol et al., 2015) format but092

include the following additional features: 1) Each093

question requires an understanding of multiple de-094

tailed visual clues in the image to answer accurately.095

2) We impose view constraints on images, allow-096

ing the model to perceive only a partial field of097

view of the full image at a time. This setup explic-098

itly requires models to perform view shifting and099

zooming to gather more information and eliminate100

potential distractions, thereby simulating the active 101

perception process in real life. We manually col- 102

lect images and take new photos, carefully curate 103

questions, answers, and visual clues to ensure the 104

quality and diversity of our benchmark. 105

We investigate three advanced proprietary mod- 106

els and 24 widely-used open-source models. Re- 107

sults reveal that these models generally lag behind 108

in active perception. For instance, the strong pro- 109

prietary model, GPT-4o, only achieved an aver- 110

age score of 66.40% with our designed evaluation 111

pipelines for fundamental abilities, and 67.38% on 112

the general VQA format, which is notably lower 113

than the human performance score of 84.67%. Re- 114

garding another pipeline that allows models to flex- 115

ibly integrate these fundamental abilities, GPT-4o 116

achieves a score of 69.54%, implying that com- 117

bining fundamental active perception abilities can 118

contribute to improvements. Moreover, the average 119

performance gap between proprietary models and 120

open-source models in active perception is consid- 121

erably smaller within our designed pipelines than 122

those observed in tasks from previous research. Ex- 123

perimental results suggest that models tend to per- 124

form better when given the full image but strug- 125

gle to develop a holistic understanding when pre- 126

sented with even all the constrained perceptual 127

fields. These findings highlight the need for further 128

research in active perception and and the value of 129

our our benchmark for advancing this field. 130

2 Related Works 131

2.1 MLLM Benchmarks 132

Extensive efforts have been devoted to developing 133

MLLM evaluation benchmarks (Table 1). These 134

benchmarks cover a wide range of capabilities, 135
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including but not limited to visual comprehen-136

sion (Fu et al., 2023; Liu et al., 2023d; Fu et al.,137

2024a), visual perception (Fu et al., 2024b), hal-138

lucination (Liu et al., 2023a), and mathematical139

and logical reasoning (Lu et al., 2023; Xiao et al.,140

2024). However, most of these benchmarks uti-141

lize a static view of the input image, which is not142

suitable for evaluating active perception. While143

BLINK (Fu et al., 2024b) involves view shifting144

and both V* (Wu and Xie, 2023) and CNT (Roberts145

et al., 2023) require view zooming, active percep-146

tion is not a prerequisite for solving their evalua-147

tion questions, making them insufficient for active148

perception evaluation. In contrast, our benchmark149

considers both view shifting and zooming. Ques-150

tions in our benchmark are specifically designed to151

necessitate active perception for answering, mak-152

ing it a more comprehensive benchmark for active153

perception evaluation.154

2.2 Active Perception in MLLMs155

Although MLLMs have attracted extensive inter-156

est, less effort has been dedicated to improving157

the active perception capability of MLLMs. One158

line of research focuses on improving the ability of159

processing high-resolution images by using higher-160

resolution ViTs (Ye et al., 2024b), slicing high-161

resolution images and then concatenate them (Liu162

et al., 2024), or directly using LLMs to process raw163

patches of any resolution (Li et al., 2023a). The164

other line emphasizes visual search for fine-grained165

details. SEAL (Wu and Xie, 2023) fine-tunes a166

framework of two MLLMs to follow the visual167

search mechanism for precise visual grounding,168

and V-IRL (Yang et al., 2024) proposes an active169

detection strategy to improve the comprehension170

of real-world geospatial information. Despite these171

efforts, our evaluation results reveal that existing172

MLLMs still generally lack active perception capa-173

bilities. Our benchmark will shed light on evaluat-174

ing and enhancing active perception in MLLMs.175

3 ActiView176

Our benchmark exams active perception abili-177

ties of models via different perceptual fields,178

where Actively zooming and shifting of Views179

(ActiView) are required. We summarize zooming180

and shifting as fundamental and essential factors of181

active perception as depicted in Figure 1, where we182

can evaluate active perception abilities of models183

through the two factors separately or integratedly.184

ActiView imitates the behavior of active perception185

by providing models with a constraint initial view, 186

which is a cropped field of the original image or 187

the full image with limited resolution. As shown 188

in Figure 2, models should search for missing but 189

important information via view zooming and shift- 190

ing, and eliminate distractions caused by redundant 191

information in the view. 192

3.1 Benchmark Overview 193

When perceiving an image, humans intuitively fo- 194

cus on three principle aspects: the environment 195

depicted in the image, the primary objects, and the 196

event that these objects are engaged in. Correspond- 197

ingly, we summarize the questions in our bench- 198

mark into three main categories, environment- 199

centric (Type I), object-centric (Type II), and event- 200

centric (Type III) categories, which are further di- 201

vided into eight sub-classes according to the spe- 202

cific type of visual information and visual features 203

used for answering the questions, as displayed in 204

Figure 2. For the environment-centric category, 205

three sub-classes are developed: 206

• Geo-Localization (Geo-Loc) focuses on geo- 207

graphical features that are unique to a country 208

or a city, and requires models to identify geo- 209

graphical locations depicted in target images. 210

Typical questions are “Where is this place lo- 211

cated?”,“In which country is the photo taken?”, 212

and etc. Images in this class usually contain 213

unique landmarks such as the Eiffel Tower in 214

Paris and the Atomium in Brussels. 215

• Orientation (Orient) challenges models to ex- 216

ploit natural orientation information for answer- 217

ing the questions, such as the position of shad- 218

ows, the position of the sun, and the directional 219

information on street signs. Questions of this 220

type include “Is this a sunset or a sunrise?”, 221

“Where is the sunlight coming from?” and etc. 222

• Daily-location (Daily-Loc). To distinguish 223

from Geo-Loc, this sub-class concentrates on 224

locations in everyday life that could appear in 225

most of the cities and are not unique to a cer- 226

tain city or country. Images in this sub-class 227

usually depict scenes of museums, restaurants, 228

shops, etc. The corresponding questions in- 229

clude “Where is this picture most likely taken?”, 230

“Is there a music school nearby?”, and etc. 231

For the object-centric category, we expect mod- 232

els to exhibit abilities beyond simple grounding 233

tasks that directly ask for the attributes or relations 234

of objects. Questions for this category usually in- 235

volve distracting information from images, and re- 236
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Question:

 

Options:

What is the woman in 

blue looking at?

(A) A shop

(B) A cellphone

(C) A flag

(D) A sign
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Options:
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G
e
o
-L

oc

Visual InformationEnvironment-centric

Event-centric

Object-centricVisual Information

Initial view

Question:

 

Options:

Where does this place 

locate?

(A) UK      (B) France

(C) Spain   (D) Hungary

O
rie

nt
D

aily
-L

oc
O

b
j-

A
tt

r

Initial view

Initial view

Initial view

Question:

 

Options:

Which direction is the 
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(A) A Chinese resort

(B) A gallery

(C) A school

(D) A restaurant
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Initial view

Question:

 

Options:

Is it safe for the driver 

to change to the right 

lane now?

(A) Unsafe, a car appears 

in the right lane

(B) Safe, no cars visible 

through windows

E
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nt
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Initial view

E
vent-M

Question:

 

Options:

How much does the most 

expensive watermelon 

cost per kilogram?

(A) 29   (B) 39 

(C) 59   (D) 69

Question:

 

Options:

Is the person in the sea?

(A) Yes

(B) No

Visual InformationVisual Information

Figure 2: Examples of ActiView, exhibiting the following features: i) requiring focusing on multiple fine-grained
regions; ii) requiring distinguishing distracting information from the entire image; iii) requiring moving of perceptual
fields to obtain sufficient visual information to answer questions. During evaluation, models will be given an initial
view cropped from the original image as shown above. Visual Information: human-annotated visual clues.

quire models to precisely understand the intentions.237

Sub-classes are demonstrated as follows:238

• Object-attribute (Obj-Attr) addresses objects239

attributes while distracting information, that240

potentially lead to incorrect answers, appears241

in the images. Shown by the Obj-Attr case in242

Figure 2, the highest price, 69 per kilogram,243

corresponds to papaya rather than watermelon.244

• Object-relation (Obj-Rel) concentrates on the245

spatial relationships among multiple objects,246

while the questions do not directly ask for the247

spatial relationships. It requires models to rea-248

son for the correct answer via spatial infor-249

mation. Figure 2 displays an Obj-Rel case in250

which models should be aware of the relative251

positions of the feet of the person to the water.252

• Counting (Count-Dis). Although it focuses on253

the number of objects, different from the count-254

ing tasks in other benchmarks (Fu et al., 2023;255

Yu et al., 2023), there are similar but distract-256

ing information about the targets in our images.257

These distracting objects easily confuse models258

and challenge the abilities to understand and259

strictly follow instructions. As the Count-Dis260

case in Figure 2, the jerky on the table are dis- 261

tracting to the answer of question “How many 262

pieces of jerky are hanging on the wall?”. 263

The event-centric category focuses on the inter- 264

actions of humans and items, such as movements, 265

actions and activities. This category is divided ac- 266

cording to the number of objects involved in the 267

target event as following: 268

• Event-single (Event-S). There is only one item 269

or person involved in the target event. For ex- 270

ample, the image for Event-S in Figure 2 shows 271

one person driving without other people pre- 272

senting in the image. 273

• Event-multi (Event-M). Different from Event- 274

S, events of this type happen among multiple 275

items or people. In the Event-M case in Fig- 276

ure 2, the “woman in blue” is engaged in a 277

photo shooting activity in which she is posing 278

and another person is taking photo for her. It re- 279

quires models to distinguish the event or events 280

that each entities are engaged in. 281

To prevent MLLMs from directly answering the 282

questions by merely going through the options, we 283
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(a). Zooming          : Evaluation for the ability to locate and determine fine-grained details

(b). Shifting         : Evaluation for the ability to shift perceptual fields for missing information

Example:       Question:  In which country is the photo taken?             Options:  A. UK    B. France     C. Spain      D. Hungary

MLLM

Please select 
views that could 
help you answer 
the question 
{Question}. 

MLLM D.

Given the 
selected views, 
answer the 
question: 
{Question} 
{Options}

This is the upper-right view of the image.
Do you require more visual information 
to answer question {Question} ? MLLM

No

Yes

*Note: Keep adding views until all views are used or the model responses “No” 

Question answering

MLLM D.

These are your selected views. Please 
answer the question: {Question} {Options}

This is the lower-right 
view of the image.

View selection Question answering

(c). Mixed: Mixed operation of shifting and zooming (without specifying the operation).

MLLM

Given the full image, you can either ZOOM to 
a sub-view and/or SHIFT to other views that 
could help you answer the question

MLLM D.

Given the 
selected 
views, 
answer 
question: 
{Question} 
{Options}

Operation determination Question answering

Zooming 
and/or 
Shifting

{Question}.

h

w

h

w

h

w

h

w

h

w

h

w

Missing-view examination

h

w

h

w
h

w

h

w

h

w

Figure 3: Evaluation pipelines as described in §4.1. (a) Zooming requires models to select multiple regions to
zoom in. It tests one of the fundamental active perception abilities. (b) Shifting challenges models to ask for
more necessary information. It tests the other fundamental active perception abilities. (c) Mixed simulates human
behavior when shifting perceptual fields for missing information. It is more flexible and applicable in real life
compare to the previous two fundamental abilities. Note that while we provide an example in the figure where
model delete a zoomed sub-view, the deletion behavior is NOT required. It is to address the compound features of
the mixed pipeline (c) compare to the other fundamental pipelines (a) and (b).

formulate most of candidate options from the im-284

ages themselves. For instance, as the example of285

Geo-Loc shown in Figure 2, there are correspond-286

ing information for each of the options in the image,287

where flags representing UK, France, Spain and288

Hungary appear. Additionally, for options com-289

prised by numbers, we display them in random290

order to avoid biased predictions.291

3.2 Data Collection and Data Statistics292

Our data are manually curated, including image293

collection and question annotation. To evaluate ac-294

tive perception abilities requiring zooming of fine-295

grained details and shifting views to obtain missing296

information, we carefully select images containing297

multiple fine-grained objects and depicting com-298

plex environment and events. Details of collected299

images and annotation guidelines are provided in300

Appendix A. Annotators are also required to iden-301

tify visual clues in the image that support their302

answer, which are shown in “Visual Information”303

columns in Figure 2. The experiments of automatic304

data generation are discussed in Appendix J. As305

a brief conclusion here, powerful models, such as306

GPT-4V and GPT-4o, fail to satisfy our annotation 307

guidelines. They suffer from hallucination when 308

comprehending images, and fall short on recogniz- 309

ing visual facts from the image and external world 310

knowledge that does not present in the image. 311

The detailed data statistics are reported in Ap- 312

pendix A.3, with the distribution of categories 313

shown in Figure 4. There are 2.64 sub-views con- 314

taining human-annotated clues for each of the ques- 315

tions on average. This indicates that a single view is 316

not sufficient for obtaining the correct answer, and 317

that the ability to read and comprehend multiple 318

images jointly is indispensable to our benchmark. 319

4 Evaluation 320

For thorough investigation, we design three evalua- 321

tion pipelines for different operations of perceptual 322

fields as illustrated in Figure 3, including two indi- 323

vidual pipelines for the fundamental factors, zoom- 324

ing and shifting, respectively, and a mixed pipeline 325

comprising both operations. We set up five dif- 326

ferent initial views for each question-image pairs, 327

where a full image of limited resolution is used for 328
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zooming and mixed pipelines, and four constrained329

views are applied for the shifting pipeline. The330

evaluated models are elaborated in Appendix D.331

4.1 Evaluation Pipelines332

This section will discuss motivations and settings333

of each pipelines in detail.334

Zooming pipeline. It focuses on one of the funda-335

mental factors, zooming, and evaluates the ability336

to locate and determine fine-grained information337

necessary to answer questions. As illustrated in338

Figure 3 (a), this pipeline contains two stages, the339

view selection and the question answering stages.340

To simulate the zooming operation, models are re-341

quired to first select sub-views to be zoomed given342

the initial view, then answer questions based on343

these zoomed views. The initial view used in this344

pipeline is the full image with size w × h. Each345

of the selected sub-views will be resized to size346

w × h, the same as the initial view. In Figure 3 (a),347

the zoomed right-upper view is resized as a w × h348

image, and so does the zoomed left-lower view.349

Afterwards, models answer the question given the350

two zoomed views. Please refer to Appendix I.2351

for prompt templates.352

Shifting pipeline. It addresses the other funda-353

mental factor, shifting, and emphasizes the ability354

to navigate perceptual fields incrementally, mim-355

icking real-world scenarios where full context is356

unavailable. It evaluates the ability to shift percep-357

tual fields for missing information and to deduce358

the answer given perceived perceptual fields fol-359

lowing templates in Appendix I.3. This is also a360

two-stage pipeline as in Figure 3 (b). To simulate361

the movement of human eyes, models are presented362

with an initial view, size w× h, which is a cropped363

field from the original image, and are asked to deter-364

mine if the current views are sufficient for answer-365

ing. Upon receiving positive responses, models are366

prompted to produce answer given the current view367

or views. If the model requires more views to infer368

the answer, an adjacent view will be given until the369

model can answer the question. For this pipeline,370

we further assign different difficulties according371

to human-annotated visual clues contained in the372

initial views as follows:373

• Shifting-R: randomly selected initial views.374

• Shifting-E: easy-level evaluation, where initial375

views contain at least one entire visual clue for376

answering the question.377

• Shifting-M: medium-level evaluation, where378

initial views contain only partial visual clues379

for answering the question. 380

• Shifting-H: hard-level evaluation, where no vi- 381

sual clues appear in the initial views. 382

Mixed pipeline. While the above pipelines per- 383

mit either zooming or shifting individually, we also 384

implement an automated mixed setting that does 385

not specify the type of active perception ability re- 386

quired. As illustrated in Figure 3 (c), models must 387

independently decide whether to zoom and/or shift 388

to different perceptual fields. Unlike the zooming 389

pipeline, where the model answers questions based 390

on all selected views, in the mixed pipeline, a view 391

would be discarded after selection if the model rec- 392

ognizes it as irrelevant to the question. Compared 393

to the shifting pipeline, the mixed pipeline also 394

provides access to the full image view in addition 395

to cropped sub-views. Appendix I.4 records the 396

employed prompt templates. This pipeline requires 397

models to account for all the sub-views and the full 398

image for unbiased operation determination and 399

view selection. Otherwise, it is at risk of reverting 400

to zooming or shifting evaluation without sufficient 401

and unconverted visual information. Therefore, the 402

mixed pipeline emphasizes the autonomy of mod- 403

els and is only applied to multi-image models. 404

In addition to these pipelines for evaluating ac- 405

tive perception abilities, our benchmark also sup- 406

ports the general VQA evaluation, where models 407

are prompted to answer visual questions given orig- 408

inal images without zooming or shifting. Please 409

refer to Appendix I.1 for detailed prompt templates. 410

We also investigate this setting to assess the diffi- 411

culty of our created benchmark. 412

4.2 Processing of Views 413

In this paper, we primarily focus on the inter- 414

leaved multi-image setting, since it is more practi- 415

cal and natural compared to the single-image set- 416

ting. Multi-image models can naturally read and 417

understand multiple views at one time during evalu- 418

ating, and we directly format the images and text in 419

an interleaved format. For fairness, we also propose 420

methods for evaluating powerful single-image mod- 421

els. Generally, the images are split into 4 sub-views 422

to enable zooming and shifting operations, and to 423

ensure that all models are fairly evaluated without 424

bias from their training data or image processing 425

strategies. We also discuss different splittings in 426

Appendix G.1, together with other methods for pro- 427

cessing the input views, including discussions on 428

image processing (Appendix G) and textual form 429

conversion (Appendix G.3). 430
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Models
Zooming Ability Shifting Ability Models

AVGFull image Zooming Single View Shifting-R Shifting-E Shifting-M Shifting-H
Proprietary models (APIs)

Gemini-1.5-pro 73.85 72.31 58.15 67.08 67.38 65.54 67.69 68.00
GPT-4o 67.38 68.62 61.23 67.08 66.77 65.23 64.31 66.40
Claude 3.5 Sonnet 72.92 71.69 54.46 65.23 66.15 60.31 61.85 65.05

Open-source models for multiple images as input

Qwen2-VL 63.08 64.62 54.46 61.23 62.77 64.31 61.85 62.96

Idefics3-8B-Llama3 59.08 58.15 53.23 61.85 59.38 59.69 60.31 59.88
MiniCPM-V 2.6 64.62 61.85 54.46 54.77 61.23 58.15 55.69 58.34
mPLUG-Owl3 62.46 60.92 54.15 51.69 56.31 55.69 53.54 55.63
LLaVA-OneVision 64.92 65.23 56.92 53.54 57.23 52.31 48.62 55.39
InternVL2-8B 58.15 56.00 45.85 54.77 59.70 53.23 52.00 55.14
idefics2-8b 61.85 61.85 55.69 53.23 56.92 51.69 49.23 54.58
Mantis 59.08 60.62 52.92 52.92 55.38 52.92 52.31 54.83
Brote-IM-XL-3B 54.77 54.46 55.69 51.38 51.08 52.62 47.69 51.45
MMICL-XXL-11B 51.69 49.54 50.15 49.85 49.85 46.77 45.54 48.31

Open-source models for single image as input

MiniCPM-Llama3-V-2.5 63.87 61.25 54.47 60.92 60.31 59.38 58.46 60.06

GLM-4V-9B 67.08 56.92 53.85 56.92 60.62 56.00 52.92 56.68
InternVL-Vicuna-13B 56.92 62.77 52.31 53.85 52.92 52.92 51.08 54.71
LLaVA-1.6 7B 55.08 68.92 50.15 51.69 52.31 49.23 48.00 54.03
mPLUG-Owl2-7B 55.08 55.38 52.00 47.38 46.46 46.46 46.15 48.37
Mini-Gemini-7B-HD 55.69 34.77 51.70 48.62 48.00 47.69 50.15 45.85
SEAL 48.31 54.77 42.77 42.15 42.77 40.02 40.62 44.07

Table 2: Results of two fundamental abilities required by active perception, following shifting and zooming pipelines
in §4.1. We list results of 20 widely-discussed models here, and refer readers to Table 7 for more details. The
humane performance is 84.67% referring to Table 4 in Appendix B. The two gray columns, “Full image” and “Single
View”, are provided only as references for general QA without active perception. “Model AVG”: average scores
of zooming (column “Zooming”) and shifting (columns “Shifting-R”, “Shifting-E”, “Shifting-M”, “Shifting-H”)
evaluations. The best scores of each column are bolded and the best scores in each model types are highlighted .

GPT-4o Qwen2-VL MiniCPM-V 2.6 mPLUG-Owl3 Idefics3

ACC #zoom #shift #view ACC #zoom #shift #view ACC #zoom #shift #view ACC #zoom #shift #view ACC #zoom #shift #view

69.54 1.61 1.23 1.35 65.54 2.51 2.17 2.12 64.00 1.31 0.39 0.94 59.69 2.59 1.49 1.43 62.15 1.16 0.59 0.58

Table 3: Results of mixed pipeline for multi-image models. “ACC”: accuracy. “#zoom”: average zooming operations.
“#shift”: average shifting operations. “#view”: average used views.

5 Results and Analysis431

We adopt accuracy as the evaluation metric for432

question answering. Experimental results of zoom-433

ing and shifting pipelines on our benchmark are434

listed in Table 2, whose elaborated results on each435

type are provided in Appendix F. In our bench-436

mark, we do not employ the general four-option437

setting to avoid bias on the options from LLMs,438

and the number of candidate options ranges from439

two to seven. The computed random choice re-440

sult is 33.95%. We also conduct human evaluation441

and text-only evaluation, and discuss the results in442

detail in Appendix B and Appendix C, respectively.443

Main results. We draw four main findings from444

the pipelines for two fundamental factors of active445

perception. First, we conclude from Table 2 that all446

the evaluated models perform better than random447

guessing, indicating their potential to maintain ac-448

tive perception abilities of zooming and shifting.449

However, even the average results of powerful pro-450

prietary models are still much lower then human451

performance (84.67%, as in Table 4). Second, al-452

though proprietary models achieve better overall 453

performances compared to open-source models, the 454

performance gap between these two categories are 455

considerably smaller compared to gaps observed 456

in other tasks from previous research. With our 457

evaluation pipelines, proprietary models achieve 458

the highest average score of 68.00%, whereas the 459

highest from open-source models is 62.96%. Third, 460

among open-source models, multi-image models 461

present better average results compared to single- 462

image models, particularly in shifting evaluations 463

where models can only access constrained views. 464

Forth, for zooming and shifting evaluations, some 465

models present slightly worse results compared to 466

the accuracy of references scenarios, the full image 467

and single view scenarios. This implies that their 468

lag behind in active perception. 469

For results of mixed evaluation in Table 3, we 470

notice that the evaluated models benefit from en- 471

abling complex active perception and outperform 472

individual zooming or shifting settings on aver- 473

age. Among the evaluated models, MiniCPM-V 474

2.6 (64.00%) and Idefics3-8B-Llama3 (62.15%) 475
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achieve even higher accuracy compared to the re-476

sults of providing human-annotated ground truth477

views from Table 13 (62.77% and 60.92%, respec-478

tively). The mixed pipeline encourages models to479

zoom and/or shift perceptual fields autonomously,480

similar to human behavior, and these results demon-481

strate the significance and effectiveness of active482

perception abilities. However, during experiments,483

we observe that some multi-image models fail to484

follow instructions of mixed evaluation by generat-485

ing irrelevant responses or selecting invalid views,486

which, unfortunately, disrupts the mixed process.487

Case studies of each pipelines and with human-488

annotated clues are discussed in Appendix H.489

Impacts of selected views. Our pipelines involve490

selecting useful view in their first stages. The re-491

liability of selected views plays a crucial role in492

the following question answering stage. We refer493

readers to Appendix F.3 for elaborate discussion494

on corresponding results (in Table 13).495

Overall, lower selection recall tends to correlate496

with lower VQA accuracy. For example, Idefics3-497

8B-Llama3 and InternVL2-8B present the lowest498

recalls (41.09%) among multi-image models, lead-499

ing to lower accuracies for zooming evaluation,500

56.00% and 58.15%, respectively. We also inves-501

tigate the performance when given groundtruth502

views that contain human-annotated clues. Gen-503

erally, models are prompted to generate more ac-504

curate answers compared to the pure zooming set-505

ting. However, mPLUG-Owl3, Gemini-1.5-pro,506

and LLaVA-OneVision are only exceptional, whose507

performance slightly decrease when given visual508

clues. We argue that they are better at the question509

answering task rather than exhibiting active percep-510

tion ability. Additionally, we observe that shifting511

evaluations tend to require more views for answer-512

ing questions compared to zooming evaluation, yet513

often results in inferior overall performance, indi-514

cating that models lack the ability to actively shift-515

ing perceptual fields under constraints. Thus, we516

believe that more attention should be paid to evalu-517

ating and enhancing active perception abilities of518

MLLMs given limited perceptual fields.519

Analysis of difficulties for shifting evaluation.520

Generally, the accuracy of question answering and521

the recall of view selection decrease as the diffi-522

culties of the initial views increases. As shown by523

typical results of LLaVA-OneVision and GLM-4V-524

9B in Table 2, the gaps between easy and hard set-525

tings are as large as 8.61% and 7.70%, respectively.526

However, exceptions exist for Gemini-1.5-pro and 527

Idefics3, demonstrating different reasons, where 528

one is caused by the recall of selected views, and 529

the other lies in the order of relevant views. Gemini- 530

1.5-pro presents higher recall on shifting-H due 531

to higher selection recall. Idefics3 maintains the 532

same recall for all different settings, but achieves 533

a higher accuracy on shifting-H. We hypothesis 534

that the gain comes from the order of input views, 535

where hard-level evaluation starts with less relevant 536

views while appends more informative views at the 537

end of input image sequence when all the views are 538

selected. Please refer to Appendix F.2 for detailed 539

analysis on shifting evaluation. 540

Analysis of view splitting and image processing 541

strategies. We investigate these two aspects in 542

Appendix G.1 and Appendix G.3, respectively. For 543

the splitting settings, the adopted 4 sub-image set- 544

ting provides fair and reliable evaluation results, 545

which is not only effective and efficient, but also 546

demonstrate a good balance between zooming and 547

shifting evaluations. For the strategy of convert- 548

ing image into text, on the contrary, we observe 549

significant drops of results on both zooming and 550

shifting evaluations for most of investigated mod- 551

els. This suggests that the resizing issue in image 552

concatenation strategy has only a minor impact on 553

the performance. Please refer to Appendix G.1 and 554

Appendix G.3 for details. 555

6 Conclusion 556

This paper introduces ActiView, a novel benchmark 557

designed to evaluate the active perception abilities 558

of MLLMs. ActiView simulates real-world sce- 559

narios by imposing view constraints on images, 560

requiring models to perform view shifting and/or 561

zooming to gather necessary information for an- 562

swering questions. Our results indicate that current 563

MLLMs exhibit significantly lower active percep- 564

tion capabilities compared to humans, and that ac- 565

tive perception abilities of models will be markedly 566

enhanced by allowing inputs in multi-image inter- 567

leaved structures. We also observed that models 568

tend to perform better on our zooming evaluations 569

compared to shifting evaluations. This suggests 570

that the evaluated models lack the ability to com- 571

bine their understandings of constrained perceptual 572

fields to form a holistic perspective of the complete 573

image or the full scene. We hope our benchmark 574

will inspire further research in this critical area. 575
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Limitations576

In this study, we utilize a specific form of Visual577

Question Answering (VQA) to assess active per-578

ception abilities of models. While this form of579

VQA presents significant challenges for current580

multimodal language models (MLLMs), it does581

not encompass all aspects of active perception. For582

instance, it overlooks factors such as perspective583

distortion, multi-sensor integration, and the incor-584

poration of more dynamic or interactive environ-585

ments. Moreover, this study solely evaluates the586

inherent capabilities of the MLLMs. With the de-587

velopment of reasoning ability of models such as588

OpenAI o1, we believe the active perception ability589

will also emerge or be improved. Moreover, Tech-590

niques like tool learning and multi-agent collabo-591

ration could potentially enhance active perception592

performance based on existing MLLMs, making593

these areas worthy for future exploration and im-594

provement.595
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A Data Details825

A.1 Image Collection826

To ensure the clearness of useful visual details, the827

collected original image should be of high reso-828

lution. In practice, we collected images of three829

resolution levels, including 1920 × 1040, 2250830

× 1500, and 5184 × 3456, which are originated831

from VCR dataset (Zellers et al., 2019), SA-1B832

dataset (Kirillov et al., 2023), and photos taken in833

daily life. At the beginning of the image collection834

process, 30 images are collected from photos taken835

from daily activities, which are then served as pi-836

lots and standards for manually expanding the data837

scale from SA-1B dataset (Kirillov et al., 2023) and838

VCR dataset (Zellers et al., 2019). These images839

should include rich and fine-grained visual details.840

A.2 Rules for Annotation841

We provide a concise version of instruction used842

during annotation. For each of the images, annota-843

tors should follow the following instructions:844

• Questions: (1) Questions should be objective845

which have one and only one answer regarding846

the images. (2) The participation of multiple847

visual clues are preferred. They can be in the848

same or different regions of the image.849

• Options: (1) Options originated from the image850

itself are preferred. (2) The numeric options851

should be arrange randomly, neither descend-852

ing nor ascending order. (3) Options cannot853

be opposite to each other, except for “Yes” or854

“No”. (4) The number of options are not re-855

stricted to 4, you can provide as many options856

as long as they are reasonable and are closely857

related to the question and the image.858

• Distraction: Annotator should provide distract-859

ing visual clues that could lead to wrong an-860

swer (if any).861

• Clues: regions in the image that contribute to862

your annotated answer.863

A.3 Data Statistics864

We manually collected 314 images and carefully865

annotated 325 questions, where each question cor-866

responds to 5 different evaluation instances that as-867

sess active perception abilities in different settings868

and levels of difficulty. In total, there are 1,625869

evaluation instances in ActiView. For each of the870

questions, the number of candidate options ranges871

from two to seven, with an average of 3.24 options872
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Figure 4: The statistical distribution of our benchmark.

Annotator Background ACC ACC* Consis.

User1 CS 73.33 85.00 100.00
User2 Med 71.67 75.00 93.33
User3 Telecom 85.00 90.00 100.00
User4 CS 81.67 88.33 83.33
User5 CS 76.67 85.00 95.00
User6 Art 70.00 78.83 83.33

Average 77.53 84.67 94.20

Table 4: Human level performance and question con-
sistency. Consis.: human-annotated consistency of
question-image-option-groundtruth. ACC: accuracy of
answering the questions without assistance (i.e., the ac-
curacy for “Human” evaluation). ACC*: accuracy of
answering the questions with the help of Internet (i.e.,
the accuracy for “Human*” evaluation).

per question. There are 2.64 sub-views containing 873

human-annotated clues for each of the questions 874

on average. This indicates that a single view is not 875

sufficient for obtaining the correct answer, and that 876

the ability to read and comprehend multiple images 877

jointly is indispensable to our benchmark. 878

B Human Evaluation 879

We sampled 60 questions for human-level test, and 880

recruit 6 testees, who did not participate in image 881

collection and question annotation, to evaluate the 882

human level performance of our benchmark. These 883

testees are from diverse backgrounds, including 884

computer science (CS), telecommunication (Tele- 885

com), Medicine (Med), and Art. 886

For a fair comparison with the MLLMs, we em- 887

ploy two settings, including a “Human” evaluation 888

that asks testees to answer questions all by them- 889

selves, and a “Human*” evaluation that allows tes- 890

tees to use the Internet and LLMs for the required 891

knowledge, because these testees may not be ex- 892

posed to knowledge that never appear in their ev- 893

eryday life, which MLLMs have already seen in the 894

training data. Note that in the “Human*” evalua- 895

12



Model Claude GPT-4o Qwen2-VL MiniCPM-V 2.6 Idefics3 Brote-IM-XL

ACC 2.14 2.45 23.38 26.77 44.92 40.00
ACC(guess) 26.07 37.73 42.77 41.54 47.38 40.00

Table 5: Results of text-only evaluation. ACC: answer with commonsense only without random guessing.
ACC(guess): guess the answer according to commonsense.

tion, directly search for the answer to the questions896

are forbidden. Referring to the question in Figure 3897

as an example, testees may search for “what does898

the national flag of UK/France/Spain/Hungary look899

like?”, which may provide extra knowledge that900

helps them to answer the original question. Manual901

evaluation achieves an average accuracy of 84.67%,902

which is more than doubled of the random choice903

result (33.95%), while some models present only904

slightly higher accuracies compared to the random905

result. These indicate the potential for models to906

get improved.907

We ask testees to vote for the consistency of908

the annotated question-image-option-groundtruth909

quadruple for the investigation of the reliability of910

our benchmark. The consistency score represents911

if the testee agree with these quadruples and find912

the groundtruth answers and the provided options913

are practical and reasonable. Our benchmark is914

reliable indicated by a consistency of 94.2%.915

B.1 Analysis of Human Performances916

We assess the difficulty and reliability of our bench-917

mark upon human performances in Table 4. We918

employ two settings for human evaluation, where919

“Human” asks annotators to answer questions only920

by themselves, and “Human*” allows annotators to921

use the Internet and LLMs for extra knowledge that922

could help answer the questions. This “Human*”923

evaluation aims at fair comparison as humans may924

not be exposed to knowledge that never appear in925

their everyday life, while most of MLLMs should926

be aware of these knowledge from the training data.927

Human presents an average accuracy of 77.53%,928

suggesting that our benchmark is challenging even929

for human. For a fair comparison with large mod-930

els, “Human*” achieves an average of 84.67% by931

allowing searching for world knowledge from the932

Internet or using LLMs. Human performances933

(84.67%) are more than doubled of the random934

result (33.95%), while some models present only935

slightly higher accuracies compared to the random936

result. These indicate the potential for models to937

get improved.938

C Text-only Evaluation 939

We provide a text-only evaluation to measure the 940

amount of commonsense answers with providing 941

images in our benchmark. We conducted two ex- 942

periments: 943

• Commonsense-only evaluation. This evalua- 944

tion aims at measuring the amount of ques- 945

tions that can be answered only via common- 946

sense knowledge without searching for visual 947

clues in the image. The template is as follows: 948

“Please answer questions based on you com- 949

monsense knowledge. If you are not able to 950

answer the question based soly on the com- 951

monsense knowledge you’ve acquired, please 952

response with ‘None’. Question Options Your 953

answer:” 954

• Commonsense and data bias evaluation. Con- 955

sidering that current models are trained with 956

a large amount of data and various tasks, they 957

could potentially memories the most frequent 958

answers given a image-question pair. We imple- 959

ment another template to evaluate the amount 960

of data that can be correctly guessed without 961

corresponding context. The template is as fol- 962

lows: “Please answer questions based on you 963

commonsense knowledge. If you are not able 964

to answer, please select a most probable one. 965

Question Options Your answer:” 966

Results for these text-only evaluations are listed 967

in Table 5. This table indicates that questions in 968

our benchmark cannot be simply answered via 969

commonsense, where two powerful models GPT- 970

4o and Claude achieves only 2.45% and 2.14% 971

for commonsense-only evaluation. The row of 972

ACC(guess) presents results of generating the most 973

probable answers, reflecting the bias obtained from 974

the training corpus. The differences between these 975

two type of evaluation are caused by the ability of 976

instruction-following. We found that Idefics3 and 977

Brote-IM-XL present weaker instruction-following 978

ability compared to other models in this table, that 979

they still exhibit a behavior of guessing when com- 980

monsense cannot be used to answer the questions. 981
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Models LLM Backbone Vision Encoder
APIs

GPT-4o (OpenAI, 2024) gpt-4o
Gemini-1.5-pro (Reid et al., 2024) gemini-1.5-pro
Claude 3.5 Sonnet (Anthropic, 2024) claude-3-5-sonnet-20240620

Open-Source Models
GLM-4V-9B (Du et al., 2022) GLM-4-9B CLIP
MiniCPM-Llama3-V-2.5 (Yao et al., 2024) Llama-3-8B SigLip-400M
MiniCPM-V 2.6 (Yao et al., 2024) Qwen2-7B SigLip-400M
SEAL (Wu and Xie, 2023) Vicuna-7B CLIP ViT-L/14
LLaVA-1.6-13B (Liu et al., 2024) Vicuna-13B CLIP-ViT-L/14
LLaVA-1.6-7B (Liu et al., 2024) Vicuna-7B CLIP-ViT-L/14
LLaVA-OneVision-7B (Li et al., 2024a) Qwen2-7B SO400M
mPLUG-Owl2-7B (Ye et al., 2024b) Llama-2-7B CLIP ViT-L/14
mPLUG-Owl3-7B (Ye et al., 2024a) Qwen2-7B Siglip-400m
InternVL-Vicuna-7B (Chen et al., 2023) Vicuna-7B InternViT
InternVL-Vicuna-13B (Chen et al., 2023) Vicuna-13B InternViT
InternVL-Vicuna-13B-448px (Chen et al., 2023) Vicuna-13B InternViT-300M-448px
InternVL2-8B (Chen et al., 2024) internlm2_5-7b-chat InternViT-300M-448px
Qwen2-VL-8B (Wang et al., 2024a) Qwen2-7B OpenCLIP-ViT-bigG
Mantis (Jiang et al., 2024) LLaMA-3 Siglip-400m
Idefics2-8B (Laurençon et al., 2024) Mistral-7B Siglip-400m
Idefics2-8B-base (Laurençon et al., 2024) Mistral-7B Siglip-400m
Idefics3-8B-Llama3(Laurençon et al., 2024) Mistral-7B Siglip-400m
MMICL-XXL (Zhao et al., 2024) FlanT5-XXL-11B EVA-G
Brote-IM-XXL (Wang et al., 2024b) FlanT5-XXL-11B EVA-G
MMICL-XL (Zhao et al., 2024) FlanT5-XL-3B EVA-G
Brote-IM-XL (Wang et al., 2024b) FlanT5-XL-3B EVA-G
Mini-Gemini-7B-HD (Li et al., 2024c) LLaMA-3 CLIP-L
Mini-Gemini-7B (Li et al., 2024c) LLaMA-3 CLIP-L

Table 6: The versions of LLM backbone and vision encoder of our evaluated models. For proprietary models, we
provide the API version we used.

Overall, our benchmark requires elaborate ob-982

servation of the given images and comprehensive983

understanding of image-question pairs, which can-984

not be solved simply by commonsense.985

D Models986

We investigate both proprietary and open-source987

models. The proprietary models include widely988

discussed GPT-4o (OpenAI, 2024), Gemini-1.5-989

pro (Reid et al., 2024), and Claude 3.5 Sonnet (An-990

thropic, 2024). For open-source models, we care-991

fully select recent and commonly used models of992

different structures and of difference scales, such as993

model families of MiniCPM-V (Yao et al., 2024),994

LLaVA (Liu et al., 2023b,c), mPLUG-Owl (Ye995

et al., 2024b,a), Idefics (Laurençon et al., 2024;996

Laurençon et al., 2024), and etc. Since the aware-997

ness of fine-grained details and instruction-aware998

visual features are significant indicators during eval-999

uation, we also include models specifically opti-1000

mised on these aspects, such as SEAL (Wu and Xie,1001

2023) for fine-grained details understanding, and1002

Brote (Wang et al., 2024b) which is trained from In-1003

structBLIP (Dai et al., 2023) for instruction-aware1004

and multi-image comprehension. Details of these1005

models are listed in Table 6. Considering models1006

of different scales, we include a total of 27 models.1007

These models are divided into two types, single-1008

image models that accepting only one image per1009

input, such as LLaVA-1.6 (Liu et al., 2023b) and 1010

MiniCPM-Llama3-V-2.5 (Yao et al., 2024); and 1011

multi-image models that allow more than one im- 1012

ages to appear in the same input, such as Brote and 1013

Idefics. We describe the approaches for integrating 1014

multiple views into the input for the two types of 1015

models in Appendix G.2 and Appendix G.3. 1016

E Calculation of View Selection Recall 1017

We follow the recall metric to evaluate the perfor- 1018

mance of the view selection for zooming setting 1019

and the missing view examination for shifting set- 1020

tings. We denote the selected views containing 1021

human-annotated clues as TPop, where op refers 1022

to either “zoom”, “shift” or “mix”. FNop refers to 1023

views that contain human-annotated clues but are 1024

not selected for answering questions. Finally, the 1025

Rselect is calculated as follows: 1026

Rselect =
TPop

TPop + FNop
, op ∈ {zoom, shift,mix}.

(1) 1027

The view selection recalls of selected models are 1028

listed in Table 13. 1029

F Experimental Results 1030

We reported the full results of 27 models in Table 7. 1031

This table preserves the conclusions as discussed in 1032

by Table 2. The detailed results of each categories 1033
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Models
Zooming Shifting Models

AVGFull image Zooming Single View Shifting-R Shifting-E Shifting-M Shifting-H
proprietary models

Gemini-1.5-pro 73.85 72.31 58.15 67.08 67.38 65.54 67.69 68.00
GPT-4o 67.38 68.62 61.23 67.08 66.77 65.23 64.31 66.40
Claude 3.5 Sonnet 72.92 71.69 54.46 65.23 66.15 60.31 61.85 65.05

Open-source models for multiple images as input

Qwen2-VL 63.08 64.62 54.46 61.23 62.77 64.31 61.85 62.96

Idefics3-8B-Llama3 59.08 58.15 53.23 61.85 59.38 59.69 60.31 59.88
MiniCPM-V 2.6 64.62 61.85 54.46 54.77 61.23 58.15 55.69 58.34
mPLUG-Owl3 62.46 60.92 54.15 51.69 56.31 55.69 53.54 55.63
LLaVA-OneVision 64.92 65.23 56.92 53.54 57.23 52.31 48.62 55.39
InternVL2-8B 58.15 56.00 45.85 54.77 59.70 53.23 52.00 55.14
Mantis 59.08 60.62 52.92 52.92 55.38 52.92 52.31 54.83
Idefics2-8B 61.85 61.85 55.69 53.23 56.92 51.69 49.23 54.58
Brote-IM-XL-3B 54.77 54.46 55.69 51.38 51.08 52.62 47.69 51.45
Idefics2-8B-base 52.62 48.62 47.69 49.54 50.77 47.69 47.69 48.86
Brote-IM-XXL-11B 53.85 54.77 49.23 49.85 50.77 44.92 43.69 48.80
MMICL-XXL-11B 51.69 49.54 50.15 49.85 49.85 46.77 45.54 48.31
MMICL-XL-3B 49.85 49.85 44.31 44.92 48.92 45.85 44.31 46.77

Open-source models for single image as input

MiniCPM-Llama3-V-2.5 63.87 61.25 54.47 60.92 60.31 59.38 58.46 60.06

GLM-4V-9B 67.08 56.92 53.85 56.92 60.62 56.00 52.92 56.68
InternVL-Vicuna-13B 56.92 62.77 52.31 53.85 52.92 52.92 51.08 54.71
LLaVA-1.6 7B 55.08 68.92 50.15 51.69 52.31 49.23 48.00 54.03
InternVL-Vicuna-7B 55.38 65.23 51.70 52.92 51.38 50.77 48.62 53.78
LLaVA-1.6 13B 56.92 65.23 52.31 45.85 55.08 52.62 48.92 53.54
InternVL-Vicuna-13B-448px 50.46 57.85 45.54 48.31 48.31 48.92 48.92 50.46
mPLUG-Owl2-7B 55.08 55.38 52.00 47.38 46.46 46.46 46.15 48.37
Mini-Gemini-7B-HD 55.69 34.77 51.70 48.62 48.00 47.69 50.15 45.85
SEAL 48.31 54.77 42.77 42.15 42.77 40.02 40.62 44.07
Mini-Gemini-7B 47.08 17.85 47.38 39.38 38.15 38.15 36.00 33.91

Table 7: The evaluation of active perception abilities on our benchmark, including zooming (for limited resolution
scenarios), and shifting (for scenarios of limiting the field of views). “Model AVG”: average scores of column
“Zooming”, “Shifting-R”, “Shifting-E”, “Shifting-M”, and “Shifting-H”. The best scores of each column are bolded
and the best scores in each model types are highlighted .

are listed in Table 8, Table 9, Table 10, Table 11,1034

and Table 12, for zooming, shifting-R, shifting-E,1035

shifting-M, and shifting-H, respectively.1036

F.1 Analysis of Results on Zooming1037

Evaluation1038

We notice that for the zooming evaluation, except1039

for InternVL and LLaVA-1.6, single-image models1040

fail to achieve equivalent or comparable results1041

(comparing with full image setting), and present1042

performance gap of as large as 29.23% (for Mini-1043

Gemini-7B) where the zooming results are much1044

lower. These imply that some single models are1045

unaware of the location of key visual information1046

required by the target question. On the contrary,1047

multi-image models present comparable or even1048

better scores under the zooming evaluation.1049

We summarise the zooming results on sub-1050

classes from Table 8, that the environment-centric1051

category (including Geo-Loc, Orient, and Daily-1052

Loc) presents significantly higher scores than1053

object-centric and event-centric categories. The1054

reason lies in the fact that questions in environment-1055

centric category require more visual commonsense1056

that most of models learnt from the vast training 1057

data. We also notice that Idefics2-8B-base even en- 1058

larges the performance gap between environment- 1059

centric category and the others by around 40%, 1060

which demonstrate extremely unbalanced capabil- 1061

ities of exploiting inherent commonsense and ob- 1062

served visual clues. The most challenging types of 1063

instances are Orient, Count-Dis and Event-S, that 1064

present even halved scores compared to the other 1065

sub-classes. Surprisingly, some of evaluated single- 1066

image models achieve better scores or perform 1067

equally compared to powerful proprietary models 1068

for the zooming evaluation, especially mPLUG- 1069

Owl2-7B regarding the object-centric category. We 1070

hypothesis that this model possesses strong object 1071

recognition ability and is less affected by object 1072

hallucination compared to other MLLMs. 1073

F.2 Analysis of Results on Shifting Evaluation 1074

The shifting pipeline aims at mimicking the sce- 1075

nario when humans look for more visual infor- 1076

mation by shifting the perceptual fields, the pre- 1077

viously perceived views cannot be simply erased 1078

from memory, and new views are integrated in- 1079
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Models
Type I

AVG
Type II

AVG
Type III

AVG
Geo-Loc Orient Daily-Loc Obj-Attr Obj-Rel Count-Dis Event-M Event-S

proprietary models
Gemini-1.5-pro 91.89 60.00 92.68 83.33 80.00 65.22 51.06 65.73 85.29 57.50 70.27
GPT-4o 94.59 63.33 85.37 82.41 68.00 54.35 46.81 56.64 76.47 65.00 70.27
Claude 3.5 Sonnet 97.30 50.00 87.80 80.56 72.00 67.39 42.55 60.84 82.35 75.00 78.38

Open-source models for multiple images as input
Qwen2-VL 97.30 50.00 80.49 77.78 68.00 65.22 40.43 58.04 58.82 57.50 58.11
Idefics3-8B-Llama3 89.19 56.67 73.17 74.07 60.00 54.35 29.79 48.25 58.82 50.00 54.05
MiniCPM-V 2.6 86.49 46.67 80.49 73.15 54.00 56.52 31.91 47.55 61.76 42.50 51.35
mPLUG-Owl3 89.19 53.33 80.49 75.93 64.00 60.87 36.17 53.85 58.82 47.50 52.70
LLaVA-OneVision 91.89 46.67 87.80 77.78 74.00 58.70 42.55 58.74 61.76 57.50 59.46
InternVL2-8B 75.68 56.67 70.73 68.52 60.00 47.83 25.53 44.76 61.76 57.50 59.46
Mantis 89.19 41.38 80.00 72.64 72.00 54.35 44.68 57.34 54.55 51.28 52.78
Idefics2-8B 89.19 63.33 85.37 80.56 72.00 50.00 40.43 54.55 55.88 45.00 50.00
Brote-IM-XL-3B 86.49 40.00 73.17 68.52 60.00 43.48 40.43 48.25 44.12 47.50 45.95
Idefics2-8B-base 89.19 56.67 78.05 75.93 42.00 39.13 29.79 37.06 23.53 35.00 29.73
Brote-IM-XXL-11B 86.49 33.33 80.49 69.44 58.00 43.48 34.04 45.45 58.82 45.00 51.35
MMICL-XXL-11B 67.57 53.33 65.85 62.96 52.00 36.96 34.04 41.26 58.82 35.00 45.95
MMICL-XL-3B 70.27 43.33 68.29 62.04 58.00 34.78 36.17 43.36 38.24 50.00 44.59

Open-source models for single image as input
MiniCPM-Llama3-V-2.5 86.49 53.33 75.61 73.15 64.00 43.48 31.91 46.85 50.00 50.00 50.00
GLM-4V-9B 78.38 53.33 75.61 70.37 60.00 45.65 31.91 46.15 61.76 55.00 58.11
InternVL-Vicuna-13B 72.97 43.33 85.37 69.44 68.00 58.70 29.79 52.45 73.53 72.50 72.97
LLaVA-1.6 7B 91.89 66.67 87.80 83.33 76.00 60.87 44.68 60.84 79.41 65.00 71.62
InternVL-Vicuna-7B 86.49 66.67 82.93 79.63 64.00 65.22 42.55 57.34 67.65 52.50 59.46
LLaVA-1.6 13B 94.59 56.67 90.24 82.41 78.00 69.57 36.17 61.54 64.71 77.50 71.62
InternVL-Vicuna-13B-448px 48.65 53.33 63.41 55.56 74.00 58.70 36.17 56.64 64.71 62.50 63.51
mPLUG-Owl2-7B 91.89 60.00 90.24 82.41 84.00 71.74 51.06 69.23 70.59 70.00 70.27
Mini-Gemini-7B-HD 62.16 26.67 26.83 38.89 26.00 43.48 27.66 32.17 44.12 25.00 33.78
SEAL 70.27 46.67 63.41 61.11 64.00 50.00 44.68 53.15 41.18 55.00 48.65
Mini-Gemini-7B 37.84 16.67 21.95 25.93 6.00 17.39 8.51 10.49 20.59 20.00 20.27

Table 8: Results on all sub-classes of zooming evaluation.

Models
Type I

AVG
Type II

AVG
Type III

AVG
Geo-Loc Orient Daily-Loc Obj-Attr Obj-Rel Count-Dis Event-M Event-S

proprietary models
Gemini-1.5-pro 91.89 50.00 82.93 76.85 76.00 50.00 55.32 60.84 70.59 57.50 63.51
GPT-4o 94.59 63.33 80.49 80.56 74.00 50.00 42.55 55.94 73.53 67.50 70.27
Claude 3.5 Sonnet 91.89 53.33 80.49 76.85 72.00 52.17 40.43 55.24 64.71 67.50 66.22

Open-source models for multiple images as input
Qwen2-VL 91.89 50.00 85.37 77.78 72.00 54.35 38.30 55.24 52.94 45.00 48.65
Idefics3-8B-Llama3 89.19 53.33 85.37 77.78 64.00 50.00 42.55 52.45 61.76 52.50 56.76
MiniCPM-V 2.6 89.19 53.33 73.17 73.15 64.00 47.83 25.53 46.15 47.06 42.50 44.59
mPLUG-Owl3 81.08 43.33 73.17 67.59 70.00 34.78 19.15 41.96 55.88 40.00 47.30
LLaVA-OneVision 62.16 46.67 73.17 62.04 64.00 52.17 23.40 46.85 61.76 47.50 54.05
InternVL2-8B 78.38 50.00 80.49 71.30 62.00 41.30 31.91 45.45 35.29 60.00 48.65
Mantis 91.89 40.00 70.73 69.44 70.00 50.00 19.15 46.85 52.94 40.00 45.95
Idefics2-8B 75.68 60.00 70.73 69.44 60.00 39.13 19.15 39.86 61.76 52.50 56.76
Brote-IM-XL-3B 70.27 43.33 65.85 61.11 62.00 41.30 42.55 48.95 47.06 35.00 40.54
Idefics2-8B-base 86.49 43.33 78.05 71.30 54.00 36.96 23.40 38.46 50.00 27.50 37.84
Brote-IM-XXL-11B 70.27 40.00 65.85 60.19 56.00 47.83 31.91 45.45 55.88 32.50 43.24
MMICL-XXL-11B 62.16 53.33 63.41 60.19 56.00 47.83 34.04 46.15 52.94 32.50 41.89
MMICL-XL-3B 32.43 50.00 65.85 50.00 52.00 45.65 38.30 45.45 41.18 32.50 36.49

Open-source models for single image as input
MiniCPM-Llama3-V-2.5 94.59 36.67 82.93 74.07 66.00 50.00 48.94 55.24 41.18 57.50 50.00
GLM-4V-9B 86.49 53.33 80.49 75.00 62.00 30.43 40.43 44.76 55.88 52.50 54.05
InternVL-Vicuna-13B 62.16 46.67 60.98 57.41 64.00 54.35 25.53 48.25 58.82 60.00 59.46
InternVL-Vicuna-7B 72.97 50.00 60.98 62.04 60.00 45.65 34.04 46.85 55.88 47.50 51.35
InternVL-Vicuna-13B-448px 45.95 40.00 56.10 48.15 62.00 56.52 25.53 48.25 50.00 47.50 48.65
mPLUG-Owl2-7B 64.86 40.00 53.66 53.70 60.00 47.83 19.15 42.66 52.94 50.00 51.35
Mini-Gemini-7B-HD 72.97 53.33 43.90 56.48 56.00 43.48 25.53 41.96 58.82 42.50 50.00
SEAL 56.76 43.33 53.66 51.85 54.00 41.30 19.15 38.46 29.41 40.00 35.14
Mini-Gemini-7B 59.46 46.67 43.90 50.00 36.00 39.13 29.79 34.97 32.35 32.50 32.43

Table 9: Results on each sub-classes of Shifting-R, shifting with random initial views.

crementally. Results of shifting-R evaluation are1080

shown in Table 9, and the level-specified shifting1081

evaluation are listed in Table 10, Table 11 and Ta-1082

ble 12. Similar to that of zooming evaluation, re-1083

sults on environment-centric category are signifi- 1084

cantly better than the ones on object-centric and 1085

event-centric categories. The results of proprietary 1086

models are better than the results of open-source 1087
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Models
Type I

AVG
Type II

AVG
Type III

AVG
Geo-Loc Orient Daily-Loc Obj-Attr Obj-Rel Count-Dis Event-M Event-S

proprietary models
Gemini-1.5-pro 91.89 63.33 90.24 83.33 68.00 50.00 48.94 55.94 79.41 52.50 64.86
GPT-4o 97.30 53.33 85.37 80.56 64.00 52.17 44.68 53.85 73.53 72.50 72.97
Claude 3.5 Sonnet 94.59 70.00 80.49 82.41 66.00 52.17 38.30 52.45 70.59 65.00 67.57

Open-source models for multiple images as input
Qwen2-VL 94.59 53.33 85.37 79.63 68.00 60.87 40.43 56.64 50.00 50.00 50.00
Idefics3-8B-Llama3 89.19 46.67 82.93 75.00 60.00 56.52 40.43 52.45 58.82 42.50 50.00
MiniCPM-V 2.6 89.19 63.33 78.05 77.78 76.00 58.70 23.40 53.15 52.94 52.50 52.70
mPLUG-Owl3 83.78 46.67 78.05 71.30 62.00 52.17 27.66 47.55 52.94 50.00 51.35
LLaVA-OneVision 70.27 43.33 70.73 62.96 76.00 60.87 29.79 55.94 58.82 45.00 51.35
InternVL2-8B 83.78 63.33 63.41 70.37 66.00 56.52 36.17 53.15 44.12 67.50 56.76
Mantis 91.89 36.67 70.73 68.52 72.00 52.17 23.40 49.65 50.00 45.00 47.30
Idefics2-8B 83.78 56.67 78.05 74.07 68.00 43.48 25.53 46.15 52.94 55.00 54.05
Brote-IM-XL-3B 62.16 40.00 68.29 58.33 64.00 50.00 44.68 53.15 41.18 45.00 43.24
Idefics2-8B-base 81.08 43.33 85.37 72.22 62.00 39.13 25.53 42.66 41.18 27.50 33.78
Brote-IM-XXL-11B 64.86 33.33 60.98 54.63 58.00 52.17 46.81 52.45 41.18 42.50 41.89
MMICL-XXL-11B 62.16 36.67 60.98 54.63 62.00 41.30 46.81 50.35 41.18 42.50 41.89
MMICL-XL-3B 56.76 46.67 68.29 58.33 56.00 45.65 40.43 47.55 41.18 35.00 37.84

Open-source models for single image as input
MiniCPM-Llama3-V-2.5 91.89 46.67 80.49 75.00 58.00 45.65 44.68 49.65 47.06 57.50 52.70
GLM-4V-9B 94.59 56.67 78.05 77.78 66.00 47.83 36.17 50.35 52.94 57.50 55.41
InternVL-Vicuna-13B 59.46 43.33 65.85 57.41 60.00 63.04 25.53 49.65 52.94 52.50 52.70
InternVL-Vicuna-7B 64.86 53.33 58.54 59.26 62.00 45.65 29.79 46.15 55.88 45.00 50.00
LLaVA-1.6 13B 70.27 46.67 68.29 62.96 72.00 43.48 29.79 48.95 50.00 67.50 59.46
InternVL-Vicuna-13B-448px 56.76 40.00 51.22 50.00 54.00 58.70 27.66 46.85 50.00 47.50 48.65
mPLUG-Owl2-7B 67.57 43.33 56.10 56.48 50.00 47.83 23.40 40.56 47.06 47.50 47.30
Mini-Gemini-7B-HD 67.57 53.33 51.22 57.41 52.00 43.48 29.79 41.96 52.94 40.00 45.95
SEAL 56.76 43.33 53.66 51.85 52.00 36.96 25.53 38.46 29.41 45.00 37.84
Mini-Gemini-7B 62.16 36.67 36.59 45.37 40.00 45.65 19.15 34.97 32.35 35.00 33.78

Table 10: Results on sub-classes of Shifting-E (the easy-level shifting evaluation), where initial views contain clues
for answering the question.

Models
Type I

AVG
Type II

AVG
Type III

AVG
Geo-Loc Orient Daily-Loc Obj-Attr Obj-Rel Count-Dis Event-M Event-S

proprietary models
Gemini-1.5-pro 89.19 60.00 90.24 81.48 70.00 47.83 42.55 53.85 73.53 60.00 66.22
GPT-4o 94.59 53.33 85.37 79.63 64.00 52.17 42.55 53.15 67.65 70.00 68.92
Claude 3.5 Sonnet 89.19 46.67 75.61 72.22 66.00 54.35 40.43 53.85 55.88 52.50 54.05

Open-source models for multiple images as input
Qwen2-VL 91.89 50.00 85.37 77.78 76.00 60.87 40.43 59.44 55.88 52.50 54.05
Idefics3-8B-Llama3 86.49 50.00 80.49 74.07 64.00 52.17 40.43 52.45 55.88 50.00 52.70
MiniCPM-V 2.6 86.49 63.33 73.17 75.00 62.00 56.52 21.28 46.85 55.88 55.00 55.41
mPLUG-Owl3 81.08 46.67 68.29 66.67 62.00 54.35 25.53 47.55 58.82 52.50 55.41
LLaVA-OneVision 56.76 46.67 63.41 56.48 62.00 56.52 27.66 48.95 64.71 42.50 52.70
InternVL2-8B 78.38 50.00 63.41 64.81 66.00 43.48 31.91 47.55 44.12 50.00 47.30
Mantis 89.19 36.67 65.85 65.74 62.00 54.35 19.15 45.45 55.88 42.50 48.65
Idefics2-8B 67.57 63.33 70.73 67.59 56.00 43.48 21.28 40.56 52.94 50.00 51.35
Brote-IM-XL-3B 48.65 36.67 63.41 50.93 54.00 50.00 44.68 49.65 44.12 35.00 39.19
Idefics2-8B-base 75.68 43.33 82.93 69.44 52.00 41.30 21.28 38.46 41.18 25.00 32.43
Brote-IM-XXL-11B 56.76 30.00 63.41 51.85 42.00 41.30 42.55 41.96 44.12 37.50 40.54
MMICL-XXL-11B 56.76 40.00 63.41 54.63 50.00 41.30 42.55 44.76 44.12 35.00 39.19
MMICL-XL-3B 40.54 43.33 68.29 51.85 48.00 47.83 40.43 45.45 44.12 32.50 37.84

Open-source models for single image as input
MiniCPM-Llama3-V-2.5 91.89 46.67 73.17 72.22 58.00 43.48 46.81 49.65 47.06 57.50 52.70
GLM-4V-9B 89.19 56.67 73.17 74.07 50.00 43.48 38.30 44.06 55.88 50.00 52.70
InternVL-Vicuna-13B 67.57 40.00 65.85 59.26 56.00 56.52 23.40 45.45 55.88 60.00 58.11
InternVL-Vicuna-7B 62.16 43.33 63.41 57.41 62.00 45.65 25.53 44.76 52.94 52.50 52.70
LLaVA-1.6 13B 62.16 53.33 65.85 61.11 62.00 50.00 29.79 47.55 52.94 50.00 51.35
InternVL-Vicuna-13B-448px 43.24 46.67 53.66 48.15 60.00 50.00 27.66 46.15 50.00 57.50 54.05
mPLUG-Owl2-7B 59.46 40.00 58.54 53.70 54.00 50.00 23.40 42.66 47.06 47.50 47.30
Mini-Gemini-7B-HD 62.16 56.67 39.02 51.85 56.00 47.83 25.53 43.36 58.82 42.50 50.00
SEAL 56.76 43.33 48.78 50.00 52.00 34.78 23.40 37.06 26.47 40.00 33.78
Mini-Gemini-7B 72.97 36.67 43.90 51.85 34.00 39.13 21.28 31.47 35.29 27.50 31.08

Table 11: Results on each sub-classes of Shifting-M (the medium-level shifting evaluation), where initial views
contain only partial clues for answering the questions.

models, and that models for multiple images per-1088

form better than models for single image. We ob-1089

serve a trend where, as the difficulty increases, the1090

superiority of open-source multi-image models be-1091

comes more evident. 1092

There is an overall trend for all the sub-classed 1093

that the accuracy decreases as the difficulty is get- 1094

ting increased. As shown by typical results for 1095
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Models
Type I

AVG
Type II

AVG
Type III

AVG
Geo-Loc Orient Daily-Loc Obj-Attr Obj-Rel Count-Dis Event-M Event-S

proprietary models
Gemini-1.5-pro 91.89 66.67 90.24 84.26 70.00 50.00 46.81 55.94 73.53 57.50 64.86
GPT-4o 91.89 53.33 82.93 77.78 66.00 47.83 34.04 49.65 79.41 65.00 71.62
Claude 3.5 Sonnet 91.89 46.67 73.17 72.22 68.00 52.17 34.04 51.75 67.65 62.50 64.86

Open-source models for multiple images as input
Qwen2-VL 91.89 50.00 82.93 76.85 78.00 52.17 40.43 57.34 50.00 47.50 48.65
Idefics3-8B-Llama3 83.78 53.33 85.37 75.93 68.00 52.17 36.17 52.45 58.82 47.50 52.70
MiniCPM-V 2.6 86.49 50.00 75.61 72.22 64.00 50.00 23.40 46.15 52.94 47.50 50.00
mPLUG-Owl3 78.38 43.33 70.73 65.74 54.00 50.00 25.53 43.36 58.82 52.50 55.41
InternVL2-8B 64.86 40.00 65.85 58.33 62.00 54.35 34.04 50.35 52.94 40.00 45.95
LLaVA-OneVision 56.76 40.00 63.41 54.63 54.00 52.17 27.66 44.76 55.88 40.00 47.30
Mantis 86.49 36.67 63.41 63.89 66.00 50.00 19.15 45.45 58.82 40.00 48.65
Idefics2-8B 62.16 66.67 65.85 64.81 52.00 41.30 23.40 39.16 52.94 42.50 47.30
Brote-IM-XL-3B 54.05 43.33 58.54 52.78 52.00 36.96 40.43 43.36 50.00 35.00 41.89
Idefics2-8B-base 81.08 46.67 75.61 69.44 50.00 43.48 19.15 37.76 41.18 27.50 33.78
Brote-IM-XXL-11B 56.76 30.00 60.98 50.93 44.00 34.78 38.30 39.16 50.00 35.00 41.89
MMICL-XXL-11B 64.86 46.67 58.54 57.41 50.00 30.43 36.17 39.16 50.00 32.50 40.54
MMICL-XL-3B 43.24 43.33 68.29 52.78 46.00 32.61 38.30 39.16 52.94 32.50 41.89

Open-source models for single image as input
MiniCPM-Llama3-V-2.5 91.89 36.67 78.05 71.30 60.00 45.65 42.55 49.65 50.00 55.00 52.70
GLM-4V-9B 89.19 50.00 73.17 72.22 40.00 34.78 38.30 37.76 58.82 50.00 54.05
InternVL-Vicuna-13B 56.76 36.67 60.98 52.78 62.00 50.00 21.28 44.76 61.76 60.00 60.81
InternVL-Vicuna-7B 59.46 43.33 63.41 56.48 52.00 45.65 23.40 40.56 55.88 50.00 52.70
LLaVA-1.6 13B 51.35 50.00 60.98 54.63 58.00 41.30 29.79 43.36 55.88 52.50 54.05
InternVL-Vicuna-13B-448px 48.65 40.00 60.98 50.93 58.00 47.83 29.79 45.45 50.00 52.50 51.35
mPLUG-Owl2-7B 56.76 40.00 56.10 51.85 58.00 45.65 25.53 43.36 52.94 42.50 47.30
Mini-Gemini-7B-HD 70.27 50.00 51.22 57.41 52.00 47.83 29.79 43.36 58.82 47.50 52.70
SEAL 56.76 36.67 51.22 49.07 54.00 34.78 23.40 37.76 29.41 37.50 33.78
Mini-Gemini-7B 64.86 43.33 51.22 53.70 36.00 28.26 23.40 29.37 26.47 20.00 22.97

Table 12: Results on each sub-classes of Shifting-H (the hard-level shifting evaluation), where initial views do not
display clues for answering the questions. Models should decide whether to shift to the next view all by themselves.

LLaVA-OneVision and GLM-4V-9B in Table 2,1096

the gaps between shifting-E and shifting-H are as1097

large as 8.61% and 7.70%, respectively. However,1098

exceptional performances are identified for Gemini-1099

1.5-pro, Idefics3-8B-Llama3, and Mini-Gemini-7B-1100

HD, where the results of shifting-H even outper-1101

form the results of shifting-E. One of the reason1102

could be the recall of selected views. For Gemini-1103

1.5-pro, the recall for shifting-H is 47.73%, over1104

1 point higher than shifting-E (45.29%). We con-1105

clude that Gemini-1.5-pro achieves higher accu-1106

racy on shifting-H due to the acquisition of more1107

proper views. While Idefics3 presents a differ-1108

ent trend. It maintains a recall of 74.64% from1109

shifting-E to shifting-H, but achieves a higher ac-1110

curacy on shifting-H. There is another potential1111

reason that the performance gain of this model1112

comes from the order of input views. The hard-1113

level evaluation starts with less relevant views and1114

appends more useful views at the end of the im-1115

age sequence, and the performance of these mod-1116

els are more significantly influenced by the order1117

of presented images compared to the rest models.1118

The degradation of performance is more remark-1119

able for the environment-centric and the object-1120

centric categories compared to the event-centric1121

category. Regarding the increasing of difficulty1122

for the environment-centric and the object-centric1123

categories, we observe gaps of about 10% for 1124

models such as LLaVA-OneVision, Idefics2-8B, 1125

Brote, MMICL, GLM-4V-9B and Mini-Gemini- 1126

7B. These observations indicate that different ini- 1127

tial perceptual fields have distinct impacts on in- 1128

stances that requiring demanding attention on sub- 1129

tle changes of fine-grained objects. Results show 1130

that GPT- 4o consistently outperforms other mod- 1131

els in the average score of the environment-centric 1132

category, implying robust event capture and under- 1133

standing capabilities in multi-image scenarios. 1134

F.3 Analysis of View Selection 1135

Our evaluation pipelines involve selecting useful 1136

view in their first stages. The reliability of selected 1137

views plays a crucial role in the following question 1138

answering stage. We compute the recall of used 1139

views following Equation 1 in Appendix E, and 1140

include results in Table 13, along with accuracy of 1141

providing models with groundtruth views. Over- 1142

all, lower selection recall tends to correlate with 1143

lower question answering accuracy. For example, 1144

Idefics3-8B-Llama3 and InternVL2-8B present the 1145

lowest recalls (41.09%) among multi-image models 1146

in Table 13, leading to lower zooming evaluation 1147

accuracies of 56.00% and 58.15%, respectively. 1148

For zooming evaluation, we also investigate the 1149

performance when the given groundtruth views 1150
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Models ACCGT

Zooming Shifting-R

ACCQA Rselect #view ACCQA Rselect #view
Multi-image Models

GPT-4o 73.54 68.62 69.03 2.29 67.08 60.54 3.26
mPLUG-Owl3 60.62 60.92 68.57 2.66 51.69 74.62 4.00
Claude 3.5 Sonnet 72.31 71.69 67.64 2.19 65.23 45.52 2.47
Qwen2-VL 65.85 64.62 64.61 2.35 61.23 74.62 4.00
Gemini-1.5-pro 72.00 72.31 62.63 2.10 67.08 46.33 2.46
MiniCPM-V 2.6 62.77 61.85 57.03 2.20 54.77 54.83 2.98
LLaVA-OneVision 64.92 65.23 46.67 2.35 53.54 37.14 2.02
Idefics3-8B-Llama3 60.92 58.15 41.09 1.52 61.85 74.62 4.00
InternVL2-8B 73.23 56.00 41.09 1.53 54.77 45.75 2.61

Single-image Models
InternVL-Vicuna-13B 68.00 62.77 83.47 3.31 53.85 69.73 3.75
LLaVA-1.6 13B 67.69 68.92 68.57 2.65 51.69 74.62 4.00
SEAL 56.92 54.77 68.22 2.74 42.15 71.48 3.83
MiniCPM-Llama3-V-2.5 62.20 61.25 66.12 2.46 53.85 63.56 3.42
mPLUG-Owl2-7B 67.38 55.38 47.61 1.97 47.38 74.62 4.00
GLM-4V-9B 74.46 56.92 30.62 1.08 56.92 50.17 2.64

Table 13: Results of view selection (“Rselect” ) and
the accuracy given groundtruth views (“ACCGT”, 2.64
views on average) that contain human-annotated visual
clues. “ACCQA”: accuracy of question answering for
zooming and shifting. “#view”: average counts of se-
lected views.

that contain human-annotated clues. Generally,1151

models are prompted to generate more accurate an-1152

swers compared to the pure zooming setting. How-1153

ever, mPLUG-Owl3, Gemini-1.5-pro, and LLaVA-1154

OneVision are only exceptional, whose perfor-1155

mance slightly degrade when given the visual clues.1156

We argue that these models are better at the ques-1157

tion answering task rather than exhibiting active1158

perception ability. Additionally, we observe that1159

shifting evaluations tend to require more views to1160

be used for answering questions than zooming eval-1161

uations, yet it often results in inferior overall per-1162

formance compared to zooming. For the shifting1163

evaluation, some models keep shifting view until1164

all four views are inquired. However, this does1165

not necessarily support a better accuracy, as some1166

views contain redundant information that might1167

distract the model during reasoning. Addition-1168

ally, we observe shifting evaluations tend to require1169

more views to be used for answering questions than1170

zooming evaluations, yet it often results in inferior1171

overall performance compared to zooming. This is1172

because some of the current advanced models strug-1173

gle to either move their field of views for necessary1174

visual details, or screen out distracting information.1175

Therefore, we believe that more attention should be1176

paid to evaluating and enhancing active perception1177

abilities of MLLMs given constraint perceptual1178

fields.1179

G Discussion on Image Splitting and 1180

Processing Strategies 1181

G.1 Image Splitting Settings 1182

In our final pipelines, the original images are 1183

equally split into 4 views. We also conduct experi- 1184

ments of splitting into more views and report the 1185

results in Table 14. We found that the 4 sub-image 1186

setting is able to derive fair and reliable evalua- 1187

tion results, which is not only effective but also 1188

efficient. More splits require additional inference 1189

time and resources (e.g., the context length, GPU 1190

memory, etc.), but they only yield similar trends 1191

and conclusions compared to 4 sub-image setting. 1192

Additionally, there are two issues with more 1193

splits. First, it is challenging for the ability to 1194

process multiple images and understand their re- 1195

lationships. As shown in the table above, when 1196

increasing the number of splits, LLaVA-1.6-7b de- 1197

grades from 60.31 to 57.69 (-2.62) on average, and 1198

LLaVA-1.6-13b decreases 1.27 on average. Al- 1199

though increasing the splits would increase the per- 1200

formance of zooming evaluation, the performance 1201

of shifting is remarkably decreased. As we focus 1202

on active perception concerning both zooming and 1203

shifting, a split of 4 would present a decent bal- 1204

ance. Second, the necessary information would be 1205

more likely to be split into different tiles, causing 1206

information loss. 1207

G.2 Processing of Views 1208

The question answering stage of the zooming, shift- 1209

ing, and mixed pipelines, as well as the missing 1210

view examination stage of the shifting pipeline, 1211

require multi-image inputs if multiple views are 1212

selected. In this paper, we primarily focus on the 1213

interleaved multi-image setting, since it is more 1214

practical and natural compared to the single-image 1215

setting. Multi-image models can naturally read 1216

and understand multiple views at one time (in the 1217

form of different images) during evaluating, and 1218

we directly format the images and text in an inter- 1219

leaved format. However, we also propose methods 1220

for evaluating powerful single-image models. For 1221

these models, we employ two strategies to enable si- 1222

multaneous understanding of different views. One 1223

is to concatenate the required views into a single 1224

flattened image, and the other preserves merely the 1225

current view as an image while converting the re- 1226

mainings into textual descriptions. The following 1227

subsection discusses this in detail. 1228
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Model Splits Zooming Shifting-R AVG

LLaVA-1.6 7B 4 68.92 51.69 60.31
LLaVA-1.6 7B 6 73.23 53.85 63.54
LLaVA-1.6 7B 8 72.92 48.61 60.77
LLaVA-1.6 7B 9 66.46 46.16 56.31
LLaVA-1.6 7B 16 69.23 46.15 57.69

LLaVA-1.6 13B 4 65.23 53.85 59.54
LLaVA-1.6 13B 6 71.69 46.46 59.07
LLaVA-1.6 13B 8 71.84 44.00 57.92
LLaVA-1.6 13B 9 72.00 43.69 57.84
LLaVA-1.6 13B 16 73.31 43.23 58.27

Table 14: Experimental results of different splits.

Model Visual Info. Type Zooming Shifting-R

LLaVA-1.6 7B Image concatenation 68.92 51.69
Textual descriptions 60.31 -8.61 53.83 +2.14

LLaVA-1.6 13B Image concatenation 65.23 45.85
Textual descriptions 60.00 -5.23 43.69 -2.16

mPLUG-Owl2 7B Image concatenation 55.38 47.38
Textual descriptions 62.77 +7.39 54.15 +6.77

MiniCPM-Llama3-V-2.5 Image concatenation 61.25 60.92
Textual descriptions 61.25 -0 60.31 -0.61

Table 15: Experimental results providing single-image models with captions as compensation for the invisibility of
previous images.

G.3 Strategies of Processing Multiple Images1229

for Single-image Models1230

For all the pipelines, multiple views might be se-1231

lected depending on the response of models, which1232

can be naturally handled by multi-image models.1233

However, for models that only accepts single im-1234

age per input, we apply different image processing1235

approaches for zooming and shifting pipelines. For1236

the shifting pipeline, we proposed to concatenate1237

the selected views or convert them into textual de-1238

scriptions to fit the information of multiple images1239

into a single input. The concatenation refer to stitch1240

the images selected views together from left to right1241

to form a single image as the input for the model.1242

This is applicable for both missing view examina-1243

tion stage and question answering stage. For the1244

question answering stage in zooming pipeline, if1245

multiple views were selected in the first stage of our1246

pipelines, we will use the each selected view to ask1247

questions sequentially. After obtaining answers, if1248

the model answers correctly based on any of the1249

views, we consider it a complete and successful1250

view selection.1251

In addition to the directly processing of image,1252

we also propose methods to deliver visual informa-1253

tion by converting images into textual descriptions.1254

This enables single-image models to “see” multiple1255

images in the form of text inputs. This method can 1256

be applied to both shifting and zooming settings. 1257

When multiple views are required, we preserve 1258

merely the current view in the form of image, while 1259

converting the remainings into textual descriptions 1260

via the prompt “Please describe the image:”. Re- 1261

sults of typical single-image models, LLaVA-1.6, 1262

mPLUG-Owl2 and MiniCPM-Llama3-V-2.5 are 1263

shown in Table 15. 1264

For the strategy of converting image into text, it 1265

is supposed to be a compensation for the image con- 1266

catenation strategy to avoid images being resized. 1267

On the contrary, we observe significant drops of 1268

results on both zooming and shifting evaluations 1269

for most of the investigated models, indicating that 1270

the resizing issue of image concatenation strategy 1271

has minor influence on the performance. Moreover, 1272

the operation to converting images into textual de- 1273

scriptions introduces the influence of other abilities 1274

that interferes the evaluation of active perception 1275

abilities. 1276

H Case Study 1277

In this section, we demonstrate three cases for 1278

the three proposed pipelines in Figure 5, and pro- 1279

vide additional examples of integrating human- 1280

annotated visual clues hints in Figure 6. 1281
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Options:

A. A train Station.       B. An airport.       C. A gymnasium.       D. A natatorium.

Question: What place is it?

Options: A. 29.   B. 39.   C. 59.   D. 69.

Question: How much does the most expensive watermelon in the picture cost 

per kilogram?

GPT-4o: B. An airport.

GPT-4V: B. An airport.

Gemini-1.5-pro: B. An airport.

Gemini-1.5-flash: B. An airport.

Zooming Evaluation:

In
it

ia
l 
v

ie
w

(a) A successful case of zooming evaluation 

GPT-4o: D. 69.

GPT-4V: D. 69.

Gemini-1.5-pro: C. 59.

Gemini-1.5-flash: D. 69.

Shifting Evaluation w/o Hint:
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l 
v

ie
w

Models keep 
sifting views 

from the 
lowerleft view 

(random 
sampled initial

view)

(b) A failure case of shifting-R evaluation 
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(c) A case of mixed evaluation that the model independently decide whether to zoom and/or shift to different perceptual fields 

Options: A. 29.   B. 39.   C. 59.   D. 69.

Question: How much does the most expensive watermelon in the picture cost per kilogram?

The zoomed views already 
include the view with 
human-annotated clue 

Mixed Evaluation:

Figure 5: Cases for each evaluation pipelines. (a) a succeeded zooming case, (b) a failed shifting case, and (c) a
mixed case that successfully corrects the wrong answer produced by (b). Model selected views for case (a) and (b)
are placed to the right of example frames, and used views for case (c) are shown with in its frame as the selection of
views changes during the evaluation process.

H.1 Analysis of Cases from Each Pipelines1282

These results are generated by GPT-4 models and1283

Gemini-1.5 models. Case (a) stands for the zoom-1284

ing evaluation, where models successfully identify1285

the view containing useful information and gener-1286

ate the correct result. Case (b) illustrates a failure1287

in the shifting-R evaluation, where all the models1288

continue shifting to new views until all views are1289

used. Though including the correct views, the ad-1290

ditional views severely distract the reasoning pro-1291

cess, where three out of four employed models1292

produce incorrect answers. To explore how human-1293

like mixed evaluation affects the visual reasoning1294

process, we further exam this failure case using1295

GPT-4o. As shown in Figure 5 case (c), GPT-4o1296

first zooms into the “upper left” and “upper right”1297

views, then discards the “upper right” view and1298

shifts to the “lower left” one, which finally leads to1299

the correct answer. Notably, in the final preserved1300

views, distracting information (the highest price1301

tag on papaya, “69”) is screened out. This indi-1302

cates that GPT-4o exhibits decent active perception1303

abilities to move the field of view, locate details,1304

and filter out distracting information.1305

H.2 Cases of Giving Human-annotated Clues1306

We present a case study of ActiView in Figure 6.1307

The first question targets at the most expensive wa-1308

termelon, and only two out of four price tags, the1309

“39” and “59” ones, are standing for the prices of 1310

watermelons. A distracting information appears 1311

at the “69” price tag that corresponds to papayas 1312

instead of watermelons. Models easily mislead 1313

by the most expensive tag “69” during evaluation. 1314

However, when we provide the models with the 1315

view of the price tags and remind them to focus 1316

on these tags, both GPT-4o and GPT-4V models 1317

correctly answer the question, indicating that ac- 1318

tively perceiving key information helps improve 1319

model performance. While Gemini-1.5-pro gives 1320

the correct answer both with and without hints, and 1321

Gemini-1.5-pro fails to benefit from the hints. The 1322

second question asks models to recognize the place 1323

of the picture. Although it may be difficult to dis- 1324

tinguish at first glance, we can still identify this 1325

place as an airport from some details, such as a air- 1326

line’s logo. Since there isn’t a need to extract much 1327

information from the image, and there is little dis- 1328

tracting information, all the four models answered 1329

the question correctly both with and without hints. 1330

The right side of Figure 6 shows a comparison 1331

between the attention areas selected autonomously 1332

by GPT-4o and the areas highlighted by the hints 1333

we provided. It can be observed that when facing 1334

some difficult problems, although the model se- 1335

lects all the regions, it is unable to actively retrieve 1336

all the necessary details, thus lacking some essen- 1337

tial information for answering the question. When 1338

the questions are relatively simple, the model suc- 1339
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w/o Hints

GPT-4V: D. 69.
GPT-4o: D. 69.
Gemini-1.5-pro: C. 59.
Gemini-1.5-flash: D. 69.

Question: How much does the most expensive

watermelon in the picture cost per kilogram?

Options: A. 29. B. 39. C. 59. D. 69.

w/ Hints

GPT-4V: C. 59.
GPT-4o: C. 59.
Gemini-1.5-pro: C. 59.
Gemini-1.5-flash: D. 69.

Hints: Image 1 is the original picture. Image 2,

Image 3, Image 4 and Image 5 are the price tags in

the picture. Pay attention to the words and prices on

the tags.Image 1

Image 2 Image 3

Image 4 Image 5

w/o Hints

GPT-4V:
B. An airport.
GPT-4o:
B. An airport.
Gemini-1.5-pro:
B. An airport.
Gemini-1.5-flash:
B. An airport.

Question: What place is it?

Options:

A. A train Station. B. An airport.

C. A gymnasium. D. A natatorium.

w/ Hints

GPT-4V:
B. An airport.
GPT-4o:
B. An airport.
Gemini-1.5-pro:
B. An airport.
Gemini-1.5-flash:
B. An airport.

Hints: Image 1 is the original picture.

Image 2 is a clue you may refer to.

Image 1

Image 2

Figure 6: Two cases of ActiView benchmark when given human-annotated visual clues for shifting and zooming
evaluation. Left: The questions and answers of models. Right: We show the location of the visual clues we provided
in the original image, as well as the areas chosen by GPT-4o model. For the first case, GPT-4o chooses all the areas,
and for the second case, it chooses all the areas except the one in the bottom right corner.

cessfully identify important information and gives1340

the correct answer. This indicates that the GPT-4o1341

model possesses a limited level of active perception1342

capability and it still has room for improvement.1343

We have also observed similar conclusions for other1344

models.1345

I Prompt Template1346

In this section, we will provide detailed templates1347

used for evaluation pipelines depicted in Figure 3.1348

I.1 Templates for General Question1349

Answering1350

The general VQA template that requires models to1351

answer questions given images is as following:1352

An Example Prompt for General Question
Answering

Carefully analysis this image <image>, and
answer the question from the given options.
Question: <question> Options: <options>.
Answer:

1353

We develop a different template for two of our1354

evaluated models, SEAL and MGM series. These1355

models are optimized especially on VQA tasks,1356

and sometimes fail to strictly following long tex-1357

tual instructions. Therefore, we use a simple and1358

straightforward template to prompt these models1359

for answers as follows:1360

An Example Prompt for Question Answer-
ing(SEAL and MGM)

<question> <options>. Answer:<image>

1361

I.2 Templates for Zooming Evaluation 1362

Here are templates used in the two stages of zoom- 1363

ing pipeline depicted in Figure 3 (a). Note that the 1364

term “description_of_splits” refers to the positions 1365

of the views that guide the model to shift and select 1366

views. “description_of_splits” varies depending on 1367

how the views are divided. Taking 4 sub-image for 1368

example, it is described as “1 is the upper-left part, 1369

2 is the lower-left part, 3 is the upper-right part, 1370

and 4 is the lower-right part.” The model should 1371

then response with “1, 2, 3, and/or 4” to select the 1372

appropriate views. The prompts are as follows: 1373

An Example Prompt for View Selection

This is the full image <image>, which
is split in to <num_splits> equal parts,
numbered from 1 to <num_splits>, where
<description_of_splits>.
===
Response with the number of part (at least
one part, at most <num_splits> parts),
that must be used to answer the question.
The question is: <question>
===
Do not directly answer the given question.
Response with the selected number of
parts, split by ’ if there are multiple
selections. Your Response:

1374

An Example Prompt for Zooming Question
Answering

Image 0 is the full image. <zoomed_images>
These are your selected part from the
full image to be zoomed for details for
answering the question. Please answer
question according to the given images
from the the given options. Question:
<question> Options: <option>. Answer:

1375
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I.3 Templates for Shifting Evaluation1376

Here are templates used in the two stages of zoom-1377

ing pipeline depicted in Figure 3 (b).1378

An Example Prompt for Missing-view Ex-
amination

You will be presented with a partial image
and a question concerning the full image.
image 0 is <image0>, is the <image_view>
part of the full image. Given image
0, please determine if you need more
visual information to answer the question:
<question>
===
Do not directly answer the question. If you
can answer the question without more visual
information, response with NO. Otherwise,
response with other image parts you need to
see given this <image_view> part, you can
choose from these views: <view_options>.
Your Response:

1379

An Example Prompt for Shifting Question
Answering

These are parts of an image.
<all_required_views>. Carefully analysis
these images and pay attention to their
original position. Answer the question from
the given options. Question: <question>.
Options: <option>. Answer:

1380

I.4 Templates for Mixed Evaluation1381

Here are templates used for the mixed pipeline1382

depicted in Figure 3 (c). We design two templates1383

for regarding the type of current view. We apply1384

template “Operation Determination”(1) from the1385

followings for the full images, and apply template1386

“Operation Determination”(2) from the followings1387

for zoomed views. Templates are as follows:1388

An Example Prompt for Operation Determi-
nation (1)

You will be presented with a full
image <image> and a corresponding
question to answer. The image is
split in to <num_splits> equal parts,
numbered from 1 to <num_splits>, where
<description_of_splits>.
You can check for detailed visual
information via zooming operation that
zoom in to your selected part or parts
iwth from the above numbers. Response with
the the numbers of parts you wish to zoom
in, or response with “none” if you don’t
need to can check for details.
The quesiton is: <question>
You should not directly answer the
question. You should generate the a json
dict containing 2 fields:
- “part”: type str, the selected numbers
of index of parts, split by “,”, or ’none’
if no zooming required;
- “reason”: type str, why you choose these
parts.
Your response:

1389

An Example Prompt for Operation Determi-
nation (2)

You will be presented with a partial image
and a question concerning the full image.
image 0 is <image0>, is the <image_view>
part of the full image. Given image
0, please determine if you need more
visual information to answer the question:
<question>
===
Your are given a full image <image> and a
corresponding question to answer. The image
is split in to <num_splits> equal parts,
numbered from 1 to <num_splits>, where
<description_of_splits>. Your have chosen
to zoom in to these parts, <zoomed_images>,
for detailed checking if they can help to
ansewr the quesiton.
Question: <question> Options: <option>.
Now, there are two operations: “keep” and
“shift”.
- “keep”: choose none or more parts from
the zoomed ones to answer the question;
- “shift”: you can shift to the rest parts
to answer questions or answer question with
none sub-parts.
You should not directly answer the question.
You should return you answer in a json dict
containing two fields:
- “zoom_keep”: type str, the index numbers
of required parts split by “,”, or “none”
if the zoomed parts are useless;
- “shift”: type str, the index numbers of
the rest parts, that are useful to the
question split by “,”, or “none” if you
don’t wish to shift.
Your response:

1390
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An Example Prompt of Quesiton Ansewring
for Mixed Pipeline

Image 0 is the full image. <image_views>
<image_view_desc> These are your selected
part of image that must be used to answer
the question. Please answer question
according to the given images from the
the given options. Question: <question>
Options: <option>. Answer:

1391

J Attempts of Automatic Data Generation1392

In this last section, we discuss our experiments of1393

automatic data generation, and analyse why pow-1394

erful models like GPT-4V fail to accomplish this1395

task. We will discuss the process and demonstrate1396

typical failure cases in the following sections.1397

J.1 Automatic Data Generation Process1398

In the process of automatic data generation, we1399

used the GPT-4V model for the following experi-1400

ments:1401

• Step 1: We applied heuristic prompts on pub-1402

lic datasets to encourage GPT to generate cre-1403

ative annotations across all types.1404

• Step 2: We selected the types that showed1405

the best performance in automatic annotation1406

and conducted batch annotation specifically1407

for these types.1408

• Step 3: We manually filtered a subset of data1409

that could be used.1410

In Step 1, we not only employed heuristic1411

prompts to encourage GPT to generate diverse an-1412

notations but also specified the annotation types1413

and their precise meanings (provided as candidates,1414

encouraging the model to select from them). We1415

restricted the annotation fields and types, and pro-1416

vided several manually curated examples as few-1417

shot instances. Considering that some images in1418

public datasets may not be suitable for our task, we1419

allowed GPT to return “None” for images deemed1420

unsuitable for annotation. The filtered annotation1421

data were then re-evaluated using a scoring prompt,1422

where we provided our annotation types and re-1423

quirements, instructing GPT to rank the annotated1424

data to assess its suitability.1425

In Step 2, we found that GPT performed best in1426

annotating data of the counting type (based on a1427

combination of manual inspection of the annotation1428

results and GPT’s automatic scoring). Therefore,1429

we decided to use GPT for automatic annotation of 1430

counting-type data. Considering that some public 1431

datasets (such as VCR) contain images with more 1432

than one type of bounding box, we processed differ- 1433

ent bounding box types in batches for each image 1434

to ensure that only one type of object was counted 1435

at a time. 1436

Detailed prompt templates are attached in the 1437

third sub-section of this section. 1438

J.2 Cases of Unsuccessful Generations of 1439

GPT-4V 1440

We provide two typical cases demonstrating why 1441

GPT-4V fail to generate usable instances. The cor- 1442

responding image is Figure 7. For the case regard- 1443

ing the left image, it presents a typical encountered 1444

issue case of hallucination and speculation without 1445

a factual basis. Given this image, GPT-4V pro- 1446

duces the following annotations prompted by Step 1447

1: 1448

{“question”: “Which of the following best
describes the setting based on the appearance
and arrangement of the glass items on the
table?”,
“options”: [“A casual family dinner”, “A quick
lunch at a fast food restaurant”, “An official
or formal meeting”, “An outdoor picnic”],
“answer”: 2,
“groundtruth”: “The setting seems to be
an official or formal meeting given the
presence of multiple large, elegant glasses
on the table, which suggest formal drinkware
typically used in such settings.”}

The question and annotated answer posed by 1449

GPT-4V makes certain assumptions about the im- 1450

age that this scenario shows “An official or formal 1451

meeting”. The question is not answerable concern- 1452

ing only this image, where it could refer to either 1453

a meeting or a dinner. Moreover, the other op- 1454

tions except for annotated answer does not match 1455

the image in any circumstances, and can be easily 1456

eliminated without any further observation of the 1457

image. The answers does not strictly follow the 1458

given ground truth (i.e., the answer to the question 1459

cannot be rigorously inferred from the visual clues 1460

in the image), where the glasses do not support 1461

the reasoning. For the case of the right image, it 1462

presents a typical failure case from Step 2. Regard- 1463

ing this image, GPT-4V generates an ambiguous 1464

question “How many umbrellas can be seen in the 1465

image?”, where there are some small visible ob- 1466

jects could potentially be umbrellas as well. 1467
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Figure 7: Left: example of the automatic annotation results from Step 1. Right: example of the automatic annotation
results from Step 2, where the question annotated by GPT is “How many umbrellas can be seen in the image?”

J.3 Prompt Templates Used for Automatic1468

Generation1469

Here, we give the prompt used for automatic anno-1470

tation in Step 1 and Step 2.1471

Heuristic prompt used for automatic anno-
tation in Step 1

The clues for marking information in
several bboxes in this picture are:
{clues}
Based on several bboxes and corresponding
clues, please design a question that
requires the model to synthesize the
information in these bboxes (at least
two, and can only be answered based on
the information in the bboxes and the
clues corresponding to the annotated
information). You only need to ask the
question, and there is no need to repeat
the clue again.
Note that the existence of bbox (including
its ID information) cannot be mentioned
in the question. Questions and reasoning
should be based on objective facts as
much as possible instead of subjective
guessing.But at the same time, you
should also avoid grounding questions and
questions that can be answered without
pictures (including questions like what
someone in the picture is doing)
Next, mark me the corresponding information
in the following format:
1. “question” (str)
2. “options” (list)
3. “abilities” (list): choose from
“zoom in”, “zoom out”, “shifting” (it
is mentioned in the analysis and is not
mentioned at the beginning)
4. “answer” (int, index of option)
5. “order”: the order in which the pictures
cut out of the bbox and the entire picture
are displayed (the list is given in the
order of reasoning, all of which are ints,
representing the id corresponding to the
bbox on the picture, if it is a complete
picture, it is 0)

1472

Heuristic prompt used for automatic anno-
tation in Step 1 (Continue)

6. “groundtruth”: Give the reasons and
complete reasoning process for answering
the question
7. “number_of_operations”: For example,
first zoom in and then move the angle of
view, it is two operations
You must give me the answer in the following
json-string format(not code block) and dont́
say anything else:
{{
“question”: question(str),
“options”: options(list),
“abilities”: ablities(list),
“answer”: answer_index(int),
“order”: order(list),
“groundtruth”: groundtruth(str),
“number_of_operations”: number of the
operations(int)

1473
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Scoring prompt used for automatic annota-
tion in Step 1

We want to design a question about the
picture to test the active perception
ability of the respondent. Here are the
requirements:
You will be provided with an image and
information of bboxes in it. You should
design a question that requires the
respondent to synthesize the information
in these bboxes.
While designing the questions, you must
follow these rules:
- The question should be based on the
information in the given bboxes.
- The question requires the respondent
to obtain information from the field of
view of these bboxes as a basis, identify
irrelevant information on the picture,
and move the field of view of different
bboxes to obtain more information before
answering the question.
- Differences between options should be
distinct. And options must not be conflict
to each other.
- There should be one and only one correct
answer among all options.
- The evidence or clues for answering the
question must be visible in the image.
Also, you should realize the following
conditions:
- The answers must not require the
respondent guess subjectively.
- You cannot generate questions require
simple object grounding, e.g., what is the
object in a certain region, what is the
color of an object, etc.
- The existence of bbox and visual clues
(including their ID information) cannot
be mentioned in the question nor in the
options.

You should score the annotation through
the rules given above. Here are the
predefined levels for scoring, where level
D is the worst and level A is the best:
- Level D: no reasonable questions can be
generated for the given image by strictly
following our rules.
- Level C: the question contains subjective
guesses and judgments, rather than strictly
following the rules(e.g. infer the location
from the architectural style/image style
rather than some grounding signs and texts
etc.)
- Level B: the question can be answered
via simple captioning of the pictures(like
using ViT or OCR to caption the picture
and ask the language model to answer the
question with out the picture), or can be
answered via pure common sense reasoning.
- Level A: the question is cleverly
designed and is completely based on the
information in the picture. It requires
the respondents to visit different parts
marked on the image for comprehensive
reasoning, which fully complies with the
above marking rules.

1474

Scoring prompt used for automatic annota-
tion in Step 1 (Continue)

Remenber, if any subjective guess seems
to appear, or anything that requires
inferring from knowledge outside the image,
or anything that does not follow our rule
strictly (including asking for some weired
questions etc.), do not hesitate to assign
a low level.

Here’s the annotation information of the
given picture:
{annotation}

You must give me the answer in the following
json-string format(not code block) and
don’t say anything else:
{{
“score”: string, choose from “A”, “B”,“C”,
“D”,
“reason”: string, explain why you give this
score

1475
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Prompt used for automatic annotation in
Step 2

You are an annotator to design questions
and options for given images. Here are the
guidebook for you:
===
Overall task description: You will be
presented with an image, please generate a
question, corresponding options and answer
to the question, and some other information
that help the reasoning process as well.
===
Detailed requirements you **must** follow:
- You must design the problem in the

following type:
Counting with restricted information or

extending reasoning based on counting. For
example, there are lots of products in the
image, but only a part of them are on
sale, you can ask for the number of on
sale products. Options are list of numbers.
Candidates:
- How many people are wearing black hat?
- How many products are on discount?
- Which color of umbrellas are the most

numerous in the picture?
But remember, you *cannot* ask common sense
questions like how many objects are there in
the picture, which can be answered without
reasoning.
- **Simple grounding questions are NOT

allowed**, such as (but not restricted
to): “what is xxx object?”, “What is the
color/style of xxx?”, and etc.
- For answers:
- By referring to the image, there must

exists one and only one answer, without any
ambiguities and subjective guesses.
- The evidence for answering the question
must be visible in the image.
- Objective reasoning are not allowed.
- DO NOT rely on information that does not
exist in the image.
- For options:
- The differences between generated

options should be distinct.
- There should be one and only one correct
answer among all options.
- Options must not be conflict to each
other.
===
The requirements of the generated data
format are as follows:
1. “question” (str, start with wh words or
prep + wh words)
2. “options” (list)
3. “abilities” (list): choose from “zoom
in”, “zoom out”, “shift”
4. “answer” (int, index of correction
option, starting from 0)
5. “groundtruth”: Give the reasons and
complete reasoning process for answering
the question
6. “operations”: For example, first
zoom in to a region and then moving
to a different region, counted as two
operations
===
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Prompt used for automatic annotation in
Step 2 (Continue)

Here are some bounding boxes and their
type for you to refer to:
{boxes}
The items in these bounding boxes are all
{type} The questions you ask must be about
the information within the bounding boxes
and strictly meet the requirements and
question types given to you above.
===
If it is impossible to come up with required
questions, you should response with
“question”: (str)“None” in json-string
format(not code block). Otherwise, you
must generate response in the following
json-string format(not code block) and
dont́ say anything else:
{{
“question”: question(str),
“options”: options(list),
“abilities”: ablities(list),
“answer”: answer_index(int),
“order”: order(list),
“groundtruth”: groundtruth(str),
“operations”: number of the
operations(int),
}}
===
Please generate response for the given
image that **strictly follow** the above
requirments:
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