
Teaching Your Models to Understand Code via Focal Preference Alignment

Anonymous ACL submission

Abstract

Preference learning extends the performance001
of Code LLMs beyond traditional supervised002
fine-tuning by leveraging relative quality com-003
parisons. In existing approaches, a set of n can-004
didate solutions is evaluated based on test case005
success rates, with the candidate demonstrating006
a higher pass rate being labeled as positive and007
its counterpart with a lower pass rate as neg-008
ative. However, because this approach aligns009
entire failing code blocks rather than pinpoint-010
ing specific errors, it lacks the granularity nec-011
essary to capture meaningful error-correction012
relationships. As a result, the model is un-013
able to learn more informative error-correction014
patterns. To address these issues, we propose015
Target-DPO, a new preference alignment frame-016
work that mimics human iterative debugging017
to refine Code LLMs. Target-DPO explicitly018
locates error regions and aligns the correspond-019
ing tokens via a tailored DPO algorithm. To020
facilitate it, we introduce the CodeFlow dataset,021
where samples are iteratively refined until pass-022
ing tests, with modifications capturing error023
corrections. Extensive experiments show that024
a diverse suite of Code LLMs equipped with025
Target-DPO achieves significant performance026
gains in code generation and improves on chal-027
lenging tasks like BigCodeBench. In-depth028
analysis reveals that Target-DPO yields fewer029
errors. Our code and data will be made avail-030
able recently.031

1 Introduction032

Preference learning offers a promising complement033

to supervised fine-tuning (SFT) (Zhang et al., 2023)034

for improving code generation accuracy in cod-035

ing large language models (Code LLMs). Exist-036

ing methods (Zhang et al., 2024, 2025; Liu et al.,037

2024c) mainly rely on unit test feedback to con-038

struct preference pairs. In these approaches, a039

Code LLM generates multiple code snippets as040

candidates and evaluates each against a suite of041

test cases. The snippet with the higher pass rate is042

Figure 1: Target-DPO achieves significant performance
gains over DPO variants on challenging coding tasks,
i.e., BigCodeBench-Hard, with Qwen2.5-Coder-7B.

considered preferred, while the one with the lower 043

pass rate is marked as dispreferred, which forms 044

the pair for preference learning such as Direct Pref- 045

erence Optimization (DPO) (Rafailov et al., 2023). 046

However, this paradigm suffers from two critical 047

drawbacks. First, constructing pairs purely on pass 048

rate cannot guarantee high-quality labels. A high- 049

pass-rate snippet may still carry subtle but crucial 050

bugs, while a low-pass-rate snippet might need only 051

a few modifications to become correct (as shown in 052

Figure 2), resulting in noisy preference data. Sec- 053

ond, as errors may be isolated to specific code parts, 054

aligning entire snippets can dilute the correct sig- 055

nal. It forces the model to adjust irrelevant tokens 056

and hinders its ability to learn more specific error 057

patterns (Pal et al., 2024; Chen et al., 2024; Wu 058

et al., 2024), which would increase the overfitting 059

risk. The limitations call for a better framework 060

1

that can pinpoint error regions and apply targeted061

learning to correct those precise areas.062

To tackle these challenges, we draw inspiration063

from how developers debug code. Typically, a pro-064

grammer first locates the module that generates065

errors based on execution feedback and then fo-066

cuses on fixing that specific portion until all tests067

pass. Following this human approach, we intro-068

duce Target-DPO, a novel framework for prefer-069

ence learning in Code LLMs that leverages iterative070

debugging insights. Rather than only using pass071

rate to measure the degree of preference, Target-072

DPO derives preference pairs from debugging pro-073

cess itself, where the refine steps yield a preference074

pair, labeling the corrected snippet as preferred and075

its previous version as dispreferred. By explicitly076

contrasting the tokens that resolve the error, Target-077

DPO trains Code LLMs to learn fine-grained align-078

ment for precise error correction, enabling models079

to truly understand the code.080

To support this framework, we efficiently synthe-081

size high-quality preference pairs to create Code-082

Flow, a novel dataset systematically recording083

code iterations and corresponding error corrections.084

Compared to sampling-based methods, CodeFlow085

enables the efficient creation of preference pairs086

by (1) generating code snippets and test cases, (2)087

iteratively refining code until all tests pass, and (3)088

annotating key token changes between failed and089

corrected versions. This process ensures that prefer-090

ence learning focuses on the actual error-resolution091

steps taken by developers.092

Building on CodeFlow, we propose an improved093

DPO algorithm that rewards correct code tokens094

while penalizing only error-specific tokens in dis-095

preferred samples, minimizing irrelevant noise dur-096

ing preference learning and thus improving effi-097

ciency. Comprehensive ablation studies show how098

to best select dispreferred samples and how much099

context to include during alignment, verifying our100

optimal design for code correction.101

We conduct extensive experiments on five pub-102

lic datasets to validate the effectiveness of Target-103

DPO. With only 59k preference pairs, Target-104

DPO achieves significant performance gains across105

various base and instruct-tuned Code LLMs. No-106

tably, as shown in Figure 1, Target-DPO attains107

superior results on complex coding tasks like Big-108

CodeBench. Through detailed ablation studies, we109

also demonstrate that Target-DPO outperforms al-110

ternative strategies by a clear margin. Our contri-111

butions are as follows:112

1. We propose Target-DPO, a novel framework 113

that leverages the idea of iterative debugging 114

to address challenges in preference learning, 115

enabling more precise alignment on critical 116

error tokens. 117

2. We construct a new function-level dataset 118

CodeFlow that iteratively tracks token differ- 119

ences across preference pairs, and propose a 120

tailored adaptation of the DPO algorithm that 121

avoids unnecessary optimization noise. 122

3. Target-DPO consistently improves perfor- 123

mance across diverse benchmarks and various 124

base and instruct-tuned Code LLMs. 125

2 Target-DPO Framework 126

The Target-DPO framework mimics human iter- 127

ative debugging to refine Code LLMs. It explic- 128

itly identifies error regions and focuses on aligning 129

the corresponding tokens through a tailored DPO 130

algorithm. To achieve this, Target-DPO follows 131

two steps: (1) synthesizing preference code pairs 132

through an iterative debugging process and locate 133

error regions within code, resulting in the creation 134

of CodeFlow (Section 2.1), and (2) performing 135

fine-grained and focal alignment by contrasting 136

critical tokens via the designed DPO algorithm 137

(Section 2.2). The overall workflow is illustrated in 138

Figure 3. In the following sections, we will provide 139

a detailed description of each step. 140

2.1 Synthesize Preference Code Snippets 141

As part of our method, we synthesize 59k pref- 142

erence pairs to enable targeted alignment. In con- 143

trast to previous methods that synthesize preference 144

pairs based on pass rate, Target-DPO synthesizes 145

preference code snippets from an iterative debug- 146

ging process. In this process, an initial code snippet 147

is refined until it passes the test cases, and a prefer- 148

ence pair is constructed between the final correct 149

version and the previous iteration. 150

Generate Raw Code Snippets and Tests. To ob- 151

tain diverse and complex code data, we adopt the 152

practice of EpiCoder (Wang et al., 2025a), utiliz- 153

ing its feature tree-based synthesis framework with 154

GPT-4o (OpenAI, 2024) to generate high-quality 155

code and test cases. This approach directs the 156

LLM to produce a coding task instruction, the cor- 157

responding code snippet, and multiple test cases. 158

To ensure the quality of the generated test cases, 159

we applied several validation measures, including 160

2

Implement the function calculate_statistics(ages: List[int]) -> Tuple[float, float, float] that computes the mean, sample
variance, and standard deviation for the list ages.

def calculate_statistics(ages: List[int]) -> Tuple[float, float,
float]:
 if not ages:
 # Handle empty list case
 return (0.0, 0.0, 0.0)

 # Calculate mean
 mean = sum(ages) / len(ages)

 # Calculate variance
 if len(ages) > 1:
 variance = sum((x - mean) ** 2 for x in ages) / (len(ages) - 1)
 else:
 variance = 0.0

 # Calculate standard deviation
 ...

Correct Code ✅

def calculate_statistics(ages: List[int]) -> Tuple[float,
float, float]:
 if not ages:
 # Handle empty list case
 return (0.0, 0.0, 0.0)

 # Calculate mean
 mean = sum(ages) / len(ages)

 # Calculate variance
 variance = sum((x - mean) ** 2 for x in ages) / len(ages)

 # Calculate standard deviation
 std_dev = math.sqrt(variance)

 return (mean, variance, std_dev)

Incorrect Code❌

Figure 2: In LLM-generated code, errors are usually confined to critical parts. Minor adjustments to the corre-
sponding erroneous tokens can correct the code while leaving the majority unchanged. Therefore, an effective error
correction requires first identifying the key error lines and then performing focal alignment.

coverage analysis, LLM-based evaluation, and hu-161

man verification. Detailed discussions and prompt-162

ing examples are provided in Appendix A.2.163

Iterative Refinement via Verification. LLMs164

cannot guarantee the correctness of generated165

code (Ma et al., 2025). Therefore, we verify each166

code sample and refine it through iterative debug-167

ging based on execution feedback from verified test168

cases. As shown in Figure 3, when the initial code169

fails the unit tests, we collect the error information170

and refine the code iteratively until it passes the171

test. The pass rate at the T -th iteration is reported172

in Figure 6 of Appendix A.1.173

Our goal is to collect program changes made174

during the iterative debugging process. To reduce175

costs, we discard code that fails to be corrected176

within five iterations. Although this filter removes177

some extremely challenging cases, it does not make178

the generated dataset predominantly easier, as clar-179

ified in Appendix A.1. Samples requiring more180

than five iterations for a solution generally fail to181

pass all test cases anyway, regardless of additional182

sampling efforts.183

After iterative debugging, we treat the final cor-184

rect code as the preferred sample and randomly185

select an earlier version as the dispreferred sample,186

forming the pair (y+, y−) for preference learning.187

Critical Difference Extraction. To identify the188

targeted regions for alignment, we extract the crit-189

ical differences responsible for the functional di-190

vergence between each (y+, y−) pair. Specifically,191

we pinpoint the sets of differing lines, D+ and D−,192

by computing the Longest Common Subsequence193

(LCS). Lines not part of the LCS are considered194

Algorithm 1 Extracting Code Difference

Require: Code pair y+ and y−

Ensure: Difference lines D+ and D− for y−

1: Split y+ and y− into lines: y+lines and y−lines
2: Find the LCS of lines between y+lines and y−lines
3: Initialize D+ = ∅ and D− = ∅
4: D+ = {l+ ∈ y+lines | l+ /∈ LCS}
5: D− = {l− ∈ y−lines | l− /∈ LCS}
6: return D+ and D−

difference lines, as detailed in Algorithm 1. Con- 195

sequently, the key modifications distinguishing the 196

preferred from the dispreferred samples are local- 197

ized within D+ and D−. These segments encap- 198

sulate the changes driving the functional distinc- 199

tions and represent the critical regions that Target- 200

DPO aims to contrast and align. 201

Quality Control for Preference Pairs. We 202

initially synthesize 104k instruction data points 203

through iterative refinement. To further ensure 204

data quality, we implement several filtering mea- 205

sures. Specifically, rule-based filtering is applied 206

to remove trivial or uninformative samples, such 207

as those where: (i) D− consists only of comments; 208

(ii) D− exceeds 20 lines; (iii) y+ or y− exceeds 209

2048 tokens; and (iv) Samples where the abstract 210

syntax tree (AST) of y+ and y− are identical. 211

The application of these filters reduced the 212

dataset to 84k samples. In the next stage, we uti- 213

lized GPT-4o as an LLM-judge to assess whether a 214

significant logical distinction existed between y+ 215

and y−. We further filter out pairs where the dif- 216

ferences are limited to code formatting, comments, 217

3

def calculate _statistics (ages # Calculate variance \n... if len ages >

((x - mean **) 2 for x invariance = sum1 :\n

, std _dev)\n...ages) / len (ages) - 1)\n else

Preferred Code

((x - mean **) 2 for x in ages) / len (ages

variance = sumdef calculate _statistics (ages # Calculate variance \n...

)\n\n # Calculate mean Return (mean , variance , std _dev)\n...

Dispreferred Code

Rewarded Tokens (Keep loss) Penalized Tokens (Keep loss) Masked Tokens (Remove loss)

Code 1

Execute

Code 2

Generate

Debug

...

Correct Code

Execute

Instruction

Debug

Figure 3: Method Overview. Target-DPO constructs preference pairs via iterative debugging, treating the correct
version as preferred and the previous as dispreferred. DPO adaptations enable code LLMs to learn the correct
pattern from the preferred code while highlighting critical tokens with a masking strategy in the dispreferred sample.

variable names, whitespace, or blank lines. These218

efforts ensure that the selected and rejected sam-219

ples reflect key functional differences. The final220

dataset, consisting of 59k samples, is thus prepared221

for preference-based alignment training.222

2.2 Targeted Preference Alignment223

Direct Preference Optimization (DPO) directly op-224

timizes the policy model using relative quality com-225

parisons. Given a prompt x, a preference pair226

(y+, y−), where y+ is of higher quality than y−,227

DPO aims to maximize the probability of the pre-228

ferred response y+ while minimizing that of the229

less desirable response y−. The KL divergences230

for y+ and y− are defined as:231

K+ = log πθ(y
+|x)

πref(y+|x) , K
− = log πθ(y

−|x)
πref(y−|x) , (1)232

and the optimization objective LDPO(πθ;πref) is:233

LDPO = −E(x,y+,y−)∼D [log σ (β (K+ −K−))] (2)234

DPO optimizes the expectation over the pairwise235

preference dataset D, and σ is the sigmoid function.236

While Direct Preference Optimization (DPO)237

has demonstrated effectiveness in domains such as238

mathematics (Lai et al., 2024), its standard objec-239

tive function, as shown in Equation (2), may be240

suboptimal for preference-based alignment in code241

generation, as a large portion of the tokens in y+242

and y− are identical, with only minor differences.243

This can confuse the policy model in identifying244

the critical differences necessary for functional cor-245

rectness, and diminish alignment gains (Pal et al.,246

2024; Chen et al., 2024; Wu et al., 2024).247

To help code LLMs better grasp the critical to-248

kens driving functional differences between pref-249

erence pairs, we modify the DPO algorithm to250

highlight key tokens in the dispreferred code snip- 251

pet using a masking strategy. Specifically, given 252

y− = [y−1 , y
−
2 , .., y

−
L] containing L tokens, vanilla 253

DPO computes K− as: 254

K− = log
πθ(y

−|x)
πref(y−|x)

= log

∏L
i=1 πθ(y

−
i |x)∏L

i=1 πref(y
−
i |x)

=

L∑
i=1

log
πθ(y

−
i |x)

πref(y
−
i |x)

(3) 255

We make the following adaptations to K− while 256

keeping K+ unchanged: 257

K+′
= K+ (4) 258

259

K−′
=

∑L
i=1 I(y

−
i ∈ D−) log

πθ(y
−
i |x)

πref(y
−
i |x) (5) 260

Equation (4) guides the code LLM to learn cor- 261

rect code generation patterns from y+. In contrast, 262

Equation (5) explicitly focuses on contrasting crit- 263

ical tokens within y−. It achieves this by mask- 264

ing tokens in the dispreferred code that do not ap- 265

pear in D−, thereby excluding correct tokens in 266

y− from the loss computation, as illustrated on the 267

right side of Figure 3. By penalizing critical to- 268

kens that cause functional errors and preventing 269

over-optimization on tokens common to both y+ 270

and y−, Target-DPO achieves a more fine-grained 271

alignment tailored for code, improving upon pre- 272

vious sample-level optimization approaches. This 273

refined strategy enables code LLMs to better inter- 274

nalize correct coding patterns and more effectively 275

identify crucial token-level errors. 276

Our loss also targets pairwise optimization: 277

L′
DPO = −E(x,y+,y−)∼D log σ

(
β
(
K+′ −K−′

))
(6) 278

4

Correspondingly, the RPO loss (Liu et al., 2024a;279

Pang et al., 2024), a variant of DPO, consists of280

a weighted SFT loss on y+, scaled by α. Our281

modified DPO loss also complements RPO, and282

the RPO-format L′
RPO loss is:283

LSFT = −E(x,y+)∼D [log pθ(y
+|x)] (7)284

285
LRPO′ = L′

DPO + αLSFT (8)286

3 Experiments287

Experiment Setup. For our Target-DPO, the learn-288

ing rate is set to 1e-5 for the 7B code LLMs and289

5e-6 for the 15B models, using a global batch290

size of 128, with a cosine scheduler and warm-291

up. The maximum sequence length is set to 2048292

tokens. Detailed training settings are presented in293

Appendix A.3 For the DPO algorithm, β is set to294

0.1, and for RPO, α is set to 1.0. The rationale be-295

hind the choice of α and β is supported by ablation296

studies presented in Appendix C.2. πθ and πref are297

both initialized with the weights of the evaluated298

model, while πref keeps frozen during training.299

Benchmarks. We evaluate the Code LLMs using300

multiple benchmarks: HUMANEVAL Base (Chen301

et al., 2021), HUMANEVAL Plus (Liu et al.,302

2023), Mostly Basic Python Problems (MBPP303

Base (Austin et al., 2021), MBPP Plus), Live-304

CodeBench (LCB) (Jain et al., 2024) (v5 with prob-305

lems released between May 2023 and Jan 2025),306

and BIG-CODEBENCH (BCB) (Zhuo et al., 2025)307

with instruct and completion splits. We report the308

pass@1 score under greedy decoding.309

Evaluated Models and Baselines. We evalu-310

ate models including DeepSeek-Coder-7B-Instruct-311

v1.5 (Guo et al., 2024), CodeQwen1.5-7B-312

Chat (Bai et al., 2023), as well as base models313

such as Qwen2.5-Coder-7B (Hui et al., 2024b) and314

StarCoder2-15B (Lozhkov et al., 2024). Results for315

the 32B model are in Appendix C.1. CodeDPO and316

PLUM are compared using their reported results,317

as their data and code are currently unavailable.318

Code-Optimise (Gee et al., 2025) is reproduced319

using GPT-4o, with 100 solutions sampled at a tem-320

perature of 0.6 for each problem. The DPO-PvF321

setting results for Code-Optimise are reported.322

4 Main Results323

Table 1 presents a comparison between baseline324

models, DPO variants, and Target-DPO. We dis-325

cuss the findings from the following perspectives.326

Focal Alignment Outperforms Global Align- 327

ment. Preference pairs from iterative debugging 328

differ significantly from those in datasets like 329

Code-Optimise, causing a performance drop with 330

vanilla DPO or RPO. While some settings, like 331

DS-Coder-7B-Instruct-DPO, show gains on BIG- 332

CODEBENCH, DPO and RPO generally underper- 333

form compared to baselines. In typical correction 334

scenarios, an LLM modifies only a small portion of 335

the code to fix errors, creating highly similar pref- 336

erence pairs. This overlap introduces ambiguity, 337

as identical tokens in both positive and negative 338

examples weaken the model’s ability to distinguish 339

meaningful differences. 340

This degradation underscores the need for ex- 341

plicit mechanisms to focus the policy model on 342

tokens responsible for functional faults. Target- 343

DPO addresses this by emphasizing error tokens in 344

the dispreferred code and explicitly contrasting the 345

critical edits. As shown in Table1, Target-DPO out- 346

performs DPO by 3.3% and 5.9% on average across 347

benchmarks, while Target-RPO yields improve- 348

ments ranging from 6.3% to 12.4%. 349

Target-DPO Achieves Significant Improvements 350

over Methods that Rely on Coarse-grained Pass 351

Rate Signals. While methods like PLUM and Cod- 352

eDPO, which construct preference pairs by test- 353

ing multiple sampled solutions, offer a straight- 354

forward and effective approach, their reliance on 355

coarse-grained pass/fail signals inherently limits 356

the model’s ability to learn nuanced error correc- 357

tion and generalize improvements. As shown in 358

Figure 4, this limitation becomes apparent when 359

compared to our Target-DPO. 360

Target-DPO Improves Challenging Coding Task. 361

We highlight that the Target-DPO framework has 362

the potential to boost Code LLMs to solve com- 363

59.8

51.8

72.2

60
56.7

48.8

72.9

58.9

47.6

37.2

72.2

57.6

66.5

60.4

76.5

61.4

30

40

50

60

70

80

HumanEval HumanEval+ MBPP MBPP+

CodeDPO PLUM Code-Optimise Ours

Figure 4: Comparison with CodeDPO, PLUM, and
Code-Optimise using DeepSeekCoder-6.7B. Additional
results are provided in Appendix B.3.

5

Model Variant HumanEval MBPP BCB-Full BCB-Hard LCB Avg.Base Plus Base Plus Comp. Inst. Comp. Inst. Inst.

DS-Coder-7B-Ins-v1.5

Ref. 75.6 71.3 75.2 62.3 43.8 35.5 15.5 10.1 20.6 45.5
DPO 69.5 65.2 77.2 67.2 46.1 37.9 12.2 14.2 20.4 45.5
RPO 65.2 59.8 75.7 66.1 43.2 37.5 10.8 13.8 20.2 43.6
Code-Optimise 64.6 60.4 78.8 69.3 45.2 36.5 13.5 13.5 21.3 44.8
Target-DPO 76.2 72.0 79.1 65.3 47.5 37.8 22.3 17.6 21.8 48.8
Target-RPO 78.0 73.2 78.8 67.2 49.3 39.0 20.9 20.9 22.0 49.9

CodeQwen1.5-7B-Chat

Ref. 83.5 78.7 79.4 69.0 43.6 39.6 15.5 18.9 15.3 49.3
DPO 79.3 73.8 79.9 69.0 43.3 36.1 14.9 10.8 15.5 47.0
RPO 79.3 73.2 80.2 68.8 41.6 32.5 14.8 10.6 12.9 46.0
Code-Optimise 78.5 75.0 80.7 69.6 43.3 36.1 17.6 11.5 16.2 47.6
Target-DPO 89.6 85.4 83.9 69.8 48.7 39.9 20.3 16.9 18.1 52.5
Target-RPO 89.6 86.0 82.5 70.4 48.4 38.3 20.3 18.2 17.2 52.3

StarCoder2-15B

Ref. 46.3 37.8 66.2 53.1 38.4 - 12.2 - - -
DPO 51.8 45.1 63.8 42.9 27.3 16.2 8.1 5.4 12.7 30.4
RPO 53.0 45.7 63.0 42.6 28.7 17.2 9.1 6.0 13.1 30.9
Code-Optimise 61.0 54.9 66.5 53.4 31.8 18.8 6.8 6.1 14.9 34.9
Target-DPO 70.7 64.6 67.2 54.5 39.7 37.7 17.6 16.9 18.7 43.1
Target-RPO 73.2 65.2 65.9 53.4 40.3 38.8 18.9 18.2 19.4 43.7

Qwen2.5-Coder-7B

Ref. 61.6 53.0 76.9 62.9 45.8 40.2 16.2 14.2 24.1 43.9
DPO 71.3 59.1 76.2 48.7 38.8 28.5 12.8 12.2 22.6 41.1
RPO 71.3 59.8 70.9 50.3 39.8 29.7 14.2 13.5 23.0 41.4
Code-Optimise 82.3 78.7 76.2 60.4 48.5 39.6 18.9 12.2 23.2 48.9
Target-DPO 89.0 83.6 83.1 69.0 52.7 41.0 25.6 20.9 32.6 55.3
Target-RPO 89.6 84.8 83.3 69.6 53.3 43.1 29.7 20.9 32.2 56.3

Table 1: Pass@1 (%) results of different LLMs on HumanEval, MBPP, BigCodeBench, and LiveCodeBench-v5
(LCB) under greedy decoding setting. We conducted the evaluation on the Full and Hard subsets of BigCodeBench
(BCB), including the Complete (Comp.) and Instruct (Inst.) tasks. The best results are highlighted in Bold.

plex coding tasks. Notably, Qwen2.5-Coder-364

7B equipped with Target-DPO achieves a 29.7%365

pass@1 score on BigCodeBench Complete Hard,366

matching the performance of larger Code LLMs367

DeepSeek-Coder-V2-Instruct (29.7%) and Claude-368

3-Opus (29.7%) (Anthropic, 2024), and approach-369

ing Llama-3.1-405B-Instruct (30.4%) (Grattafiori370

et al., 2024). When given more attempts, Target-371

DPO achieves pass@5 of 45.7%, outperforming372

DeepSeek-R1 (40.5%) (DeepSeek-AI et al., 2025)373

and GPT-o1 (40.2%). On the Instruct Hard split,374

pass@5 of the Target-DPO-Qwen is 34.7%, compa-375

rable to the performance of GPT-o3-mini (33.1%).376

5 Ablation Study377

Despite the effectiveness of Target-DPO in pin-378

pointing critical error regions, there remain open379

questions about how best to incorporate negative380

examples and how much context is truly benefi-381

cial for code correction. We therefore explore sev-382

eral settings: (i) SFT: Supervised fine-tuning us-383

ing the positive sample from the preference pair;384

(ii) Hybrid Training: Half of the samples in a385

batch are trained using vanilla DPO, while the other386

half follows the Target-DPO approach; (iii) Diff-387

Augmentation: provide more context for the dis- 388

preferred sample by including 1 or 2 lines of tokens 389

before and after D−; and (iv) Symmetric Masking 390

Strategy: The Code LLMs learn from the tokens in 391

D+ rather than the full sequence of positive sample. 392

In Figure 5, we illustrate these settings. 393

Supervised Fine-Tuning. A comparison with 394

EpiCoder-SFT, considering varying amounts of 395

training data, is shown in Table 2. Our Target- 396

DPO achieves performance comparable to the 397

strong SFT baseline EpiCoder-380k using only 59k 398

training samples (about one-sixth), unveiling the 399

power of targeted alignment. 400

The positive samples undergo iterative debug- 401

ging and are validated by test cases, they main- 402

tain high quality, allowing SFT to achieve reason- 403

ably strong performance. However, SFT overlooks 404

dispreferred samples, missing the opportunity to 405

contrast and precisely align positive and negative 406

examples. In contrast, Target-DPO not only lever- 407

ages error-free code to increase the likelihood of 408

correct code but also precisely penalizes tokens re- 409

sponsible for critical errors, achieving finer-grained 410

alignment and better performance consequently. 411

Hybrid Training & Diff-Augmentation. Both set- 412

6

Figure 5: Illustration for Target-DPO and its ablations. Target-DPO rewards correct code tokens while penalizing
only error-specific tokens in rejected code, teaching models to truly understand code through targeted alignment.

HumanEval(Avg) MBPP(Avg) BCB(Complete) BCB(Instruct) Average

SFT (EpiCoder 40k) 83.9 75.5 50.9 39.1 62.4
SFT (EpiCoder 80k) 85.1 78.9 52.3 39.4 63.9
SFT (EpiCoder 380k) 85.7 77.8 53.4 43.8 65.2
SFT (CodeFlow 59k) 85.5 75.7 51.6 39.1 62.9
Our Target-DPO (59k) 87.2 76.5 53.3 43.1 65.0

Table 2: Results of EpiCoder-SFT with varying amounts of training data and our method on Qwen2.5-Coder-7B.

Aug Hybrid HumanEval MBPP BCB-Inst BCB-Comp Average
Base Plus Base Plus

CodeQwen1.5-7B-Chat - - 83.5 78.7 79.4 69.0 39.6 43.6 65.6

Target-DPO
✗ ✔ 83.5 79.3 81.5 66.1 38.2 44.5 65.5
✔ ✗ 83.5 76.8 80.2 65.1 34.7 44.5 64.1
✗ ✗ 89.6 85.4 83.9 69.8 39.9 48.7 69.6

Target-RPO
✗ ✔ 84.8 79.3 81.5 67.7 34.6 44.0 65.3
✔ ✗ 86.0 79.9 81.5 65.9 36.0 45.0 65.7
✗ ✗ 89.6 86.0 82.5 70.4 38.3 48.4 69.2

Table 3: Ablation study on how much contextual information from negative examples is beneficial for Target-DPO,
evaluated using CodeQwen1.5-7B-Chat. Additional results with Qwen2.5-Coder-7B are provided in Appendix C.

HumanEval(Avg) MBPP(Avg) BCB(Complete) BCB(Instruct) Avg.

SFT (Correct) 85.5 75.7 51.6 39.1 63.0
SFT (Incorrect) 82.7 73.5 49.2 38.6 61.0

Table 4: Performance comparison of SFT on correct and incorrect code from CodeFlow uisng Qwen2.5-Coder-7B.

tings expose Code LLMs to more tokens from the413

dispreferred samples but differ in scope: in Hybrid414

Training, 50% of the training samples use the entire415

dispreferred sequence, while Diff-Augmentation416

provides a small token window around the D−. Ta-417

ble 3 shows that while adding extra context around418

D− may appear beneficial, it often introduces noise419

that confuses the model, making it unclear which420

parts need local alignment, ultimately leading to421

degraded performance.422

We find that concentrating solely on the most423

critical tokens yields better results, highlighting the 424

importance of accurately grounding these tokens 425

for more effective targeted alignment. The iterative 426

debugging process naturally supports this precise 427

localization, as typically only a small portion of the 428

code changes between iterations, while the majority 429

remains unchanged. These targeted regions can be 430

easily identified using the Longest Common Sub- 431

sequence (LCS), allowing meaningful differences 432

to be isolated with high precision. 433

Symmetric Masking Strategy. When training 434

7

with the symmetric masking, where Code LLMs435

learn from both D+ and D− without access to the436

full positive sample, the model struggles to retain437

its core code generation capabilities and fails to438

benchmark effectively. The primary goal of Code439

LLMs is to generate complete and correct code. Al-440

though learning symmetrically from both D+ and441

D− may seem appealing, the focus should be on442

ensuring Code LLMs learn from fully correct code443

rather than fragmented pieces. Without complete444

code contexts, the positive sample cannot properly445

align with the instruction, leading to incomplete446

and misleading signals in the learning process.447

Generated Test Cases can Distinguish Good and448

Error Code. Table 4 compares supervised fine-449

tuning using either preferred or dispreferred sam-450

ples. The results show that SFT on preferred sam-451

ples outperforms that on dispreferred ones by an452

average of 2.0%. This quality gap between pairs,453

introduced through debugging iterations, suggests454

that test cases effectively differentiate high- and455

low-quality code snippets, providing training pairs456

with clear quality contrast. In our debugging pat-457

tern, the quality differences between code snippets458

are primarily influenced by the feedback from test459

cases, indicating that test cases can reliably distin-460

guish between good and bad code when verified461

through dedicated efforts.462

6 Related Work463

Code Language Models. Powerful Code LLMs464

like Qwen2.5-Coder (Hui et al., 2024a), DeepSeek-465

Coder (Guo et al., 2024), StarCoder (Li et al., 2023;466

Lozhkov et al., 2024), Magicoder (Wei et al., 2024)467

and EpiCoder (Wang et al., 2025b) demonstrate468

their capabilities in various code generation tasks.469

Current Code LLMs primarily focus on supervised470

fine-tuning during the post-training stage. While471

SFT enables Code LLMs to learn the correct pat-472

terns, it fails to effectively make them aware of473

incorrect patterns or how to rectify errors in code.474

In this work, Target-DPO framework aims to en-475

able Code LLMs to further learn through pairwise476

contrasting of critical tokens (Lin et al., 2024), al-477

lowing Code LLMs to continually improve.478

Reinforcement Learning (RL) (Hu et al., 2025;479

Kaufmann et al., 2024) maximizes the following480

objective for a prompt x and response y:481

max
πθ

Ex∼Dp,y∼πθ(·|x)

[
r(x, y)− β log

πθ(y|x)
πref(y|x)

]
482

where Dp is the dataset, πθ is the policy model483

to be optimized, πref is the reference, and β con- 484

trols the degree of regularization. RL for code 485

generation attracts attention recently (Dou et al., 486

2024; Li et al., 2024; Sun et al., 2024; Miao et al., 487

2024; Dai et al., 2025). A commonly used approach 488

is DPO (Rafailov et al., 2023), which eliminates 489

the need for an explicit reward model r. Variants 490

like RPO (Liu et al., 2024a; Pang et al., 2024) and 491

KTO (Ethayarajh et al., 2024) are also frequently 492

used in optimizing code generation. 493

Preference Pair Construction. Existing methods 494

construct preference pairs by ranking candidate so- 495

lutions based on pass rates. PLUM (Zhang et al., 496

2024) constructs preference pairs by ranking can- 497

didate code solutions based on passed test cases. 498

Code-Optimise (Gee et al., 2025) incorporates effi- 499

ciency as an additional learning signal, augmented 500

with annotations from unit test feedback and ex- 501

ecution time. AceCoder (Li et al., 2024) selects 502

pairs with distinct pass rate differences. DSTC (Liu 503

et al., 2024b) constructs preference pairs using self- 504

generated code and tests. A related concurrent 505

work is CodeDPO, which formulates preference 506

learning as a direct optimization problem using 507

pass/fail signals and proposes a PageRank-inspired 508

algorithm to select high-quality preference pairs. 509

In contrast, our method aligns code LLMs through 510

error-resolving edits rather than relying on coarse- 511

grained execution outcomes. This fine-grained su- 512

pervision provides richer training signals that better 513

capture the semantics of code correction, resulting 514

in improved performance, as verified in Figure 4. 515

7 Conclusion 516

We present Target-DPO, a novel preference align- 517

ment framework that emulates human iterative 518

debugging to capture critical errors in incorrect 519

code for precise optimization. Target-DPO first 520

identifies error-prone regions and applies an im- 521

proved DPO algorithm contrasting pivotal seg- 522

ments, teaching Code LLMs to understand and 523

correct code through targeted preference alignment, 524

achieving promising coding performance. To sup- 525

port this framework, we efficiently synthesize high- 526

quality preference pairs to create CodeFlow, where 527

each sample undergoes iterative refinement until it 528

passes unit tests, with the modification history pro- 529

viding a natural record of error corrections. Exten- 530

sive experiments show that Target-DPO-equipped 531

Code LLMs achieve significant performance im- 532

provements in code generation and excel in tack- 533

ling basic and complex coding tasks. 534

8

Limitations535

Target-DPO is inspired by the debugging pattern536

of developers, serving as a novel framework for537

fine-grained preference learning in Code LLMs.538

Instead of using pass rate alone, Target-DPO de-539

rives preference pairs from iterative debugging pro-540

cess. By contrasting critical tokens between a cor-541

rected version and its preceding iteration, Target-542

DPO helps the model to understand code through543

targeted alignment. However, this study focuses on544

a dataset of 59k samples without further expansion,545

which may limit generalizability, but offers oppor-546

tunities for future exploration with larger data.547

References548

Anthropic. 2024. Claude 3.5: Advancing ai safety and549
performance. Technical report, Anthropic.550

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten551
Bosma, Henryk Michalewski, David Dohan, Ellen552
Jiang, Carrie Cai, Michael Terry, Quoc Le, and553
Charles Sutton. 2021. Program synthesis with large554
language models. Preprint, arXiv:2108.07732.555

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,556
Xiaodong Deng, and et al. 2023. Qwen technical557
report. arXiv preprint arXiv:2309.16609.558

Huayu Chen, Guande He, Hang Su, and Jun Zhu. 2024.559
Noise contrastive alignment of language models with560
explicit rewards. CoRR, abs/2402.05369.561

Mark Chen, Jerry Tworek, Heewoo Jun, and Qim-562
ing Yuan et al. 2021. Evaluating large language563
models trained on code. Preprint, arXiv:2107.03374.564

Ning Dai, Zheng Wu, Renjie Zheng, Ziyun Wei, Wenlei565
Shi, Xing Jin, Guanlin Liu, Chen Dun, Liang Huang,566
and Lin Yan. 2025. Process supervision-guided pol-567
icy optimization for code generation.568

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang,569
Junxiao Song, Ruoyu Zhang, Runxin Xu, and et al.570
2025. Deepseek-r1: Incentivizing reasoning capa-571
bility in llms via reinforcement learning. Preprint,572
arXiv:2501.12948.573

Shihan Dou, Yan Liu, Haoxiang Jia, Enyu Zhou, and Li-574
mao et al. Xiong. 2024. StepCoder: Improving code575
generation with reinforcement learning from com-576
piler feedback. In Proceedings of the 62nd Annual577
Meeting of the Association for Computational Lin-578
guistics, Bangkok, Thailand. Association for Compu-579
tational Linguistics.580

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff,581
Dan Jurafsky, and Douwe Kiela. 2024. Model align-582
ment as prospect theoretic optimization. In Proceed-583
ings of the 41st International Conference on Machine584
Learning, ICML’24. JMLR.org.585

Leonidas Gee, Milan Gritta, Gerasimos Lampouras, 586
and Ignacio Iacobacci. 2025. Code-optimise: Self- 587
generated preference data for correctness and effi- 588
ciency. Preprint, arXiv:2406.12502. 589

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, 590
Abhinav Pandey, and et al. 2024. The llama 3 herd 591
of models. Preprint, arXiv:2407.21783. 592

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai 593
Dong, Wentao Zhang, Guanting Chen, Xiao Bi, 594
Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wen- 595
feng Liang. 2024. Deepseek-coder: When the large 596
language model meets programming – the rise of 597
code intelligence. Preprint, arXiv:2401.14196. 598

Yulan Hu, Ge Chen, Jinman Zhao, Sheng Ouyang, 599
and Yong Liu. 2025. Coarse-to-fine process re- 600
ward modeling for mathematical reasoning. Preprint, 601
arXiv:2501.13622. 602

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, and et al. 603
2024a. Qwen2.5-coder technical report. Preprint, 604
arXiv:2409.12186. 605

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day- 606
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang, 607
Bowen Yu, Kai Dang, et al. 2024b. Qwen2. 5-coder 608
technical report. arXiv preprint arXiv:2409.12186. 609

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia 610
Yan, Tianjun Zhang, Sida Wang, Armando Solar- 611
Lezama, Koushik Sen, and Ion Stoica. 2024. Live- 612
codebench: Holistic and contamination free evalu- 613
ation of large language models for code. Preprint, 614
arXiv:2403.07974. 615

Timo Kaufmann, Paul Weng, Viktor Bengs, and 616
Eyke Hüllermeier. 2024. A survey of reinforce- 617
ment learning from human feedback. Preprint, 618
arXiv:2312.14925. 619

Xin Lai, Zhuotao Tian, Yukang Chen, Senqiao Yang, Xi- 620
angru Peng, and Jiaya Jia. 2024. Step-dpo: Step-wise 621
preference optimization for long-chain reasoning of 622
llms. Preprint, arXiv:2406.18629. 623

Jia Li, Yunfei Zhao, Yongmin Li, Ge Li, and Zhi Jin. 624
2024. Acecoder: An effective prompting technique 625
specialized in code generation. ACM Trans. Softw. 626
Eng. Methodol., 33(8). 627

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas 628
Muennighoff, and et al. 2023. Starcoder: may the 629
source be with you! Preprint, arXiv:2305.06161. 630

Zicheng Lin, Tian Liang, Jiahao Xu, Xing Wang, 631
Ruilin Luo, Chufan Shi, Siheng Li, Yujiu Yang, and 632
Zhaopeng Tu. 2024. Critical tokens matter: Token- 633
level contrastive estimation enhence llm’s reasoning 634
capability. arXiv preprint arXiv:2411.19943. 635

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling- 636
ming Zhang. 2023. Is your code generated by chatgpt 637
really correct? rigorous evaluation of large language 638
models for code generation. In Proceedings of the 639

9

https://www.anthropic.com/
https://www.anthropic.com/
https://www.anthropic.com/
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://doi.org/10.48550/ARXIV.2402.05369
https://doi.org/10.48550/ARXIV.2402.05369
https://doi.org/10.48550/ARXIV.2402.05369
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://openreview.net/forum?id=Cn5Z0MUPZT
https://openreview.net/forum?id=Cn5Z0MUPZT
https://openreview.net/forum?id=Cn5Z0MUPZT
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://doi.org/10.18653/v1/2024.acl-long.251
https://doi.org/10.18653/v1/2024.acl-long.251
https://doi.org/10.18653/v1/2024.acl-long.251
https://doi.org/10.18653/v1/2024.acl-long.251
https://doi.org/10.18653/v1/2024.acl-long.251
https://arxiv.org/abs/2406.12502
https://arxiv.org/abs/2406.12502
https://arxiv.org/abs/2406.12502
https://arxiv.org/abs/2406.12502
https://arxiv.org/abs/2406.12502
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2501.13622
https://arxiv.org/abs/2501.13622
https://arxiv.org/abs/2501.13622
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2312.14925
https://arxiv.org/abs/2312.14925
https://arxiv.org/abs/2312.14925
https://arxiv.org/abs/2406.18629
https://arxiv.org/abs/2406.18629
https://arxiv.org/abs/2406.18629
https://arxiv.org/abs/2406.18629
https://arxiv.org/abs/2406.18629
https://doi.org/10.1145/3675395
https://doi.org/10.1145/3675395
https://doi.org/10.1145/3675395
https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2305.06161

37th International Conference on Neural Information640
Processing Systems, NIPS ’23, Red Hook, NY, USA.641
Curran Associates Inc.642

Zhihan Liu, Miao Lu, Shenao Zhang, Boyi Liu, Hongyi643
Guo, Yingxiang Yang, Jose Blanchet, and Zhaoran644
Wang. 2024a. Provably mitigating overoptimization645
in RLHF: Your SFT loss is implicitly an adversarial646
regularizer. In The Thirty-eighth Annual Conference647
on Neural Information Processing Systems.648

Zhihan Liu, Shenao Zhang, Yongfei Liu, Boyi Liu,649
Yingxiang Yang, and Zhaoran Wang. 2024b. Dstc:650
Direct preference learning with only self-generated651
tests and code to improve code lms. Preprint,652
arXiv:2411.13611.653

Zhihan Liu, Shenao Zhang, and Zhaoran Wang. 2024c.654
DSTC: direct preference learning with only self-655
generated tests and code to improve code lms. CoRR,656
abs/2411.13611.657

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed-658
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi,659
and et al. 2024. Starcoder 2 and the stack v2: The660
next generation. Preprint, arXiv:2402.19173.661

Zeyao Ma, Xiaokang Zhang, Jing Zhang, Jifan Yu,662
Sijia Luo, and Jie Tang. 2025. Dynamic scaling663
of unit tests for code reward modeling. Preprint,664
arXiv:2501.01054.665

Yibo Miao, Bofei Gao, Shanghaoran Quan, Junyang666
Lin, Daoguang Zan, Jiaheng Liu, Jian Yang, Tianyu667
Liu, and Zhijie Deng. 2024. Aligning codellms668
with direct preference optimization. Preprint,669
arXiv:2410.18585.670

OpenAI. 2024. Gpt-4 technical report. Preprint,671
arXiv:2303.08774.672

Arka Pal, Deep Karkhanis, Samuel Dooley, Manley673
Roberts, Siddartha Naidu, and Colin White. 2024.674
Smaug: Fixing failure modes of preference optimisa-675
tion with dpo-positive. Preprint, arXiv:2402.13228.676

Richard Yuanzhe Pang, Weizhe Yuan, He He,677
Kyunghyun Cho, Sainbayar Sukhbaatar, and Jason E678
Weston. 2024. Iterative reasoning preference opti-679
mization. In The Thirty-eighth Annual Conference680
on Neural Information Processing Systems.681

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-682
pher D. Manning, Stefano Ermon, and Chelsea Finn.683
2023. Direct preference optimization: Your language684
model is secretly a reward model. In Advances in685
Neural Information Processing Systems 36: Annual686
Conference on Neural Information Processing Sys-687
tems 2023, NeurIPS 2023, New Orleans, LA, USA,688
December 10 - 16, 2023.689

Jiankai Sun, Chuanyang Zheng, Enze Xie, Zhengy-690
ing Liu, Ruihang Chu, and et al. 2024. A sur-691
vey of reasoning with foundation models. Preprint,692
arXiv:2312.11562.693

Yaoxiang Wang, Haoling Li, Xin Zhang, Jie Wu, Xiao 694
Liu, Wenxiang Hu, Zhongxin Guo, Yangyu Huang, 695
Ying Xin, Yujiu Yang, Jinsong Su, Qi Chen, and Scar- 696
lett Li. 2025a. Epicoder: Encompassing diversity and 697
complexity in code generation. In Arxiv. 698

Yaoxiang Wang, Haoling Li, Xin Zhang, Jie Wu, Xiao 699
Liu, Wenxiang Hu, Zhongxin Guo, Yangyu Huang, 700
Ying Xin, Yujiu Yang, et al. 2025b. Epicoder: En- 701
compassing diversity and complexity in code genera- 702
tion. arXiv preprint arXiv:2501.04694. 703

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and 704
Lingming Zhang. 2024. Magicoder: empowering 705
code generation with oss-instruct. In Proceedings of 706
the 41st International Conference on Machine Learn- 707
ing, ICML’24. JMLR.org. 708

Junkang Wu, Yuexiang Xie, Zhengyi Yang, Jiancan Wu, 709
Jinyang Gao, Bolin Ding, Xiang Wang, and Xiangnan 710
He. 2024. β-dpo: Direct preference optimization 711
with dynamic β. CoRR, abs/2407.08639. 712

Dylan Zhang, Shizhe Diao, Xueyan Zou, and Hao 713
Peng. 2024. PLUM: preference learning plus test 714
cases yields better code language models. CoRR, 715
abs/2406.06887. 716

Kechi Zhang, Ge Li, Yihong Dong, Jingjing Xu, Jun 717
Zhang, Jing Su, Yongfei Liu, and Zhi Jin. 2025. Cod- 718
eDPO: Aligning code models with self generated and 719
verified source code. 720

Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang, 721
Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi Hu, Tian- 722
wei Zhang, Fei Wu, and Guoyin Wang. 2023. In- 723
struction tuning for large language models: A survey. 724
CoRR, abs/2308.10792. 725

Terry Yue Zhuo, Vu Minh Chien, Jenny Chim, Han Hu, 726
Wenhao Yu, Ratnadira Widyasari, and et al. 2025. 727
Bigcodebench: Benchmarking code generation with 728
diverse function calls and complex instructions. In 729
The Thirteenth International Conference on Learning 730
Representations. 731

10

https://openreview.net/forum?id=2cQ3lPhkeO
https://openreview.net/forum?id=2cQ3lPhkeO
https://openreview.net/forum?id=2cQ3lPhkeO
https://openreview.net/forum?id=2cQ3lPhkeO
https://openreview.net/forum?id=2cQ3lPhkeO
https://arxiv.org/abs/2411.13611
https://arxiv.org/abs/2411.13611
https://arxiv.org/abs/2411.13611
https://arxiv.org/abs/2411.13611
https://arxiv.org/abs/2411.13611
https://doi.org/10.48550/ARXIV.2411.13611
https://doi.org/10.48550/ARXIV.2411.13611
https://doi.org/10.48550/ARXIV.2411.13611
https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/2501.01054
https://arxiv.org/abs/2501.01054
https://arxiv.org/abs/2501.01054
https://arxiv.org/abs/2410.18585
https://arxiv.org/abs/2410.18585
https://arxiv.org/abs/2410.18585
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2402.13228
https://arxiv.org/abs/2402.13228
https://arxiv.org/abs/2402.13228
https://openreview.net/forum?id=4XIKfvNYvx
https://openreview.net/forum?id=4XIKfvNYvx
https://openreview.net/forum?id=4XIKfvNYvx
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
https://arxiv.org/abs/2312.11562
https://arxiv.org/abs/2312.11562
https://arxiv.org/abs/2312.11562
https://api.semanticscholar.org/CorpusID:275357789
https://api.semanticscholar.org/CorpusID:275357789
https://api.semanticscholar.org/CorpusID:275357789
https://doi.org/10.48550/ARXIV.2407.08639
https://doi.org/10.48550/ARXIV.2407.08639
https://doi.org/10.48550/ARXIV.2407.08639
https://doi.org/10.48550/ARXIV.2406.06887
https://doi.org/10.48550/ARXIV.2406.06887
https://doi.org/10.48550/ARXIV.2406.06887
https://openreview.net/forum?id=U5TebOVpfd
https://openreview.net/forum?id=U5TebOVpfd
https://openreview.net/forum?id=U5TebOVpfd
https://openreview.net/forum?id=U5TebOVpfd
https://openreview.net/forum?id=U5TebOVpfd
https://doi.org/10.48550/ARXIV.2308.10792
https://doi.org/10.48550/ARXIV.2308.10792
https://doi.org/10.48550/ARXIV.2308.10792
https://openreview.net/forum?id=YrycTjllL0
https://openreview.net/forum?id=YrycTjllL0
https://openreview.net/forum?id=YrycTjllL0

Appendix732

In this appendix, we first provide more details of733

our core methodology, including preference pair734

construction and implementation specifics (Sec-735

tion A). Section B then introduces the evaluation736

benchmarks and presents comprehensive experi-737

mental results, showcasing performance on various738

benchmarks and detailed comparisons against Epi-739

Coder and other relevant methods. Subsequently,740

we provide in-depth analyses such as scaling laws,741

ablation studies on key parameters, data diversity742

assessments, error pattern examinations, and effi-743

ciency evaluations (Section C).744

A Methodology and Data Construction745

This section details the core methodology of our746

proposed approach, including the iterative refine-747

ment process for preference pair construction and748

the generation and quality assessment of synthetic749

test data. Implementation specifics relevant to these750

methodological aspects are also covered.751

A.1 Iterative Refinement and Preference Pair752

Construction753

The core of our data generation relies on an iterative754

refinement process. Figure 6 illustrates the progres-755

sion of code sample pass rates through successive756

refinement iterations using execution verification757

feedback.758

As depicted in Figure 6, at the first attempt759

(iter0), only 36.7% of the code samples pass their760

corresponding test file, indicating that debugging761

is necessary for the remaining code. Failed codes762

go through continual refinement, with the pass rate763

gradually approaching 67.5%. The pass rate rises764

sharply from iter 1 to iter 3 and then slows. Be-765

tween iter 4 and iter 5, only 1.2% of cases improve,766

Figure 6: The pass rate progression across iterations of
refinement with execution verification feedback.

indicating incremental benefits from further itera- 767

tions. Thus, additional iterations are not consid- 768

ered. 769

Current methods construct preference pairs 770

based on pass rate signals and conduct DPO to op- 771

timize Code LLMs. Two notable limitations arise: 772

one from the data and one from the algorithm. 773

Regarding preference data, a snippet with a low 774

pass rate may only require minor modifications 775

to become correct, as errors tend to be isolated 776

to specific parts of the code. We address this by 777

iterative debugging with editing traces naturally 778

annotated by the differences between iterations. 779

Regarding the algorithm, relying solely on full 780

preference learning can introduce noise during op- 781

timization, as positive and negative pairs can be 782

highly similar. This not only hinders the model 783

from learning more effective error correction pat- 784

terns but also increases the risk of overfitting. We 785

solve this by explicitly identifying which parts of 786

the code need to be aligned. 787

Iterative debugging can pass through 67.5% of 788

tasks within a 5-time API call budget for each task. 789

But given just 5 sampling attempts, the pass rate 790

falls to 51.90% averaged across 5k samples, as 791

shown in Table 5. This initial comparison high- 792

lights that iterative debugging can achieve a higher 793

pass rate under similar API constraints.

API Calls Pass rate (%)

Debugging (Ours) Up to 5 times 67.5
Sampling 5 times for each task 51.9

Table 5: Pass Rate of Debugging and Sampling for
Preference Pair Construction.

794
To further investigate the limits of sampling for 795

difficult cases, we collected 5k samples that didn’t 796

succeed within 5 debugging iterations. Table 6 797

details the pass rate when applying N sampling 798

solutions to these difficult tasks. 799

The results in Table 6 indicate that for samples 800

which could not succeed with 5 iterations using 801

Sampled Solutions N Passed Failed

5 2.42% 97.58%
10 3.26% 96.26%
15 3.96% 96.04%
30 4.20% 95.80%
50 4.36% 95.64%

Table 6: Pass Rate of Sampling for Difficult Cases
(Failed within 5 Debugging Iterations).

11

interpreter feedback and runtime error informa-802

tion, additional sampling alone yields very low803

pass rates (e.g., only 3.96% pass with 15 sampling804

attempts). This suggests such cases can hardly pass805

through additional sampling alone.806

To directly compare the effectiveness of prefer-807

ence pairs generated via iterative debugging versus808

sampling, we conducted experiments using 10k809

training samples. Table 7 presents these compar-810

ative results. As shown in Table 7, iterative de-811

bugging can generate more meaningful preference812

pairs than sampling by leveraging interpreter feed-813

back and runtime information, thereby achieving814

better results (e.g., an average score of 64.1 vs 62.3)815

with lower API costs.816

A.2 Synthetic Test Case Generation817

A.2.1 Rationale for using Synthetic Test Cases818

We address the relationale behind systhetic test819

cases from the following perpectives. Optimizing820

code LLMs through preference learning requires a821

large amount of training data, which is difficult822

to annotate or verify manually. Synthetic data823

has become a widely adopted approach. For ex-824

ample, Qwen2.5-Coder utilizes tens of millions825

of synthetic instruction samples, and models like826

DeepSeek-V3 and R1 also incorporate synthetic827

data during training, also as demonstrated in stud-828

ies like PLUM, SelfCodeAlign and DSTC.829

A.2.2 Validity of Synthetic Test Cases830

We have made the following efforts to ensure the831

qaulity of test cases: (i) First, we adopted a pow-832

erful LLM, GPT-4o, as the test case generator to833

primarily ensure its validity. (ii) Through prompt-834

ing engineering, we have invested significant effort835

into making the generated test cases broad and836

meaningful. (iii) We conducted a manual evalua-837

tion by performing a random sample check. We838

manually examined 100 data samples and found839

that all the generated test cases correctly reflected840

the task requirements. However, we observed that841

these test cases tend to be relatively simple and842

may not cover all edge cases.843

A.2.3 Coverage Analysis of Test Cases844

To validate the effectiveness of test cases in exer-845

cising source code, we conducted coverage analy-846

sis on a sample of 1,000 training instances. Code847

coverage, a crucial metric in software testing, quan-848

tifies the extent to which a program’s source code849

is exercised by test cases. This metric measures850

Figure 7: Coverage Distribution of Test Case.

the percentage of code executed by a test suite, 851

which we evaluated using the Python Coverage li- 852

brary1. Our evaluation framework organizes the 853

source code and test cases into directories, main- 854

taining a clear separation between the source code 855

(implemented as Python modules) and the corre- 856

sponding unit tests (developed using the unittest2 857

framework). The coverage metric is calculated 858

through the following equation: 859

Code Coverage = 100%×(
Number of lines of code executed

Total Number of lines of code in system component

)
.

(9)

860

The results of the coverage analysis are shown 861

in Figure 7. 862

A.2.4 Evaluating the quality of test cases 863

using LLM-as-a-judge 864

To evaluate test case quality, we employ the LLM- 865

as-a-judge approach, assessing three dimensions: 866

accuracy, effectiveness, and reasonableness on 867

a 5-point scale. Detailed evaluation prompts are 868

provided in 9. We sample 1,000 data points from 869

the training data and conduct evaluations using the 870

DeepSeek-V3-0324 model. The evaluation results 871

in Figure 8 demonstrate satisfactory test case qual- 872

ity across all dimensions. 873

A.2.5 Prompt and Examples for Generated 874

Test Cases 875

To illustrate our synthetic test case generation pro- 876

cess, Figure 10 displays the prompt template pro- 877

vided to the LLM. Following this prompt, Figure 878

11 presents an example of the test cases generated 879

1https://github.com/nedbat/coveragepy
2https://docs.python.org/3/library/unittest.h

tml

12

https://github.com/nedbat/coveragepy
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html

HumanEval HumanEval+ MBPP MBPP+ BCB-Inst BCB-Comp LCB-v5 Avg.

Ref. 61.6 53.0 76.9 62.9 40.2 45.8 24.1 52.1
Sampling 84.1 79.3 82.3 68.5 40.8 49.2 32.4 62.3
Debugging 87.8 84.8 83.3 69.7 41.1 49.6 32.5 64.1

Table 7: Results of Preference Pair Construction using Sampling vs. Debugging (10k training samples).

Figure 8: Comparative distribution of LLM-as-a-judge
scores across three evaluation metrics: accuracy, effec-
tiveness, and reasonableness.

for question “Create a Python function named ‘gen-880

erate_arithmetic_sequence’ that generates the first881

N terms of an arithmetic sequence given the first882

term and the common difference. The function883

should take three parameters: the first term (a), the884

common difference (d), and the number of terms885

(N). The function should return a list containing886

the first N terms of the sequence”.887

A.3 Training and Inference Parameters888

Unless specified otherwise for a particular experi-889

ment, our code LLMs were trained with consistent890

hyperparameter settings. The learning rate was set891

to 1×10−5 for the 7B code LLMs and 5×10−6 for892

the 14B models. We used a global batch size of 128,893

full-parameter training 3 epochs with max prompt894

length of 1024 and generation length of 2048. A895

cosine learning rate scheduler with was employed,896

with 3% of the total training steps dedicated to897

warm-up. For the DPO algorithm, β is set to 0.1,898

and α is set to 1.0 for RPO. πθ and πref are both899

initialized with the weights of the evaluated model,900

while πref keeps frozen during training. For all in-901

ference, greedy decoding was utilized with pass902

rate at first attempt reported. For Code-Optimise,903

we replicated their setup, and the DPOPvF setting904

results are reported. For PLUM and CodeDPO,905

their scores are taken from their respective papers. 906

B Experimental Results and Comparisons 907

This section begins by describing the evaluation 908

benchmarks and their statistics. It then presents the 909

comprehensive experimental results of our method 910

on these benchmarks, followed by detailed compar- 911

isons against Supervised Fine-Tuning (SFT) and 912

other relevant state-of-the-art methods. 913

B.1 Evaluation Benchmarks: Description and 914

Statistics 915

We detail the individual function-level code gener- 916

ation benchmarks used for evaluation in this sub- 917

section. Table 8 summarizes key statistics for these 918

benchmarks, such as the number of problems and 919

the average number of tests per problem.

Dataset Problems Avg. Tests

HumanEval 164 9.57
HumanEval+ 748.07

MBPP 378 3.11
MBPP+ 105.40

Easy 279 18.07
LiveCodeBench Medium 331 21.81

Hard 270 24.78

Table 8: Statistics of Evaluation Benchmarks.

920
HumanEval and MBPP are popular bench- 921

marks for assessing code generation. Considering 922

the limited test cases in these benchmarks (Hu- 923

manEval: 9.57 avg. tests; MBPP: 3.11 avg. tests, 924

as seen in Table 8), we followed previous work and 925

utilized the EvalPlus framework to evaluate model 926

robustness across a broader range of test cases (Hu- 927

manEval+: 748.07 avg. tests; MBPP+: 105.40 928

avg. tests). To ensure fair comparison, we used ver- 929

sion 0.2.0 of MBPP+ provided by EvalPlus3 v0.3.1 930

, which removes some broken tasks (399 → 378 931

tasks). 932

BigCodeBench (BCB) is a comprehensive 933

benchmark designed to assess a model’s ability 934

3https://github.com/evalplus/evalplus

13

https://github.com/evalplus/evalplus

Figure 9: Prompt for evaluating the quality of test cases using LLM-as-a-judge.

14

Now that you are a code expert, I have provided you with the QUESTION. Complete the problem with awesome code logic and give a
richly commented analysis in the code of your answer. Include the necessary packages and test cases.
- QUESTION
{task}
- Full code implementation with test cases
Enclose the python code with ```python and ``` and enclose the file name with <file> and </file>. For example:
<file>add.py</file>
```python
# add.py
# Code implementation here
def add(x, y):
return x + y
``` The test code should be in a single file.
<file>test.py</file>
Note that the following code will be executed directly, so only the test cases that can be executed directly need to be retained. You only
need to test some simple functions in the code. Tests that depend on external files cannot be executed because these files do not exist.
```python
from add import add
def test():
assert add(3, 5) == 8
assert add(4, 6) == 10
test()
```
- File names in order and packages required
Answer file names and packages in JSON format, wrapped in <json> and </json> tags. For example:
<json>
{
"file_names": ["add.py", "test.py"],
"packages": ["package1", "package2"]
}</json>

Prompt for Generating Code and Test Cases

Figure 10: Prompt used for generating code and test cases.

to handle real-world programming tasks, particu-935

larly its effectiveness in utilizing various function936

calls as tools. Our model’s ability to adeptly man-937

age these high-complexity scenarios underscores938

its suitability for BigCodeBench.939

LiveCodeBench (LCB), statistics for which are940

also included in Table 8 (showing problem distri-941

bution by difficulty), is a benchmark designed to942

evaluate code generation models on challenging943

competitive programming problems, often sourced944

from real coding contests. Unlike benchmarks fo-945

cused solely on function completion, LCB tasks946

typically require more complex algorithmic rea-947

soning and problem-solving skills. The evaluation948

often simulates a contest environment, potentially949

including hidden test cases to assess the robust-950

ness and correctness of the generated solutions951

under pressure. In our experiments, we utilize952

LiveCodeBench-v5 (LCB-v5) to gauge the model’s953

capabilities in tackling these demanding, contest-954

style coding scenarios.955

B.2 Comparison with Supervised Fine-Tuning956

We compare our method with standard Supervised957

Fine-Tuning (SFT) to demonstrate the benefits of958

our preference alignment approach. The overall 959

comparison of our method (Target-RPO) against 960

SFT and reference models on various benchmarks 961

is presented in Table 9. For instance, on Qwen2.5- 962

Coder-7B, our Target-RPO achieves an average of 963

65.3, surpassing the SFT baseline’s 63.2. 964

Table 10 provides a more granular breakdown 965

of performance on LiveCodeBench-v5 by diffi- 966

culty, where our method consistently outperforms 967

the SFT versions of both CodeQwen-7B-Chat and 968

Qwen-Coder-7B, especially on Easy and Medium 969

problems. 970

Similarly, Table 11 shows detailed results on 971

BigCodeBench categories, again illustrating the ad- 972

vantage of our approach over SFT across different 973

task types and difficulties. For example, Qwen- 974

Coder-7B with our method achieves an average of 975

36.8 compared to SFT’s 31.8. 976

B.3 Comparison with Other Code Generation 977

Methods 978

We further benchmark our method against other no- 979

table code generation techniques. Table 12 bench- 980

marks our method against techniques like Cod- 981

eDPO, Code-Optimise, and PLUM on HumanEval 982

15

import unittest
from generate_arithmetic_sequence import generate_arithmetic_sequence

class TestGenerateArithmeticSequence(unittest.TestCase):

 def test_basic_case(self):
 """Test a standard arithmetic sequence with positive common difference."""
 self.assertEqual(generate_arithmetic_sequence(2, 3, 5), [2, 5, 8, 11, 14], "Basic case failed")

 def test_single_term(self):
 """Test when only one term (N=1) is requested."""
 self.assertEqual(generate_arithmetic_sequence(5, 10, 1), [5], "Single term case failed")

 def test_zero_terms(self):
 """Test when zero terms (N=0) are requested; should return an empty list."""
 self.assertEqual(generate_arithmetic_sequence(7, 3, 0), [], "Zero terms case failed")

 def test_negative_number_of_terms(self):
 """Test when a negative number of terms (N<0) is requested; should return an empty list."""
 self.assertEqual(generate_arithmetic_sequence(5, 3, -1), [], "Negative N (-1) case failed")
 self.assertEqual(generate_arithmetic_sequence(5, 3, -5), [], "Negative N (-5) case failed")

 def test_negative_common_difference(self):
 """Test a sequence with a negative common difference (decreasing sequence)."""
 self.assertEqual(generate_arithmetic_sequence(10, -2, 4), [10, 8, 6, 4], "Negative common difference case
failed")

 def test_zero_common_difference(self):
 """Test a sequence where all terms are the same (common difference is zero)."""
 self.assertEqual(generate_arithmetic_sequence(5, 0, 4), [5, 5, 5, 5], "Zero common difference case failed")
 self.assertEqual(generate_arithmetic_sequence(-3, 0, 3), [-3, -3, -3], "Zero common difference with negative
start failed")

 def test_mixed_sign_inputs(self):
 """Test with mixed positive and negative inputs for 'a' and 'd' where sequence crosses zero."""
 self.assertEqual(generate_arithmetic_sequence(-5, 2, 5), [-5, -3, -1, 1, 3], "Mixed sign inputs case failed")

 def test_float_inputs(self):
 """Test with floating-point numbers for the first term and common difference."""
 self.assertEqual(generate_arithmetic_sequence(1.5, 0.5, 4), [1.5, 2.0, 2.5, 3.0], "Float inputs case failed")
 self.assertEqual(generate_arithmetic_sequence(0.0, -0.1, 3), [0.0, -0.1, -0.2], "Float inputs with negative
difference failed")
 # Example where direct float comparison could be tricky, but Python handles these well.
 self.assertEqual(generate_arithmetic_sequence(0.1, 0.1, 3), [0.1, 0.2, 0.3], "Float inputs (0.1 increments)
failed")

 def test_large_number_of_terms(self):
 """Test with a large number of terms for basic performance and correctness of first/last terms."""
 N_large = 1000
 a_val = 1
 d_val = 1
 sequence = generate_arithmetic_sequence(a_val, d_val, N_large)

 self.assertEqual(len(sequence), N_large, "Large N: Length mismatch")
 if N_large > 0:
 self.assertEqual(sequence[0], a_val, "Large N: First term mismatch")
 # The Nth term (index N-1) is a + (N-1)*d
 self.assertEqual(sequence[-1], a_val + (N_large - 1) * d_val, "Large N: Last term mismatch")

 def test_invalid_N_type(self):
 """Test with non-integer N; should return an empty list."""
 self.assertEqual(generate_arithmetic_sequence(1, 1, 3.5), [], "Non-integer N (float) case failed")
 self.assertEqual(generate_arithmetic_sequence(1, 1, "abc"), [], "Non-integer N (string) case failed")

if __name__ == '__main__':
 # Running the tests
 unittest.main(argv=['first-arg-is-ignored'], exit=False)

Generated Test Cases

Figure 11: An example of generated test cases.

16

HumanEval MBPP BCB-Inst BCB-Comp LCB-v5 Average
Base Plus Base Plus

CodeQwen1.5-7B-Chat
Ref. 83.5 78.7 79.4 69.0 39.6 43.6 15.3 58.4
SFT 87.8 83.5 82.3 69.6 35.9 45.6 17.0 60.2
Target-DPO 89.6 85.4 83.9 69.8 39.9 48.7 20.2 62.5
Target-RPO 89.6 86.0 82.5 70.4 38.3 48.4 19.9 62.2

Qwen2.5-Coder-7B
Ref. 61.6 53.0 76.9 62.9 40.2 45.8 24.1 52.1
SFT 87.2 82.9 83.1 68.3 39.1 51.6 30.0 63.2
DiffAug-RPO 86.0 81.7 82.8 67.5 40.7 51.4 30.5 62.9
Target-RPO 89.6 84.8 83.3 69.5 43.1 53.3 33.3 65.3

Table 9: SFT and our results on CodeQwen1.5-7B-Chat and Qwen2.5-Coder-7B. Detailed results on LiveCodeBench
and BigCodeBench are presented in Table 10 and Table 11.

EASY MEDIUM HARD Avg

CodeQwen-7B-Chat-SFT 41.87 9.14 0.75 17.06
CodeQwen-7B-Chat-Ours 48.73 11.89 0.75 20.16
Qwen-Coder-7B-SFT 67.14 21.03 2.61 30.01
Qwen-Coder-7B-Ours 69.31 27.13 3.73 33.33

Table 10: Detailed Results on LiveCodeBench-v5, comparing SFT with Our Target-DPO.

Complete-Full Instruct-Full Complete-Hard Instruct-Hard Average

CodeQwen-7B-Chat-SFT 45.6 35.9 18.3 15.5 28.8
CodeQwen-7B-Chat-Ours 48.4 38.3 20.3 18.2 31.3
Qwen-Coder-7B-SFT 51.6 39.1 21.6 14.9 31.8
Qwen-Coder-7B-Ours 53.3 43.1 29.7 20.9 36.8

Table 11: Detailed Results on BigCodeBench, comparing SFT with Our Target-DPO.

17

and MBPP. Notably, on the DeepSeekCoder-6.7B983

base, our method achieves significantly higher984

scores (e.g., 66.50 on HumanEval vs. 59.75 for985

CodeDPO and 56.70 for PLUM).986

C In-depth Analyses and Ablation987

Studies988

In this section, we conduct several in-depth anal-989

yses and ablation studies to better understand990

the characteristics and behavior of our proposed991

method. This includes investigating the impact of992

model size (scaling laws), sensitivity to key hy-993

perparameters (β and α), the diversity of our con-994

structed preference data, common error patterns995

in the generated code, and the efficiency of our996

preference annotation process.997

C.1 Scaling Law on Model Size998

The impact of model size on performance when999

applying our method is detailed in Table 13. The1000

results show a clear trend: as model size increases1001

from 1.5B to 32B parameters, the average perfor-1002

mance improves from 54.4 to 74.7, demonstrating1003

the scalability of our approach.1004

C.2 Ablation Studies on Hyperparameters β1005

and α1006

In Direct Preference Optimization (DPO), the hy-1007

perparameter β controls the strength of the pref-1008

erence signal, essentially determining how strictly1009

the model should adhere to the learned preferences1010

relative to the reference model. The hyperparame-1011

ter α, when part of the DPO framework or a com-1012

bined loss, often serves as a weighting factor for1013

an additional objective or regularization term. We1014

performed ablation studies on key hyperparameters1015

β and α. Table 14 presents the results for β when1016

α is set to 0, suggesting that a smaller β (e.g., 0.1)1017

yields the best average performance (69.7).1018

The corresponding ablation for α, with β fixed1019

at 0.1, is shown in Table 15. These results indicate1020

that α = 1.0 provides the highest average score1021

(70.5), while α = ∞ (equivalent to SFT) performs1022

relatively worse.1023

C.3 Ablation on Context Usage1024

Beyond CodeQwen1.5-7B-Chat, we also provide1025

ablation results on the use of context from the re-1026

jected sample using Qwen2.5-Coder-7B, as shown1027

in Table 16.1028

C.4 Analysis of Preference Data Diversity 1029

To understand the characteristics of our CodeFlow 1030

preference dataset, Table 17 provides a distribu- 1031

tional analysis of various features (e.g., Workflow, 1032

Functionality, Data Processing) across 1k samples, 1033

comparing it with other common datasets like Al- 1034

paca and OSS-Instruct. Our CodeFlow dataset 1035

(both preferred and dis-preferred samples) gener- 1036

ally exhibits a higher count and thus potentially 1037

greater diversity across most features, particularly 1038

in Data Processing, File Operation, and Advanced 1039

Techniques. 1040

C.5 Error Analysis of Generated Code 1041

Target-DPO Generates Fewer Errors. In this 1042

section, we present a statistical analysis of com- 1043

mon failure case types to pinpoint frequent pitfalls 1044

in code generation. By contrasting critical tokens 1045

between a corrected version and its preceding itera- 1046

tion explicitly, a Code LLM equipped with Target- 1047

DPO makes fewer errors. Table 18 presents the fre- 1048

quency of common failure types (e.g., AttributeEr- 1049

ror, KeyError) on the BigCodeBench Complete- 1050

Full set. Our Target-RPO method shows a no- 1051

table reduction in the sum of these errors (308 1052

occurrences) compared to RPO (369) and Code- 1053

Optimise-RPO (396) on Qwen2.5-Coder-7B. This 1054

suggests that while RPO includes SFT, it still re- 1055

quires targeted learning of critical errors in the dis- 1056

preferred samples to effectively reduce mistakes. 1057

1058

C.6 Efficiency Analysis of Preference 1059

Annotation 1060

Additionally, we compare the costs of generating 1061

and annotating preference pairs to guide more effi- 1062

cient preference alignment and reduce errors. 1063

Target-DPO Provides an Efficient Pathway for 1064

Preference Annotation. We compare the cost of 1065

synthesizing one preference pair between Target- 1066

DPO and the sampling techniques adopted by Code- 1067

Optimise, primarily considering external LLM 1068

calls and execution times. Given an instruction, 1069

Code-Optimise synthesizes m code snippet candi- 1070

dates (where m is often set to 100), using n test 1071

cases from the raw dataset, leading to m × n ex- 1072

ecutions on the CPU. In contrast, for a single in- 1073

struction, Target-DPO requires up to 7 LLM calls 1074

and executions for successful pair generation in 1075

most cases. Considering the failure ratio (when 1076

code can’t pass the generated test cases within the 1077

18

HumanEval HumanEval+ MBPP MBPP+

StarCoder2-7B 35.40 29.90 54.40 45.60
CodeDPO 48.17 34.15 58.40 49.37
Code-Optimise 32.32 28.05 58.90 47.89
PLUM 46.30 39.60 60.40 49.10
Our Target-DPO 48.20 43.90 63.50 50.60

DeepSeekCoder-1.3B 31.53 28.65 57.40 48.67
CodeDPO 42.07 38.04 61.37 53.43
Code-Optimise 34.15 30.49 59.15 49.87
Our Target-DPO 47.00 43.30 61.37 54.20

DeepSeekCoder-6.7B 47.60 39.60 70.20 56.60
CodeDPO 59.75 51.83 72.18 60.01
Code-Optimise 47.56 37.20 72.18 57.64
PLUM 56.70 48.80 72.90 58.90
Our Target-DPO 66.50 60.40 76.50 61.40

Table 12: Performance comparison with baselines.

Model HumanEval MBPP BCB-Inst BCB-Comp Average
Base Plus Base Plus

Qwen2.5-Coder-1.5B 67.7 62.8 66.7 55.3 33.4 40.5 54.4
Qwen2.5-Coder-7B 89.6 84.8 83.3 69.5 43.1 53.3 70.6
Qwen2.5-Coder-32B 92.7 86.6 89.4 74.6 45.7 58.9 74.7

Table 13: Ablations on model size.

β
HumanEval MBPP BCB-Inst BCB-Comp Average
Base Plus Base Plus

0.1 89.0 83.6 83.1 69.0 41.0 52.7 69.7
0.3 86.6 80.5 82.5 68.5 40.3 50.3 69.1
0.5 85.4 80.5 83.6 66.7 40.5 48.2 67.5

Table 14: Ablations on β with α set 0.

α
HumanEval MBPP BCB-Inst BCB-Comp Average
Base Plus Base Plus

1.0 89.6 84.8 83.1 69.3 43.1 53.3 70.5
3.0 87.2 81.1 82.8 69.0 40.3 52.7 67.9
5.0 84.1 80.5 83.1 70.1 40.3 54.0 68.7
∞ (SFT) 87.2 82.9 83.1 68.3 39.1 51.6 68.7

Table 15: Ablations on α with β set 0.1.

19

HumanEval MBPP BCB-Inst BCB-Comp LCB-v5 Average
Base Plus Base Plus

Qwen2.5-Coder-7B 61.6 53.0 76.9 62.9 40.2 45.8 24.1 52.1
SFT 87.2 82.9 83.1 68.3 39.1 51.6 30.0 63.2
Hybrid-RPO 82.9 79.3 81.7 67.5 41.2 50.5 29.8 61.8
DiffAug-RPO 86.0 81.7 82.8 67.5 40.7 51.4 30.5 62.9
Target-RPO 89.6 84.8 83.3 69.5 43.1 53.3 33.3 65.3

Table 16: Ablation results on the Target-DPO using Qwen2.5-Coder-7B.

Datasets Workflow Functionality Computation
Operation

User
Interaction

Data
Processing

File
Operation

Alpaca 994 393 282 82 221 11
CodeFeedback 2079 535 689 143 895 39
Evol-Alpaca 2163 591 783 134 1401 55
OSS-Instruct 2254 669 413 192 903 102
CodeFlow (Preferred) 2689 805 967 410 2418 290
CodeFlow (Dis-Preferred) 2490 772 964 406 2327 287

Logging Algorithm Data
Structures

Implementation
Logic

Advanced
Techniques Average

Alpaca 1 232 72 67 10 215.00
CodeFeedback 10 427 100 49 63 457.18
Evol-Alpaca 15 414 130 74 94 532.18
OSS-Instruct 62 150 140 82 26 453.91
CodeFlow (Preferred) 133 790 367 152 178 836.27
CodeFlow (Dis-Preferred) 129 785 361 149 193 805.73

Table 17: Distribution of total features across 1k samples.

Error Type RPO Code-Optimise-RPO Target-RPO (Ours)

AttributeError: ‘X’ has no attribute ‘Y’ 145 149 127
KeyError: ‘X’ 139 128 100
NameError: name ‘X’ is not defined 41 58 46
FileNotFoundError: No such file or directory 44 61 35
Sum 369 396 308

Table 18: The frequency of the most common failure types on the BigCodeBench Complete-Full set.

budget), an estimated 10.4 calls are needed for1078

a given instruction on average across the dataset.1079

This is far fewer than the m (e.g., 100) calls for1080

sampling candidates plus subsequent executions of-1081

ten employed by sampling-heavy methods. Though1082

massive sampling can yield diverse candidates, it1083

is not efficient as most code snippets are discarded.1084

Target-DPO shows that starting with a single code1085

snippet, even if it fails initially, it still holds high1086

potential to form a valuable preference pair for1087

alignment training through iterative refinement.1088

20

	Introduction
	Target-DPO Framework
	Synthesize Preference Code Snippets
	Targeted Preference Alignment

	Experiments
	Main Results
	Ablation Study
	Related Work
	Conclusion
	Methodology and Data Construction
	Iterative Refinement and Preference Pair Construction
	Synthetic Test Case Generation
	Rationale for using Synthetic Test Cases
	Validity of Synthetic Test Cases
	Coverage Analysis of Test Cases
	Evaluating the quality of test cases using LLM-as-a-judge
	Prompt and Examples for Generated Test Cases

	Training and Inference Parameters

	Experimental Results and Comparisons
	Evaluation Benchmarks: Description and Statistics
	Comparison with Supervised Fine-Tuning
	Comparison with Other Code Generation Methods

	In-depth Analyses and Ablation Studies
	Scaling Law on Model Size
	Ablation Studies on Hyperparameters beta and alpha
	Ablation on Context Usage
	Analysis of Preference Data Diversity
	Error Analysis of Generated Code
	Efficiency Analysis of Preference Annotation

