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ABSTRACT

Diffusion models, though developed for image generation, implicitly capture rich
semantic structures. We observe that their self-attention maps can be reinter-
preted as semantic label propagation kernels, providing robust pixel-level corre-
spondences between relevant image regions. Extending this mechanism across
frames yields a temporal propagation kernel that enables zero-shot object tracking
via segmentation without training. We further enhance this process with test-time
optimizations: DDIM inversion for semantically aligned representations, textual
inversion for object-specific cues, and adaptive head weighting to combine com-
plementary attention patterns. To this end, we propose DRIFT, which combines
cross-frame self-attention with test-time optimizations and achieves state-of-the-
art zero-shot performance on standard VOS benchmarks, competitive with su-
pervised approaches and underscoring the semantic capture ability of diffusion
self-attention.

1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020) are a class of gener-
ative models that synthesize data by reversing a gradual noising process. Initially proposed for image
generation (Rombach et al., 2022; Ramesh et al., 2022; Saharia et al., 2022; Podell et al., 2023), re-
cent studies have shown that they also internalize surprisingly strong semantic structures (Tang et al.,
2023; Hedlin et al., 2023; Tian et al., 2024; Couairon et al., 2024; Wang et al., 2024b; Zhu et al.,
2024; Zhang et al., 2024). This phenomenon arises from the denoising objective itself: in order to
recover a coherent image from noisy latents, the model must implicitly learn how different regions
of the image relate to one another in a meaningful way.

Some prior studies demonstrate that intermediate diffusion features encode rich semantic informa-
tion (Hedlin et al., 2023) or that cross-attention effectively localizes visual concepts by aligning
visual and textual representations (Zhang et al., 2024). In contrast, our work centers on the self-
attention layers, where pairwise similarities between query and key features are computed. As ob-
served in (Wang et al., 2024a), self-attention maps can refine coarsely localized object regions into
precise masks through multiplicative interactions, effectively serving as a label propagation mod-
ule. Building on this observation, we extend the use of self-attention maps across multiple frames
through cross-frame attention.

In this work, we show cross-frame attention transforms spatial attention into a temporal label propa-
gation kernel, providing a strong foundation for object tracking via segmentation-without any task-
specific training. To further enhance this process, we introduce three complementary test-time opti-
mizations—DDIM inversion, mask-specific textual inversion, and adaptive head weighting—which
make the propagated masks more accurate and object-aware. To this end, we propose DRIFT, a
diffusion-based object tracking framework that combines cross-frame attention with three test-time
optimizations. Extensive experiments on four standard VOS benchmarks demonstrate that DRIFT
achieves state-of-the-art performance in zero-shot settings, with results that are even competitive
with several supervised approaches.

Our contributions can be summarized as follows:

• By extending self-attention in diffusion models to multiple frames, we show that the result-
ing affinity maps function as a label-propagation kernel, enabling zero-shot object tracking.
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(a) Original image (b) Coarse map (c) Self-attention map (d) Propagated mask

Figure 1: Visualization of Label Propagation Using Features from a Text-to-Image Diffusion
Models. Given an input image (a), the coarse map, which corresponds to the cross-attention re-
sponse for the token “cat” (b) provides approximate object localization based on the text prompt,
while the self-attention map (c) captures semantic affinities within the diffusion model to refine this
localization. Leveraging the self-attention map as a learned label propagation kernel, the final prop-
agated mask (d) achieves substantially improved spatial precision.

• We show effectiveness of cross-frame attention with three test-time optimization on tem-
poral label propagation with diffusion models.

• We conduct extensive experiments on four standard VOS benchmarks, where our frame-
work consistently achieves state-of-the-art performance in the zero-shot setting.

2 RELATED WORK

Zero-Shot Segmentation Zero-shot segmentation aims to segment objects without task-specific
training or class-specific supervision. In images, it is often formulated as open-vocabulary segmenta-
tion (Ding et al., 2022; Ghiasi et al., 2022; Liang et al., 2023; Zhou et al., 2022), where models align
visual and language features (Radford et al., 2021) to enable class generalization, but typically re-
quire segmentation annotations during training. In contrast, recent diffusion-based methods (Coua-
iron et al., 2024; Tian et al., 2024; Wang et al., 2024a) exploit the internal representaion of pretrained
text-to-image diffusion models to perform segmentation without any segmentation-specific supervi-
sion. In videos, STC (Jabri et al., 2020) and DINO (Caron et al., 2021) use self-supervised visual
features to propagate labels across frames based on spatial and temporal consistency. Building on
these observations, we investigate whether the self-attention maps of pretrained diffusion models
can also support temporal label propagation for zero-shot object segmentation via segmentation.

Video Segmentation with Diffusion Models Recent studies have leveraged pretrained diffusion
models for object tracking by exploiting their strong generative priors. Diff-Tracker (Zhang et al.,
2024) employs diffusion models in an unsupervised manner by using cross-attention to localize
object regions, while a motion encoder and a target-specific prompt enable adaptation to object
motion. VD-IT (Zhu et al., 2024) employs a text-to-video diffusion model for referring video ob-
ject segmentation, which can also be viewed as a form of object tracking, and trains a segmen-
tation head in a fully supervised manner. SMITE (Alimohammadi et al., 2025) addresses video
part segmentation by fine-tuning the cross-attention layers of a diffusion model and further incorpo-
rates CoTracker (Karaev et al., 2024) to track segment points across frames. In contrast, our work
demonstrates that the self-attention of pretrained diffusion models can be directly leveraged as a la-
bel propagation kernel, enabling standalone video object tracking without any video-based training
or auxiliary modules.

3 METHOD

In this work, our primary goal is to show that pretrained text-to-image diffusion models can be repur-
posed as zero-shot, training-free object trackers. The key insight is that the pairwise query–key in-
teractions in diffusion self-attention naturally support label propagation across frames, which forms
the foundation of object tracking by segmentation. We further identify the self-attention mechanism
as the central component enabling this propagation.
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3.1 TEMPORAL LABEL PROPAGATION VIA CROSS-FRAME ATTENTION

Recent studies (Couairon et al., 2024; Tian et al., 2024; Wang et al., 2024a) demonstrate that pre-
trained diffusion models can perform semantic segmentation without task-specific training. This
ability arises from the cross-attention layers, which align text and visual tokens and thereby high-
light visual regions corresponding to text-specified classes. However, the spatial maps produced by
cross-attention alone are typically coarse. Accuracy improves only when these maps are multiplied
by self-attention maps, as shown in Figure 1. This indicates that self-attention serves as a label prop-
agation kernel: activations at one pixel can propagate to other pixels with similar semantics, refining
a coarse mask into a more detailed segmentation. In this sense, the self-attention map functions as
a learned mechanism for semantic label propagation. Formally, the self-attention map at layer l is

defined as A(l,h)
self = softmax

(
Q(l,h)·K(l,h)⊤

√
d

)
, where Q(l,h),K(l,h) ∈ RN×d are the query and key

matrices of head h in layer l, N = H×W is the number of spatial locations, and d is the dimension
per head. Averaging over all layers and heads yields Aself , which encodes semantic affinities be-
tween pixel pairs and serves as a propagation kernel that spreads coarse activations into fine-grained
segmentation masks.

Building on this interpretation, we extend label propagation from the spatial domain of a single
image to the temporal domain of a video. Given two consecutive frames It−1 and It, we compute a
cross-frame attention map that measures similarities between features across frames:

Āt,t−1 =
∑
l∈L

 H∑
h=1

w(l,h)softmax

Q
(l,h)
t ·K(l,h)

t−1

⊤

√
d

 , (1)

where Q(l,h)
t and K

(l,h)
t−1 are the query and key matrices from head h of layer l in frames t and t− 1,

respectively, and w(l,h) is the weight assigned to each head (by default w(l,h) = 1
|L|×H ). Each row

of Āt,t−1 defines how the label at a pixel in frame t should aggregate information from frame t− 1.
The propagated mask is then updated as M̂t = Āt,t−1M̂t−1.

In this way, the diffusion model’s self-attention is repurposed as a cross-frame propagation kernel,
enabling masks specified in the first frame to be consistently propagated through the video in a
zero-shot manner.

3.2 RAW DIFFUSION FEATURE SIMILARITIES VS. SELF-ATTENTION MAPS

Many prior approaches (Jabri et al., 2020; Caron et al., 2021) often rely on cosine similarity of
learned features for label propagation, and several recent studies have explored using pretrained
diffusion features for this purpose (Couairon et al., 2024; Tang et al., 2023). In these works, the
raw diffusion features are extracted and directly used as visual representations. However, we find
that relying on raw diffusion features and measuring pairwise cosine similarity overlooks reusable
pretrained knowledge embedded in the self-attention layers of diffusion models.

A self-attention map inherently captures feature similarity, but unlike cosine similarity, it does so
after learned query and key projections that act as filters, preserving certain salient aspects for sim-
ilarity. Moreover, multi-head self-attention incorporates multiple such projections, enabling the
model to capture diverse semantic relationships and produce more robust similarity maps. In con-
trast, raw diffusion features—being optimized for image generation—may encode aspects that are
irrelevant to semantic similarity. As a result, cosine similarity over these features often produces
noisy maps dispersed across unrelated regions. The example in Figure 2 illustrates this supporting
our arguments. Given two input frames (a), the cosine similarity of features (b) propagates the point
in frame t beyond the relevant region in frame t′, dispersing it across the entire image and even into
irrelevant areas. As shown in (d), the multiple heads of self-attention each highlight different but still
relevant regions, providing complementary views of semantic similarity. By aggregating these heads
(c), the model effectively emphasizes the relevant region while suppressing spurious propagation.

3.3 TEST-TIME DIFFUSION OPTIMIZATION FOR LABEL PROPAGATION

Although diffusion self-attention inherently captures semantic correspondences that enable label
propagation, its raw form is often insufficient for reliable mask propagation across frames. We there-
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(b) Cosine Similarity (c) Aggregated Self-attention

Frame 𝑡 Frame 𝑡′

(d) Per-head Self-attention(a) Input Frames

Figure 2: Comparison of Cosine Similarity vs. Self-attention for Label Propagation. (a) A point
in the frame t is propagated to frame t′. (b) Cosine similarity produces dispersed activations scat-
tered across unrelated regions. (c) The aggregated self-attention map, in contrast, focuses sharply on
the target object region. (d) Individual attention heads exhibit complementary but distinct patterns,
highlighting the diverse semantic relationships captured by multi-head self-attention.

fore investigate how to strengthen its propagation capability through three complementary test-time
optimization techniques for diffusion models—DDIM inversion, mask-specific textual inversion,
and adaptive head weighting—which together yield more accurate and object-aware masks.

3.3.1 DDIM INVERSION FOR SEMANTIC LATENT CONSTRUCTION

Diffusion models are inherently designed to take noisy images as input, but excessive or insufficient
noise can distort semantics. At large timesteps, latents are dominated by noise and lose semantic
information, while at very small timesteps, nearly noise-free latents provide weak semantic cues
since the model has little incentive to predict noise accurately. Thus, constructing semantically
meaningful representations requires injecting an appropriate amount of noise. We employ DDIM
inversion (Song et al., 2020; Dhariwal & Nichol, 2021) as an effective solution. Instead of adding
white noise, it perturbs images with model-predicted noise, aligning latents with the model’s seman-
tic manifold. This produces model-specific noisy inputs that preserve semantic structure, leading to
more reliable cross-frame attention maps. While prior work has applied this technique to video edit-
ing (Cong et al., 2023), primarily to ensure faithful reconstruction of unedited content, our study
demonstrates a distinct advantage for label propagation. Specifically, we show that DDIM inver-
sion enables content-specific feature representations from a fully frozen diffusion model, producing
attention maps particularly well-suited for propagating labels across frames.

3.3.2 MASK-SPECIFIC PROMPTS VIA TEXTUAL INVERSION

To exploit cross-frame attention maps from a text-to-image diffusion model for label propagation,
the model requires a text prompt as input—something not naturally available in video inputs for
object tracking. A naı̈ve solution is to use a null prompt, but such prompts fail to capture informa-
tion about the target object and its visual context. To address this, we adopt textual inversion (Gal
et al., 2022), tuning a set of learnable text tokens specifically for mask propagation. Concretely,
we compute an aggregated attention map Ā0,0(θ) from Equation (1) by feeding the initial frame at
t = 0 as both query and key, which yields a self-attention map over the initial frame. The learnable
text token embeddings θ are provided to the model alongside the input frame when computing this
map. We then propagate labels on the initial frame using its GT mask M0, M̂0 = Ā0,0(θ) ·M0.

Since propagation occurs within the same image, M̂0 should ideally reconstruct the original mask
M0, i.e., the propagation kernel Ā0,0(θ) should spread labels consistently across the object region.
To achieve this, we optimize θ with the following loss:

J =
1

N

N∑
i=1

BCE
(
M̂0(i),M0(i)

)
(2)

where BCE denotes binary cross-entropy and M0(i), M̂0(i) are the values at the i-th spatial location
in the GT and predicted masks, respectively.

Unlike prior work (Zhang et al., 2024), which applies textual inversion to cross-attention maps in
order to improve the alignment of text embeddings with visual semantics, our approach directly
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optimizes embeddings for label propagation in self-attention maps—making it closely aligned with
object tracking. Interestingly, we find that the resulting embeddings are not semantically meaningful
in the sense of corresponding to natural words; rather, they are scattered far from the modes of word
embeddings in the text space. We further analyze these learned embeddings in Section 5.2.

3.3.3 ADAPTIVE WEIGHTING OF MULTI-HEAD ATTENTION

As discussed in Section 3.2, diffusion models employ multi-head self-attention, with each head
capturing different semantic correspondences. Since some heads are more informative than oth-
ers, we can replace uniform averaging with optimized head-specific weights w(l,h) ∈ [0, 1], con-
strained such that

∑
l∈L

∑H
h=1 w

(l,h) = 1. To this end, we can perform test-time optimization,
updating these weights jointly with the mask-specific text embeddings θ by minimizing the loss in
Equation (2). This allows informative heads to receive higher weights while less useful ones are
down-weighted. With this refinement, the final attention map becomes a weighted aggregation of all
heads, as defined in Equation (1), which can improve segmentation quality by emphasizing heads
that capture stronger semantic correspondences.

4 DIFFUSION-BASED OBJECT TRACKING WITH MASK REFINEMENT

Building on the zero-shot label propagation capability of pretrained diffusion models, we introduce
DRIFT (Diffusion-based Region Inference with cross-Frame Attention for Tracking), which achieves
state-of-the-art performance in zero-shot object tracking via segmentation. Our approach combines
a pretrained text-to-image diffusion model with the Segment Anything Model (SAM) (Kirillov et al.,
2023) for mask refinement. The method operates operating in a fully training-free manner keeping
all networks frozen. An overview of the full pipeline is shown in Figure 7.

4.1 ZERO-SHOT OBJECT TRACKING VIA SEGMENTATION

The proposed method tackles object tracking via segmentation in a zero-shot setting. Given a video,
the input is an accurate mask of the target object in the first frame, and the goal is to generate precise
segmentation masks that trace the object throughout the subsequent frames. In prior work (Pont-
Tuset et al., 2017), this task is often described as semi-supervised video object segmentation, since
the initial mask serves as a form of supervision. In contrast, we adopt the term object tracking via
segmentation to avoid confusion with our zero-shot setup, where no task-specific training data are
used. Formally, a video of T + 1 frames is denoted as V = {I0, I1, . . . , IT } with It ∈ RH×W×3,
and the provided first-frame mask is M0 ∈ {0, 1, . . . , X}H×W for X objects and background (label
0). The goal is to predict masks Mt for t = 1, . . . , T . Our method, DRIFT, addresses this task
in a fully zero-shot, training-free manner by leveraging the inherent label propagation capability of
pretrained text-to-image diffusion models discussed in the previous section.

4.2 MULTI-FRAME LABEL PROPAGATION

To improve robustness in label propagation, DRIFT extends cross-frame attention to multiple pre-
ceding frames (Caron et al., 2021; Jabri et al., 2020). For each target frame t, we compute attention
maps {Āt,t−s}Ss=1 and restrict them spatially with a radius-r mask. We further sparsify by keeping
the top-k scores across frames and normalizing them, encouraging stable correspondences. The final
mask is obtained by aggregating propagated masks as M̂t =

∑S
s=1 Āt,t−sM̂t−s. In the multi-object

setting (Pont-Tuset et al., 2017), object and background masks are propagated independently, and
the final segmentation is obtained by a pixel-wise argmax, Mt = argmaxx∈{0,...,X} M̂

(x)
t .

4.3 MASK REFINEMENT WITH SAM

While the cross-frame attention mechanism already enables zero-shot object tracking without any
task-specific training, the predicted mask quality can be further enhanced by integrating SAM. To
do this, we treat each soft mask prediction M̂

(x)
t as a spatial probability distribution by normalizing

it so that the pixel values sum to one. This normalized distribution serves as a strong prior for the
target object’s location and shape. Based on this, we sample p sets of n point prompts from the
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(c) Effect of prompt type.

Figure 3: Analyses of Label Propagation and Text Prompt Types. (a) Per-frame J&Fm scores
for the first 30 frames, comparing self-attention–based and cosine-similarity–based affinity maps
with mask visualizations. (b) J&Fm scores across diffusion timesteps under random noise injection
and DDIM inversion. (c) DRIFT results with different prompt types: null prompt, object class names,
BLIP-2–generated captions, and learned embeddings. All results are reported on DAVIS 2017.

(a) t-SNE of learned θ and class words.

Method w(l,h) J&Fm

Baseline Uniform 71.1
Learned 71.3

+DI+TI Uniform 74.5
Learned 74.8

(b) Effect of attention head weighting.

Figure 4: Analyses of Learned Textual Embeddings and Attention Head Weighting. (a) t-
SNE visualization of embeddings, comparing textual-inversion–learned embeddings and object class
word embeddings. (b) J&Fm under uniform and learned attention head weighting, evaluated both
without and with DDIM inversion and textual inversion. All results are reported on DAVIS 2017.

distribution and obtain p candidate masks from SAM. For each of these masks, we compute the
IoU with the original predicted mask M̂

(x)
t and select the one with the highest score. Details about

IoU computation are in Section A.3. Finally, we extract the logits associated with the selected SAM
mask and apply the multi-object prediction procedure described earlier to finalize the segmentation.

5 EXPERIMENTS

5.1 EVALUATION DATASETS & METRICS

We evaluate our method on four widely used semi-supervised VOS benchmarks: DAVIS-2016 Per-
azzi et al. (2016), DAVIS-2017 Pont-Tuset et al. (2017), YouTube-VOS 2018 Xu et al. (2018), and
Long Videos Liang et al. (2020). Detailed dataset statistics are provided in Section A.2. We re-
port region similarity Jm, contour accuracy Fm, and their average J&Fm. The Jm is the Jaccard
index, or intersection-over-union (IoU), which measures the overlap between predicted and ground-
truth masks, averaged over all annotated objects and frames. The Fm is the boundary F-measure,
computed as the harmonic mean of boundary precision and recall, also averaged across objects and
frames. Finally, J&Fm is defined as the average of Jm and Fm, providing an overall indicator of
segmentation quality. Implementation details are provided in Section A.1.

5.2 ANALYSES ON LABEL PROPAGATION THROUGH CROSS-FRAME ATTENTION MAPS

Self-Attention vs. Cosine Similarity Figure 3a compares cross-frame affinity maps obtained from
(i) the self-attention layers of the diffusion model (ours) and (ii) cosine similarity scores computed
directly from raw diffusion features, following (Tang et al., 2023). Using these maps, we propa-
gate the initial GT mask to each subsequent frame, and evaluate the per-frame J&Fm scores on
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DAVIS 2016 DAVIS 2017 YT-VOS 2018 Long Videos

Method J&Fm Jm Fm J&Fm Jm Fm J&Fm J s Fs Ju Fu J&Fm Jm Fm

Zero-shot
STC 74.5 74.7 74.4 67.6 64.8 70.2 65.5 66.0 67.1 59.8 69.2 26.2 26.4 26.0
DIFT - - - 70.0 67.4 72.5 - - - - - - - -
DINO 81.2 80.4 81.9 71.4 67.9 74.9 62.9 64.5 67.7 53.9 65.7 45.9 45.9 45.9
DRIFT(Ours) 85.0 83.7 86.3 74.8 70.7 78.9 68.5 68.1 72.1 61.5 72.4 48.3 48.5 48.1
Zero-shot with Image Segmentation Annotations
SegGPT 82.3 81.8 82.8 75.6 72.5 78.6 74.7 75.1 80.2 67.4 75.9 21.2 18.6 23.7
SAM-PT† 83.1 83.2 82.9 77.6 74.8 80.4 74.0 73.3 76.0 70.0 76.7 4.1 2.1 6.0
DRIFT(Ours) 86.6 87.2 86.2 81.3 78.8 83.7 75.3 74.5 77.3 71.0 78.3 49.1 47.7 50.4
Fully Supervised
CFBI 89.4 88.3 90.5 81.9 79.1 84.6 81.4 81.1 85.8 75.3 83.4 53.5 50.9 56.1
STCN 91.6 90.8 92.5 85.4 82.2 88.6 83.0 81.9 86.5 77.9 85.7 87.3 85.4 89.2
AOT 91.1 90.1 92.1 84.9 82.3 87.5 85.5 84.5 89.5 79.6 88.2 84.3 83.2 85.4
XMem 91.5 90.4 92.7 86.2 82.9 89.5 85.7 84.6 89.3 80.2 88.7 89.8 88.0 91.6
Cutie-base - - - 88.8 85.4 92.3 86.1 85.5 90.0 80.6 88.3 - - -

Table 1: Quantitative Comparisons to SOTA Methods. Results are reported on Perazzi et al.
(2016); Pont-Tuset et al. (2017); Xu et al. (2018); Liang et al. (2020). The subscripts s and u on
YT-VOS 2018 indicate seen and unseen categories. Zero-shot methods do not use segmentation
annotations during training. Methods in zero-shot with image segmentation annotations section
utilizes models that are trained on large image segmentation datasets. Fully supervised models
are trained on video segmentation datasets and shown for reference. †SAM-PT is evaluated using
CoTracker Karaev et al. (2024), which is pretrained on a video dataset for dense point tracking.

the DAVIS validation set. The results reveal a clear performance gap between the cosine-similarity
baseline and our self-attention–based affinity maps. Cosine similarity, which directly compares raw
features, is easily influenced by feature components unrelated to the target object. This results in
low J&Fm scores (orange line), caused by dispersed similarity maps, as illustrated in the example
propagated masks associated with the orange curve—even for frames near the initial mask where
appearance changes are minimal. By contrast, our method exploits the learned projections in the
self-attention layers, enabling similarity estimation along semantically meaningful dimensions. The
multi-head design further enriches the label-propagation kernel by capturing multiple complemen-
tary aspects of similarity. Consequently, cross-frame attention maps yield nearly twice the propa-
gation performance of raw-feature cosine similarity across timesteps (blue line), with examples of
accurately propagated masks shown alongside the corresponding blue-curve results.

Effects of Diffusion Timesteps and DDIM Inversion We analyze the effect of diffusion timesteps
and DDIM inversion on mask propagation performance. Figure 3b illustrates J&Fm across differ-
ent timesteps. When injecting white noise, maximum performance is attained at timestep 21 (57.4%)
and then quickly degrades as the timestep increases, reflecting the well-known trade-off (Tang et al.,
2023; Wang et al., 2024a) that excessive noise at large timesteps washes out original semantics, while
at step 1 the nearly noise-free latents show lower J&Fm than at step 21. In contrast, DDIM inver-
sion—which perturbs latents with model-predicted noise and thus initializes from a model-aligned
representation—reaches a higher peak at step 81 (58.0%) and remains above the forward curve at
all evaluated timesteps. This consistent advantage supports our premise that DDIM inversion pre-
serves semantic information more faithfully than the standard random noise injection, yielding more
reliable features for mask propagation across a broad range of diffusion timesteps.

Effects of Textual Inversion In Figure 3c, we compare four prompt types: a null prompt (Null),
object class names such as ‘dog’ or ‘person’ (Class), BLIP-2–generated object-specific captions
(Caption; detailed in Section A.4), and learned embeddings obtained through textual inversion (Gal
et al., 2022) (Learned). While Null simply uses an empty prompt as the embedding, it already pro-
vides a strong baseline of 71.8% in J&Fm. Supplying text prompts semantically aligned with the
target object (Class and Caption) yields only marginal improvements, with absolute gains of 0.1%
and 0.2%. In contrast, learning text prompts via textual inversion with our propagation loss achieves
a substantial improvement of 3.8%. These results indicate that prompts aligned with object seman-
tics—such as class names or captions—are not the key drivers of performance in this setting, despite
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(a)

(c)

(d)

GT

Figure 5: Qualitative Comparison of Model Variants on DAVIS 2017. Each row shows segmen-
tation results over time, with the top row showing GT masks and the others corresponding to the
model ablations in Figure 6a. Removing components leads to spatial drift or semantic ambiguity,
while the full model (a) maintains accurate and coherent instance masks across frames.

Ablations J&Fm Jm Fm

(a) DRIFT 81.3 78.8 83.7
(b) −SAM 74.8 70.7 78.9
(c) −TI&HW 71.8 67.9 75.6
(d) −DI 71.1 67.0 75.1

(a) Effects of each component of DRIFT.

78

82 n = 1
n = 2
n = 3
n = 5

0 10 20 30 40 50
56

60

The number of candidates (p)

J
&
F

m

(b) Ablation of SAM prompt configurations.

Figure 6: Ablation of DRIFT Component and SAM Prompt Configurations (a) presents ablations
by progressively removing DRIFT components, while (b) varies the number of points per prompt (n)
and the number of mask candidates (p) for SAM. All results are reported on DAVIS 2017.

what might be commonly assumed. Instead, embeddings learned specifically for the target task of
label propagation yield greater improvements, suggesting that propagation quality can be further
enhanced through task-driven or even test-time optimization. However, we observed that textual
inversion had a limitation under cosine similarity, and we provide further discussion in Section B.1.

Distribution of Learned Embeddings Figure 4a visualizes token embeddings of object class
names and textual-inversion–learned embeddings aligned to specific objects. We observe two clearly
separated clusters, each grouping one type of embedding. This indicates that the learned embeddings
do not encode semantic information about the target object. Instead, they behave as small, learnable
parameters that allow fine-grained control over self-attention maps, effectively acting as tunable
knobs for label propagation.

Effect of Adaptive Head Weighting We also assess the adaptive head weighting technique, com-
paring it to uniform averaging under two conditions: (i) with DDIM inversion and textual inversion
(+DI+TI), and (ii) without them (Baseline). The results show that learned weighting consistently
achieves higher J&Fm than uniform averaging. These improvements suggest that combining dif-
ferent heads attending to complementary regions yields more reliable mask propagation.

5.3 EVALUATION OF DRIFT ON OBJECT TRACKING VIA SEGMENTATION

Models & Baselines We evaluate two variants of DRIFT: a pure diffusion-based version without
SAM and a SAM-integrated version. The former is compared against zero-shot baselines STC (Jabri
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et al., 2020), DINO (Caron et al., 2021), and DIFT (Tang et al., 2023), while the latter is compared
against SegGPT (Wang et al., 2023) and SAM-PT (Rajič et al., 2025), which are zero-shot with
image segmentation annotations.

Comparisons to State-of-the-Art Methods Table 1 presents a comparison between the proposed
DRIFT and existing state-of-the-art methods. Without SAM (Kirillov et al., 2023), our model out-
performs three existing methods that also employ a label propagation approach but utilize different
features. While DINO (Caron et al., 2021) demonstrates remarkable performance without direct
optimization on segmentation data by leveraging robust feature learning, our method shows even
better results, achieving an average relative improvement of 5.94% over DINO. When SAM is in-
corporated into our framework, the performance is further enhanced, achieving an average relative
improvement of 5.59% compared to ours without SAM. Furthermore, our full DRIFT surpasses
SegGPT (Wang et al., 2023) and SAM-PT (Rajič et al., 2025), which leverage large-scale image
segmentation datasets and SAM, respectively, achieving an average relative improvement of 4.62%
and 3.6% across the three short video benchmarks. Both SAM-PT and SegGPT struggle to general-
ize to longer video sequences showing significant performance drops on Long Videos. In contrast,
DRIFT demonstrates its superior ability to maintain temporal coherence and instance identity across
extended sequences, without requiring video-specific supervision. Note that SAM-PT leverages ad-
ditional supervision from a point tracking dataset (Doersch et al., 2022), which offers even denser
annotations than video object segmentation labels. Despite this, DRIFT outperforms it across all
benchmarks and metrics. Finally, despite being a fully zero-shot approach, our method exhibits
comparable scores to some fully-supervised methods, highlighting its remarkable generalization
and effectiveness without relying on annotated training data.

Ablation of Each Component The ablation results are consistent with the earlier analysis. Fig-
ure 6a quantifies the impact of each component in DRIFT, with qualitative examples provided in Fig-
ure 5. Starting from the full model (a), which includes DDIM inversion (DI), textual inversion with
adaptive head weighting (TI&HW), and the SAM module (SAM), we observe the highest perfor-
mance with 81.3% in J&Fm, reflecting precise boundary refinement and stable mask propagation.
Removing each component leads to performance drops, illustrating the effectiveness of SAM for
boundary refinement, textual inversion and head weighting for instance discrimination, and DDIM
inversion for semantic stability. The same trend is visible in the qualitative comparisons in Figure 5,
where each component contributes to more coherent and temporally consistent segmentation.

Point Sampling for Prompting SAM Finally, we investigate how the contribution of SAM (Kir-
illov et al., 2023) to the segmentation quality varies with the number of sampled points (n) and mask
candidates (p), as shown in Figure 6b. When n=1, performance is poor because a single prompt of-
ten produces unstable segments, covering only part of the object or an overly large area. With n=2,
stability improves substantially, leading to a significant performance gain, which then saturates at
n=3. Adding more points (e.g., n=5) degrades performance, as the increased number of prompts
raises the likelihood of including mislabeled regions. Increasing p also improves performance, but
the gains saturate at around p=40. Overall, with n=2 points and p=40 candidates, we achieve the
best performance of 81.3% in J&Fm, with a improvement over 74.8% without refinement.

6 CONCLUSION

In this work, we show that diffusion self-attention serves as an effective label propagation kernel for
object tracking via segmentation. It provides more robust affinities than cosine similarity, benefits
from semantically aligned representations via DDIM inversion, and is further enhanced by test-
time strategies such as textual inversion and adaptive head weighting. These results highlight the
strong semantic capture ability of diffusion self-attention and its potential as a general tool for video
understanding.
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DIFFUSION MODELS ARE TRAINING-FREE OBJECT
TRACKERS

Supplementary Material

A ADDITIONAL DETAILS
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Figure 7: Overall Pipeline of DRIFT. Given a target frame t and a reference frame t−s with
its mask, (a) we perform DDIM inversion to obtain semantic latent representations zτ . (b) Text
embeddings θ are learned for the mask and fed to the diffusion model. Cross-frame attention maps
are then computed by matching queries from the target frame with keys from the reference frame
across selected layers, and (c) the multi-head attention maps are aggregated using head-specific
weights. (d) The aggregated cross-frame attention map Āt,t−s is used to propagate the mask from
frame t−s to t. (e) Finally, the obtained soft mask is refined using SAM resulting in a fine-grained
mask in the target frame.

A.1 IMPLEMENTATION DETAILS

We adopt Stable Diffusion 2.1 (Rombach et al., 2022) as our backbone, which takes 768 × 768
images and produces 96×96 latent features. Self-attention maps are extracted from the first attention
layer in the final decoder block. At test time, we jointly optimize a mask-specific text token θ and
head weights w(l,h) for each instance using Adam (lr 1e−4, 3,500 steps). DDIM inversion targets
timestep τ = 41 using 50 steps from the 1000-step schedule. For refinement, we use SAM (Kirillov
et al., 2023) (ViT-H) with n = 2 point prompts sampled from the normalized soft mask, generating
p = 40 candidate masks; the one with highest IoU is selected. Label propagation uses the 7 most
recent frames with initial frame. We apply spatial masking with radius r = 14 and retain the top
k = 15 attention scores per query. All experiments are conducted on NVIDIA H100 GPUs.

A.2 EVALUATION DATASET DETAILS

DAVIS-2016 Perazzi et al. (2016). The DAVIS-2016 dataset was originally introduced for single-
object video object segmentation. The validation set consists of 20 high-quality video sequences
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(480p resolution), each annotated with a single foreground object mask at every frame. On average,
each sequence contains around 70 frames, and the dataset is widely used to benchmark single-object
VOS methods due to its precise, per-frame annotations.

DAVIS-2017 Pont-Tuset et al. (2017). DAVIS-2017 extends DAVIS-2016 by introducing mul-
tiple annotated objects per video, thereby increasing the difficulty of the segmentation task. The
validation set contains 30 sequences with a total of 59 annotated objects, with around 70 frames per
video. All frames are annotated, and the dataset is widely considered the standard benchmark for
multi-object semi-supervised VOS evaluation.

YouTube-VOS 2018 Xu et al. (2018). YouTube-VOS is the largest public benchmark for video
object segmentation. The 2018 validation set includes 474 video sequences, covering 91 object
categories, of which 65 are seen during training and 26 are unseen. Unlike DAVIS, annotations are
provided every 5th frame instead of every frame. This yields a total of 12,593 annotated frames in
the validation split. The large scale and category diversity of YouTube-VOS make it a challenging
and comprehensive benchmark, particularly for evaluating generalization to unseen categories.

Long Videos Liang et al. (2020). The Long Videos dataset was designed to test the robustness
of segmentation methods on long-duration sequences. It contains 3 validation videos, each with an
average length of about 2,470 frames, far exceeding the sequence lengths of DAVIS or YouTube-
VOS. For evaluation, 20 frames are uniformly sampled from each video and manually annotated
with object masks. This setup allows the benchmark to focus on assessing temporal consistency and
robustness of segmentation methods under extended time horizons.

A.3 SOFT IOU METRIC

To select the most accurate refinement from multiple mask candidates generated by SAM Kirillov
et al. (2023), we measure the similarity between each binary SAM mask and the original soft mask
prediction using a soft IoU metric. Given a soft mask A ∈ [0, 1]H×W and a binary candidate mask
B ∈ {0, 1}H×W , the soft IoU is computed as:

IoU(A,B) =

∑
i,j min(Ai,j , Bi,j)∑

i,j max(Ai,j , Bi,j) + ϵ
(3)

where ϵ is a small constant added to the denominator for numerical stability.

Unlike the standard IoU computation that uses discrete set operations, soft masks represent confi-
dence values or probability distributions over space. Therefore, we interpret the intersection and
union between soft and binary masks as element-wise min and max operations, respectively. This
formulation retains the probabilistic nature of the soft mask while enabling consistent comparison
with discrete predictions. Before computing soft IoU, we normalize the soft mask A such that its
values sum to one across spatial dimensions, treating it as a spatial probability distribution. To
generate p candidate masks, we sample n point prompts from the normalized soft mask p times,
each used as a prompt to SAM. The mask with the highest soft IoU score against the original soft
prediction is selected as the final output.

A.4 DETAILS OF BLIP-2 CAPTIONING

We use BLIP-2 (Li et al., 2023) to generate noun-phrase captions for annotated instances in the
first frame. Each object is cropped from the DAVIS mask with a small margin, and the back-
ground is masked out so that only the target region remains visible. The masked crops are
then passed to BLIP-2 with the prompt, "Question: Provide a short noun phrase
that names only the main object in the image.\n Answer:". The resulting
captions are assigned to the corresponding instances and stored as their initial prompts.
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Models Execution Time (s/object) J&Fm

1 DINO (ViT-B/8) 11.410 71.4
2 SAM-PT (CoTracker + SAM-H) 13.744 77.6

3 DRIFT (cross-frame propagation only) 9.853 71.1
4 + DDIM inversion + 4.140 71.8
5 + SAM + 11.704 80.7
6 + Textual inversion + 141.437 81.3

Table 2: Comparison of execution time and performance across different models and variants.

B FURTHER ANALAYSES

B.1 LIMITATION OF COSINE SIMILARITY UNDER TEXTUAL INVERSION

As illustrated in Figure 2, cosine similarity maps derived from raw diffusion features are noisy,
often highlighting irrelevant regions in addition to the target object. Ideally, an affinity measure
should emphasize the target region while suppressing unrelated areas, but cosine similarity lacks this
selectivity. Moreover, in our setup only the textual tokens are optimized during textual inversion,
while the diffusion backbone remains frozen. This limited degree of freedom makes it difficult
to correct the noisy propagation induced by cosine similarity, highlighting the advantage of using
self-attention maps that already encode semantically structured affinities.

B.2 COMPONENT-WISE RUNTIME ANALYSIS

We report the average processing time per object on the DAVIS (Perazzi et al., 2016) validation set,
measured on a single NVIDIA H100 GPU. Table 2 presents both accuracy and runtime for DRIFT
and relevant baselines. Our results are shown in a component-wise manner, where the total runtime
corresponds to the sum of the relevant modules. The base propagation step in DRIFT is comparable
in speed to existing trackers such as DINO (see rows 1 and 4) and SAM-PT (see rows 2 and 5) ,
while already achieving similar accuracy. Incorporating DDIM inversion and SAM refinement leads
to steady accuracy gains, with runtime overheads of 2.6s and 12.0s per object, respectively. Textual
inversion adds a larger overhead, but it is performed only once on the first frame, making its rela-
tive cost less dominant for longer sequences. Importantly, even without textual inversion or SAM
refinement, DRIFT achieves stronger performance than competing baselines, highlighting the inher-
ent spatio-temporal capability of pretrained diffusion models for objecet tracking via segmentation.
While textual inversion increases runtime, the corresponding accuracy improvement demonstrates
an acceptable trade-off in practice.

B.3 COMPARISON ACROSS DIFFUSION MODEL VARIANTS

Model Params SAM J&Fm Jm Fm

SD 1.5 860M ✗ 68.9 65.6 72.1
✓ 76.4 74.1 78.8

SD 2.1 865M ✗ 74.8 70.7 78.9
✓ 81.3 78.8 83.7

Table 3: Comparison of SD 1.5 and 2.1 with and without SAM on DAVIS 2017. This ablation
highlights the effect of backbone diffusion model and shows how performance varies with and with-
out SAM-based refinement.

Besides our primary results based on Stable Diffusion 2.1, we also evaluate our framework using
Stable Diffusion 1.5 (Rombach et al., 2022) as the backbone. This variant processes 512 × 512
resolution inputs and produces latent features of size 64 × 64. We extract self-attention maps from
all three attention layers in the final decoder block of the U-Net. All other settings remain identical
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to those used with the 2.1 backbone. As shown in Table 3, we observe that performance trends re-
main consistent, confirming the general applicability of our method across diffusion model versions.
Notably, the performance disparity between SD 2.1 and SD 1.5 backbones is not attributed to model
size, as their U-Net parameter counts are nearly identical (865M vs. 860M), suggesting that other
factors, such as differences in training data or procedures, play a more significant role.

B.4 MASK REFINEMENT WITH PAC-CRF

Model Refiner J&Fm Jm Fm

Uziel et al. (2023) ✗ 74.1 - -
PAC-CRF 76.3 73.8 78.7

DRIFT(Ours)
✗ 74.5 70.3 78.6

PAC-CRF 76.4 73.0 79.8
SAM 81.3 78.8 83.7

Table 4: Comparison of Refinement Method on DAVIS 2017. All models are based on SD 2.1
with DDIM inversion and textual inversion applied. Except for the refinement module, all other
experimental settings are kept identical.

In addition to our primary refinement method using SAM, we also explore the use of PAC-CRF (Su
et al., 2019) as a lightweight post-processing technique for enhancing the spatial quality of predicted
masks. PAC-CRF refines a segmentation mask by enforcing local smoothness and edge-aware con-
sistency using the underlying image as guidance. Following prior work (Su et al., 2019; Uziel
et al., 2023), we apply PAC-CRF with a kernel size of 5 × 5 and 30 refinement steps to binary
masks M̂ ∈ {0, 1}H×W , treating them as noisy initial labels, and use the corresponding image
I ∈ RH×W×3 to guide the refinement via pairwise potentials that penalize label inconsistencies
between neighboring pixels with similar appearance. While not as powerful as prompt-based refine-
ment with SAM, PAC-CRF can moderately improve mask alignment near object boundaries with
low computational overhead. Quantitative results comparing refinement strategies are presented in
Table 4.

C LIMITATIONS

A limitation of our approach is the computational overhead of textual inversion. This step, though
required only once per object on the first frame, involves optimizing prompt embeddings and can
be costly when applied to datasets with many videos or object instances. All experiments were con-
ducted on NVIDIA H100 80GB GPUs with the diffusion model kept frozen. While textual inversion
entails additional computation, memory usage remains modest throughout both the inversion and in-
ference stages. Reducing the overhead of textual inversion—through faster optimization, caching
strategies, or amortized prompt learning—remains an important direction for future work.
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