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Abstract

Label-specific representation learning (LSRL), i.e., constructing the representation
with specific discriminative properties for each class label, is an effective strategy
to improve the performance of multi-label learning. However, the generalization
analysis of LSRL is still in its infancy. The existing theory bounds for multi-
label learning, which preserve the coupling among different components, are
invalid for LSRL. In an attempt to overcome this challenge and make up for the
gap in the generalization theory of LSRL, we develop a novel vector-contraction
inequality and derive the generalization bound for general function class of LSRL
with a weaker dependency on the number of labels than the state of the art. In
addition, we derive generalization bounds for typical LSRL methods, and these
theoretical results reveal the impact of different label-specific representations on
generalization analysis. The mild bounds without strong assumptions explain the
good generalization ability of LSRL.

1 Introduction

Multi-label learning has received continued attention in machine learning community due to its
widespread encounters in real-world applications, where each object is represented by a single
instance associated with multiple class labels [Zhang and Zhou, 2014, Liu et al., 2022]. The goal of
multi-label learning is to model real-world objects with multiple semantics. It has made important
advances in multimedia content annotation [Cabral et al., 2011, You et al., 2020], text categorization
[Rubin et al., 2012, Xun et al., 2020], bioinformatics [Cesa-Bianchi et al., 2012, Chen et al., 2017]
and other fields [Yu et al., 2005]. The failure to take into account that each class label may possess its
own discriminative properties results in the most straightforward strategy which exploits the identical
representation of an instance for dealing with multi-label data being perhaps suboptimal [Zhang and
Wu, 2015, Huang et al., 2016, Hang and Zhang, 2022]. In recent years, label-specific representation
learning (LSRL) [Zhang and Wu, 2015] has been proposed to facilitate the discrimination of each
class label by tailoring its own representations. Due to its ability to model distinct characteristics for
each class label, LSRL has become an effective strategy to improve the performance of multi-label
learning [Huang et al., 2015, 2016, 2018, Yu and Zhang, 2022, Hang and Zhang, 2022, Hang et al.,
2022]. Although LSRL has achieved impressive empirical advances in multi-label learning, the
problem of understanding LSRL theoretically remains completely under-explored.

In recent years, efforts to explain why multi-label models generalize well is an important open
problem in multi-label learning community. The empirical success of LSRL makes the generalization
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analysis of LSRL an important problem in multi-label learning. However, existing theoretical results
and analysis methods are not applicable to LSRL, which leads to a serious lack of progress in its
generalization analysis. A satisfactory and complete study of the generalization analysis for LSRL
should include two aspects: 1) the dependency of the generalization bounds on the number of
labels (i.e., c) should be weaker than square-root, and 2) the relationship among components should
be decoupled in the generalizability analysis. First, existing bounds with a linear or square-root
dependency on c are difficult to explain empirical success of multi-label learning. For example, the
bounds with a linear dependency on c are vacuous (i.e., no longer less than 1) for commonly used
multi-label datasets such as CAL500, corel5k, rcv1-s1, Corel16k-s1, delicious, iaprtc12, espgame,
etc., since c is larger than

√
n (the number of examples) for these datasets. The bounds with a linear

or square-root dependency on c are vacuous for commonly used extreme multi-label datasets such as
Wiki 10, Amazon-670K, etc., since c is larger than n. The above failure of existing bounds for multi-
label learning also applies to LSRL. Hence, this suggests that only the bounds with weaker dependency
on c can provide effective theoretical guarantees. Second, existing theoretical results preserve the
coupling among different components [Lei et al., 2015, Wu and Zhu, 2020, Wu et al., 2021a,b].
However, LSRL decomposes the multi-label learning problem into multiple binary classification
problems, which means that the relationship among different components needs to be decoupled in
the generalization analysis. Hence, we need to develop new analysis methods for LSRL. As a matter
of fact, theoretical research on LSRL can also promote a better understanding of multi-label learning.

In this paper, we derive novel and tighter bounds based on the Rademacher complexity for LSRL.
Specifically, we develop a novel vector-contraction inequality with the assumption that the loss
function is Lipschitz continuous w.r.t. the `∞ norm, then we derive the bound for general function
classes of LSRL with no dependency on c, up to logarithmic terms, which is tighter than the state of
the art. In addition, we also analyze the bounds for several typical LSRL methods, and we show that
the construction method of label-specific representations will affect the generalization bound.

Our bounds for LSRL improve the dependency on c. Major contributions of the paper include:

• We develop a novel vector-contraction inequality for `∞ norm Lipschitz continuous loss,
which overcomes the limitations of existing theoretical results and provides a theoretical
tool for the generalization analysis of LSRL.

• We derive bounds for general function classes of LSRL with a weaker dependency on c than
the state of the art, which provides a general theoretical guarantee for LSRL.

• We derive bounds for typical LSRL methods, which reveals the impact of different label-
specific representations on the generalization analysis. The theoretical techniques and results
on k-means clustering, Lasso, and DNNs involved here may be of independent interest.

2 Related Work

2.1 Multi-Label Learning

Multi-label learning is one of the most studied and important machine learning paradigms in practice
[Zhang and Zhou, 2014, Liu et al., 2022]. To cope with the challenge that the output space is
exponential in size to the number of class labels, modeling label correlations is adopted as a feasible
strategy to facilitate the learning process. Generally speaking, existing methods can be roughly
grouped into three major categories based on the order of label correlations being considered, namely
first-order methods [Boutell et al., 2004, Zhang and Zhou, 2007, Zhang et al., 2018] which tackle
multi-label learning problem by decomposing it into a number of independent binary classification
problems, second-order methods [Elisseeff and Weston, 2001, Zhu et al., 2018, Sun and Zhang,
2021] which tackle multi-label learning problem by considering pairwise relationships between
labels, and high-order methods [Ji et al., 2010, Xu and Guo, 2021] which tackle multi-label learning
problem by exploiting high-order relationships among labels. Recent years, benefiting from the good
generalization performance of deep learning, deep methods such as recurrent neural networks [Yazici
et al., 2020], graph neural networks[Chen et al., 2020], and embedding models [Bai et al., 2020,
Dahiya et al., 2021] have been explored to model label correlations.

As a complement to the exploitation of label correlations, label-specific representation learning
(LSRL) have been proven to be another effective strategy to improve multi-label learning by ma-
nipulating the input space. Existing methods can be roughly grouped into three major categories
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based on the construction method of label-specific representations, i.e., prototype-based label-specific
representation transformation methods [Zhang and Wu, 2015, Zhang et al., 2015, Weng et al., 2018,
Guo et al., 2019, Zhang and Li, 2021] which generate label-specific representations by treating the
prototypes of each class label as the transformation bases, label-specific feature selection methods
[Huang et al., 2015, 2016, 2018, Weng et al., 2020, Yu and Zhang, 2022] which generate label-specific
representations by retaining a feature subset as the most pertinent features for each class label, and
deep label-specific representation methods [Hang and Zhang, 2022, Hang et al., 2022] which learn
label-specific representations in an end-to-end manner by exploiting deep models. In particular,
k-means clustering-based LSRL, i.e., LIFT [Zhang and Wu, 2015], is the representative method of
prototype-based label-specific representation transformation methods, which constructs label-specific
representations by querying the distances between the original inputs and the cluster centers for each
class label. Lasso-based LSRL, i.e., LLSF [Huang et al., 2016], is the representative method of
label-specific feature selection methods, which presents a Lasso-based framework with the constraint
of pairwise label correlations for each class label. DNN-based LSRL, i.e., CLIF [Hang and Zhang,
2022], is the representative method of deep label-specific representation methods, which proposes to
learn label semantics and label-specific representations in a collaborative way. In this paper, we will
analyze the generalization bounds of these three representative LSRL methods.

2.2 Generalization Bounds for Multi-Label Learning

Dembczynski et al. [2010] derived the relationship between the expectations of Hamming and Subset
loss based on the regret analysis on Hamming and Subset loss, and Dembczynski et al. [2012]
further performed regret analysis on Ranking loss, which provided preliminary theoretical insights
for understanding Hamming, Subset and Ranking loss. With the typical vector-contraction inequality
[Maurer, 2016] (i.e., assume that the loss function is Lipschitz continuous w.r.t. the `2 norm), one
can obtain generalization bounds of order O(c/

√
n) for multi-label learning. Wu and Zhu [2020],

Wu et al. [2021a] showed that the order of the generalization bounds for Subset loss, Hamming Loss
and reweighted convex surrogate univariate loss can be improved to O(

√
c/n), which preserved the

coupling among different components and exploited the relationship between loss functions. Liu et al.
[2018] also obtained a generalization bound of order O(

√
c/n) for the dual set multi-label learning,

which was analyzed under the margin loss and kernel function classes.

Wu et al. [2021b] derived a generalization bound of orderO(log(nc)/nσ) for norm regularized kernel
function classes with the assumptions that the loss function is Lipschitz continuous w.r.t. the `∞
norm and the regularizer is σ-strongly convex with respect to some norms. Yu et al. [2014] obtained
a generalization bound of order O(1/

√
n) for trace norm regularized linear function classes with

Decomposable loss. Xu et al. [2016] used the local Rademacher complexity to derive a generalization
bound of order Õ(1/n) for trace norm regularized linear function classes with the assumption that the
singular values of the weight matrix decay exponentially. These theoretical results all preserved the
coupling among different components. In addition, Wu et al. [2023] obtained O(1/

√
n) bounds for

Macro-Averaged AUC and gave thorough discussions about its relationships with the label-wise class
imbalance, which transformed the macro-averaged maximization problem in multi-label learning into
the problem of learning multiple tasks with graph-dependent examples. Here we obtain Õ(1/

√
n)

bounds with the state-of-the-art dependency on the number of labels for LSRL function classes under
the assumption that the loss function is Lipschitz continuous w.r.t. the `∞ norm.

3 Preliminaries

Let [n] := {1, . . . , n} for any natural number n. In the context of multi-label learning, given a dataset
D = {(x1,y1) , . . . , (xn,yn)} with n examples which are identically and independently distributed
(i.i.d.) from a probability distribution P on X × Y , where X ⊂ Rd denotes the d-dimensional
input space and Y denotes the label space with c class labels, x ∈ X , y ∈ Y ⊆ {−1,+1}c, i.e.,
each y = (y1, . . . , yc) is a binary vector and yj = 1 (yj = −1) denotes that the j-th label is
relevant (irrelevant), j ∈ [c]. The task of multi-label learning is to learn a multi-label classifier
h ∈ H : X 7→ {−1,+1}c which assigns each instance with a set of relevant labels. A common
strategy is to learn a vector-valued function f = (f1, . . . , fc) : X 7→ Rc and derive the classifier by
a thresholding function which divides the label space into relevant and irrelevant label sets.
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For any vector-valued function f : X 7→ Rc, the prediction quality on the example (x,y) is measured
by a loss function ` : Rc × {−1,+1}c 7→ R+. The goal of learning is to find a hypothesis f ∈ F
with good generalization performance from the datasetD by optimizing the loss `. The generalization
performance is measured by the expected risk: R(f) = E(x,y)∼P [`(f(x),y)]. We denote the
empirical risk w.r.t. the training dataset D as R̂D(f) = 1

n

∑n
i=1 `(f(xi),yi). We denote the optimal

risk as R∗ = inff∈F R(f), the minimizer of the optimal risk as f∗ = arg minf∈F R(f) and denote

the minimizer of the empirical risk as f̂∗ = arg minf∈F R̂D(f). In addition, we define the loss
function space as L = {`(f(x),y) : f ∈ F}, where F is the vector-valued function class.

3.1 Label-Specific Representation Learning

Label-specific representation learning aims to construct the representation with specific discriminative
properties for each class label to facilitate its discrimination process. The basic idea of LSRL is to
decompose the multi-label learning problem into c binary classification problems, i.e., decoupling the
relationship among different components, where each binary classification problem corresponds to a
possible label in the label space. We consider the prediction function for each label of the general
form fj(x) = 〈wj , ζj(φj(x))〉, where the inner nonlinear mapping φj corresponds to the nonlinear
transformation induced by the construction method of label-specific representation, while the outer
nonlinear mapping ζj refers to the nonlinear mapping corresponding to the classifier learned on the
generated label-specific representation. We define a vector-valued function class of LSRL as follows:

F = {x 7→ f(x) :f(x) = (f1(x), . . . , fc(x)),

fj(x) = hj (φj(x)) = w>j ζj(φj(x)),w = (w1, . . . ,wc) ∈ Rd×c,
α(w) ≤ Λ, β(ζj(·)) ≤ A, γ(φj(·)) ≤ C,x ∈ X , j ∈ [c],Λ, A,C > 0}, (1)

where α represents a functional that constrains weights, β represents a functional that constrains
nonlinear mappings ζj , γ represents a functional that constrains nonlinear mappings φj .

3.2 Related Evaluation Metrics

A number of evaluation metrics are proposed to measure the generalization performance of different
multi-label learning methods. Here we focus on commonly used evaluation metrics, i.e., Hamming
Loss, Subset Loss, Ranking Loss and Decomposable Loss. However, the above mentioned loss
functions are typically 0/1 losses, which are actually hard to handle in optimization. Hence, one
usually consider their surrogate losses, which are defined as follows:

Hamming Loss : `H(f(x),y) =
1

c

c∑
j=1

`b (yjfj(x)) ,

where the base convex surrogate loss `b can be various popular forms, such as the hinge loss, the
logistic loss, the exponential loss and the squared loss.

Subset Loss : `S(f(x),y) = max
j∈[c]
{`b (yjfj(x))} .

Ranking Loss : `R(f(x),y) =
1

|Y +| |Y −|
∑
p∈Y +

∑
q∈Y −

`b (fp(x)− fq(x)) ,

where Y + (Y −) denotes the relevant (irrelevant) label index set induced by y, and | · | denotes the
cardinality of a set.

Decomposable Loss : `D(f(x),y) =

c∑
j=1

`b (yjfj(x)) .

3.3 Related Complexity Measures

Here we introduce the complexity measures involved in theoretical analysis. The Rademacher
complexity is used to perform generalization analysis for LSRL.
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Definition 1 (Rademacher complexity). Let G be a class of real-valued functions mapping from X to
R. Let D = {x1, . . . ,xn} be a set with n i.i.d. samples. The empirical Rademacher complexity over
G is defined by <̂D(G) = Eε

[
supg∈G

1
n

∑n
i=1 εig (xi)

]
, where ε1, . . . , εn are i.i.d. Rademacher

random variables, and we refer to the expectation<(G) = ED[<̂D(G)] as the Rademacher complexity
of G. In addition, we define the worst-case Rademacher complexity as <̃n(G) = supD∈Xn <̂D(G),
and its expectation is denoted as <̃(G) = ED[<̃n(G)].

In multi-label learning, f ∈ F is a vector-valued function, which makes traditional Rademacher
complexity analysis methods invalid. Hence, we need to convert the Rademacher complexity of a loss
function space associated with the vector-valued function class F into the Rademacher complexity
of a tractable scalar-valued function class. The Rademacher complexity can be bounded by other
scale-sensitive complexity measures, such as the covering number and fat-shattering dimension
[Srebro et al., 2010, Zhang and Zhang, 2023]. The relevant definitions are provided in the appendix.

4 General Bounds for LSRL

In this section, we first introduce the assumptions used. Then, we develop a novel vector-contraction
inequality for the Rademacher complexity of the loss function space associated with the vector-valued
function class F . Finally, with the novel vector-contraction inequality, we derive the generalization
bound for general function classes of LSRL with no dependency on the number of labels, up to
logarithmic terms, which is tighter than the state of the art. The detailed proofs of the theoretical
results in this paper are provided in the appendix.
Assumption 1. Assume that the input features, the loss function and the components of the vector-
valued function are bounded: ‖xi‖2 ≤ R, `(·, ·) ≤M , |fj(·)| ≤ B for i ∈ [n], j ∈ [c] where R > 0,
M > 0 and B > 0 are constants.
Assumption 2. Assume that the loss function ` is ρ-Lipschitz continuous w.r.t. the `∞ norm, that is:∣∣`(f(x), ·)− `(f ′(x), ·)

∣∣ ≤ ρ∥∥f(x)− f ′(x)
∥∥
∞ ,

where ρ > 0, ‖t‖∞ = maxj∈[c] |tj | for t = (t1, . . . , tc).

Assumption 1 and 2 are mild assumptions. For Assumption 1, normalization of input features is a
common data preprocessing operation. When we consider the function class (1), we often use the
assumptions ‖wj‖2 ≤ Λ, ‖ζj(·)‖2 ≤ A for any j ∈ [c] to replace the boundedness of the components
of the vector-valued function, i.e., B := ΛA. For Assumption 2, the Lipschitz continuity w.r.t. the
`∞ norm has been considered in some literature [Foster and Rakhlin, 2019, Lei et al., 2019, Wu et al.,
2021b]. The following Proposition 1 further illustrates that the commonly used loss functions in
multi-label learning actually satisfy Assumption 2.
Proposition 1. Assume that the base loss `b defined in Subsection 3.2 is µ-Lipschitz continuous,
then the surrogate Hamming Loss is µ-Lipschitz w.r.t. the `∞ norm, the surrogate Subset Loss is
µ-Lipschitz w.r.t. the `∞ norm, the surrogate Ranking Loss is 2µ-Lipschitz w.r.t. the `∞ norm, and
the surrogate Decomposable Loss is cµ-Lipschitz w.r.t. the `∞ norm.

We define a function class P consisting of projection operators pj : Rc 7→ R for any j ∈ [c]
which project the c-dimensional vector onto the j-th coordinate. Then, we have P(F) =
{(j,x) 7→ pj(f(x)) : pj(f(x)) = fj(x),f ∈ F , (j,x) ∈ [c]×X}. The projection function class
decouples the relationship among different components. With the assumption of `∞ norm Lipschitz
loss and the above definitions, we show that the Rademacher complexity of the loss function space
associated with F can be bounded by the worst-case Rademacher complexity of the projection
function class P(F). We develop the following novel vector-contraction inequality:
Lemma 1. Let F be a vector-valued function class of LSRL defined by (1). Let Assumptions 1 and 2
hold. Given a dataset D of size n. Then, we have

<̂D(L) ≤ 12
√

2ρ
√
c<̃nc(P(F))

(
1 + log

1
2 (8e2n3c3) · log

M
√
n

ρB

)
,

where <̂D(L) = Eε
[
sup`∈L,f∈F

1
n

∑n
i=1 εi` (f(xi))

]
is the empirical Rademacher complexity of

the loss function space associated with F , and <̃nc(P(F)) is the worst-case Rademacher complexity
of the projection function class.
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Proof Sketch. First, the Rademacher complexity of the loss function space associated with F can
be bounded by the empirical `∞ norm covering number with the refined Dudley’s entropy integral
inequality. Second, according to the Lipschitz continuity w.r.t the `∞ norm, the empirical `∞ norm
covering number of F can be bounded by that of P(F). Third, the empirical `∞ norm covering
number ofP(F) can be bounded by the fat-shattering dimension, and the fat-shattering dimension can
be bounded by the worst-case Rademacher complexity of P(F). Hence, the problem is transferred
to the estimation of the worst-case Rademacher complexity. Finally, we estimate the lower bound
of the worst-case Rademacher complexity of P(F), and then combined with the above steps, the
Rademacher complexity of the loss function space associated with F can be bounded.

With the vector-contraction inequality above, we can derive the following tight bound for LSRL:
Theorem 1. Let F be a vector-valued function class of LSRL defined by (1). Let Assumptions 1 and
2 hold. Given a dataset D of size n. Then, for any 0 < δ < 1, with probability at least 1 − δ, the
following holds for any f ∈ F:

R(f) ≤ R̂D(f) +
24
√

2ρΛA
(

1 + log
1
2 (8e2n3c3) · log M

√
n

ρB

)
√
n

+ 3M

√
log 2

δ

2n
.

Proof Sketch. We first upper bound the worst-case Rademacher complexity <̃nc(P(F)), and then
combined with Lemma 1, the desired bound can be derived.

Remark 1. Although Lemma 1 shows a factor of
√
c, the term <̃nc(P(F)) ≤ ΛA/

√
nc, which

makes the Rademacher complexity of the loss function space associated with F (i.e., <̂D(L))
actually independent on c, up to logarithmic terms, and results in a tighter bound than the existing
O(c/

√
n) and O(

√
c/n) bounds with a faster convergence rate Õ(1/

√
n). The bound in Theorem

1 with no dependency on c can provide a general theoretical guarantee for LSRL, even for extreme
multi-label learning where the number of labels far exceeds the number of examples [Yu et al.,
2014, Prabhu and Varma, 2014, Yen et al., 2016, Liu and Shen, 2019], since it is easy to get that
log c is much smaller than

√
n. The main challenge of generalization analysis for LSRL is that

existing theoretical results and existing generalization analysis methods for multi-label learning are
not applicable to LSRL. Specifically, existing theoretical bounds often involve the typical vector-
contraction inequality [Maurer, 2016] for `2 Lipschitz loss: Eε

[
supf∈F

1
n

∑n
i=1 εi`(f(xi))

]
≤

√
2µEε

[
supf∈F

1
n

∑n
i=1

∑c
j=1 εijfj (xi)

]
, which will lead to bounds with a linear dependency

on c for multi-label learning. Lei et al. [2015], Wu and Zhu [2020], Wu et al. [2021a] improve
the dependency of the bounds on c to square-root, which preserve the coupling among different
components reflected by the constraint ‖w‖ ≤ Λ. Lei et al. [2019] also improves the bounds of
multi-class classification to be independent on c (up to logarithmic terms) for `∞ Lipschitz loss by
preserving the coupling among different components, and Wu et al. [2021b] further generalizes these
results to multi-label learning. However, LSRL decomposes the multi-label learning problem into
c binary classification problems, which means that the relationship among different components
needs to be decoupled in the generalization analysis. Hence, how to develop novel vector-contraction
inequalities that can induce Õ(1/

√
n) bounds and deal with the case of decoupling the relationship

among different components are the two most critical difficulties in deriving tighter bounds for
LSRL. The introduction of the projection function class plays an important role in solving these
two difficulties. It improves the vector-contraction inequalities by a factor of

√
c and decouples the

relationship among different components (which is also reflected by the constraint ‖wj‖ ≤ Λ for
any j ∈ [c]). Our tighter Õ(1/

√
n) bound in Theorem 1 with no dependency on c (up to logarithmic

terms) solve the limitations of existing theoretical results for multi-label learning and can provide a
general theoretical guarantee for LSRL.

The differences in generalization bounds of different LSRL methods are mainly reflected in two
aspects. On the one hand, the Lipschitz constant of the loss functions, as we proved in Proposition 1,
the Lipschitz constants ρ corresponding to different loss functions are various. On the other hand, the
nonlinear mappings induced by different LSRL methods. In fact, when we analyze the generalization
for LSRL, we will further have ‖ζ(·)‖ ≤ A := κR (κ is the Lipschitz constant of the nonlinear
mappings ζ(·)) to take into account the differences or characteristics of different LSRL methods. We
provide detailed analysis for A of typical LSRL methods in the next section.
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5 Generalization Bounds for Typical LSRL Methods

In this section, we analyze the generalization bounds for several typical LSRL methods, i.e., k-means
clustering-based [Zhang and Wu, 2015], Lasso-based [Huang et al., 2016] and DNN-based [Hang
and Zhang, 2022] LSRL methods. We show that different construction methods of label-specific
representation will lead to significant differences in the constant A of the generalization bound in
Theorem 1. For each LSRL method, we first give a brief introduction, then give its formal definition
corresponding to the class of LSRL defined in (1), and finally derive the generalization bound.

5.1 Generalization Bounds for k-Means Clustering-Based LSRL Method

As a seminal work, k-means clustering-based LSRL method, i.e., LIFT [Zhang and Wu, 2015], uses
k-means clustering to construct label-specific representation that effectively capture the specific
characteristics of each label. Specifically, first, for each label, k-means clustering is used to divide
the training instances into K clusters, and the centers of the K clusters are obtained, which is
denoted as cjk for the j-th label, k ∈ [K], j ∈ [c]. Then, these K centers are used to construct
the label-specific representation, i.e., in the vector-valued function class of LSRL defined by (1),
φj(x) =

[
d(x, cj1), . . . , d(x, cjK)

]
, d(x, cjk) = ‖x− cjk‖. Finally, a family of c classifiers fj with

κ-Lipschitz nonlinear mapping are induced based on the generated label-specific representations.

Next, we formally define the process of k-means clustering. Here we follow some of the settings and
definitions in [Li and Liu, 2021]. Assume that V : X 2 → R+is a pairwise distance-based function
used to measure the dissimilarity between pair observations, and Z = [Z1, . . . , ZK ] is a collection
of K partition functions Zk : X 2 → R+for k ∈ [K]. The clustering framework can be cast as the
problem of minimizing the following criterion:

R̂D(V,Z) =
1

n(n− 1)

n∑
i,j=1,i6=j

K∑
k=1

V (xi,xj)Zk (xi,xj)

over all possible functions V and Zk for k ∈ [K]. In k-means clustering, we have V (xi,xj) =

‖xi − xj‖22, and Zk (xi,xj) = I
{

(xi,xj) ∈ C2
k

}
, ck = 1

|Ck|
∑
x∈Ck

x, where C1, . . . , CK are
the partitions of the feature space X . Let gk (xi,xj) = V (xi,xj)Zk (xi,xj) and g = (g1, . . . , gK)

be a vector-valued function, `clu(g(x,x′)) =
∑K
k=1 gk (x,x′), then R̂D(V,Z) can be written as

R̂D(V,Z) =
1

n(n− 1)

n∑
i,j=1,i6=j

`clu(g(xi,xj)) =
1

n(n− 1)

n∑
i,j=1,i6=j

K∑
k=1

gk (xi,xj) .

We then define a vector-valued function class of k-means clustering as follows:

G = {(x,x′) 7→ g(x,x′) :g(x,x′) = (g1(x,x′), . . . , gK(x,x′)),

gk(x,x′) = ‖x− x′‖22 · I
{

(x,x′) ∈ C2
k

}
,x,x′ ∈ X , k ∈ [K]},

where |gk(·, ·)| ≤ G for k ∈ [K] and G > 0 are constants.

We denote the function class of k-means clustering corresponding to the j-th label as Gj . With the
above definitions, we can derive the tight bound for k-means clustering-based LSRL method:
Theorem 2. Let F be a vector-valued function class of k-means clustering-based LSRL defined by
(1). Let Assumptions 1 and 2 hold. Given a dataset D of size n. Then, for any 0 < δ < 1, with
probability at least 1− δ, the following holds for any f ∈ F:

R(f) ≤R̂D(f) + 3M

√
log 2

δ

2n
+

48
√

2ρκΛ
√
KR

(
1 + log

1
2 (8e2n3c3) · log M

√
n

µB

)
√
n

+
242
√

2ρ
√
KG√

n

(
1 + log

1
2 (e2n3c3) · log

M
√
nc

G

)(
1 + log

1
2 (8e2n3c3) · log

M
√
n

µB

)
.

Remark 2. There are three key points in the generalization analysis of k-means clustering-based
LSRL method. 1) Since k-means clustering-based LSRL method is two-stage, i.e., the centers of
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clusters is generated by using k-means clustering in the first stage, then these centers are exploited to
generate label-specific representations which are used to learn a multi-label classifier in the second
stage, we cannot formally express these two stages in a closed-form expression through a composite
function (K centers are generated by the arg min function). Furthermore, K centers generated in
the first stage are actually used as fixed parameters rather than inputs in the second stage. Hence,
in order to fully consider the capacity of the model corresponding to the first stage, it is reasonable
to define the whole function class as the sum of the function classes F + Lclu ◦ G corresponding
to the methods of these two stages. Then, combined with Lemma 1, the generalization analysis is
transformed into the bounding of the complexity of the projection function class P(F+Lclu ◦G). The
introduction of class G induces an additional increase in complexity, i.e., the last term in Theorem 2.
2) The generalization analysis of k-means clustering-based LSRL method involves the generalization
analysis for k-means clustering. However, since the k-means clustering framework involves pairwise
functions, a sequence of pairs of i.i.d. individual observation in k-means clustering is no longer
independent, which makes standard techniques in the i.i.d case for traditional Rademacher complexity
inapplicable for k-means clustering. We convert the non-sum-of-i.i.d pairwise function to a sum-of-
i.i.d form by using permutations in U-process [Clémençon et al., 2008]. We show that the empirical
Rademacher complexity of a loss function space associated with the vector-valued function class G
can be bounded by <̂D′(Lclu ◦ G) := Eε

[
supg∈G

1
bn2 c

∑bn2 c
i=1 εi`clu(g(xi,xi+bn2 c))

]
. 3) In order to

derive tight bounds for k-means clustering, we develop a novel vector-contraction inequality that can
induce bounds with a square-root dependency on the number of clusters. The theoretical techniques
and results involved here may be of independent interest. The generalization bound of k-means
clustering-based LSRL method is tighter than the state of the art with a faster convergence rate
Õ(
√
K/n), which is independent on the number of labels. Since the lower bound for clustering is

Ω(
√
K/n) [Bartlett et al., 1998], our bound is (nearly) optimal, up to logarithmic terms, even from

the perspective of clustering. The constant A of the generalization bound in Theorem 1 corresponds
to 2κ

√
KR here.

5.2 Generalization Bounds for Lasso-Based LSRL Method

Lasso-based LSRL method, i.e., LLSF [Huang et al., 2016], assumes that the label-specific represen-
tation of each label should have sparsity and sharing properties. For sparsity, LLSF uses Lasso as
the model corresponding to each label. The property of sharing is achieved by considering that two
strongly correlated labels will share more features with each other than two uncorrelated or weakly
correlated labels and the corresponding weights will be similar, i.e., their inner product will be large.

Formally, since each label corresponds to a Lasso, this means that in the class of LSRL defined
by (1), the base loss `b is the squared loss, the nonlinear mappings ζ(·) and φ(·) are both identity
transformations for any j ∈ [c], and the constraint α(w) is ‖wj‖1 ≤ Λ for any j ∈ [c]. For the
j-th label, the property of sharing is reflected by the additionally introduced constraint

∑c
i (1 −

sji)wj
>wi ≤ τ , where sji is the cosine similarity between labels yj and yi, here we refer to it as the

sharing constraint. The loss function used by Lasso-based LSRL method is the Decomposable loss.

Since the squared loss is not Lipschitz continuous, the theoretical results on the Lipschitz continuity
of the loss functions in Proposition 1 cannot be applied to Lasso-based LSRL method. To overcome
this challenge, we define the pseudo-Lipschitz function, which is also used in the theoretical analysis
of approximate message passing algorithms [Bayati and Montanari, 2011].
Definition 2. For k ≥ 1, we say that a function f : R→ R is pseudo-Lipschitz of order k if there
exists a constant L > 0 such that the following inequality holds for all x, y ∈ R:

|f(x)− f(y)| ≤ L
(
1 + |x|k−1 + |y|k−1

)
|x− y|.

Note that any pseudo-Lipschitz function of order 1 is Lipschitz continuous. The following Proposition
shows that the Decomposable loss is still Lipschitz continuous if the base loss is the squared loss.
Proposition 2. The squared loss is 1 pseudo-Lipschitz of order 2, the surrogate Decomposable Loss
is (3 + 2B)c-Lipschitz w.r.t. the `∞ norm if the base loss `b is the squared loss.

With the above definitions, we can derive the generalization bound for Lasso-based LSRL method:
Theorem 3. Let F be a vector-valued function class of Lasso-based LSRL defined by (1). Let
Assumptions 1 and 2 hold. Given a dataset D of size n. Then, for any 0 < δ < 1, with probability at
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least 1− δ, the following holds for any f ∈ F:

R(f) ≤ R̂D(f) +
24
√

2(3 + 2B)cΛR
(

1 + log
1
2 (8e2n3c3) · log M

√
n

ρB

)
√
n

+ 3M

√
log 2

δ

2n
.

Remark 3. The complexity of the LLSF function class can be bounded by the complexity of the
LSRL function class where each label corresponds to a Lasso, since the introduction of the sharing
constraint in the LLSF function class reduces the complexity of the function class compared with the
LSRL function class where each label corresponds to a Lasso. Hence, the complexity analysis of
the LLSF function class can be converted into upper bounding the Rademacher complexity of the
LSRL function class where each label corresponds to a Lasso. The constant A of the generalization
bound in Theorem 1 corresponds to R here, and the value of ρ is (3 + 2B)c, which induce the
Õ(c/

√
n) bound here. If other loss functions are used, e.g., Hamming, Subset or Ranking loss,

instead of Decomposable loss, the dependency of the bounds for Lasso-based LSRL method on c can
be improved from linear to independent, up to logarithmic terms.

5.3 Generalization Bounds for DNN-Based LSRL Method

DNN-based LSRL method, i.e., CLIF [Hang and Zhang, 2022], exploits the powerful representation
learning capability of deep neural networks (DNNs) to learn label-specific representation in an end-
to-end manner. Since the construction of label-specific representation involves graph convolutional
networks (GCNs), we first introduce the relevant definitions for GCN.

Let G = {V, E} be a given undirected graph, where V = {x1,x2, . . . ,xn} is the set of nodes with
size |V| = n and E is the set of edges. Let A and D be the adjacency matrix and the diagonal degree
matrix respectively, where Dii =

∑n
j=1Aij . Let Ã = (D + In)

− 1
2 (A+ In) (D + In)

− 1
2 denote

the normalized adjacency matrix with self-connections, where I is the identity matrix. The feature
propagation process of a two-layer GCN is σ(Ãσ(ÃXW1)W2), where W1 and W2 are parameter
matrices, X is the node feature matrix, and the i-th row Xi∗ is the node feature xi.

Specifically, for DNN-based LSRL method, first, a graph (here we call it the label graph) is constructed
over the label space and a GCN is used to generate the label embeddings, i.e., the label embeddings
can be denoted by ψ(Y ) = σReLU (ÃσReLU (ÃY W1)W2), where Y is the node feature matrix of
the label graph with size c and the nodes are also bounded by R, σReLU is the ReLU activation.
Second, the label embedding of the j-th label is decoded into the importance vector by a one-layer
fully-connected neural network, i.e., σsig(W3ψ(Y )j), where σsig is the sigmoid activation, and the
input feature is mapped into the latent representation through a one-layer fully-connected neural
network, i.e., σReLU (W4x). Third, for the j-th label, the Hadamard product of the importance vector
and the latent representation is defined as the pertinent representation, and then the label-specific
representation for the j-th label is obtained by feeding the pertinent representation into another
one-layer fully-connected neural network. Hence, the label-specific representation for the j-th label is

φj(x) = σReLU {W5 · [σReLU (W4x)� σsig(W3ψ(Y )j)]} .

Finally, the j-th model is implemented by a fully-connected layer, i.e., fj(x) = σsig(w
>
j φj(x)).

In the generalization analysis of the above deep neural network, we introduce the following assump-
tion, which is a common assumption in the generalization analysis for DNNs [Bartlett et al., 2017,
Golowich et al., 2018, Zhang and Zhang, 2023, Tang and Liu, 2023].
Assumption 3. Assume that the parameter metrices in DNN-based LSRL method are bounded, i.e.,
‖Wi‖ ≤ D, i ∈ [5], where D > 0 is a constant.

With the above definitions, we can derive the generalization bound for DNN-based LSRL method:
Theorem 4. Let F be a vector-valued function class of DNN-based LSRL defined by (1). Let
Assumptions 1, 2, and 3 hold. Given a dataset D of size n. Then, for any 0 < δ < 1, with probability
at least 1− δ, the following holds for any f ∈ F:

R(f) ≤ R̂D(f) +
6
√

2ρΛD5R2(gmax + 1)
(

1 + log
1
2 (8e2n3c3) · log M

√
n

ρB

)
√
n

+ 3M

√
log 2

δ

2n
,

where gmax is the maximum node degree of the label graph.
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Remark 4. The term <̃nc(P(F)) ≤ ΛD5R2(gmax + 1)/4
√
nc, which makes the Rademacher

complexity <̂D(L) actually independent on c, up to logarithmic terms, and results in a tight bound
for DNN-based LSRL method with a faster convergence rate Õ(1/

√
n). The constant A of the

generalization bound in Theorem 1 corresponds to D5R2(gmax + 1)/4 here. For deep GCNs, the
increase in depth means that the generalization performance will deteriorate, which is consistent with
empirical performance and guides us not to design too many layers of GCN. In addition, the bound
is linearly dependent on the maximum node degree of the label graph, which suggests that when
the performance of the model is always unsatisfactory, we can check whether the maximum node
degree is large and consider using some techniques to remove some edges, e.g., DropEdge [Rong
et al., 2020], to alleviate the over-fitting problem. We will further explore more network structures
to learn more effective label-specific representations, e.g., hypernetworks [Galanti and Wolf, 2020,
Chen et al., 2023, Shen et al., 2023], deep kernel networks [Zhang and Liao, 2020, Zhang and Zhang,
2023], and provide generalization analysis for the corresponding DNN-based LSRL methods.

6 Discussion

Compared with existing methods considering label correlations, which mainly focus on the processing
of the label space by exploiting or modeling relationships between labels, LSRL mainly focuses on the
operation on the input space and implicitly considers label correlations in the process of constructing
label-specific representations. For example, in the construction of label-specific representations in
LLSF and CLIF, the label correlation information is embedded into the label-specific representations
in the input space by introducing the sharing constraint and using a GCN over the label graph to
generate label embeddings, respectively. LSRL methods are more effective since the label correlation
information is considered in the construction of label-specific representations.

Our theoretical results explain why LSRL is an effective strategy to improve the generalization perfor-
mance of multi-label learning. On the one hand, existing results can improve the dependency of the
bound on c from linear to square-root by preserving the coupling among different components, which
corresponds to high-order label correlations induced by norm regularizers. However, the improvement
in the preservation of coupling by a factor of

√
c benefits from replacing

√
cΛ with Λ in the constraint

to some extent, and preserving the coupling corresponds to the stricter assumption [Zhang and
Zhang, 2024]. Our results for LSRL decouple the relationship among different components, and the
bounds with a weaker dependency on c are tighter than the existing results that preserve the coupling,
which also explains why LSRL methods outperform the multi-label methods that consider high-order
label correlations induced by norm regularizers. On the other hand, based on our results, we can
find that LSRL methods substantially increase the data processing, i.e., the process of constructing
label-specific representations. From the perspective of model capacity, compared with traditional
multi-label methods, since the introduction of construction methods of label-specific representations,
the capacity of the model is significantly increased, especially if deep learning methods are used
to generate label-specific representations, which improves the representation ability of the model.
Or more intuitively, LSRL means an increase in model capacity and stronger representation ability,
which makes it easier to find the hypotheses with better generalization in the function class.

The vector-contraction inequality and the theoretical tools developed here are applicable to the
theoretical analysis of other problem settings, such as multi-class classification, or more general vector-
valued learning problem. For multi-class classification, multi-class margin-based loss, multinomial
logistic loss, Top-k hinge loss, etc. are all `∞ Lipschitz [Lei et al., 2019]. For multi-label learning,
the surrogate loss for Macro-Averaged AUC is also `∞ Lipschitz [Zhang and Zhang, 2024].

7 Conclusion

In this paper, we propose a novel vector-contraction inequality for `∞ norm Lipschitz continuous
loss, and derive bounds for general function classes of LSRL with a weaker dependency on c than the
state of the art. In addition, we analyze the bounds for several typical LSRL methods, and study the
impact of different label-specific representations on the generalization analysis.

In future work, we will extend our bounds to more LSRL methods, and derive tighter bounds for LSRL
with a faster convergence rate w.r.t. the number of examples, and further design efficient models and
algorithms to construct label-specific representations with good generalization performance.
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A Appendix

A.1 Appendix Outline

In the appendix, we give the detailed proofs of those theoretical results in the main paper. Our main
proofs include:

• The `∞ Lipschitz continuity of the commonly used losses for LSRL (Proposition 1).

• The novel vector-contraction inequality for `∞ Lipschitz loss (Lemma 1).

• The generalization bound of the general LSRL class with no dependency on c (Theorem 1).

• The generalization bound for k-means clustering-based LSRL method (Theorem 2).

• The (pseudo-) Lipschitz continuity of the squared and Decomposable loss (Proposition 2).

• The generalization bound for Lasso-based LSRL method (Theorem 3).

• The generalization bound for DNN-based LSRL method (Theorem 4).

A.2 Preliminaries

A.2.1 Definitions of the corresponding complexity measures

Definition 3 (`∞ norm covering number). Let F be a class of real-valued functions mapping from
X to R. Let D = {x1, . . . ,xn} be a set with n i.i.d. samples. For any ε > 0, the empirical `∞
norm covering number N∞(ε,F , D) w.r.t. D is defined as the minimal number m of a collection

of vectors v1, . . . ,vm ∈ Rn such that maxi∈[n]

∣∣∣f (xi)− vji

∣∣∣ ≤ ε (vji is the i-th component of the

vector vj). In this case, we call
{
v1, . . . ,vm

}
an (ε, `∞)-cover of F with respect to D. We also

define N∞(ε,F , n) = supDN∞(ε,F , D).

Definition 4 (Fat-shattering dimension). Let F be a class of real-valued functions mapping from
X to R. We define the fat-shattering dimension fatε(F) at scale ε > 0 as the largest p ∈ N
such that there exist p points x1, . . . ,xp ∈ X and witnesses s1, . . . , sp ∈ R satisfying: for any
δ1, . . . , δp ∈ {−1,+1} there exists f ∈ F with δi (f(xi)− si) ≥ ε, ∀i = 1, . . . , p.

A.2.2 The Bound for the loss function space

For any training dataset D = {(xi,yi) : i ∈ [n]}, let D′ = {(xi,yi) : i ∈ [n]} be the training
dataset with only one sample different from D, where the k-th sample is replaced by (x′k,y

′
k). Let

Φ(D) = supf∈F [E(x,y)∼P [`(f(x),y)]− 1
n

∑n
i=1 `(f(xi),yi)] = supf∈F [R(f)− R̂D(f)], then

Φ (D′)− Φ(D)

= sup
f∈F

[R(f)− R̂D′(f)]− sup
f∈F

[R(f)− R̂D(f)]

≤ sup
f∈F

[R̂D(f)− R̂D′(f)]

= sup
f∈F

[`(f(xk),yk)− `(f(x′k),y′k)]

n

≤ M

n
.

According to McDiarmid’s inequality, for any 0 < δ < 1, with probability at least 1 − δ
2 over the

training dataset D, the following holds:

Φ(D) ≤ ED[Φ(D)] +M

√
ln(2/δ)

2n
. (2)

Then, we will estimate the upper bound of ED[Φ(D)].
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ED[Φ(D)]

=ED

[
sup
f∈F

[
ED′

[
R̂D′(f)− R̂D(f)

]]]

≤ED,D′
[

sup
f∈F

[
R̂D′(f)− R̂D(f)

]]

=ED,D′
[

sup
f∈F

1

n

[
n∑
i=1

`(f(x′i),y
′
i)− `(f(xi),yi)

]]

=Eε,D,D′
[

sup
f∈F

1

n

[
n∑
i=1

εi (`(f(x′i),y
′
i))− `(f(xi),yi))

]]

≤Eε,D′
[

sup
f∈F

1

n

n∑
i=1

εi`(f(x′i),y
′
i)

]
+ Eε,D

[
sup
f∈F

1

n

n∑
i=1

−εi`(f(xi),yi)

]

=2Eε,D

[
sup
f∈F

1

n

n∑
i=1

εi`(f(xi),yi)

]
. (3)

Then apply McDiarmid’s inequality to Eε
[
supf∈F

1
n

∑n
i=1 εi`(f(xi),yi)

]
, we have

Eε,D

[
sup
f∈F

1

n

n∑
i=1

εi`(f(xi),yi)

]
≤ Eε

[
sup
f∈F

1

n

n∑
i=1

εi`(f(xi),yi)

]
+M

√
ln(2/δ)

2n
,

i.e.,

<(L) ≤ <̂D(L) +M

√
ln(2/δ)

2n
. (4)

Combining with (2), (3) and (4), then

R(f) ≤ R̂D(f) + 2<̂D(L) + 3M

√
log 2

δ

2n
. (5)

A.3 General Bounds for LSRL

A.3.1 Proof of Proposition 1

We first prove that the surrogate Hamming Loss is µ-Lipschitz continuous with respect to the `∞
norm. ∣∣`H(f(x),y)− `H

(
f ′(x),y

)∣∣
=

∣∣∣∣∣∣1c
c∑
j=1

`b (yjfj(x))− 1

c

c∑
j=1

`b
(
yjf
′
j(x)

)∣∣∣∣∣∣
=

1

c

c∑
j=1

∣∣`b (yjfj(x))− `b
(
yjf
′
j(x)

)∣∣
≤1

c

c∑
j=1

µ
∣∣fj(x)− f ′j(x)

∣∣
≤1

c
µcmax

j∈[c]

∣∣fj(x)− f ′j(x)
∣∣

=µ
∥∥f(x)− f ′(x)

∥∥
∞ .
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Second, with the elementary inequality

|max {a1, . . . , ac} −max {b1, . . . , bc}| ≤ max {|a1 − b1| , . . . , |ac − bc|} ,

we prove that the surrogate Subset Loss is µ-Lipschitz continuous with respect to the `∞ norm.∣∣`S(f(x),y)− `S
(
f ′(x),y

)∣∣
=

∣∣∣∣max
j∈[c]

`b (yjfj(x))−max
j∈[c]

`b
(
yjf
′
j(x)

)∣∣∣∣
≤max
j∈[c]

∣∣`b (yjfj(x))− `b
(
yjf
′
j(x)

)∣∣
≤µmax

j∈[c]

∣∣fj(x)− f ′j(x)
∣∣

=µ
∥∥f(x)− f ′(x)

∥∥
∞ .

Third, we prove that the surrogate Ranking Loss is 2µ-Lipschitz continuous with respect to the `∞
norm. ∣∣`R(f(x),y)− `R

(
f ′(x),y

)∣∣
=

1

|Y +| |Y −|

∣∣∣∣∣∣
∑
p∈Y +

∑
q∈Y −

(
`b (fp(x)− fq(x))− `b

(
f ′p(x)− f ′q(x)

))∣∣∣∣∣∣
≤ max
p∈Y +,q∈Y −

∣∣`b (fp(x)− fq(x))− `b
(
f ′p(x)− f ′q(x)

)∣∣
≤µ max

p∈Y +,q∈Y −

∣∣(fp(x)− fq(x))−
(
f ′p(x)− f ′q(x)

)∣∣
≤µ
(

max
p∈Y +

∣∣fp(x)− f ′p(x)
∣∣+ max

q∈Y −

∣∣fq(x)− f ′q(x)
∣∣)

≤2µmax
j∈[c]

∣∣fj(x)− f ′j(x)
∣∣

=2µ
∥∥f(x)− f ′(x)

∥∥
∞ .

Finally, we prove that the surrogate Decomposable Loss is cµ-Lipschitz continuous with respect to
the `∞ norm. ∣∣`D(f(x),y)− `D

(
f ′(x),y

)∣∣
=

∣∣∣∣∣∣
c∑
j=1

`b (yjfj(x))−
c∑
j=1

`b
(
yjf
′
j(x)

)∣∣∣∣∣∣
=

c∑
j=1

∣∣`b (yjfj(x))− `b
(
yjf
′
j(x)

)∣∣
≤

c∑
j=1

µ
∣∣fj(x)− f ′j(x)

∣∣
≤cµmax

j∈[c]

∣∣fj(x)− f ′j(x)
∣∣

=cµ
∥∥f(x)− f ′(x)

∥∥
∞ .

A.3.2 Proof of Lemma 1

Proof Sketch: First, the Rademacher complexity of the loss function space associated with F can
be bounded by the empirical `∞ norm covering number with the refined Dudley’s entropy integral
inequality. Second, according to the Lipschitz continuity w.r.t the `∞ norm, the empirical `∞ norm
covering number of F can be bounded by the empirical `∞ norm covering number of P(F). Third,
the empirical `∞ norm covering number of P(F) can be bounded by the fat-shattering dimension,
and the fat-shattering dimension can be bounded by the worst-case Rademacher complexity of P(F).
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Hence, the problem is transferred to the estimation of the worst-case Rademacher complexity. Finally,
we estimate the lower bound of the worst-case Rademacher complexity of P(F), and then combined
with the above steps, the Rademacher complexity of the loss function space associated with F can be
bounded.

We first introduce the following lemmas:

Lemma 2 (Khintchine-Kahane inequality [Lust-Piquard and Pisier, 1991]). Let v1, . . . ,vn ∈ H,
whereH is a Hilbert space with ‖ · ‖ being the associated p-th norm. Let ε1, . . . , εn be a sequence of
independent Rademacher variables. Then, for any p ≥ 1 there holds

min(
√
p− 1, 1)

[
n∑
i=1

‖vi‖2
] 1

2

≤

[
Eε

∥∥∥∥∥
n∑
i=1

εivi

∥∥∥∥∥
p] 1

p

≤ max(
√
p− 1, 1)

[
n∑
i=1

‖vi‖2
] 1

2

,

and

Eε

∥∥∥∥∥
n∑
i=1

εivi

∥∥∥∥∥ ≥ 2−
1
2

[
n∑
i=1

‖vi‖2
] 1

2

.

Lemma 3 (Lemma A.2 in [Srebro et al., 2010]). For any function class F , any S with a finite sample
of size n and any ε > <̂S(F), we have that

fatε(F) ≤ 4n<̂2
S(F)

ε2
.

Lemma 4 ([Srebro et al., 2010, Lei et al., 2019]). If any function in class F takes values in [−B,B],
then for any S with a finite sample of size n, any ε > 0 with fatε(F) < n, we have

logN∞ (ε,F , S) ≤ fatε(F) log
2eBn

ε
.

The following lemma is a refined result of Proposition 22 in [Ledent et al., 2021], where we replace
the function class taking values in [0, 1] with the B-bounded function class, the refinement is obvious.

Lemma 5 (Refined Dudley’s entropy integral inequality). Let F be a real-valued function class
with f ≤ B, f ∈ F , B > 0, and assume that 0 ∈ F . Let S be a finite sample of size n. For any
2 ≤ p ≤ ∞, we have the following relationship between the Rademacher complexity <̂S(F) and the
covering number Np(ε,F , S).

<̂S(F) ≤ inf
α>0

(
4α+

12√
n

∫ B

α

√
logNp(ε,F , S)dε

)
.

Step 1: We first derive the relationship between the empirical `∞ norm covering numberN∞(ε,L, D)
and the empirical `∞ norm covering number N∞(ε,P(F), [c]×D).

For the dataset D = {(x1,y1), . . . , (xn,yn)} with n i.i.d. examples:

max
i
|`(f(xi),yi)− `(f

′(xi),yi)|

≤ρmax
i
‖f(xi)− f ′(xi)‖∞ (Use Assumption 2)

≤ρmax
i

max
j
|fj (xi)− f ′j (xi) |

≤ρmax
i

max
j
|pj(f(xi))− pj(f ′(xi)|. (The definition of the projection function class P(F))

Then, according to the definition of the empirical `∞ covering number, we have that an empirical `∞
cover of P(F) at radius ε/ρ is also an empirical `∞ cover of the loss function space associated with
F at radius ε, and we can conclude that:

N∞ (ε,L, D) ≤ N∞
(
ε

ρ
,P(F), [c]×D

)
. (6)
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Step 2: We show that the empirical `∞ norm covering number of P(F) can be bounded by the fat-
shattering dimension, and the fat-shattering dimension can be bounded by the worst-case Rademacher
complexity of P(F).

According to Lemma 3, for any ε > <̂[c]×D(P(F)), we have

fatε(P(F)) ≤
4nc<̂2

[c]×D(P(F))

ε2
.

Then, combining with Lemma 4, we have

logN∞ (ε,P(F), [c]×D) ≤
4nc<̂2

[c]×D(P(F))

ε2
log

2eBnc

ε
.

Use inequality ε > <̂[c]×D(P(F)), we have

logN∞(ε,P(F), [c]×D) ≤
4nc<̂2

[c]×D(P(F))

ε2
log

2eBnc

<̂[c]×D(P(F))
. (7)

Step 3: According to Assumption 1 in the main paper, we can obtain the lower bound of the worst-case
Rademacher complexity <̃nc(P(F)) by the Khintchine-Kahane inequality with p = 1:

<̃nc(P(F))

= sup
[c]×D∈[c]×Xn

<̂[c]×D(P(F))

= sup
[c]×D∈[c]×Xn

Eε

 sup
pj(f(xi))∈P(F)

1

nc

n∑
i=1

c∑
j=1

εijpj(f(xi))


= sup

[c]×D∈[c]×Xn

Eε

 sup
fj∈Fj

1

nc

n∑
i=1

c∑
j=1

εijfj (xi)


= sup
‖ζj(φj(xi))‖2≤A:i∈[n],j∈[c]

1

nc
Eε

 sup
‖wj‖2≤Λ

n∑
i=1

c∑
j=1

εij〈wj , ζj(φj(xi))〉


= sup
‖ζj(φj(xi))‖2≤A:i∈[n],j∈[c]

Λ

nc
Eε‖

n∑
i=1

c∑
j=1

εijζj(φj(xi))‖

≥ sup
‖ζj(φj(xi))‖2≤A:i∈[n],j∈[c]

Λ

nc

1√
2

 n∑
i=1

c∑
j=1

‖ζj(φj(xi))‖2
 1

2

. (Use Lemma 2)

Since ‖ζj(φj(xi))‖2 ≤ A, we set sup‖ζj(φj(xi))‖2≤A:i∈[n],j∈[c]
1
nc

[∑n
i=1

∑c
j=1 ‖ζj(φj(xi))‖2

] 1
2

=
A√
nc

. So,

<̃nc(P(F)) ≥ ΛA√
2nc

=
B√
2nc

. (8)
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Step 4: According to Lemma 5 and combined with the above steps, we have

<̂D(L)

≤ inf
α>0

(
4α+

12√
n

∫ M

α

√
logN∞(ε,L, D)dε

)

≤ inf
α>0

(
4α+

12√
n

∫ M

α

√
logN∞(

ε

ρ
,P(F), [c]×D)dε

)
(Use inequality (6))

≤ inf
α>0

4α+
12√
n

∫ M

α

√√√√4ncρ2<̂2
[c]×D(P(F))

ε2
log

2eBnc

<̂[c]×D(P(F))
dε

 (Use inequality (7))

≤ inf
α>0

4α+
12√
n

∫ M

α

√
4ncρ2<̃2

nc(P(F))

ε2
log(2

√
2eBn

3
2 c

3
2 )dε


(Use inequality (8) and the definition of the worst-case Rademacher complexity)

≤ inf
α>0

(
4α+ 12

√
2ρ
√
c<̃nc(P(F)) log

1
2 (8e2n3c3)

∫ M

α

ε−1dε

)

≤12
√

2ρ
√
c<̃nc(P(F)) + 12

√
2ρ
√
c<̃nc(P(F)) log

1
2 (8e2n3c3) · log

M

3
√

2ρ
√
c<̃nc(P(F))

(Choose α = 3
√

2ρ
√
c<̃nc(P(F)))

≤12
√

2ρ
√
c<̃nc(P(F)) + 12

√
2ρ
√
c<̃nc(P(F)) log

1
2 (8e2n3c3) · log

M
√
n

ρB
(Use inequality (8) )

=12
√

2ρ
√
c<̃nc(P(F))

(
1 + log

1
2 (8e2n3c3) · log

M
√
n

ρB

)
.

A.3.3 Proof of Theorem 1

We upper bound the worst-case Rademacher complexity <̃nc(P(F)) as the following:

<̃nc(P(F)) = sup
[c]×D∈[c]×Xn

<̂[c]×D(P(F))

= sup
[c]×D∈[c]×Xn

Eε

 sup
pj(f(xi))∈P(F)

1

nc

n∑
i=1

c∑
j=1

εijpj(f(xi))


= sup

[c]×D∈[c]×Xn

Eε

 sup
fj∈Fj

1

nc

n∑
i=1

c∑
j=1

εijfj (xi)


= sup
‖ζj(φj(xi))‖2≤A:i∈[n],j∈[c]

1

nc
Eε

 sup
‖wj‖2≤Λ

n∑
i=1

c∑
j=1

εij〈wj , ζj(φj(xi))〉


= sup
‖ζj(φj(xi))‖2≤A:i∈[n],j∈[c]

Λ

nc
Eε‖

n∑
i=1

c∑
j=1

εijζj(φj(xi))‖

≤ sup
‖ζj(φj(xi))‖2≤A:i∈[n],j∈[c]

Λ

nc

Eε‖ n∑
i=1

c∑
j=1

εijζj(φj(xi))‖2
 1

2

(Use Jensen’s Inequality)

≤ sup
‖ζj(φj(xi))‖2≤A:i∈[n],j∈[c]

Λ

nc

 n∑
i=1

c∑
j=1

‖ζj(φj(xi))‖2
 1

2

≤ ΛA√
nc
. (Use Lemma 2)

(9)
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Then, we have

<̂D(F) ≤12
√

2ρ
√
c<̃nc(P(F))

(
1 + log

1
2 (8e2n3c3) · log

M
√
n

ρB

)

≤
12
√

2ρΛA
(

1 + log
1
2 (8e2n3c3) · log M

√
n

ρB

)
√
n

.

Combining with (5), then

R(f) ≤ R̂D(f) +
24
√

2ρΛA
(

1 + log
1
2 (8e2n3c3) · log M

√
n

ρB

)
√
n

+ 3M

√
log 2

δ

2n
.

A.4 Generalization Bounds for Typical LSRL Methods

A.4.1 Proof of Theorem 2

The generalization analysis of LIFT involves the generalization analysis for k-means clustering. Ac-
cording to the definitions of k-means clustering in Subection 5.1, we have the empirical Rademacher
complexity of a loss function space associated with the vector-valued function class G:

<̂D(Lclu ◦ G) = Eε

sup
g∈G

1

n(n− 1)

n∑
i,j=1,i6=j

εi`clu(g(xi,xj))

 .
Rademacher complexity has proved to be a powerful data-dependent measure of hypothesis space
complexity. However, since the k-means clustering framework involves pairwise functions, a sequence
of pairs of i.i.d. individual observation in k-means clustering is no longer independent, which makes
standard techniques in the i.i.d case for traditional Rademacher complexity inapplicable for k-
means clustering. We convert the non-sum-of-i.i.d pairwise function to a sum-of-i.i.d form by using
permutations in U-process [Clémençon et al., 2008].

We first proof the following lemma:
Lemma 6. Let qτ : X × X 7→ R be real-valued functions indexed by τ ∈ T where T is some set. If
x1, . . . ,xs and x′1, . . . ,x

′
t are i.i.d., r = min{s, t}, then for any convex non-decreasing function ψ,

Eψ

sup
τ∈T

1

st

s∑
i=1

t∑
j=1

qτ
(
xi,x

′
j

) ≤ Eψ

(
sup
τ∈T

1

r

r∑
i=1

qτ (xi,x
′
i)

)
.

Proof. The proof of this lemma is inspired by [Clémençon et al., 2008].

Eψ

sup
τ∈T

1

st

s∑
i=1

t∑
j=1

qτ
(
xi,x

′
j

)
=Eψ

sup
τ∈T

1

s!

∑
πx

1

t!

∑
πx′

1

r

r∑
i=1

qτ

(
xπ(i),x

′
π(i)

)
≤Eψ

 1

s!

∑
πx

1

t!

∑
πx′

sup
τ∈T

1

r

r∑
i=1

qτ

(
xπ(i),x

′
π(i)

) (ψ is nondecreasing)

≤ 1

s!

∑
πx

1

t!

∑
πx′

Eψ

(
sup
τ∈T

1

r

r∑
i=1

qτ

(
xπ(i),x

′
π(i)

))
(Jensen’s inequality)

=Eψ

(
sup
τ∈T

1

r

r∑
i=1

qτ (xi,x
′
i)

)
.
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According to Lemma 6, <̂D(Lclu ◦ G) can be bounded by

<̂D′(Lclu ◦ G) := Eε

sup
g∈G

1

bn2 c

bn2 c∑
i=1

εi`clu(g(xi,xi+bn2 c))

 ,
where each εi is an independent Rademacher random variable.

In order to obtain tighter generalization bounds for k-means clustering, we develop the following
novel vector-contraction inequality:
Lemma 7. Let G be a vector-valued function class of k-means clustering defined in Subection 5.1.
Given a dataset D of size n. Then, we have

<̂D(Lclu ◦ G) ≤ 12
√
K max

k
<̃bn2 c(Gk)

(
1 + log

1
2 (e2n3) · log

M

<̃bn2 c(Gk)

)
,

where <̃bn2 c (Gk) is the worst-case Rademacher complexity, Gk is the restriction of the function class
along the k-th coordinate, gk ∈ Gk.

Proof. We first introduce the following lemma:

Lemma 8 (Lemma 1 in [Foster and Rakhlin, 2019]). Let F ⊆
{
f : X → RK

}
, and let φ1, . . . , φn

each be L Lipschitz with respect to the `∞ norm. For any D with a finite sample of size n and ε > 0,
we have that

logN2 (ε, φ ◦ F , D) ≤ K max
k

logN∞
( ε
L
,Fk, D

)
, (10)

where Fk is the restriction of the function class along the k-th coordinate, fk ∈ Fk, k ∈ [K].

The empirical `∞ norm covering number of Gk can be bounded by the fat-shattering dimension,
and the fat-shattering dimension can be bounded by the worst-case Rademacher complexity of Gk.
Combined with the above steps, we have

<̂D(Lclu ◦ G) ≤ <̂D′(Lclu ◦ G)

≤ inf
α>0

(
4α+

12√
n

∫ M

α

√
logN2(ε,Lclu ◦ G, D′)dε

)
(Use Lemma 5 )

≤ inf
α>0

(
4α+

12√
n

∫ M

α

√
K max

k
logN∞(ε,Gk, D′)dε

)
(Use inequality (10) and `clu(·) is 1-Lipschitz w.r.t. `∞ norm for k-means clustering)

≤ inf
α>0

4α+
12√
n

∫ M

α

√
K max

k
fatε(Gk) log

2eBbn2 c
ε

dε

 (Use Lemma 4)

≤ inf
α>0

4α+
12√
n

∫ M

α

√
K max

k

4bn2 c<̂
2
D′(Gk)

ε2
log

2eGbn2 c
<̂D′(Gk)

dε

 (Use Lemma 3)

≤ inf
α>0

4α+
12√
n

∫ M

α

√√√√K max
k

4bn2 c<̃
2
bn2 c

(Gk)

ε2
log

2eGbn2 c
<̃bn2 c(Gk)

dε


(The definition of the worst-case Rademacher complexity)

≤ inf
α>0

4α+
12√
n

∫ M

α

√
2nK maxk <̃2

bn2 c
(Gk)

ε2
log(en

3
2 )dε


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(Use the similar technique to the proof in inequality (8), the lower bound of <̃bn2 c(Gk) ≥ G√
2bn2 c

)

≤ inf
α>0

(
4α+ 12

√
K max

k
<̃bn2 c(Gk) log

1
2 (e2n3)

∫ M

α

ε−1dε

)

≤12
√
K max

k
<̃bn2 c(Gk) + 12

√
K max

k
<̃bn2 c(Gk) log

1
2 (e2n3) · log

M

3
√
K maxk <̃bn2 c(Gk)

(Choose α = 3
√
K max

k
<̃bn2 c(Gk))

=12
√
K max

k
<̃bn2 c(Gk)

(
1 + log

1
2 (e2n3) · log

M

<̃bn2 c(Gk)

)
.

Since k-means clustering-based LSRL method is two-stage, the k-means clustering is used to generate
label-specific representations in the first stage, and the second stage is conventional multi-label
learning. Therefore, the corresponding whole function class is actually denoted asH = F +Lclu ◦G.
Since <̃nc(P(H)) ≤ <̃nc(P(F)) + <̃nc(P(Lclu ◦ G) [Bartlett and Mendelson, 2002], with Lemma
1, we have

<̂D(L ◦ H) ≤ 12
√

2ρ
√
c
(
<̃nc(P(F)) + <̃nc(P(Lclu ◦ G))

)(
1 + log

1
2 (8e2n3c3) · log

M
√
n

µB

)
.

According to Lemma 7, we have that the worst-case Rademacher complexity of the loss function space
associated with P(G) can be bounded by the worst-case Rademacher complexity of the restriction of
the function class along each coordinate P(Gk). Hence, for k-means clustering-based LSRL method,
Lemma 7 involves the upper and lower bounds of <̃bnc

2 c(P(Gk)).

We then obtain the lower bound of the worst-case Rademacher complexity <̃bnc
2 c(P(Gk)) by the

Khintchine-Kahane inequality with p = 1:

<̃bnc
2 c(P(Gk)) = sup

[c]×D′∈[c]×X b
n
2
c
<̂[c]×D′(P(Gk))

= sup
[c]×D′∈[c]×X b

n
2
c
Eε

 sup
pj(gk(xi,xi+bn

2
c))∈P(Gk)

1

bn2 c

bn2 c∑
i=1

1

c

c∑
j=1

εijpj(gk(xi,xi+bn2 c))


= sup

[c]×D′∈[c]×X b
n
2
c
Eε

 sup
gjk∈G

j
k

1

bn2 cc

bn2 c∑
i=1

c∑
j=1

εijg
j
k(xi,xi+bn2 c)


= sup
‖Zj

k(xi,xi+bn
2
c)‖≤1

Eε

 sup
‖V (xi,xi+bn

2
c)‖≤4R2

1

bn2 cc

bn2 c∑
i=1

c∑
j=1

εijV (xi,xi+bn2 c)Z
j
k(xi,xi+bn2 c)


= sup
‖Zj

k(xi,xi+bn
2
c)‖≤1

4R2

bn2 cc
Eε‖

bn2 c∑
i=1

c∑
j=1

εijZ
j
k(xi,xi+bn2 c)‖

≥ sup
‖Zj

k(xi,xi+bn
2
c)‖≤1

4R2

bn2 cc
1√
2

bn2 c∑
i=1

c∑
j=1

‖Zjk(xi,xi+bn2 c)‖
2

 1
2

.

Since ‖Zjk(xi,xi+bn2 c)‖ ≤ 1, we set sup‖Zj
k(xi,xi+bn

2
c)‖≤1

1
bn2 cc

[∑bn2 c
i=1

∑c
j=1 ‖Z

j
k(xi,xi+bn2 c)‖

2
] 1

2

=

1√
bn2 cc

. So, <̃bnc
2 c(P(Gk))) ≥ 4R2

√
nc

= G√
nc

.
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Then, we replace the lower bound of <̃bn2 c(Gk) in the proof of Lemma 7 with the lower bound of

<̃bnc
2 c(P(Gk))), and we have

<̃nc(P(Lclu ◦ G)) ≤ 12
√
K max

k
<̃bnc

2 c(P(Gk)))

(
1 + log

1
2 (e2n3c3) · log

M
√
nc

G

)
.

We then upper bound the worst-case Rademacher complexity <̃bnc
2 c(P(Gk)) as the following:

<̃bnc
2 c(P(Gk))

= sup
[c]×D′∈[c]×X b

n
2
c
<̂[c]×D′(P(Gk))

= sup
[c]×D′∈[c]×X b

n
2
c
Eε

 sup
pj(gk(xi,xi+bn

2
c))∈P(Gk)

1

bn2 c

bn2 c∑
i=1

1

c

c∑
j=1

εijpj(gk(xi,xi+bn2 c))


= sup

[c]×D′∈[c]×X b
n
2
c
Eε

 sup
gjk∈G

j
k

1

bn2 cc

bn2 c∑
i=1

c∑
j=1

εijg
j
k(xi,xi+bn2 c)


= sup
‖Zj

k(xi,xi+bn
2
c)‖≤1

Eε

 sup
‖V (xi,xi+bn

2
c)‖≤4R2

1

bn2 cc

bn2 c∑
i=1

c∑
j=1

εijV (xi,xi+bn2 c)Z
j
k(xi,xi+bn2 c)


= sup
‖Zj

k(xi,xi+bn
2
c)‖≤1

4R2

bn2 cc
Eε‖

bn2 c∑
i=1

c∑
j=1

εijZ
j
k(xi,xi+bn2 c)‖

≤ sup
‖Zj

k(xi,xi+bn
2
c)‖≤1

4R2

bn2 cc

Eε‖ bn2 c∑
i=1

c∑
j=1

εijZ
j
k(xi,xi+bn2 c)‖

2

 1
2

≤ sup
‖Zj

k(xi,xi+bn
2
c)‖≤1

4R2

bn2 cc

bn2 c∑
i=1

c∑
j=1

‖Zjk(xi,xi+bn2 c)‖
2

 1
2

≤ G√
bn2 cc

≤ 2G√
nc
.

Hence, we have

<̃nc(P(Lclu ◦ G)) ≤ 24
√
KG√
nc

(
1 + log

1
2 (e2n3c3) · log

M
√
nc

G

)
.

Use the similar technique to the proof of the inequality above, the upper bound of <̃nc(P(F))

is 2κΛ
√
KR√
nc

, since ‖φj(x)‖ =
√∑K

k=1(d(x, cjk))2 ≤
√
K maxk ‖x − cjk‖ ≤

√
K maxk(‖x‖ +

‖cjk‖) ≤ 2
√
KR.

Finally, combining with the above inequalities and (5), we have

R(f) ≤R̂D(f) + 3M

√
log 2

δ

2n
+

48
√

2ρκΛ
√
KR

(
1 + log

1
2 (8e2n3c3) · log M

√
n

µB

)
√
n

+
242
√

2ρ
√
KG√

n

(
1 + log

1
2 (e2n3c3) · log

M
√
nc

G

)(
1 + log

1
2 (8e2n3c3) · log

M
√
n

µB

)
.
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A.4.2 Proof of Proposition 2

First, we prove that the squared loss is 1 pseudo-Lipschitz of order 2.∣∣`b (yjfj(x))− `b
(
yjf
′
j(x)

)∣∣
=
∣∣∣(yj − fj(x))

2 −
(
yj − f ′j(x)

)2∣∣∣
=
∣∣(yj − fj(x)) +

(
yj − f ′j(x)

)∣∣ · ∣∣(yj − fj(x))−
(
yj − f ′j(x)

)∣∣
≤
(
|yj − fj(x)|+

∣∣yj − f ′j(x)
∣∣) · ∣∣(yj − fj(x))−

(
yj − f ′j(x)

)∣∣
≤
(
1 + |yj − fj(x)|+

∣∣yj − f ′j(x)
∣∣) · ∣∣(yj − fj(x))−

(
yj − f ′j(x)

)∣∣
According to the definition of the pseudo-Lipschitz function, the squared loss is 1 pseudo-Lipschitz
of order 2. Then, we have∣∣`b (yjfj(x))− `b

(
yjf
′
j(x)

)∣∣
≤
(
1 + |yj − fj(x)|+

∣∣yj − f ′j(x)
∣∣) · ∣∣(yj − fj(x))−

(
yj − f ′j(x)

)∣∣
≤
(
1 + 2 |yj |+ |fj(x)|+

∣∣f ′j(x)
∣∣) ∣∣fj(x)− f ′j(x)

∣∣
≤(3 + 2B)

∣∣fj(x)− f ′j(x)
∣∣ .

Second, we prove that the surrogate Decomposable Loss is (3 + 2B)c-Lipschitz continuous with
respect to the `∞ norm if the base loss `b is the squared loss.∣∣`D(f(x),y)− `D

(
f ′(x),y

)∣∣
=

∣∣∣∣∣∣
c∑
j=1

`b (yjfj(x))−
c∑
j=1

`b
(
yjf
′
j(x)

)∣∣∣∣∣∣
=

c∑
j=1

∣∣`b (yjfj(x))− `b
(
yjf
′
j(x)

)∣∣
≤

c∑
j=1

(3 + 2B)
∣∣fj(x)− f ′j(x)

∣∣
≤c(3 + 2B) max

j∈[c]

∣∣fj(x)− f ′j(x)
∣∣

=(3 + 2B)c
∥∥f(x)− f ′(x)

∥∥
∞ .

A.4.3 Proof of Theorem 3

Compared with the function class of LSRL where each label corresponds to a Lasso, the function
class of LLSF introduces the additional sharing constraint. In fact, the introduction of the sharing
constraint reduces the complexity of the function class compared with the original class. Then, the
complexity for the function class of LLSF can be bounded by the complexity of the function class of
LSRL where each label corresponds to a Lasso. Hence, the complexity analysis of the function class
of LLSF can be converted into giving the bound of the Rademacher complexity of the LSRL function
class where each label corresponds to a Lasso.

According to the definition, the function class of LSRL where each label corresponds to a Lasso
means that in the class of LSRL defined by (1), the base loss `b is the squared loss, the nonlinear
mappings ζ(·) and φ(·) are both identity transformations for any j ∈ [c], and the constraint α(w)
is ‖wj‖1 ≤ Λ for any j ∈ [c]. The proof process is similar to Lemma 1 and Theorem 1, but the
upper bound of the worst-case Rademacher complexity <̃nc(P(F)) here is different from Theorem
1. According to the above definitions, we have
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<̃nc(P(F))

= sup
[c]×D∈[c]×Xn

<̂[c]×D(P(F))

= sup
[c]×D∈[c]×Xn

Eε

 sup
pj(f(xi))∈P(F)

1

nc

n∑
i=1

c∑
j=1

εijpj(f(xi))


= sup

[c]×D∈[c]×Xn

Eε

 sup
fj∈Fj

1

nc

n∑
i=1

c∑
j=1

εijfj (xi)


= sup
‖xj

i‖2≤R:i∈[n],j∈[c]

1

nc
Eε

 sup
‖wj‖1≤Λ

n∑
i=1

c∑
j=1

εij〈wj ,x
j
i 〉


= sup
‖xj

i‖2≤R:i∈[n],j∈[c]

1

nc
Eε

 sup
‖wj‖1≤Λ

‖wj‖1‖
n∑
i=1

c∑
j=1

εijx
j
i‖∞

 (Use Hölder’s Inequality)

≤ sup
‖xj

i‖2≤R:i∈[n],j∈[c]

Λ

nc
Eε‖

n∑
i=1

c∑
j=1

εijx
j
i‖2

≤ sup
‖xj

i‖2≤R:i∈[n],j∈[c]

Λ

nc

Eε‖ n∑
i=1

c∑
j=1

εijx
j
i‖

2
2

 1
2

(Use Jensen’s Inequality)

≤ sup
‖xj

i‖2≤R:i∈[n],j∈[c]

Λ

nc

 n∑
i=1

c∑
j=1

‖xji‖
2
2

 1
2

(Use Lemma 2)

≤ ΛR√
nc
. (11)

Combining with Lemma 1, inequalities (11), (5), and ρ = (3 + 2B)c, then we have

R(f) ≤ R̂D(f) +
24
√

2(3 + 2B)cΛR
(

1 + log
1
2 (8e2n3c3) · log M

√
n

ρB

)
√
n

+ 3M

√
log 2

δ

2n
.

A.4.4 Proof of Theorem 4

First, we upper bound the worst-case Rademacher complexity <̃nc(P(F)) for DNN-based LSRL
method. With the definitions in the main paper, we have

<̃nc(P(F))

= sup
[c]×D∈[c]×Xn

<̂[c]×D(P(F))

= sup
[c]×D∈[c]×Xn

Eε

 sup
pj(f(xi))∈P(F)

1

nc

n∑
i=1

c∑
j=1

εijpj(f(xi))


= sup

[c]×D∈[c]×Xn

Eε

 sup
fj∈Fj

1

nc

n∑
i=1

c∑
j=1

εijfj (xi)


= sup

[c]×D∈[c]×Xn

Eε

 sup
‖wj‖≤Λ

1

nc

n∑
i=1

c∑
j=1

εijσsig(w
>
j φj(xi))


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≤2 · 1

4
sup

[c]×D∈[c]×Xn

Eε

 sup
‖wj‖≤Λ,φj

1

nc

n∑
i=1

c∑
j=1

εijw
>
j φj(xi)


(The Lipschitz constant of sigmoid activation is bounded by

1

4
)

≤1

2
Λ sup

[c]×D∈[c]×Xn

Eε sup
φj

1

nc

∥∥∥∥∥∥
n∑
i=1

c∑
j=1

εijφj(xi)

∥∥∥∥∥∥
≤1

2
Λ sup

[c]×D∈[c]×Xn

Eε sup
1

nc

∥∥∥∥∥∥
n∑
i=1

c∑
j=1

εijσReLU {W5 · [σReLU (W4xi)� σsig(W3ψ(Y )j)]}

∥∥∥∥∥∥
≤2 · 1

2
Λ sup

[c]×D∈[c]×Xn

Eε sup
‖W5‖≤D

1

nc

∥∥∥∥∥∥
n∑
i=1

c∑
j=1

εijW5 · [σReLU (W4xi)� σsig(W3ψ(Y )j)]

∥∥∥∥∥∥
(ReLU activation is 1-Lipschitz)

≤ΛD sup
[c]×D∈[c]×Xn

Eε sup
1

nc

∥∥∥∥∥∥
n∑
i=1

c∑
j=1

εij [σReLU (W4xi)� σsig(W3ψ(Y )j)]

∥∥∥∥∥∥
≤ΛD sup ‖σsig(W3ψ(Y )j)‖ sup

[c]×D∈[c]×Xn

Eε sup
‖W4‖≤D

1

nc

∥∥∥∥∥∥
n∑
i=1

c∑
j=1

εijσReLU (W4xi)

∥∥∥∥∥∥
≤2ΛD sup ‖σsig(W3ψ(Y )j)‖ sup

‖xi‖≤R
Eε sup
‖W4‖≤D

1

nc

∥∥∥∥∥∥
n∑
i=1

c∑
j=1

εijW4xi

∥∥∥∥∥∥
≤2ΛD2 sup ‖σsig(W3ψ(Y )j)‖ sup

‖xi‖≤R
Eε

1

nc

∥∥∥∥∥∥
n∑
i=1

c∑
j=1

εijxi

∥∥∥∥∥∥
≤2ΛD2 sup ‖σsig(W3ψ(Y )j)‖ sup

‖xi‖≤R

1

nc

Eε

∥∥∥∥∥∥
n∑
i=1

c∑
j=1

εijxi

∥∥∥∥∥∥
2


1
2

(Use Jensen’s Inequality)

≤2ΛD2 sup ‖σsig(W3ψ(Y )j)‖ sup
‖xi‖≤R

1

nc

 n∑
i=1

c∑
j=1

‖xi‖2
 1

2

≤2ΛD2 sup ‖σsig(W3ψ(Y )j)‖
R√
nc
. (12)

Then, we have to bound sup ‖σsig(W3ψ(Y )j)‖,

sup ‖σsig(W3ψ(Y )j)‖

≤1

4
sup

‖W3‖≤D
‖W3ψ(Y )j‖ (The Lipschitz constant of sigmoid activation is bounded by

1

4
)

≤1

4
D sup

j
‖ψ(Y )j‖ (Use Cauchy-Schwarz Inequality)

=
D

4
sup
j

sup
‖W2‖≤D

‖σReLU (ÃσReLU (ÃYj∗W1)W2)‖

≤D
4

sup
j

sup
‖W2‖≤D

‖ÃσReLU (ÃYj∗W1)‖‖W2‖
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≤D
2

4
sup
j
‖ÃσReLU (ÃYj∗W1)‖

≤D
2

4
sup
j
‖

c∑
i=1

ÃjiσReLU (

c∑
j=1

ÃijYj∗W1)‖

≤D
2

4
sup
j

c∑
i=1

Ãji‖σReLU (

c∑
j=1

ÃijYj∗W1)‖

≤D
2

4
sup
j

sup
‖W1‖≤D

c∑
i=1

Ãji · ‖
c∑
j=1

ÃijYj∗W1‖

≤D
3

4
sup
j

c∑
i=1

Ãji · ‖
c∑
j=1

ÃijYj∗‖ (Use Cauchy-Schwarz Inequality)

≤D
3R

4
sup
j

c∑
i=1

Ãji ·
c∑
j=1

Ãij

≤D
3R

4
‖Ã‖2∞ (13)

We denote N(j) as the index set of the one-hop neighbors of the j-th node, and denote g as the node
degree, gmax as the maximum node degree. Then, we bound ‖Ã‖∞ as follows

n∑
j=1

Ãij =

n∑
j=1

Aij√
gi + 1

√
gj + 1

=
1√
gi + 1

 1√
gi + 1

+
∑

j∈N(i)

1√
gj + 1


≤ 1√

gi + 1

 1√
1 + 1

+
∑

j∈N(i)

1√
1 + 1


≤ 1√

gi + 1

gi + 1√
2

=

√
gi + 1

2
≤
√
gmax + 1

2
. (14)

Combining with Lemma 1, inequalities (12), (13), (14), and (5), then we have

R(f) ≤ R̂D(f) +
6
√

2ρΛD5R2(gmax + 1)
(

1 + log
1
2 (8e2n3c3) · log M

√
n

ρB

)
√
n

+ 3M

√
log 2

δ

2n
.
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