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ABSTRACT

Robust 3D representation learning forms the perceptual foundation of spatial in-
telligence, enabling downstream tasks in scene understanding and embodied AI.
However, learning such representations directly from unposed multi-view images
remains challenging. Recent self-supervised methods attempt to unify geometry,
appearance, and semantics in a feed-forward manner, but they often suffer from
weak geometry induction, limited appearance detail, and inconsistencies between
geometry and semantics. We introduce UniSplat, a self-supervised framework
designed to address these limitations through three complementary components.
First, we propose a dual-masking strategy that strengthens geometry induction
in the encoder. By masking both encoder and decoder tokens, and targeting de-
coder masks toward geometry-rich regions, the model is forced to infer structural
information from incomplete visual cues, yielding geometry-aware representa-
tions even under unposed inputs. Second, we develop a coarse-to-fine Gaussian
splatting strategy that enhances appearance learning by progressively refining the
radiance field, thereby enhancing appearance detail to produce high-fidelity rep-
resentations. Finally, to enforce geometric–semantic consistency, we introduce a
pose-conditioned recalibration mechanism that interrelates the outputs of multi-
ple heads by reprojecting predicted 3D point and semantic maps into the image
plane using estimated camera parameters, and aligning them with corresponding
RGB and semantic predictions to ensure cross-task consistency and resolving ge-
ometry–semantic mismatches. Together, these components yield unified 3D rep-
resentations that are robust to unposed, sparse-view inputs and generalize across
diverse tasks, laying a perceptual foundation for spatial intelligence.

1 INTRODUCTION

Spatial intelligence, the ability to construct and reason over structured representations of the phys-
ical world, is a key prerequisite for embodied agents that must navigate, manipulate, and plan in
complex environments. A fundamental prerequisite for such intelligence is robust 3D perception,
which enables agents to build structured representations of the world that integrate geometry, appear-
ance, and semantics. These representations serve as the perceptual foundation for downstream tasks
in embodied AI, including navigation, manipulation, and scene understanding. However, learning
effective 3D representations directly from unposed multi-view images remains an open challenge.

Research on 3D perception has long benefited from supervised feed-forward reconstruction meth-
ods, which aim to infer geometry, appearance, and semantics directly from images with the aid
of ground-truth supervision. Neural Radiance Fields (NeRFs) (Mildenhall et al., 2021) and their
extensions such as Mip-NeRF (Barron et al., 2021) and Instant-NGP (Müller et al., 2022) achieve
high-fidelity novel-view synthesis but require calibrated multi-view images and often rely on per-
scene optimization. The introduction of 3D Gaussian Splatting (Kerbl et al., 2023) accelerated
training and rendering by representing appearance with explicit primitives, and subsequent variants
have explored pose-aware (Chen et al., 2021; Xu et al., 2024a; Chen et al., 2024a; Tang et al., 2024)
and pose-free pipelines (Jiang et al., 2024; Wang et al., 2024a; Smart et al., 2024; Ye et al., 2025). In
parallel, semantic scene fields (Zhi et al., 2021; Peng et al., 2021; Fan et al., 2024; Li et al., 2025a)
have made progress toward 3D semantic understanding, while geometry-focused works predict cam-
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era poses or dense point maps to recover scene structure (Wang et al., 2024b; 2025; Zhang et al.,
2025; Leroy et al., 2025). Despite this progress, most supervised methods depend on ground-truth
geometry or calibration signals and tend to treat geometry, appearance, and semantics in isolation,
leaving a gap for unified perceptual representations that support spatial intelligence.

To reduce dependence on costly 3D labels, self-supervised approaches aim to build geometry- and
view-aware priors from unlabeled images. Inspired by 2D representation learning, masked autoen-
coding (He et al., 2022; Bao et al., 2022; Dong et al., 2025) and contrastive objectives (Chen et al.,
2020b; Grill et al., 2020) have been extended to 3D, promoting cross-view invariance and recon-
struction consistency (Weinzaepfel et al., 2022; Zhu et al., 2023b). Novel-view synthesis has also
been widely used as a training signal, although many methods assume dense video supervision and
degrade in sparse-view regimes (Bian et al., 2023; Fu et al., 2024). Recent work moves toward
pose-free self-supervision by jointly estimating cameras and scene structure (Jiang et al., 2025a;
Kang et al., 2025), highlighting the importance of anchoring representations in a consistent spa-
tial frame. Meanwhile, feed-forward Gaussian-splatting models such as UniForward (Tian et al.,
2025) and Uni3R (Sun et al., 2025) attempt to unify geometry, semantics, and appearance in a
single pipeline. Yet most of these methods still suffer from weak geometry induction, limited ap-
pearance detail, and geometry–semantic inconsistencies. This motivates the development of unified
frameworks that explicitly couple geometry, appearance, semantics, and camera estimation to form
a consistent perceptual basis for embodied AI.

To address these challenges, we propose UniSplat, a self-supervised framework for learning unified
3D representations from unposed multi-view images. UniSplat is built on a transformer encoder
with a multi-head decoder and introduces three key innovations. First, a dual-masking strategy en-
forces geometry-aware feature learning by masking both encoder and decoder tokens, with decoder
masks targeted to geometry-rich regions, thereby strengthening geometry induction from incomplete
visual evidence. Second, a coarse-to-fine Gaussian splatting strategy hierarchically refines the radi-
ance field, progressively enhancing appearance detail to produce high-fidelity visual representations.
Finally, a pose-conditioned recalibration mechanism enforce geometric–semantic consistency by in-
terrelating decoder predictions. Unlike conventional multi-task learning, where each head operates
independently, our design uses estimated camera poses to reproject 3D point and semantic maps into
the 2D image plane and align them with the corresponding RGB and semantic predictions, ensuring
cross-task coherence and resolving geometry–semantic mismatches.

Our contributions can be summarized as follows:

• We introduce a dual-masking strategy that applies masking to both encoder and decoder tokens,
with decoder masks biased toward geometry-rich regions to encourage geometry-aware represen-
tations from incomplete cues.

• We propose a coarse-to-fine Gaussian splatting strategy that hierarchically refines the radiance
field, enhancing appearance detail and producing high-fidelity visual representations.

• We design a pose-conditioned recalibration mechanism that reprojects 3D point and semantic
maps into the image plane using estimated camera poses and aligns them with RGB and semantic
predictions, enforcing cross-task coherence.

Together, these contributions enable UniSplat to learn unified 3D representations that are robust to
unposed, sparse-view inputs and broadly transferable across tasks, laying a perceptual foundation for
spatial intelligence. Experiments on diverse 3D scene understanding and embodied AI benchmarks
confirm consistent performance gains, validating the generalization ability of our framework.

2 RELATED WORK

2.1 SUPERVISED 3D REPRESENTATION LEARNING

Supervised feed-forward approaches aim to recover geometry, appearance, and semantics in a single
pass using explicit supervision such as target-view rendering signals or external priors. These meth-
ods allow fast inference without per-scene optimization (Kerbl et al., 2023; Lu et al., 2024; Qin et al.,
2024; Zhou et al., 2024). A key distinction lies in their dependence on camera poses. Pose-required
models assume known intrinsic and extrinsic characteristics during both training and testing. They
often rely on epipolar constraints, cost volumes, or pose-conditioned embeddings, achieving strong
photometric quality (Chen et al., 2021; Xu et al., 2024a; Charatan et al., 2024; Chen et al., 2024a;
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Tang et al., 2024; Xu et al., 2024c; Zhang et al., 2024; Xu et al., 2024b). However, these methods
depend heavily on SfM-style preprocessing and may fail when pose estimation is unreliable.

Pose-free models remove pose inputs at inference but still require posed supervision or fixed targets
during training. Within this family, research has diverged by task emphasis. Geometry-focused
models predict camera parameters or dense point maps aligned with the scene structure (Wang
et al., 2024b; 2025; Zhang et al., 2025; Leroy et al., 2025; Jiang et al., 2025b; Li et al., 2025b).
Appearance-focused methods directly predict per-pixel Gaussians in a canonical space, resolving
scale by encoding intrinsics (Jiang et al., 2024; Wang et al., 2024a; Smart et al., 2024; Ye et al.,
2025). Semantics-focused approaches lift 2D vision-language features into a 3D-consistent field,
enabling open-vocabulary, view-consistent segmentation (Fan et al., 2024; Li et al., 2025a; Sheng
et al., 2025). While these strands are beginning to converge, the reliance on posed training com-
bined with unposed inference can lead to residual inconsistencies, motivating the development of
self-supervised alternatives.

2.2 SELF-SUPERVISED 3D REPRESENTATION LEARNING

Self-supervised approaches aim to reduce the reliance on costly 3D labels by learning 3D represen-
tations directly from raw multi-view images. Early methods extended ideas from 2D represen-
tation learning: contrastive learning encouraged view-invariant features (Chen et al., 2020b; Grill
et al., 2020), while masked autoencoding and cross-view completion promoted reconstruction and
correspondence (He et al., 2022; Bao et al., 2022; Weinzaepfel et al., 2022; Zhu et al., 2023b; 2025;
Dong et al., 2025). These methods improved feature learning, but they often lacked strict global
3D consistency and produced representations that were more view-aligned than spatially grounded.
Another line of work employed novel view synthesis as a self-supervisory signal, where models
were trained to render unseen target views and match them photometrically (Bian et al., 2023; Fu
et al., 2024). Although this supervision tied predictions more directly to 3D structure and improved
geometry–appearance coupling, most approaches assumed known or pre-estimated camera poses or
leveraged video metadata to simplify correspondence. Moreover, they typically require dense video
streams and re-render nearby frames, which limits robustness in sparse-view settings and constrains
applicability to real-world scenarios.

More recently, pose-free self-supervised methods seeks to remove this dependency by jointly es-
timating cameras and scenes directly from raw, unposed image collections. RayZer (Jiang et al.,
2025a) exemplifies this direction with a transformer-based latent renderer that couples camera and
scene recovery in a predict-then-render loop. SelfSplat (Kang et al., 2025) employs explicit Gaussian
splatting, predicting depth and pose with separate modules, which yields interpretable outputs but
less coherent alignment. Latent models offer flexibility, while explicit ones provide interpretability
and efficient rendering; both highlight a shift toward joint camera–scene learning. Parallel efforts
such as UniForward (Tian et al., 2025) and Uni3R (Sun et al., 2025) attempt to unify geometry,
semantics, and appearance in a single feed-forward pipeline under self-supervision. Despite this
progress, current pose-free methods still suffer from weak geometry induction, limited appearance
detail, and geometry–semantic inconsistencies, underscoring the need for frameworks that explic-
itly couple all three aspects with camera estimation in a consistent 3D reference frame. In this
paper, we propose UniSplat, a unified self-supervised framework that strengthens geometry induc-
tion through dual-masking, enhances appearance fidelity via coarse-to-fine Gaussian splatting, and
enforces geometry–semantic consistency with pose-conditioned recalibration, yielding robust 3D
representations that transfer effectively to scene understanding and embodied AI tasks.

3 METHODOLOGY

3.1 OVERVIEW

We propose UniSplat, a unified feed-forward framework for self-supervised 3D representation learn-
ing from unposed multi-view images. As shown in Figure 1, the model consists of a transformer
encoder and a multi-head decoder that predicts dense point maps, semantic maps, RGB render-
ings, and camera parameters. A dual-masking strategy (§3.2) strengthens geometry induction by
masking both encoder and decoder tokens, with decoder masks biased toward geometry-rich re-
gions. A coarse-to-fine Gaussian splatting strategy (§3.3) progressively refines the radiance field
from global structure to semantic context and fine appearance, enhancing visual detail. Finally, a
pose-conditioned recalibration mechanism (§3.4) reprojects predicted 3D point and semantic maps
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Figure 1: Overview of the proposed UniSplat framework. UniSplat integrates a dual-masking
strategy for geometry induction, a coarse-to-fine Gaussian splatting strategy for appearance refine-
ment, and a pose-conditioned recalibration mechanism for geometry–semantic consistency. See §3.

into the image plane using estimated camera parameters and aligns them with RGB and semantic
predictions, ensuring cross-task consistency. The training objectives are introduced in §3.5.

3.2 DUAL MASKING STRATEGY

To strengthen geometry induction, UniSplat employs a dual-masking strategy inspired by (Wang
et al., 2023) that applies masking to both encoder and decoder tokens. By targeting decoder masks
toward geometry-rich regions, the model is encouraged to infer global 3D structure from incomplete
visual cues rather than overfitting to trivial textures.

Stage 1: Initial Masking and Augmented Encoding. Given a set of multi-view images I =
{Iv}Vv=1, we partition each into patch tokens X = {Xv}Vv=1, where V is the number of views.
A random mask Me,v(ρe) with ratio ρe is applied to each Xv:

Xvis
v = (1−Me,v)⊙Xv, (1)

yielding the visible set Xvis = {Xvis
v }Vv=1. Following (Jiang et al., 2025a), the encoder Eθ is aug-

mented with learnable camera tokens Tcam ∈ RV×d and Gaussian latent tokens Tcoarse ∈ RN×d,
where N is the number of latent Gaussians, and d is the latent dimension. The encoder processes
the concatenated token sequence [Xvis

v , T cam
v , Tcoarse] as follows:

[Yvis, T
′
cam, T

′
coarse] = Eθ([Xvis, Tcam, Tcoarse]), (2)

where Yvis = {Y vis
v }Vv=1 are encoded features, T ′

cam are updated camera tokens, and T ′
coarse are

updated Gaussian latent tokens.

Stage 2: Gaussian-Guided Geometric Masking. Next, encoded features are used to guide a second
geometry-aware masking pass. Updated camera tokens T ′

cam are passed to a Coarse Camera Head:

Ccoarse = Hcoarse
cam (T ′

cam), (3)

where Ccoarse={cv∈R9}Vv=1 encoding the intrinsics and extrinsics of images. In parallel, Gaussian
tokens T ′

coarse together with Ccoarse are passed to a Coarse Gaussian Head, forming a preliminary
geometric Gaussian field Ggeo:

Ggeo(µ, σ, r, s, β) = Hcoarse
gauss (T

′
coarse, Ccoarse), (4)

where each Gaussian has the center position µk ∈ R3, opacity σk ∈ R+, rotation Rk ∈ R4, scale
sk ∈ R3, and learnable importance score βk ∈ R+. To identify the most structurally critical regions,
we render a geometric importance map Jv ∈ RH×W via alpha blending:

Jv =
∑N

i=1
σiβi

∏i−1

j=1
(1− σj). (5)
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For each patch, an average importance score is obtained by pooling pixel values from Jv . Patches
exceeding the dual masking threshold ρd are selected, defining a geometry-aware mask Md,v(ρd).
Applying this second mask to the visible tokens from the first stage yields:

Zvis
v = (1−Md,v)⊙ Y vis

v . (6)

The resulted Zvis = {Zvis
v }Vv=1 will be passed to the decoder.

By selectively hiding structurally important features, this dual masking forces the decoder to recon-
struct them from sparse evidence by reasoning about the underlying 3D spatial structure rather than
relying on local texture completion, thereby improving geometry-aware representation learning.

3.3 COARSE-TO-FINE GAUSSIAN SPLATTING STRATEGY

A central challenge in unified 3D representation learning is the granularity mismatch between se-
mantic and appearance representations: semantic fields are coarse by nature, while appearance fields
require dense, fine-grained primitives to capture textures and lighting. To reconcile this and enhance
appearance learning, UniSplat introduces a coarse-to-fine Gaussian splatting strategy that pro-
gressively refines scene representations from global structure to fine detail.

The decoder takes as input the visible tokens Zvis, updated camera tokens T ′
cam, Gaussian latent

tokens T ′
coarse, and learnable masked tokens Tmask, and predicts multiple scene properties through

a multi-head design inspired by (Wang et al., 2025). Specifically, the Point Head uses a Dense
Prediction Transformer (DPT) to regress per-view 3D point maps Pv ∈RH×W×3, the Camera Head
refines camera parameters Cfinal from T ′

cam, the Gaussian Head predicts physical attributes of 3D
Gaussians (center, color, scale, rotation, opacity) for appearance modeling, and the Semantic Head
predicts semantic features for each Gaussian to support scene understanding.

Building on these outputs, our coarse-to-fine Gaussian splatting proceeds in three stages. First, the
Anchor Gaussian Head predicts anchor Gaussians Ganchor(µ

′, e, f) from latent tokens T ′′
coarse, where

µ′ denotes center position, e is the geometric feature, and f is the semantic feature. Similar to
Scaffold-GS (Lu et al., 2024), each anchor Gaussian serves as a base from which multiple semantic
Gaussians are derived by applying learned position offsets, enabling richer coverage of the local
scene context. Next, the Semantic Gaussian Head expands each anchor into semantic Gaussians
Gsem(µ

′+∆′, c′, σ′, R′, S′, f ′) by predicting offsets ∆′, coarse appearance attributes (c′, σ′, R′, S′),
and semantic features f ′. These semantic Gaussians can be rasterized into 2D maps through alpha
compositing:

s =
∑Ns

i=1
σ′
if

′
i

∏i−1

j=1
(1− σ′

j), (7)

where Ns is the number of semantic Gaussians. Finally, each semantic Gaussian acts as a new
anchor to diffuse a denser set of fine-grained appearance Gaussians Gapp, with refined attributes
(c′′, σ′′, R′′, S′′) predicted by the Appearance Gaussian Head. The whole process can be summa-
rized as:

Ganchor(µ
′, e, f) ⇒ Gsem(µ

′ +∆′, c′, σ′, R′, S′, f ′) ⇒ Gapp(µ
′′ +∆′′, c′′, σ′′, R′′, S′′, f ′′). (8)

By progressively refining anchor, semantic, and appearance Gaussians, this strategy resolves the
granularity mismatch between coarse semantics and fine textures, producing 3D representations that
enable rendered outputs to capture fine appearance detail.

3.4 POSE-CONDITIONED RECALIBRATION MECHANISM

To ensure geometric–semantic consistency, UniSplat introduces a pose-conditioned recalibration
mechanism. This component aligns predictions from different heads by reprojecting 3D outputs
into the image plane using estimated camera parameters and minimizing their discrepancy with 2D
renderings, thereby enforcing cross-task coherence across modalities.

UniSplat produces two complementary types of 3D predictions: explicit Gaussian fields (Gapp for
appearance and Gsem for semantics) and per-view 3D point maps Pv . To ensure consistency among
these predictions, the recalibration mechanism projects 3D maps back into 2D and compares them
with fields rendered from Gaussians. This procedure forces all components to converge toward a
unified and consistent scene representation.
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Geometric Recalibration. For each view v, the 3D point map Pv is projected to 2D using the
refined camera parameters Cv

final. We then measure consistency with the rendered RGB image from
the appearance field Gapp via a reprojection loss:

Lrecalib geo =
∑V

v=1

∑H×W

j=1
∥qv

j − π(Cv
final,p

v
j )∥, (9)

where pv
j ∈Pv is the 3D point at pixel j, qv

j is its 2D projection, and π(·) the projection operator.

Semantic Recalibration. To align semantic information, we build a 3D semantic point map Psem
v

by associating each 3D point in Pv with its semantic label. Projecting Psem
v to 2D yields a semantic

projection F proj
v , which is aligned with the rendered semantic map F rend

v from Gsem using cosine
similarity:

Lrecalib sem =
∑V

v=1

∑H×W

j=1

(
1− F proj

v (j) · F rend
v (j)

∥F proj
v (j)∥ · ∥F rend

v (j)∥
)
. (10)

The overall recalibration objective combines both terms:

Lrecalib = λrecalib geoLrecalib geo + λrecalib semLrecalib sem. (11)

with λrecalib geo and λrecalib sem controlling their relative contributions. By enforcing both geometric
and semantic alignment in the 2D image plane, the recalibration mechanism ensures consistency
between geometry and semantics, which is crucial for producing coherent 3D scene representations

3.5 TRAINING OBJECTIVES

Self-supervision from input views provides an essential learning signal, but it alone is insufficient
for reliable 3D modeling. Thus, we adopt a composite objective that combines self-supervision
with knowledge distillation, leveraging geometric and semantic priors from large-scale pre-trained
foundation models to strengthen learning while avoiding the need for expensive 3D labels. The
overall objective is a weighted sum of four terms:

Ltotal = λrgbLrgb + λsemLsem + λgeoLgeo + λrecalibLrecalib, (12)

where the λ∗ terms balance the contributions of each component.

Photometric Reconstruction Loss ensures that the rendered appearance Îv from Gapp matches the
input views Iv . It combines an L1 loss with the LPIPS perceptual metric for image quality:

Lrgb =
∑V

v=1

(
∥Îv − Iv∥2 + λLPIPS · LPIPS(Îv, Iv)

)
. (13)

Semantic Distillation Loss transfers open-vocabulary semantic knowledge from a frozen 2D vi-
sion–language model (VLM) into the 3D semantic Gaussians. For each view v, we extract a se-
mantic feature map FVLM

v from the input image Iv using the VLM’s image encoder (e.g., LSeg) and
align it with the rendered semantic feature map F render

v . The loss is defined as one minus the cosine
similarity between these features:

Lsem =
∑V

v=1

∑H×W

j=1

(
1− F render

v (j) · FVLM
v (j)

∥F render
v (j)∥ · ∥FVLM

v (j)∥
)
. (14)

Geometric Prior Loss. Following (Jiang et al., 2025b), we transfer geometric knowledge from a
frozen VGGT teacher, which provides pseudo ground-truth camera parameters c̃i and point maps
P̃ v
j , to regularize camera estimation and strengthen 3D structure learning. Camera parameters are

regularized via a Huber loss:

Lpose =
∑V

i=1

∥∥c̃i − ci
∥∥
ϵ
, (15)

Scene geometry is distilled using:

Lpoint =
∑V

v=1

∑H×W

j=1
C̃onf

v

j · ∥P̃ v
j − P v

j ∥+ ||C̃onf
v

j − Confvj ||, (16)

where C̃onf
v

j denotes the confidence score. The full geometric prior loss combines these terms:

Lgeo = λposeLpose + λpointLpoint. (17)

where λpose and λpoint are hyperparameters.
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Table 1: Quantitative Comparison on ScanNet. We evaluate performance on novel view synthesis,
depth estimation, and open-vocabulary semantic segmentation.

Recon. Time↓ Source View Target View
Method SfM Per-Scene mIoU↑ Acc.↑ rel↓ τ ↑ mIoU↑ Acc.↑ PSNR↑ SSIM↑ LPIPS↓
LSeg N/A N/A 0.4701 0.7891 - - 0.4819 0.7927 - - -
NeRF-DFF 20.52s 1min 0.4540 0.7173 27.68 9.61 0.4037 0.6755 19.86 0.6650 0.3629
Feature-3DGS 20.52s 18mins 0.4453 0.7276 12.95 21.07 0.4223 0.7174 24.49 0.8132 0.2293
PixelSplat 0.064s - - - - - - 24.89 0.8392 0.1641
LSM 0.108s 0.5034 0.7740 3.38 67.77 0.5078 0.7686 24.39 0.8072 0.2506
Ours 0.041s 0.5563 0.8277 3.10 69.13 0.5625 0.8334 25.65 0.8782 0.1353

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

To comprehensively evaluate the effectiveness of our unified 3D representation, we test UniSplat in
two distinct domains: (1) traditional 3D vision tasks to assess the quality of scene reconstruction,
and (2) embodied AI tasks to evaluate the utility of the learned features as a visual backbone for
downstream robotic control policies.

3D Vision Tasks. Following LSM, we evaluate UniSplat’s scene understanding capabilities on 40
unseen scenes from the ScanNet (Dai et al., 2017) dataset. We assess three core tasks: Novel View
Synthesis (PSNR, SSIM, LPIPS), Open-Vocabulary 3D Segmentation (mIoU, mAcc), and Depth
Estimation (Abs Rel, Inlier Ratio). Furthermore, to evaluate rendering quality, we train our model
on the RealEstate10K (Zhou et al., 2018) datasets. Figure 3 shows a qualitative comparison of the
novel view synthesis on RealEstate10K. More details and results are provided in the Appendix.

Embodied AI Tasks. We use the pre-trained ViT encoder from UniSplat as a frozen feature ex-
tractor and evaluate it on the largest-scale embodied intelligence benchmark, which spans 268 tasks
across 8 simulators. The evaluation covers both single-task (VC-1 (Majumdar et al., 2023), Franka
Kitchen (Gupta et al., 2019), Meta-World (Yu et al., 2020)) and language-conditioned multi-task
(RLBench (James et al., 2020), LIBERO (Liu et al., 2023)) scenarios, utilizing a variety of policies
including MLPs, Diffusion, and Transformers. We compare against a diverse set of leading visual
representation learning models, including vision-centric (MAE (He et al., 2022), DINOv2 (Oquab
et al., 2023)), multi-modal (CLIP (Radford et al., 2021), EVA (Fang et al., 2023), InternViT (Chen
et al., 2024b)), and embodied-specific (VC-1, MVP (Radosavovic et al., 2023), SPA) approaches.

Implementation Details. UniSplat is built upon a ViT-L backbone pre-trained on ScanNet and
ScanNet++ Yeshwanth et al. (2023), equipped with a multi-task decoder. To circumvent explicit 3D
supervision, we leverage LSeg and VGGT teachers to generate pseudo ground-truth semantics and
geometry. All experiments are optimized using AdamW with a base learning rate of 1× 10−4 and a
30-epoch warm-up schedule. Training is conducted for 300 epochs on 4 NVIDIA A100 GPUs. For
fair comparison with baseline methods, the input resolution is fixed at 256×256. The dual-masking
strategy adopts masking ratios of 0.5 for both encoder and decoder. Each anchor Gaussian yields 10
derived Gaussians, and the number of coarse Gaussian tokens Tcoarse is set to 256. The loss weights
are configured as follows: λrgb=1.0, λLPIPS=0.05, λsem=0.3, λgeo=1.2, λpose=10.0, λpoint=1.5,
λrecalib geom=0.001, λrecalib geo=0.5, and λrecalib=1.0.

4.2 RESULTS ON 3D VISION TASKS

Table 1 summarizes results against pose-based baselines requiring SfM and/or per-scene optimiza-
tion (NeRF-DFF (Kobayashi et al., 2022), Feature-3DGS, PixelSplat) and the strong pose-free base-
line LSM.

Open-Vocabulary 3D Segmentation. As presented in Table 1 and Figure 2, UniSplat sets a new
pose-free state of the art. On source views, it reaches 0.5563 mIoU and 0.8277 mAcc, surpassing
LSM by +5.3/+5.4 points. On target views, it attains 0.5625 mIoU and 0.8334 mAcc, improving
over LSM by +5.5/+6.5 points and exceeding the 2D LSeg baseline while providing cross-view
consistency that 2D methods lack.

Novel View Synthesis. Without SfM or per-scene fitting, UniSplat delivers the best image qual-
ity among compared methods: 25.65 PSNR, 0.8782 SSIM, and 0.1353 LPIPS on target views.
This outperforms LSM, the generalizable PixelSplat that assumes known cameras, and the opti-
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Image GT LSeg Feature 3DGS LSM OursImage GT LSeg Feature 3DGS LSM Ours

Figure 2: Qualitative comparison of novel-view segmentation on ScanNet.

mized Feature-3DGS. Gains indicate that geometry-aware masking and progressive semantic-to-
appearance rendering yield sharper, more faithful novel views.

Depth Estimation. UniSplat achieves a 3.10 Absolute Rel and 69.13% inlier ratio τ on source
views, improving over LSM. Methods optimized per scene remain far behind in geometry.

Efficiency and Prerequisites. UniSplat is feed-forward and pose-free (no SfM, no per-scene opti-
mization), while NeRF-DFF and Feature-3DGS require both and PixelSplat assumes camera poses.
Relative to LSM, UniSplat consistently improves segmentation, NVS, and depth while preserving
the same deployment simplicity. These results validate that unifying semantics, geometry, and ap-
pearance with camera-centric recalibration improves both 3D understanding and rendering quality.

Table 2: Comparison of different representation learning methods. The number in parentheses
denotes the number of tasks.

Method Vision-Centric Multi-Modal Embodied-Specific
Benchmark MAE DINOV2 CLIP EVA InternViT MVP VC-1 SPA Ours

VC-1

AD (2) 58.0±2.0 47.3±3.1 48.7±3.1 58.0±6.0 53.3±3.1 53.3±4.2 54.0±4.0 60.0±4.0 61.7±4.3
MW (5) 90.0±4.6 84.0±3.7 77.1±3.2 90.7±0.9 84.0±3.7 93.6±5.2 87.5±3.8 93.3±2.0 94.3±3.1
DMC (5) 74.4±1.8 64.5±2.5 53.9±3.6 62.7±2.8 53.3±0.4 69.4±2.6 65.3±3.6 71.1±5.0 75.8±4.5
TF (2) 73.0±0.5 68.5±0.4 56.1±1.6 67.2±0.2 65.2±1.6 73.2±0.8 70.9±1.1 73.6±2.0 75.6±1.7

RLBench Group 1 (35) 78.3 78.2 76.8 75.2 74.1 76.2 80.1 80.5 81.2
Group 2 (36) 57.7 56.1 55.7 57.0 54.9 56.3 55.7 61.2 63.3

Meta-World (48) 67.8±1.7 56.3±0.6 66.7±1.7 63.7±1.3 57.5±1.7 66.4±1.7 68.6±1.5 69.2±1.7 70.9±1.

LIBERO

Object (10) 71.7±13.1 64.7±9.9 50.2±7.0 73.2±6.0 67.7±6.0 63.7±4.8 69.7±7.2 76.7±5.3 78.4±6.1
Spatial (10) 57.2±2.9 36.3±11.8 32.2±0.6 59.3±7.7 48.3±6.4 58.0±6.2 50.5±7.5 50.0±3.8 59.7±5.8
Goal (10) 54.3±6.0 22.2±2.3 30.3±3.2 56.8±2.9 58.8±4.5 63.8±2.8 57.5±6.6 65.3±2.5 67.3±2.3
10 (10) 41.2±4.5 28.3±3.0 27.5±3.9 43.3±2.8 38.2±1.3 39.0±0.9 39.7±3.5 40.2±3.6 42.4±3.5
90 (90) 29.9±2.0 27.5±2.2 29.4±2.0 31.3±2.3 23.8±1.8 32.1±3.5 30.6±3.3 32.2±1.6 34.7±2.7

Franka-Kitchen (5) 42.7±2.6 40.9±6.4 30.8±3.3 37.3±1.3 28.5±1.7 34.3±6.1 37.5±3.5 40.6±1.9 44.5±2.6

4.3 RESULTS ON EMBODIED AI TASKS

As shown in Table 2, UniSplat consistently outperforms vision-centric (MAE, DINOv2), multi-
modal (CLIP, EVA, InternViT), and embodied-specific (MVP, VC-1, SPA) baselines. On VC-
1, UniSplat attains top scores across AD, MW, DMC, and TF. It sets new records on RLBench
(81.2%/63.3% for Group 1/2) and Meta-World (70.9%), while achieving strong gains in all LIBERO
splits, including 78.4% on Object, 59.7% on Spatial, and 67.3% on Goal, with robust results on
LIBERO-90. On Franka Kitchen, it reaches 44.5%, surpassing prior methods. These results show
that UniSplat’s unified 3D representation transfers effectively to varied visuomotor control tasks
without task-specific tuning.

4.4 ABLATION STUDIES

Ablation on Key Component. Table 3 shows every component matters. Removing semantic dis-
tillation collapses segmentation while keeping appearance nearly intact, underscoring its role for
open-vocabulary semantics. Camera recalibration and geometric prior losses are critical for geome-
try and rendering. Geometry-aware dual mask and coarse-to-fine Gaussians splatting strategy yield
consistent gains. Disabling self-supervised learning degrades all metrics.
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Table 3: Ablation on Core Components. Each
row removes one component to evaluate its con-
tribution.
Variant mIoU↑ Acc.↑ PSNR↑ SSIM↑
Full UniSplat 0.5625 0.8334 25.65 0.8782
w/o Self-sup. 0.5263 0.8110 24.40 0.8092
w/o Dual Mask 0.5462 0.8275 24.74 0.8373
w/o Coarse-to-Fine 0.5374 0.8239 24.93 0.8452
w/o Lrecalib 0.5117 0.8086 24.35 0.8067

Table 4: Ablation on Data Scale. We evaluate
the effect of progressively adding more training
data from different datasets.

Exp ID Datasets mIoU↑ Acc.↑ PSNR↑ SSIM↑

(1) ScanNet 0.5603 0.8297 25.48 0.8724

(2) (1) + ScanNet++ 0.5625 0.8334 25.65 0.8782

(3) (2) + RealEstate10K 0.5717 0.8414 25.79 0.8837

(4) (3) + DL3DV 0.5755 0.8437 25.83 0.8916

Table 5: Ablation on the Number of Input Views. We evaluate the effect of varying the number
of input views on reconstruction and segmentation performance.

Number of Views mIoU↑ Acc.↑ PSNR↑ SSIM↑ LPIPS↓
3 0.5574 0.8292 25.83 0.8797 0.1303
6 0.5846 0.8451 26.75 0.8827 0.1234
8 0.6027 0.8454 27.03 0.8855 0.1126

10 0.6227 0.8514 27.12 0.8862 0.1156

Scale Up with More Training Data. Table 4 demonstrates that expanding the training dataset
can significantly enhance model generalization and robustness. Larger, diverse datasets expose the
model to varied patterns, reducing overfitting and improving performance on unseen data.

Ablation on the Number of Input View. As shown in Table 5, increasing input views improves
both segmentation and reconstruction. More views provide richer geometric and appearance cues,
enhancing scene understanding and rendering quality. Gains diminish beyond 8 views, indicat-
ing that while additional viewpoints help, the marginal benefit reduces once sufficient coverage is
achieved.

Ref. GT pixelSplat MVSplat NoPoSplat SelfSplat Ours

Figure 3: Qualitative comparison of novel view synthesis on RealEstate10k.

5 CONCLUSION

We introduced UniSplat, a self-supervised framework that learns unified 3D representations directly
from unposed multi-view images. UniSplat addresses the key limitations of prior methods through
three complementary components: a dual-masking strategy that strengthens geometry induction by
enforcing structure reasoning from incomplete cues, a coarse-to-fine Gaussian splatting strategy
that progressively refines scene appearance to capture both global structure and fine detail, and a
pose-conditioned recalibration mechanism that enforces geometric–semantic consistency by align-
ing multi-head predictions in a shared spatial frame. Together, these designs enable UniSplat to
produce coherent, high-fidelity 3D representations that are robust to sparse-view settings and trans-
ferable across domains. Extensive experiments on both 3D vision benchmarks and embodied AI
tasks confirm its effectiveness and versatility. Future work will explore scaling to larger, more di-
verse datasets and integrating language-scene interaction for richer embodied intelligence.
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A THE USE OF LARGE LANGUAGE MODELS

In this paper, Large Language Models were used solely for minor language polishing and grammar
correction. No LLMs contributed to research ideation, experimental design, or substantive content
generation.

B MORE IMPLEMENTATION DETAILS

B.1 3D VISION TASKS IMPLEMENTATION DETAILS

We adopt two complementary experimental settings for evaluating 3D vision tasks, each emphasiz-
ing different aspects of the unified 3D representation:

LSM-based Setting (Semantic–Geometry–Appearance Unification). Following the Large Spa-
tial Model (LSM)(Fan et al., 2024) protocol, we train and evaluate on indoor scene datasets (ScanNet
and ScanNet++), where the model must jointly predict geometry, appearance, and semantics from
unposed multi-view images. This setting stresses semantic consistency across views and the ability
to lift 2D features into a coherent 3D semantic field.

NoPoSplat-based Setting (Pose-free High-fidelity Reconstruction). Following NoPoSplat (Ye
et al., 2025), we train and evaluate on large-scale video datasets (RealEstate10K and ACID) for pose-
free novel view synthesis and relative pose estimation. This setting emphasizes geometric fidelity
and robustness to sparse, wide-baseline inputs without any pose supervision. The corresponding
results are shown in C.1.

B.2 EMBODIED TASKS IMPLEMENTATION DETAILS

To evaluate the effectiveness of UniSplat as a visual backbone for embodied AI, we follow the
large-scale embodied evaluation protocol introduced in (Zhu et al., 2025), which spans 268 tasks
across 8 simulators and covers both single-task and language-conditioned multi-task scenarios. In
all experiments, the UniSplat encoder is frozen and only the downstream policy network is trained,
ensuring a fair comparison of representation quality.

Single-task Benchmarks. We include three representative single-task settings:

• VC-1 (Majumdar et al., 2023): 14 tasks from four simulators — Adroit (AD) (Kumar, 2016),
Meta-World (MW) (Yu et al., 2020), DMControl (DMC) (Tunyasuvunakool et al., 2020), and
TriFinger (TF) (Wüthrich et al., 2020). Policies are 3-layer MLPs trained with 100 demonstrations
per task (25 for MW) and evaluated over 50 rollouts using fixed seeds (100, 200, 300). The [CLS]
token from UniSplat serves as the observation feature.

• Franka Kitchen (Gupta et al., 2019): 5 manipulation tasks in a MuJoCo kitchen scene, each with
two camera viewpoints and three seeds. Policies are 2-layer MLPs trained on 25 demonstrations
per task.

• Meta-World: 48 diverse manipulation tasks. We adopt the Diffusion Policy (Chi et al., 2023)
following (Ze et al., 2024), training with 10 demonstrations and evaluating over 20 rollouts per
task.

Language-conditioned Multi-task Benchmarks. We also evaluate on two multi-task suites with
natural language instructions:

• RLBench (James et al., 2020): 71 executable tasks split into two groups according to Polar-
Net (Chen et al., 2023) categories (35 and 36 tasks). We use RVT-2 (Goyal et al., 2024) as the
policy backbone, replacing its CNN encoder with our frozen UniSplat encoder. Each task has 100
demonstrations for training and 25 rollouts for evaluation.

• LIBERO (Liu et al., 2023): 130 tasks across five suites (Spatial, Object, Goal, LIBERO-10,
LIBERO-90). We train the official transformer-based language-conditioned policy with 20 demon-
strations per task, no data augmentation, and pre-extracted visual features from UniSplat.

Policy Training and Evaluation. For all settings, we adhere to the training hyperparameters and
evaluation protocols of the respective benchmarks to ensure comparability with prior work (Zhu
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et al., 2025). The frozen UniSplat encoder outputs either the [CLS] token (for MLP/Diffusion
policies) or unpatchified feature maps (for transformer-based policies)..

C MORE EXPERIMENTAL ANALYSIS

C.1 MORE RESULTS ON 3D VISION TASKS

Novel View Synthesis. As shown in Table 6, we compare our method with several state-of-the-art
methods on the RealEstate10K dataset. Our method outperforms all previous pose-free methods
and even surpasses some pose-required methods, demonstrating the effectiveness of our unified 3D
representation and training strategy. Qualitative results are shown in Figure 4,Figure 5 and Figure 6.

Table 6: Performance comparison of novel view synthesis on the RE10K dataset.

Small Medium Large Average
Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
Pose-Required
pixelSplat 20.277 0.719 0.265 23.726 0.811 0.180 27.152 0.880 0.121 23.859 0.808 0.184
MVSplat 20.371 0.725 0.250 23.808 0.814 0.172 27.466 0.885 0.115 24.012 0.812 0.175
Supervised Pose-Free
MASt3R 16.305 0.516 0.451 18.106 0.561 0.377 17.975 0.524 0.402 17.617 0.539 0.403
CoPoNeRF 17.393 0.585 0.462 18.813 0.616 0.392 20.464 0.652 0.318 18.938 0.619 0.388
Splatt3R 17.789 0.582 0.375 18.828 0.607 0.330 19.243 0.593 0.317 18.688 0.593 0.317
NoPoSplat 22.514 0.784 0.210 24.899 0.839 0.160 27.411 0.883 0.119 25.033 0.838 0.160
Self-Supervised Pose-Free
SelfSplat 14.828 0.543 0.469 18.857 0.679 0.328 23.338 0.798 0.208 19.152 0.680 0.328
Ours 22.765 0.789 0.205 25.246 0.845 0.156 27.872 0.891 0.113 25.397 0.843 0.157

Relative Pose Estimation. We evaluate the relative pose estimation performance of our method on
the RealEstate10K and ACID datasets, following the protocol in (Ye et al., 2025). As shown in Ta-
ble 7, our method outperforms all baselines across all thresholds, demonstrating the effectiveness of
our unified 3D representation in capturing accurate camera poses from unposed multi-view images.

Table 7: Pose estimation performance in AUC with various thresholds on RE10K and ACID datasets.

RE10K ACID
Method 5◦ ↑ 10◦ ↑ 20◦ ↑ 5◦ ↑ 10◦ ↑ 20◦ ↑
DUSt3R 0.329 0.537 0.691 0.113 0.273 0.469
MASt3R 0.351 0.557 0.701 0.159 0.362 0.524
NoPoSplat 0.568 0.737 0.839 0.342 0.504 0.653
SelfSplat 0.223 0.413 0.589 0.213 0.372 0.541
Ours 0.607 0.748 0.842 0.354 0.516 0.661

C.2 MORE ABLATION STUDIES

Ablation on Mask Strategy. As shown in Table 8, Croco masking (Weinzaepfel et al., 2022)
surpasses random masking under similar settings but remains weaker than our geometry-aware
two-stage masking strategy. For random masking, overly low ρe yields insufficient spatial reason-
ing, while excessively high ρe hinders learning. The geometry-aware mask consistently improves
both segmentation and reconstruction, indicating balanced masking facilitates optimal representa-
tion learning.

Ablation on the Number of Gaussian Latent Tokens. Table 9 shows that increasing the number
of Gaussian latent tokens from 64 to 128 improves mIoU, accuracy, and perceptual quality. 256
tokens give the best overall metrics with marginal gains over 128, while 512 tokens slightly degrade
performance, suggesting diminishing returns and possible overfitting. An intermediate token count
balances reconstruction fidelity and segmentation accuracy.

C.3 DOWNSTREAM TASKS

We further validate the utility of UniSplat as a general 3D visual backbone on EmbodiedScan (Wang
et al., 2024c), a large-scale, ego-centric multi-modal 3D perception benchmark with oriented 3D
boxes, semantic occupancy, and language prompts. We follow the official data organization, view
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Table 8: Ablation on Mask Strategy. We evaluate the effect of varying mask strategies on recon-
struction and segmentation performance.

Type of Me ρe Type of Md ρd mIoU↑ Acc.↑ PSNR↑ SSIM↑
Random 0.50 N/A 0 0.5502 0.8275 24.84 0.8373
Croco 0.90 N/A 0 0.5531 0.8385 25.12 0.8510

Random 0.50 3D GS 0.30 0.5511 0.8280 25.42 0.8721
Random 0.50 3D GS 0.50 0.5625 0.8334 25.65 0.8782
Random 0.50 3D GS 0.75 0.5470 0.8265 25.10 0.8680
Random 0.75 3D GS 0.50 0.5284 0.8120 24.55 0.8523
Random 0.75 3D GS 0.75 0.5231 0.8065 24.21 0.8450

Table 9: Ablation on the Number of Gaussian Latent Tokens. We evaluate the effect of varying
the number of Gaussian latent tokens on reconstruction and segmentation performance.

Number of Tcoarse mIoU↑ Acc.↑ PSNR↑ SSIM↑ LPIPS↓
64 0.5469 0.8237 25.05 0.8602 0.1478

128 0.5587 0.8284 25.33 0.8684 0.1413
256 0.5625 0.8334 25.65 0.8782 0.1353
512 0.5617 0.8312 25.53 0.8756 0.1371

sampling, and metric protocols to evaluate three downstream tasks: multi-view 3D detection, multi-
view semantic occupancy prediction, and multi-view 3D visual grounding. To adapt UniSplat for
specific tasks, we append lightweight task-specific heads to its pretrained multi-view transformer en-
coder. For 3D object detection, we attach a 3D detection head predicting oriented boxes (center, size,
rotation) from UniSplat’s fused multi-view geometric-semantic features. For semantic occupancy
prediction, a 3D decoder is added, taking the voxelized dense features to predict semantic grids. For
3D visual grounding, we equip the 3D decoder with a cross-modal fusion transformer that integrates
encoded language features with the 3D scene representation, followed by a grounding head sharing
the detection architecture. This setup directly measures how well self-supervised 3D representa-
tions learned from unposed images generalize to complex indoor perception tasks without any depth
supervision.

Multi-view 3D Object Detection. As shown in Table 10, UniSplat with RGB-only inputs consis-
tently surpasses camera-only baselines and even strong RGB-D systems on EmbodiedScan, indicat-
ing that its unified geometric–semantic representation yields reliable oriented box estimates without
depth supervision.

Multi-view Semantic Occupancy Prediction. As shown in Table 11, UniSplat delivers markedly
better voxel-level semantics than prior RGB methods and is competitive with or exceeds RGB-D
variants, reflecting dense, scene-consistent 3D priors learned from unposed images.

Multi-view 3D Visual Grounding. As shown in Table 12, UniSplat shows clear improvements
over RGB-D baselines across overall, easy, and hard settings, demonstrating robust cross-modal
alignment and spatial grounding from images alone.

Results show UniSplat provides consistent gains over camera-only baselines across all tasks, high-
lighting its effectiveness as a unified RGB-only 3D backbone.

Table 10: Multi-view 3D object detection results on EmbodiedScan.
Method Input AP25 AR25 AP50 AR50

ImVoxelNet Rukhovich et al. (2022b) RGB 6.15 20.39 2.41 6.31
VoteNet Qi et al. (2019) Depth 3.20 6.11 0.38 1.22
FCAF3D Rukhovich et al. (2022a) Depth 9.07 44.23 4.11 20.22
EmbodiedScan Wang et al. (2024c) RGB-D 16.85 51.07 9.77 28.21
Ours RGB 28.69 62.24 15.34 39.57

D MORE VISUALIZATIONS

We present additional qualitative results to further illustrate the effectiveness of UniSplat across
varying scene conditions and view overlaps, as shown in Figure 4–7.
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Table 11: Multi-view semantic occupancy prediction results on EmbodiedScan.
Method Input mIoU
OccNet (Tong et al., 2023) RGB 8.07
SurroundOcc (Wei et al., 2023) RGB 9.10
EmbodiedScan RGB 10.48
EmbodiedScan RGB-D 19.97
Ours RGB 27.45

Table 12: Multi-view 3D visual grounding results on EmbodiedScan.
Method Input Overall Easy Hard
ScanRefer (Chen et al., 2020a) RGB-D 12.85 13.78 9.12
BUTD-DETR (Jain et al., 2022) RGB-D 22.14 23.12 18.23
L3Det (Zhu et al., 2023a) RGB-D 23.07 24.01 18.34
EmbodiedScan RGB-D 25.72 27.11 20.12
Ours RGB 36.88 38.13 31.42

E DISCUSSION AND LIMITATIONS

Limitations. Although UniSplat achieves strong performance across diverse 3D vision and em-
bodied AI tasks, several limitations remain. First, the framework still relies on pseudo-supervision
from large pre-trained teacher models for geometry and semantics, which may propagate biases and
inaccuracies from these teachers into the learned representation. Second, while our geometry-aware
masking and coarse-to-fine splatting improve robustness to sparse unposed views, performance de-
grades in extremely limited or highly textureless scenes, indicating that geometry induction could
be further strengthened. Third, our experiments are primarily conducted on indoor datasets; scal-
ing to large-scale outdoor or highly dynamic environments may require additional adaptations, such
as motion modeling or more robust pose estimation. Finally, although the hierarchical Gaussian
representation improves efficiency compared to dense splatting, rendering and training remain com-
putationally intensive relative to purely latent approaches, which may limit deployment in resource-
constrained settings.

Future Work. Future research could address these limitations in several ways. One direction is
to develop geometry and semantic priors that are learned in a fully self-supervised manner, reduc-
ing dependence on external teacher models. Another is to design adaptive masking and rendering
strategies that adjust to scene complexity and viewpoint coverage, further improving robustness in
sparse or degenerate cases. Extending UniSplat to handle dynamic, open-world environments and
outdoor scenes would broaden its applicability, potentially requiring integration of temporal mod-
eling and more generalizable camera estimation. Finally, incorporating large-scale language-scene
interaction and multi-modal grounding could enable richer spatial reasoning and task understanding
for embodied agents.
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Ref. GT pixelSplat MVSplat NoPoSplat SelfSplat Ours

Figure 4: More qualitative comparisons on RE10K with small image overlap.
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Figure 5: More qualitative comparisons on RE10K with medium image overlap.
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Figure 6: More qualitative comparisons on RE10K with large image overlap.
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Figure 7: More qualitative comparison of novel-view segmentation on ScanNet.
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