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Abstract

This paper explores a novel lightweight approach LightFair to achieve fair text-
to-image diffusion models (T2I DMs) by addressing the adverse effects of the text
encoder. Most existing methods either couple different parts of the diffusion model
for full-parameter training or rely on auxiliary networks for correction. They incur
heavy training or sampling burden and unsatisfactory performance. Since T2I DMs
consist of multiple components, with the text encoder being the most fine-tunable
and front-end module, this paper focuses on mitigating bias by fine-tuning text
embeddings. To validate feasibility, we observe that the text encoder’s neutral
embedding output shows substantial skewness across image embeddings of various
attributes in the CLIP space. More importantly, the noise prediction network
further amplifies this imbalance. To finetune the text embedding, we propose
a collaborative distance-constrained debiasing strategy that balances embedding
distances to improve fairness without auxiliary references. However, mitigating
bias can compromise the original generation quality. To address this, we introduce
a two-stage text-guided sampling strategy to limit when the debiased text encoder
intervenes. Extensive experiments demonstrate that LightFair is effective and
efficient. Notably, on Stable Diffusion v1.5, our method achieves SOTA debiasing
at just 1/4 of the training burden, with virtually no increase in sampling burden.
The code is available at https://github.com/boyuh/LightFair.

1 Introduction

Recently, with the rapid progress of machine learning [108, 5, 101, 104, 103] and computer vision [54,
33, 32, 96, 93], text-to-image (T2I) diffusion models [38, 9, 44], such as Stable Diffusion (SD) [78],
have gained widespread attention. These models effectively combine text-based inputs with image
generation, delivering remarkable performance across a broad range of applications [86, 55, 17, 11,
49]. However, research [13, 82, 92] has revealed that these models often produce biased content
regarding various demographic factors, say gender, race, and age. Such biases pose significant
societal risks, particularly when these models are deployed in real-world scenarios [10, 13, 62, 112].

Many efforts have been made to mitigate attribute bias, which can generally be divided into two
camps. The first camp [84, 27] involves retraining or fine-tuning diffusion models to adjust the
generated distribution. However, most of them rely on a strategy that couples different parts of the
diffusion model for full-parameter training. It leads to highly complex gradient chains [84], resulting
in a significant computational burden, as shown by the solid-lined method in Fig. 1. Moreover,
tuning a large number of parameters may lead to excessive debiasing, which lowers generation quality.
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The second camp [24, 15, 45] uses post-processing methods during inference, relying on external
reference information or auxiliary networks to address attribute bias. The use of third-party models
increases sampling time and reduces generation efficiency, as shown by the dashed-lined methods
in Fig. 1. Furthermore, hidden biases in these third-party models often prevent these methods from
ensuring complete fairness. Hence, a natural question arises: Can we develop a lightweight alternative
to resolve attribute bias effectively?

Figure 1: Overview of the complexity and effectiveness
of different methods. Complexity metrics include spatial
complexity during training (SC), time complexity during
training (TC_Train), and time complexity during sampling
(TC_Sample). Effectiveness metrics include Bias-O and
Bias-Q for measuring generative bias, and CLIP-T for evalu-
ating generation quality. Lower-is-better metrics are negated
for consistent comparison. See Sec. I.15 for detailed results.

In search of an answer, this paper ex-
plores a novel approach LightFair
to achieve lightweight debiasing by
refining the pre-trained text encoder.
Specifically, we argue that the text em-
bedding in T2I DMs inherently carries
biases, which lead to biased generated
images. To this end, we empirically
demonstrate that an unfair T2I DM
exhibits a skewed or imbalanced em-
bedding distribution between neutral
text and various image attributes in
the CLIP space, where the extent of
bias is reflected in the distances be-
tween these embeddings. Most impor-
tantly, we reveal that the bias intro-
duced by the text encoder can be fur-
ther amplified during the recurrent
denoising prediction steps, underscor-
ing the critical need to directly debias
the text encoder.

Next, to ensure efficient inference, we perform LoRA [41] fine-tuning on the text encoder to mitigate
bias without relying on auxiliary networks. However, achieving fairness requires aligning the
attribute distribution of generated images with a fair distribution, but the former is often difficult
to obtain. Based on our findings, we demonstrate that equalizing distances within the embedding
space can implicitly achieve equalized distributions (Thm. 4.1). Motivated by this, we propose a
collaborative distance-constrained debiasing strategy, which comprises two key components. 1) it
enforces constraints on the distances between text embeddings and the semantic centers of different
attributes, promoting both equalized odds and equalized quality. 2) since we use image embeddings to
approximate the semantic centers of various attributes, we introduce an adaptive foreground extraction
strategy to minimize the influence of background features. As shown in Fig. 1, our LightFair
achieves lower time and space complexity, ensuring lightweight debiasing.

Taking a step further, we observe that debiasing may inevitably harm the model’s generation qual-
ity [84, 51]. To mitigate this impact, it is crucial to find the optimal intervention time for the debiased
text encoder. To that end, we conduct a fine-grained analysis of the diffusion model’s generation
process [72, 60]. The results reveal that low-frequency information (attribute-independent) emerges
during early denoising stages, while high-frequency information (attribute-dependent) appears in
later stages (Thm. 4.2). In light of this, we propose a two-stage text-guided sampling strategy, where
the debiased text encoder is applied only in the later sampling stages. This approach balances bias
mitigation and image quality preservation. Finally, comprehensive empirical studies consistently
speak to the efficacy of our proposed method.

Our main contributions are summarized as follows:

• This paper shows the adverse effects of the text encoder on fairness in text-to-image diffusion
models. To our knowledge, this issue remains underexplored within the fairness community.

• We propose a lightweight fine-tuning method LightFair to achieve fair diffusion models. It
employs a collaborative distance-constrained debiasing strategy to maintain both equalized odds
and equalized quality. It also incorporates a two-stage text-guided sampling strategy that mitigates
its impact on image generation quality.

• Comprehensive empirical results across two versions of SD, four attributes, and diverse prompts
demonstrate the effectiveness and lightweight nature of our proposed method in addressing bias.
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2 Related Work

Text-to-image Generative Methods. The fields of machine learning [85, 7, 6, 18, 95, 102]
and computer vision [2, 3, 4, 42, 43, 58, 61] have undergone a paradigm shift from understand-
ing [66, 64, 63, 97, 56, 25] to generative models [38, 78, 31, 110]. Among these, T2I generative
modeling has emerged as a key research direction. T2I generation methods are mainly divided into
three categories based on their probabilistic modeling approach: autoregressive models [76, 106, 109],
generative adversarial networks [30, 47, 48, 71], and diffusion models [38, 78, 9, 21]. In recent years,
diffusion models have advanced significantly, offering greater stability, scalability, and higher image
quality. Denoising Diffusion Probabilistic Models (DDPM) [38] generate images unconditionally
through a straightforward, iterative denoising process. Stable Diffusion [78], an extension of DDPM,
incorporates text guidance to produce high-resolution images. Additionally, diffusion-based architec-
tures have been successfully applied to various tasks, including style-transfer [73, 111, 74, 16], scene
generation [11, 98, 87, 100, 28, 53], and image-editing [67, 17, 29, 50, 57], achieving notable results.

Bias in Diffusion Models and Mitigation Methods. Diffusion models are highly data-driven and
prone to inheriting and amplifying imbalances and biases [10, 13, 62, 88, 112] present in large-scale
datasets [81]. [13, 82, 92] observe that, when no attribute prompts are provided, Stable Diffusion
exhibits attribute biases along social dimensions such as gender and race. [24] guides fair generation
by introducing random attribute text prompts. [15, 45] perform text prompt corrections in the latent
space. [84] modifies model parameters through fine-tuning on balanced data. [27] conducts concept
editing by updating the model’s cross-attention layers. [70, 51, 91, 39] introduce an auxiliary network
to help the model eliminate bias. However, these methods often treat the diffusion model as an
end-to-end system, overlooking the unique roles of its individual components. Such untargeted
fine-tuning may lead to over-debiasing and a decline in generation quality. Moreover, many of
these approaches depend on external reference information or auxiliary networks to address attribute
bias. The fairness and performance of these third-party models are difficult to guarantee, making
it challenging to achieve a truly fair diffusion model. Most importantly, these methods impose
significant computational burdens during training or sampling. To address these issues, this paper
proposes a debiasing method focused on the text encoder. The method features a lightweight design,
eliminates the need for auxiliary networks, and offers a targeted approach to mitigate bias.

3 Preliminaries

In this section, we briefly introduce the diffusion model and the fair diffusion model.

Diffusion Model. The diffusion model [38] consists of two processes: a forward noising process and
a reverse denoising process. In the forward process, samples x0 ∼ q(x) drawn from a given data
distribution are progressively corrupted with Gaussian noise, eventually degrading into pure Gaussian
noise over T time steps. It is defined as:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), (1)

where αt =
∏t

i=1 αi and αt ∈ (0, 1) is a hyperparameter controlling the noise level. In the backward
process, a neural network parameterized by θ predicts the noise added at each time step during the
forward process, recovering xT back to the original data distribution x0. The denoising process is
modeled as:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σ
2
t I), (2)

Here, µθ(xt, t) = 1√
αt
(xt − βt√

1−ᾱt
ϵθ(xt, t)) is parameterized by the noise prediction network

ϵθ(xt, t), βt = 1− αt, and σ2
t is typically chosen as either σ2

t = βt or σ2
t = 1−ᾱt−1

1−ᾱt
βt.

Stable Diffusion. The Stable Diffusion [78] is a classic text-to-image diffusion model. It additionally
provides a prompt P to guide the diffusion model in generating images. Specifically, it employs a
noise prediction network (typically a U-Net) in the latent space while utilizing a text encoder (usually
CLIP) to encode P , thereby providing textual guidance. For latent diffusion models, an image encoder
ge maps the training image x0 to its latent space representation z0 = ge(x0). The image decoder
gd maps the denoised z0 from the generation process back to the image space as x0 = gd(z0). For
the text encoder, it encodes the textual prompt P using f t, which is then incorporated into the noise
prediction network ϵθ(f

t(P ), zt, t).
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Figure 2: (a)-(b) T-SNE visualization of original and debiased ‘CEO’/‘Nurse’ text embeddings
alongside male and female image embeddings. (c) Visualization of distance differences (DText-Image)
and generated image bias across 80 occupations. (d) Visualization of original/our debiased text
embedding distance differences (DText) and image embedding distance differences (DImage).

Fair Diffusion Model. Following the notations in [51, 70, 91], the textual prompt P = prompt(a, c)
is typically composed of a, an attribute word from the set A, and c, a main word from the
set C. For example, prompt(‘female’, ‘doctor’) represents “Photo portrait of a female
doctor". We denote textual prompts without an attribute word as prompt(·, c), for instance,
prompt(·, ‘doctor’) = “Photo portrait of a doctor”. Currently, fair diffusion models have
two goals:

Goal 1: Equalized Odds encourages equal generation frequency for images with different attributes
when given an unspecified attribute prompt prompt(·, c), expressed as:

P(ai|prompt(·, c)) = P(aj |prompt(·, c)), ∀ai, aj ∈ A. (3)

This probability is typically computed using an additional attribute classifier h(·).
Goal 2: Equalized Quality promotes equal image quality for different attribute images, expressed
as:

Q(prompt(ai, c)) = Q(prompt(aj , c)), ∀ai, aj ∈ A, (4)
where Q(prompt(ai, c)) represents the quality score of the images generated using prompt(ai, c).
The quality score is typically measured using metrics such as CLIP [75] or DINO [68].

4 LightFair

In this section, we explore achieving a fair diffusion model through lightweight fine-tuning. We first
identify the text encoder as a key structure contributing to bias (Sec. 4.1) and propose the collaborative
distance-constrained debiasing strategy to address it without auxiliary networks (Sec. 4.2). We then
analyze the diffusion process to determine the optimal timing for applying the debiased text encoder,
mitigating its impact on performance (Sec. 4.3). Following the setup in [70, 84, 15, 27, 51], this
paper focuses on addressing attribute bias in Stable Diffusion [78] and uses the example of gender
bias in occupations to illustrate the discussion. A table of symbol definitions is provided in Sec. A.

4.1 A Closer Look at the Pre-trained Text Encoder

Stable Diffusion employs a pre-trained text encoder (e.g., CLIP) to encode textual inputs, which then
guide the noise prediction network (e.g., U-Net). The noise prediction network usually has more
parameters than the text encoder (details are provided in Sec. B). Thus, we aim to investigate
whether fine-tuning the text encoder can correct biases, which is lightweight and underexplored.

To investigate the bias within the text encoder, we propose two progressive research questions. (RQ
1) How can we measure bias within the text embeddings? Existing methods for assessing bias in SD
typically rely on performing attribute classification on generated images. However, the text encoder
outputs embeddings, making it challenging to directly quantify the bias. (RQ 2) Does the bias in the
text encoder affect the output of the subsequent noise prediction network?

To address (RQ 1), we investigate the relationship between distance and bias within the text-image
semantic space aligned by CLIP. First, we conduct a simple empirical experiment as an initial
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Figure 3: An overview of our LightFair. a) We first perform adaptive foreground extraction on
images with different attributes. b) Then, the foreground images are encoded by an image encoder to
obtain the centroid for each attribute. c) Lightweight fair fine-tuning is conducted using collaborative
distance constraints. d) A two-stage text-guided sampling strategy ensures generation quality.

exploration. It is widely acknowledged that SD tends to generate male images for the prompt CEO’
and female images for the prompt Nurse’ [24]. In the experiment, we find that the text embedding
for CEO’ is closer to the centroid of male images, while the embedding for Nurse’ is closer to the
centroid of female images, as shown in Fig. 2(a) and (b). Next, we quantify the relationship between
this embedding distance and the bias in generated images. Specifically, we calculate the distance
difference between the text embeddings of 80 occupations (details are provided in Sec. C) and the
semantic centroids for male’ (♂) and female’ (♀):

DText-Image =
∣∣s(embT

c (·),E[embIc(♂)]
)
− s
(
embTc (·),E[embIc(♀)]

)∣∣ , (5)

where s(a, b) represents the cosine distance between a and b. embT
c (·) and embIc(·) are shorthand

notations for f t(prompt(·, c)) and f i(M(prompt(·, c))), respectively. M(prompt(·)) denotes the
images generated using prompt(·). f t(·) and f i(·) refer to the encoding operations performed by the
CLIP text and image encoders. Additionally, we use these text embeddings to generate 500 images
for each occupation and measure the gender bias in the images (details are provided in Sec. H.1,
Bias-Odds). The results, shown in Fig. 2(c), indicate a clear trend: greater distance differences
correspond to stronger gender bias in the generated images. Therefore, distance is a good measure
to reflect bias in text embeddings.

To answer (RQ 2), we investigate how the bias in text embeddings changes after passing through the
noise prediction network. Following the conclusion from (RQ 1), we use distance as a measure of
bias. Specifically, we use six occupations as the main word c for image generation. We then calculate
the bias in the text embeddings from the text encoder (DText) and image embeddings of the output
from the noise prediction network (DImage), as follows:

DText =
∣∣s(embTc (·), embTc (♂)

)
− s
(
embTc (·), embTc (♀)

)∣∣ , (6)

DImage =
∣∣s(E[embIc(·)],E[embIc(♂)]

)
− s
(
E[embIc(·)],E[embIc(♀)]

)∣∣ . (7)

We plot DText and DImage in Fig. 2(d). The results show that the text encoder introduces bias into the
model, and the noise prediction network further amplifies this bias during image generation. Our
debiased text encoder produces text embeddings with less bias, leading to images with less bias.
Therefore, we can get the following insight:

Insight.1. The text encoder is one of the key yet overlooked structures contributing to attribute bias
in Stable Diffusion.

Remark 1. The noise prediction network is not entirely independent of the text encoder, as encoded
textual inputs directly influence the denoising process. It is acknowledged that when there is no bias
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in the text embeddings (e.g., for specified attributes), the noise prediction network exhibits minimal
bias. This connection suggests that biases in the text encoder can propagate to the noise prediction
network and be further amplified during training, underscoring the importance of analyzing and
mitigating biases in the text encoder. Meanwhile, since the text encoder is trained independently of
the noise prediction network, fine-tuning the text encoder separately is a feasible solution.

4.2 Collaborative Distance-constrained Debiasing Strategy

We perform lightweight fine-tuning of the text encoder using a collaborative distance-constrained
debiasing strategy to eliminate bias. A brief overview is provided in Fig. 3(a)-(c).

4.2.1 Debiasing Through Distance Constraints

To achieve equalized odds, we aim to generate images with equal probabilities for each attribute.
However, it is challenging to obtain the probability distribution of generated images. To facilitate
optimization, we theoretically explore the equivalence between Equalized Odds and Equalized
Distance in Thm. 4.1.
Theorem 4.1. Under Thm. D.1, D.2 and D.3, for any attributes ai, aj ∈ A, achieving Equalized
Odds P(ai|P (·, c)) = P(aj |P (·, c)) is equivalent to ensuring Equalized Distance:∥∥f(ai, c)− f t

(
P (·, c)

)∥∥2 =
∥∥f(aj , c)− f t

(
P (·, c)

)∥∥2 , (8)

where f(ai, c) represents the encoding of the concepts ai and c, f t(·) denotes the encoding performed
by the CLIP text encoder and P (·) is shorthand for prompt(·).

The proof is deferred to Sec. D. Since the image M(P (a, c)) generated by the prompt P (a, c) can
serve as the encoding for the concepts a and c, we approximate f(a, c) by using the semantic center
of multiple image embeddings E

[
embI

c(a)
]
, as shown in Fig. 3(b). Ultimately, we can correct the

bias by shifting the text embedding to a position where its distance from the embedding center of
each attribute image is equal. The loss function can be expressed as:

ℓo =

√√√√ 1

|A|

|A|∑
i=1

[
s
(

embT
c (·),E

[
embI

c(ai)
] )
− s
]2
, (9)

where s = 1
|A|
∑|A|

i=1 s
(

embTc (·),E
[
embIc(ai)

] )
, and s(a, b) represents the cosine distance between

a and b.

To ensure equalized quality, we aim to generate images that share the same CLIP score for each
attribute. We compute the CLIP score of a single image as s

(
embT

c (a), embIc(a)
)

. To find the
quality distribution, we calculate the CLIP score for each generated image. This computation can be
simplified by using the average image embedding for each attribute. Specifically, we set a constraint
so that the distance between the image embedding center of each attribute and its corresponding text
embedding is equal.

ℓq =

√√√√ 1

|A|

|A|∑
i=1

[
s
(

embT
c (ai)

)
,E
[
embI

c(ai)
] )
− s′

]2
, (10)

where s′ = 1
|A|
∑|A|

i=1 s
(

embTc (ai)
)
,E
[
embI

c(ai)
] )

.

We introduce an additional regularization term to constrain the text embeddings from deviating too
far from the image embedding center.

ℓreg = 1− s
(

embT
c (·),Ei∈[1,|A|]

[
E
[
embI

c(ai)
]] )

, (11)

where Ei∈[1,|A|]
[
E
[
embIc(ai)

]]
represents the centroid of all attribute image embeddings.

During fine-tuning, the loss function is constructed by jointly using Equ. (9), Equ. (10), and Equ. (11):

ℓ = ℓo + λ1ℓq + λ2ℓreg, (12)
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where λ1 and λ2 are hyperparameters. The entire process does not require additional auxiliary
networks or the computation of complex gradient chains, ensuring lightweight fine-tuning.

4.2.2 Adaptive Foreground Extraction

“Photo portrait of 
a male doctor”

male doctor

“Photo portrait of a 
female firefighter”

female firefighter

“Photo portrait of 
a black CEO”

black CEO

“Photo portrait of a 
white receptionist”

white receptionist

Figure 4: The first row includes images generated
by SD using designed templates. The second row
shows the visualization of the generated images
after highlighting the main content.

When using image embeddings to represent
semantic centers, we notice that the back-
ground of the image may introduce distrac-
tions. As shown in Fig. 4, in the case of
the prompt “Photo portrait of a white
receptionist”, the generated image includes
elements like desk and door. To address this
issue, we use text guidance to highlight the pix-
els corresponding to the main word in the im-
age. Specifically, it is achieved using a cross-
attention layer:

embIc
′(ai) = Softmax(

QKT

√
d

)V, (13)

where Q = embI
c(ai), K = V = embT

c (ai) are
the query, key, value matrices of the attention
operation, d is the embedding dimension of K. The highlighted image replaces the original image
as input to the image encoder, as shown in Fig. 3(a). By using the highlighted image, the model
can better focus on the target concept while reducing the influence of background information. As
illustrated in Fig. 4, the phrase “white receptionist” directs the model’s attention to the person,
distinguishing her from the surrounding environment. In Sec. 5.3, we present additional experiments
to demonstrate the effectiveness of this module.

4.3 Two-Stage Text-Guided Sampling Strategy

Although we aim to minimize the impact of debiasing on the model’s generative performance by
using multiple constraints, there is no free lunch. Fine-tuning inevitably affects the model’s output
quality. To mitigate this, we apply fine-tuned guidance only at critical times during the generation
process rather than entirely replacing the original text encoder. This approach requires a detailed
analysis of the diffusion model’s generation process [52, 77, 8].

First, we identify frequency signal patterns in the diffusion denoising process:

Proposition 4.2. The recovery rate of low-frequency signals during the diffusion denoising process
is higher than that of high-frequency signals.

Low Frequency High Frequency

𝒕 = 0.1T 0T 0.9T 0.8T 0.7T 0.6T 0.5T 0.4T 0.3T 0.2T

Figure 5: Results of low-pass and high-pass fil-
tering applied during the denoising process with
text guidance for ‘male doctor’ (top two rows)
and ‘female doctor’ (bottom two rows). Each
pair shows low-pass filtered images on top and
high-pass filtered images below. For clarity, some
images are enlarged and highlighted on both sides.
More images are provided in Sec. F.

The proof is deferred to Sec. E. The main word
c can be considered as low-frequency informa-
tion because it describes macroscopic features,
while the attribute a represents high-frequency
information because it focuses on detailed fea-
tures. Consequently, Thm. 4.2 indicates that
attribute information always emerges during the
later stages of denoising.

As shown in Fig. 5, we visualize the process
of progressive denoising from Gaussian noise
(t = T ) to a clear image of a ‘doctor’ (t = 0).
It can be observed that low-frequency informa-
tion emerges in the early stages of denoising,
with the concept of ‘doctor’ gradually tak-
ing shape, while high-frequency information
remains obscured by noise. At 0.7T , gender
attributes are almost indistinguishable. Only in the later stages of denoising do gender-related at-
tributes, such as hair and facial features, gradually appear. This confirms the correctness of Thm. 4.2.
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Table 1: Selected representative quantitative results on gender and race attributes. The champion and
the runner-up are highlighted in bold and underline. Complete results are provided in Tab. 6 and 7.

Method

Gender Race
Fairness Quality Fairness Quality

Bias-O ↓ Bias-Q ↓ CLIP-T ↑ CLIP-I ↑ FID ↓ IS ↑ AS-R ↑ AS-A ↓ Bias-O ↓ Bias-Q ↓ CLIP-T ↑ CLIP-I ↑ FID ↓ IS ↑ AS-R ↑ AS-A ↓
Stable Diffusion v1.5

SD [78] 0.73 (±0.05) 1.90 (±0.67) 29.31 (±0.06) - 275.13 (±6.75) 1.26 (±0.03) 4.78 (±0.08) 2.65 (±0.04) 0.54 (±0.02) 1.60 (±0.67) 29.31 (±0.06) - 275.13 (±6.75) 1.26 (±0.03) 4.78 (±0.08) 2.65 (±0.04)
FairD [24] 0.79 (±0.04) 3.25 (±1.15) 28.79 (±0.11) 75.91 (±0.56) 269.62 (±4.42) 1.30 (±0.03) 4.57 (±0.09) 2.82 (±0.05) 0.50 (±0.02) 1.50 (±0.38) 28.95 (±0.10) 74.33 (±0.68) 262.72 (±4.84) 1.28 (±0.03) 4.55 (±0.08) 2.83 (±0.06)
UCE [27] 0.78 (±0.07) 1.79 (±0.46) 28.91 (±0.13) 82.72 (±0.81) 273.95 (±5.53) 1.26 (±0.03) 4.71 (±0.09) 2.64 (±0.04) 0.44 (±0.03) 1.40 (±0.24) 29.13 (±0.14) 90.15 (±0.70) 281.16 (±5.18) 1.26 (±0.02) 4.76 (±0.08) 2.69 (±0.05)

FinetuneFD [84] 0.38 (±0.07) 2.31 (±0.35) 29.34 (±0.13) 76.17 (±0.68) 278.21 (±7.53) 1.24 (±0.02) 4.38 (±0.06) 2.86 (±0.04) 0.20 (±0.03) 1.41 (±0.23) 29.02 (±0.15) 74.57 (±0.53) 270.09 (±5.99) 1.26 (±0.02) 4.33 (±0.06) 2.87 (±0.05)
FairMapping [51] 0.46 (±0.05) 2.16 (±0.72) 29.30 (±0.16) 76.00 (±0.66) 278.81 (±5.84) 1.26 (±0.02) 4.34 (±0.07) 2.90 (±0.03) 0.34 (±0.02) 1.75 (±0.47) 29.29 (±0.15) 76.54 (±0.71) 280.95 (±5.02) 1.26 (±0.03) 4.53 (±0.08) 2.80 (±0.05)
BalancingAct [70] 0.41 (±0.05) 1.70 (±0.55) 29.30 (±0.11) 77.37 (±0.64) 272.08 (±5.16) 1.28 (±0.02) 4.71 (±0.06) 2.68 (±0.04) 0.34 (±0.02) 1.13 (±0.36) 29.34 (±0.11) 77.44 (±0.72) 271.91 (±5.35) 1.29 (±0.03) 4.72 (±0.10) 2.66 (±0.04)
LightFair (Ours) 0.30 (±0.08) 0.99 (±0.55) 30.57 (±0.16) 80.09 (±0.76) 233.53 (±5.50) 1.30 (±0.03) 4.79 (±0.08) 2.60 (±0.04) 0.18 (±0.04) 1.06 (±0.43) 31.34 (±0.20) 86.31 (±0.70) 259.96 (±7.75) 1.33 (±0.03) 4.80 (±0.10) 2.55 (±0.04)

Stable Diffusion v2.1
SD [78] 0.85 (±0.05) 1.84 (±0.63) 29.90 (±0.15) - 259.36 (±4.81) 1.23 (±0.03) 5.12 (±0.05) 2.24 (±0.03) 0.63 (±0.01) 2.06 (±0.35) 29.90 (±0.15) - 259.36 (±4.81) 1.23 (±0.03) 5.12 (±0.05) 2.24 (±0.03)

debias VL [15] 0.43 (±0.09) 1.44 (±0.48) 28.20 (±0.22) 70.01 (±0.96) 245.11 (±3.72) 1.35 (±0.03) 3.53 (±0.11) 2.93 (±0.06) 0.49 (±0.03) 1.91 (±0.92) 28.15 (±0.26) 67.42 (±0.96) 242.78 (±4.21) 1.33 (±0.03) 3.57 (±0.11) 2.85 (±0.06)
UCE [27] 0.90 (±0.04) 1.67 (±0.71) 29.41 (±0.13) 87.94 (±0.86) 268.52 (±3.92) 1.22 (±0.02) 5.12 (±0.05) 2.32 (±0.03) 0.50 (±0.03) 1.95 (±0.37) 29.44 (±0.12) 80.46 (±1.13) 250.57 (±4.49) 1.23 (±0.03) 5.17 (±0.08) 2.25 (±0.03)

LightFair (Ours) 0.33 (±0.10) 1.40 (±0.28) 30.82 (±0.19) 75.29 (±0.99) 231.46 (±3.30) 1.35 (±0.02) 5.14 (±0.09) 2.24 (±0.06) 0.40 (±0.03) 1.82 (±0.44) 30.26 (±0.16) 77.47 (±1.05) 230.59 (±6.53) 1.35 (±0.01) 5.29 (±0.11) 2.14 (±0.06)

Based on this, Insight.2 encapsulates our fine-grained exploration of the diffusion generation process.

Insight.2. The diffusion model generates the main word concept in the early denoising stages and
the attribute concepts in the later denoising stages.

Therefore, as shown in Fig. 3(d), we propose a two-stage text-guided sampling strategy. In the early
stages of sampling, when attribute-related information is minimal, the output of the original text
encoder continues to provide guidance. In the later stages, the fine-tuned text encoder’s output directs
the generation of images with fair attributes. Specifically, the noise prediction is expressed as:

ϵθ(P, zt, t) =

{
ϵθ(f

t
orig(P ), zt, t) , t ≥ τ

ϵθ(f
t
new(P ), zt, t) , t < τ

, (14)

where τ represents the optimal switching time for the text encoder. This strategy introduces almost
no computational burden, making it lightweight as well. Overall, Sec. G provides the pseudo-code
for LightFair.

5 Experiments

5.1 Experimental Setups

We apply our method to SD v1.5 and v2.1 to mitigate gender and racial biases. For gender, we consider
‘Male’ and ‘Female’ attributes. For racial, we include ‘White’, ‘Black’, and ‘Asian’ attributes.
We use the prompt template “Photo portrait of a/an {occupation}, a person”, where
the occupation is taken from [24]. We generate 100 images per prompt, repeat evaluation 5 times,
and report the mean and variance across 2 fairness and 6 quality metrics. We compare our method
against 16 recent advances in fair T2I diffusion. Detailed introductions are deferred to Sec. H.

5.2 Overall Performance

Quantitative Analysis. Due to space limitations, Tab. 1 presents results for 7 representative
quantitative comparisons. The full experimental results, including comparisons with 16 baseline
methods and evaluations using 2 additional metrics, are provided in Sec. I.1. Based on Tab. 1, we draw
the following conclusions: First, the Stable Diffusion, whether v1.5 or v2.1, displays strong attribute
biases. Specifically, both gender and race biases exceed 0.5, with SD v2.1 exhibiting a particularly
high gender bias of 0.85. Second, current debiasing methods provide limited improvement and, in
some cases, worsen the biases, as observed with FairD. This may occur because over-correction shifts
the model’s bias from one attribute to another. Additionally, some methods, while reducing odds bias,
negatively affect quality fairness. For example, FinetuneFD lowers Bias-O but increases Bias-Q. Our
method focuses on the key structure contributing to attribute bias while preserving quality fairness in
the generated content. It successfully debiases multiple versions of SD. For instance, for SD v1.5, it
reduces gender/race biases by 0.43/0.36, while ensuring that quality biases are reduced by 0.91/0.54.
We note that our method outperforms all competitors in terms of generation quality, except for the
CLIP-I metric. Since debiasing alters certain image attributes, a decline in this metric is an expected
trade-off. Nonetheless, our method still ranks as the runner-up, demonstrating its effectiveness.
Finally, the time and space complexity analysis provided in Fig. 1 highlights the lightweight nature
of our LightFair.
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Table 2: Expansion of diverse prompts in gender-
debiased SD.

Prompt Method
Stable Diffusion v1.5 Stable Diffusion v2.1

Bias-O ↓ Bias-Q ↓ CLIP-T ↑ Bias-O ↓ Bias-Q ↓ CLIP-T ↑

Non-templated SD 0.61 (±0.25) 1.32 (±0.19) 32.06 (±1.65) 0.46 (±0.19) 1.43 (±0.24) 32.02 (±2.04)
Ours 0.48 (±0.27) 1.02 (±0.15) 32.62 (±2.02) 0.34 (±0.23) 1.13 (±0.15) 32.77 (±1.99)

Two People
SD 0.35 (±0.04) 1.23 (±0.23) 30.46 (±0.14) 0.65 (±0.03) 1.76 (±0.22) 32.32 (±0.17)

Ours 0.13 (±0.04) 0.89 (±0.12) 30.90 (±0.22) 0.54 (±0.05) 1.11 (±0.13) 32.50 (±0.25)

Three People
SD 0.46 (±0.05) 1.77 (±0.31) 31.17 (±0.18) 0.70 (±0.03) 2.01 (±0.42) 32.99 (±0.18)

Ours 0.30 (±0.04) 1.05 (±0.20) 32.49 (±0.04) 0.62 (±0.04) 1.43 (±0.21) 33.89 (±0.25)

Table 3: Ablation study on the effective-
ness of different modules.
ℓo ℓq ℓreg AFE Bias-O ↓ Bias-Q ↓ CLIP-T ↑

0.70 (±0.03) 1.15 (±0.49) 30.34 (±0.08)
✓ 0.67 (±0.08) 1.07 (±0.46) 30.45 (±0.11)
✓ ✓ 0.56 (±0.08) 0.93 (±0.46) 30.51 (±0.12)
✓ ✓ 0.49 (±0.06) 1.12 (±0.73) 28.38 (±0.11)
✓ ✓ ✓ 0.45 (±0.09) 0.88 (±0.51) 30.29 (±0.44)
✓ ✓ ✓ ✓ 0.34 (±0.10) 0.81 (±0.65) 32.19 (±0.07)

Qualitative Analysis. Fig. 6 presents the qualitative results of our debiased SD. The original SD
shows a tendency to generate male CEOs and white doctors, marginalizing other identities. In
contrast, our debiased SD significantly improves the representation of minorities while preserving the
original image layout and details. Additional qualitative results are provided in Sec. I.2.

Generalization to diverse prompts. In Tab. 2, we further explore the effectiveness of our method
across a broader range of prompts. For non-templated prompts, we conduct experiments on 30
occupation-related prompts from the LAION-Aesthetics V2 dataset [81] (see Sec. I.3). For sce-
narios involving multiple people, we consider prompts such as “Photo portrait of two/three
{occupation}, two/three people”. The results show that our method is equally effective across
diverse prompts, demonstrating its scalability. The qualitative results are provided in Sec. I.4.

Generalization to diverse attributes. In Sec. I.5 and Sec. I.6, we explore the results of debiasing on
the cross-attribute Gender×Race and the Age attribute. The results demonstrate that our method can
generalize to other attributes and multi-attribute debiasing scenarios.

Generalization to diverse target distributions. In Sec. I.7, we explore the effectiveness of debiasing
under imbalanced target distributions. The results demonstrate that our method can adapt to diverse
target distributions by tuning only a single hyperparameter.

5.3 Ablation Study

We perform several ablation studies to test the effectiveness of different modules and hyperparameters.
All experiments are conducted in gender-debiased Stable Diffusion v1.5.

The Effectiveness of Different Modules. Tab. 3 presents our step-by-step ablation study on the
three loss functions and Adaptive Foreground Extraction (AFE) mechanism for foreground extraction.
Compared to the baseline, ℓo reduces Bias-O, while ℓq reduces Bias-Q. However, the improvements
remain limited due to overfitting. The regularization loss ℓreg prevents the model from deviating
excessively from the original semantics, resulting in a reduction of Bias-O and Bias-Q by 0.25 and
0.27, respectively. Additionally, AFE enhances semantic information extraction from the foreground,
further reducing Bias-O and Bias-Q while maintaining the quality of the generated images. Fig. 4
illustrates qualitative results achieved with AFE. Sec. I.8 provides additional ablation experiments
evaluating AFE under complex background conditions.

Ablation Study on Hyper-Parameters. Fig. 7a ablates the hyperparameter λ1, which sets the weight
of ℓq . The sequence λ1 = 5→ 2→ 1→ 0.5 forms a smooth downward curve. But λ1 = 10 and 0.1
deviate from the main pattern due to over- and under-regularization. The optimal value is λ1 = 1. A
small λ1 reduces constraints on equalized quality, increasing Bias-Q. In contrast, a large λ1 causes
model overfitting, worsening Bias-O. Fig. 7b ablates the hyperparameter λ2, which adjusts the weight
of ℓreg. The sequence λ2 = 1→ 0.5→ 0.2→ 0.1 creates a consistent slope, while λ2 = 0.05 and
0.01 fall outside the stable range. The best value is λ2 = 0.1. If λ2 is too small, excessive parameter
changes lower the generation quality. If λ2 is too large, the model has difficulty converging, reducing
the effectiveness of debiasing. For additional ablation studies on hyperparameters, see Sec. I.9.

Different τ Values During Inference. Fig. 8 illustrates the effect of different τ values during
sampling. Since the early denoising stages primarily capture non-attribute information, choosing
τ ∈ ( 34T, T ] ensures a lower Bias-O. In contrast, during the later stages, attribute features have
already formed and are difficult to reverse, resulting in Bias-O values comparable to those observed
without the debias model. However, intervening too early can degrade the quality of generated images,
as evidenced by irrelevant semantic artifacts (e.g., extraneous objects in the bottom-right corner of
the image in Fig. 8(a)). Based on experimental results, we recommend setting τ = 3

4T .
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(a) Prompt: “Photo portrait of a CEO, a person”. Left: original SD v1.5. Right: our gender-debiased SD v1.5.

(b) Prompt: “Photo portrait of a doctor, a person”. Left: original SD v2.1. Right: our race-debiased SD v2.1.

Figure 6: Qualitative results. Images generated by the original SD (left) and our debiased SD (right).
For the same prompt, the images in corresponding positions are generated using the same random
noise. Bounding boxes denote detected faces (Gender: Male, Female; Race: White, Asian, Black).
More images are provided in Fig. 12, Fig. 13, Fig. 14 and Fig. 15.

(a) λ1 (b) λ2

Figure 7: Ablation Study on Hyper-Parameters.

(d) τ = 1/4𝑇(c) τ = 1/2𝑇(a) τ = 𝑇 (b) τ = 3/4𝑇 (e) τ = 0

Figure 8: Visualization and performance of image
generation with different τ values.

5.4 Further Exploration

In Sec. I.10, we show that LightFair can serve as a plug-in alongside other debiasing methods.
Sec. I.11 further shows that LightFair is equally applicable to SD models built on the DiT architec-
ture. Sec. I.12 presents user studies indicating that our method delivers a superior user experience.
Sec. I.13 verifies that our debiasing preserves the model’s semantic understanding of original attributes.
Moreover, Sec. I.14 confirms it does not affect generation on general prompts.

6 Conclusion

This paper explores a novel lightweight approach, named LightFair, to achieve fairness in T2I
DMs. First, we reveal the text encoder’s adverse effects on fairness. Then, we propose a collaborative
distance-constrained debiasing strategy that achieves equalized odds and equalized quality without
relying on auxiliary networks. Next, we introduce a two-stage text-guided sampling strategy. It
applies the debiased text encoder only during later sampling stages, which preserves the original
model’s fidelity. Finally, extensive experiments confirm the effectiveness of our LightFair.
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A Symbol Definitions

In this section, Tab. 4 includes a summary of key notations and descriptions in this work.

Table 4: A summary of key notations and descriptions in this work.
Notations Descriptions
ge Image encoder of the latent diffusion model.
gd Image decoder of the latent diffusion model.
x0, · · · ,xT Samples of the diffusion model at t = 0, · · · , T .
z0, · · · , zT Latent space samples of the diffusion model at t = 0, · · · , T .
αt Hyperparameter controlling the noise level, αt ∈ (0, 1).
αt αt =

∏t
i=1 αi.

βt βt = 1− αt.
f t Text encoder of diffusion model / Text encoder of CLIP.
f i Image encoder of CLIP.
prompt(·) / P (·) Prompt used for text-to-image generation.
ϵθ(f

t(P ), zt, t) Noise prediction network of the text-to-image diffusion model.
A Attribute set.
C Main word set.
a Attribute word from the set A, a ∈ A.
c Main word from the set C, c ∈ C.
M(prompt(·)) Images generated using prompt(·).
embTc (·) Text embedding, shorthand for f t(prompt(·, c)).
embIc(·) Image embedding, shorthand for f i(M(prompt(·, c))).
E[embIc(·)] Centroid of the image embeddings.
τ The optimal starting point for fine-tuning the text encoder.

B Parameter Counts of Different Components in Stable Diffusion

Tab. 5 presents the parameter counts of different components in Stable Diffusion, including the CLIP
text encoder and U-Net. The results indicate that U-Net has more parameters than the CLIP text
encoder. Therefore, fine-tuning the text encoder alone is a lightweight approach.

Table 5: Parameter Counts of Different Components in Stable Diffusion.
Method CLIP Text Encoder U-Net

Stable Diffusion v1.5 123.060480 M 859.520964 M
Stable Diffusion v2.1 340.387840 M 865.910724 M

C Occupation List

We obtain the following 80 occupations from [24], which are used for plotting Fig. 2(c).

[‘aerospace engineer’, ‘author’, ‘baker’, ‘bartender’, ‘butcher’, ‘carpenter’, ‘ceo’, ‘childcare
worker’, ‘claims appraiser’, ‘cleaner’, ‘coach’, ‘compliance officer’, ‘computer programmer’, ‘com-
puter support specialist’, ‘computer systems analyst’, ‘construction worker’, ‘cook’, ‘correctional
officer’, ‘dentist’, ‘designer’, ‘detective’, ‘director’, ‘dispatcher’, ‘doctor’, ‘drywall installer’, ‘elec-
trical engineer’, ‘electrician’, ‘engineer’, ‘event planner’, ‘facilities manager’, ‘file clerk’, ‘financial
manager’, ‘firefighter’, ‘head cook’, ‘health technician’, ‘hostess’, ‘industrial engineer’, ‘inventory
clerk’, ‘it specialist’, ‘janitor’, ‘lawyer’, ‘logistician’, ‘machinery mechanic’, ‘machinist’, ‘mani-
curist’, ‘massage therapist’, ‘mechanical engineer’, ‘medical records specialist’, ‘mover’, ‘musician’,

‘network administrator’, ‘nurse’, ‘occupational therapist’, ‘office clerk’, ‘painter’, ‘pilot’, ‘plane
mechanic’, ‘plumber’, ‘police officer’, ‘postal worker’, ‘printing press operator’, ‘producer’, ‘pro-
grammer’, ‘radiologic technician’, ‘real estate broker’, ‘repair worker’, ‘roofer’, ‘sales manager’,

‘salesperson’, ‘school bus driver’, ‘security guard’, ‘social assistant’, ‘software developer’, ‘supervi-
sor’, ‘teacher’, ‘teaching assistant’, ‘waiter’, ‘web developer’, ‘wholesale buyer’, ‘writer’]

17



D Proof of Theorem 4.1

Assumption D.1 (Stochastic Neighbor Embedding [36]). Let i represent an object and j a potential
neighbor. The probability pij that object i selects j as its neighbor is defined as:

pij =
exp(−d2ij)∑
k ̸=i exp(−d2ik)

, (1)

where the dissimilarities d2ij are calculated using the scaled squared Euclidean distance between two
high-dimensional points xi and xj :

d2ij =
∥xi − xj∥2

2σ2
i

, (2)

and σi represents the variance parameter associated with object i.
Assumption D.2. The diffusion model is assumed to be well-trained, such that it can correctly
generate the content specified by the prompt:

P
(
x | prompt(x)

)
= 1. (15)

Assumption D.3. The attribute a and the concept c are assumed to be statistically independent, that
is:

P(a, c) = P(a)P(c). (16)
This implies that the attribute a does not provide additional information about the concept c, and vice
versa.
Restate of Theorem 4.1. Under Thm. D.1, D.2 and D.3, for any attributes ai, aj ∈ A, achieving
Equalized Odds P(ai|P (·, c)) = P(aj |P (·, c)) is equivalent to ensuring Equalized Distance:∥∥f(ai, c)− f t

(
P (·, c)

)∥∥2 =
∥∥f(aj , c)− f t

(
P (·, c)

)∥∥2 ,
where f(ai, c) represents the encoding of the concepts ai and c, f t(·) denotes the encoding performed
by the CLIP text encoder and P (·) is shorthand for prompt(·).

Proof. First, since the input of the diffusion denoising process is the encoding of the prompt by the
text encoder, Equalized Odds can be reformulated as:

P
(
ai | f t

(
P (·, c)

))
= P

(
aj | f t

(
P (·, c)

))
, ∀ai, aj ∈ A, (17)

where f t(·) denotes encoding by the CLIP text encoder, and P (·) is shorthand for prompt(·).
According to Thm. D.2, we have:

P
(
c | f t

(
P (·, c)

))
= 1. (18)

Thus, by Thm. D.3, for any ai, aj ∈ A,

P
(
ai, c | f t

(
P (·, c)

))
= P

(
aj , c | f t

(
P (·, c)

))
. (19)

Let f(a, c) represent the effective encoding of the concepts a and c, Equ. (19) can be approximated
as:

P
(
f(ai, c) | f t

(
P (·, c)

))
= P

(
f(aj , c) | f t

(
P (·, c)

))
. (20)

According to Thm. D.1 and [20], the conditional probability P
(
f(ai, c) | f t

(
P (·, c)

))
can be

represented as the similarity between f(ai, c) and f t
(
P (·, c)

)
, and can be modeled using a Gaussian

distribution. We thus measuring P
(
f(ai, c) | f t

(
P (·, c)

))
by calculating:

P
(
f(ai, c) | f t

(
P (·, c)

))
=

exp

(
−

∥∥∥f(ai,c)−ft
(
P (·,c)

)∥∥∥2

2ρ2

)
∑

ak∈A exp

(
−

∥∥∥f(ak,c)−ft
(
P (·,c)

)∥∥∥2

2ρ2

) , (21)
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where ρ is a constant dependent only on f t
(
P (·, c)

)
, controlling the falloff of P with respect to

distance. Combining Equ. (20) and Equ. (21), we obtain:

exp

(
−

∥∥∥f(ai,c)−ft
(
P (·,c)

)∥∥∥2

2ρ2

)
∑

ak∈A exp

(
−

∥∥∥f(ak,c)−ft
(
P (·,c)

)∥∥∥2

2ρ2

) =

exp

(
−

∥∥∥f(aj ,c)−ft
(
P (·,c)

)∥∥∥2

2ρ2

)
∑

ak∈A exp

(
−

∥∥∥f(ak,c)−ft
(
P (·,c)

)∥∥∥2

2ρ2

) (22)

exp

(
−
∥∥f(ai, c)− f t

(
P (·, c)

)∥∥2
2ρ2

)
= exp

(
−
∥∥f(aj , c)− f t

(
P (·, c)

)∥∥2
2ρ2

)
(23)

∥∥f(ai, c)− f t
(
P (·, c)

)∥∥2 =
∥∥f(aj , c)− f t

(
P (·, c)

)∥∥2 (24)

This completed the proof.

To establish Thm. 4.1, we rely on an independence assumption (Thm. D.3). This is a mild requirement
that can be validated on both empirical and theoretical grounds.

• Empirically, the assumption is weak and specific to the training process. Although attributes
and concepts are seldom independent in the real world, the training images are generated
by Stable Diffusion. By controlling the prompts, we can readily enforce independence
between attributes and concepts. For example, we generate equal numbers of images for
different attributes to compute semantic centroids. In such a controlled setting, the condition
P(a, c) = P(a)P(c) clearly holds.

• Theoretically, we further relax Thm. D.3 to a softer condition: 1 − ϵ ≤ P(a|c)
P(a) ≤ 1 + ϵ

(Thm. D.4), and derive Thm. D.5. It shows that, under this relaxed assumption, the induced
probability error from the distance constraint is on the order of O(ϵ), where ϵ is a small
constant. In our training data, ϵ is always less than 0.01.

Assumption D.4. For any attribute a and concept c, there exists ϵ ∈ [0, 1) such that

1− ϵ ≤ P (a | c)
P (a)

≤ 1 + ϵ, ∀a ∈ A, c ∈ C. (25)

When ϵ = 0, this reduces to the original Thm. D.3.

Theorem D.5. Under Thm. D.1, D.2 and D.4, let di =
∥∥f(ai, c)− f t

(
P (·, c)

)∥∥ , and let ρ be the
bandwidth of the Gaussian kernel. If Equalized Odds holds, i.e.,

P(ai | P (·, c)) = P(aj | P (·, c)) for any ai, aj ∈ A, (26)

then the corresponding embedding distances satisfy∣∣d2i − d2j
∣∣ ≤ 2ρ2 ·

∣∣∣∣ln 1 + ϵ

1− ϵ

∣∣∣∣ ≈ 4ρ2ϵ. (27)

In particular, as ϵ→ 0, the bound vanishes. Equalized Odds then implies exact equality in embedding
distances, recovering the original Thm. 4.1.

Proof. First, since the input of the diffusion denoising process is the encoding of the prompt by the
text encoder, Equalized Odds can be reformulated as:

P
(
ai | f t

(
P (·, c)

))
= P

(
aj | f t

(
P (·, c)

))
, ∀ai, aj ∈ A, (28)

where f t(·) denotes encoding by the CLIP text encoder, and P (·) is shorthand for prompt(·).
According to Thm. D.2, we have:

P
(
c | f t

(
P (·, c)

))
= 1. (29)
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Under the weak-independence Thm. D.4, for any ai, aj ∈ A,

1− ϵ

1 + ϵ
≤ P(ai, c | f t(P (·, c)))

P(aj , c | f t(P (·, c)))
≤ 1 + ϵ

1− ϵ
. (30)

Let f(a, c) represent the joint encoding of the attribute a and concept c.

Because f(a, c) captures both a and c, Equ. (30) can be rewritten as

1− ϵ

1 + ϵ
≤

P
(
f(ai, c) | f t(P (·, c))

)
P
(
f(aj , c) | f t(P (·, c))

) ≤ 1 + ϵ

1− ϵ
. (31)

According to Thm. D.1 and [20], the conditional probability P
(
f(ai, c) | f t

(
P (·, c)

))
can be

represented as the similarity between f(ai, c) and f t
(
P (·, c)

)
, and can be modeled using a Gaussian

distribution. We thus measuring P
(
f(ai, c) | f t

(
P (·, c)

))
by calculating:

P
(
f(ai, c) | f t

(
P (·, c)

))
=

exp

(
−

∥∥∥f(ai,c)−ft
(
P (·,c)

)∥∥∥2

2ρ2

)
∑

ak∈A exp

(
−

∥∥∥f(ak,c)−ft
(
P (·,c)

)∥∥∥2

2ρ2

) , (32)

where ρ is a constant dependent only on f t
(
P (·, c)

)
, controlling the falloff of P with respect to

distance. Combining Equ. (31) and Equ. (32), we obtain:
1− ϵ

1 + ϵ
≤ exp

(
−∥f(ai,c)−ft(P (·,c))∥2−∥f(aj ,c)−ft(P (·,c))∥2

2ρ2

)
≤ 1 + ϵ

1− ϵ
. (33)

Taking natural logarithms and absolute values on Equ. (33) yields∣∣∥f(ai, c)− f t(P (·, c))∥2 − ∥f(aj , c)− f t(P (·, c))∥2
∣∣ ≤ 2ρ2

∣∣∣ln 1 + ϵ

1− ϵ

∣∣∣. (34)

Recalling the definition di = ∥f(ai, c)− f t(P (·, c))∥ and using ln 1+ϵ
1−ϵ = 2ϵ+O(ϵ3), we have∣∣d2i − d2j

∣∣ ≤ 2ρ2
∣∣∣∣ln 1 + ϵ

1− ϵ

∣∣∣∣ ≈ 4ρ2ϵ. (35)

As ϵ→ 0, the logarithmic term vanishes, so Equalized Odds enforces d2i = d2j , recovering the exact
equality of embedding distances established under the stronger independence assumption.

This completed the proof.

E Proof of Proposition 4.2

Definition E.1 (Fourier Transform). The Fourier Transform of a function f(x), denoted as F{f(x)},
is defined as:

F [f(x)](ω) = Fx(ω) =

∫ ∞

−∞
f(x)e−iωx dx, (36)

where ω is the angular frequency variable in the Fourier domain.
Lemma E.2 (Linearity Property of the Fourier Transform). If the Fourier transforms of signals f1(x)
and f2(x) are F1x(ω) and F2x(ω), respectively, i.e.,

F [f1(x)](ω) = F1x(ω),

F [f2(x)](ω) = F2x(ω),

then for any constants a1 and a2, the Fourier Transform satisfies:

F [a1f1(t) + a2f2(t)](ω) = a1F1x(ω) + a2F2x(ω). (37)
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Restate of Proposition 4.2. The recovery rate of low-frequency signals during the diffusion denoising
process is higher than that of high-frequency signals.

Proof. For the forward noising process of the diffusion model Denoising Diffusion Probabilistic
Model (DDPM), we have

xt =
√
αtx0 +

√
1− αtϵ with ϵ ∼ N (ϵ; 0, I), (38)

where, αt =
∏t

i=1 αi, αt ∈ (0, 1) represents the noise attenuation factor at time t during the diffusion
process. x0 and xt denote the initial noise-free sample and the noisy sample at time t, respectively. ϵ
represents standard Gaussian noise.

According to Thm. E.1, applying the Fourier Transform to Equ. (38) yields:

F [xt] (ω) = Ft(ω) = F
[√

αtx0 +
√
1− αtϵ

]
(ω). (39)

Next, due to the linearity property of the Fourier Transform in Thm. E.2, we have:

F [xt] (ω) =
√
αtF [x0] (ω) +

√
1− αtF [ϵ] (ω),

Ft(ω) =
√
αtF0(ω) +

√
1− αtFϵ(ω). (40)

Substituting f = 2πω, we obtain:

Ft(f) =
√
αtF0(f) +

√
1− αtFϵ(f). (41)

The DDPM denoising process can be viewed as an error-free transmission of image signals through a
channel. The original noise-free image signal is the sum of image signals at different frequencies,
expressed as x0 =

∑+∞
f=0 Fx0

(f). The channel input is a combination of the attenuated image signal
(
√
αTFx0

(f)) and Gaussian noise (
√
1− αTFϵ(f)). Due to the sufficiently large Gaussian noise,

the image signal is masked, and the input can be considered as Gaussian noise, which corresponds to
the random noise at timestep xT in the DDPM reverse process, i.e.:

FT (f) =
√
αTF0(f) +

√
1− αTFϵ(f) . (42)

Attenuated Image Signal

Gaussian Noise
For a diffusion model to successfully reconstruct an image, it must ensure that the attenuated image
signal is completely transmitted. Simultaneously, during the transmission process, the DDPM
weakens the original Gaussian noise through noise prediction. This process can be described as:

Image Signal + High Gaussian Noise Channel Transmission−−−−−−−−−−−→
(DDPM)

Image Signal + Low Gaussian Noise .

Assuming the DDPM model is fully trained at any given time t, it can completely remove the noise.
During this process, the signal-to-noise ratio at time t is:

SNRt(f) =
E
[
|FT (f)− ET (f)|2

]
E
[
|Et(f)|2

] (43)

=
E
[∣∣FT (f)−

√
1− αTFϵ(f)

∣∣2]
E
[∣∣√1− αtFϵ(f)

∣∣2] (44)

=
αT |F0(f)|2

(1− αt) |Fϵ(f)|2
. (45)
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The variation efficiency of the signal-to-noise ratio:

∆SNRi+1
i (f) = SNRi(f)− SNRi+1(f) (46)

=
αT |F0(f)|2

(1− αi) |Fϵ(f)|2
− αT |F0(f)|2

(1− αi+1) |Fϵ(f)|2
(47)

=
αi − αi+1

(1− αi)(1− αi+1)
· αT |F0(f)|2

|Fϵ(f)|2
(48)

Previous studies [12, 22, 23, 89, 90] have observed that the average power spectrum of natural images
follows the form 1/fβ with β ∼ 2. Therefore, we have:

|F0(f)|2 ∝
1

fβ
, β ∼ 2. (49)

Since ϵ ∼ N (ϵ; 0, I) is Gaussian white noise, the power is constant across different frequencies f . It
can be expressed as:

|Fϵ(f)|2 = C. (50)

Substituting Equ. (49) and Equ. (50) into Equ. (48) yields:

∆SNRi+1
i (f) ∝ αi − αi+1

(1− αi)(1− αi+1)︸ ︷︷ ︸
(1)

· αT

C︸︷︷︸
(2)

· 1

fβ︸︷︷︸
(3)

(51)

Since αt =
∏t

i=1 αi and αt ∈ (0, 1], part (1) is always positive for any i. Part (2) is a constant, and
part (3) is a positive term inversely proportional to f . Therefore:

• For any i ∈ [0, T − 1], ∆SNRi+1
i (f) > 0.

• For f1 > f2, we have ∆SNRi+1
i (f1) < ∆SNRi+1

i (f2).

So, the recovery rate of low-frequency signals during the diffusion denoising process is higher than
that of high-frequency signals.

This completed the proof.

22



F Expanded Version of Filtering Results in the Denoising Process

Here, we provide an expanded version of the filtering results in the denoising process, as shown in
Fig. 9, Fig. 10 and Fig. 11.

Low Frequency High Frequency

𝒕 = 0.1T 0T 0.9T 0.8T 0.7T 0.6T 0.5T 0.4T 0.3T 0.2T

Figure 9: An enlarged version of Fig. 5. Results of low-pass and high-pass filtering applied during
the denoising process with text guidance for ‘male doctor’ (top two rows) and ‘female doctor’
(bottom two rows). Each pair shows low-pass filtered images on top and high-pass filtered images
below. For clarity, some images are enlarged and highlighted on both sides.

Low Frequency High Frequency

𝒕 = 0.1T 0T 0.9T 0.8T 0.7T 0.6T 0.5T 0.4T 0.3T 0.2T

Figure 10: Expanded results of low-pass and high-pass filtering applied during the denoising
process with text guidance for ‘male doctor’ (top two rows) and ‘female doctor’ (bottom two
rows). Each pair shows low-pass filtered images on top and high-pass filtered images below. For
clarity, some images are enlarged and highlighted on both sides.

Low Frequency High Frequency

𝒕 = 0.1T 0T 0.9T 0.8T 0.7T 0.6T 0.5T 0.4T 0.3T 0.2T

Figure 11: Expanded results of low-pass and high-pass filtering applied during the denoising
process with text guidance for ‘male doctor’ (top two rows) and ‘female doctor’ (bottom two
rows). Each pair shows low-pass filtered images on top and high-pass filtered images below. For
clarity, some images are enlarged and highlighted on both sides.
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G Algorithm of LightFair

Algorithm 1: Training

Input: CLIP text encoder f text
orig ; CLIP image encoder f image; U-Net ϵθ; main word c; attribute set

A = {a1, . . . , a|A|}; training epochs Etotal; batch size Nb

Output: Fine-tuned text encoder f text
new

1: f text
new ← f text

orig ;
2: for epoch = 1 to Etotal do
3: � Generate Training Images
4: with no_grad() do
5: SD ← (f text

new , ϵθ); # Build SD using text encoder and U-Net
6: for i = 1 to |A| do
7: imagei = [SD(P (ai, c))]Nb

; # Generate images with attributes
8: end for
9: end with

10: � Extracting Foreground
11: for i = 1 to |A| do
12: image′i = CA(imagei, P (ai, c)); # Extracting foreground using

cross-attention
13: end for
14: � Calculating Loss Function and Optimization
15: images← [image′1, . . . , image′|A|];
16: texts← [P (·, c), P (a1, c), . . . , P (a|A|, c)];
17: with no_grad() do
18: image_emb = f image(images).norm;
19: end with
20: image_emb_centroid← [E[image_emb],E[image_emb1], . . . ,E[image_emb|A|]];
21: text_emb = f text

new (texts).norm;
22: s = image_emb_centroid · text_embT ; # Calculate the similarity matrix
23: ℓo ← s[1 : |A|, 0];
24: ℓq ← s[k, k], k ∈ [1, |A|];
25: ℓreg ← s[0, 0];
26: Calculate ℓ = ℓo + λ1ℓq + λ2ℓreg with Equ. (9), Equ. (10), and Equ. (11);
27: Backpropagation updates f text

new parameters;
28: end for
29: return f text

new .

Algorithm 2: Sampling
Input: CLIP original text encoder f text

orig ; CLIP fine-tuned text encoder f text
new ; U-Net ϵθ; prompt P ;

Stable Diffusion image decoder gd; hyperparameters αt, σt and τ
Output: Clean Image x0

1: zT ∼ N (0, I);
2: for t = T to 1 do
3: ϵt ∼ N (0, I) if t > 1, else ϵt = 0;
4: if T ≥ τ then
5: zt−1 = 1√

αt
(zt − 1−αt√

1−ᾱt
ϵθ(f

text
orig (P ), zt, t)) + σtϵt;

6: else
7: zt−1 = 1√

αt
(zt − 1−αt√

1−ᾱt
ϵθ(f

text
new (P ), zt, t)) + σtϵt;

8: end if
9: end for

10: x0 ← gd(z0);
11: return x0.
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H Additional Experimental Settings

In this section, we make a supplementation to Sec. 5.1.

H.1 Evaluation metrics

We use the gender and race classifiers from [80] for evaluation. For each prompt, 100 images are
generated. To reduce experimental randomness, the evaluation is repeated five times, and the mean
and variance of the reported metrics are calculated. Here we give a more detailed summary of the
evaluation metrics mentioned in the experiments.

To evaluate the Fairness of the model, we use the following two metrics:

• Bias-Odds (Bias-O) quantifies the degree of bias in the frequency of different at-
tributes in generated images when unspecified attributes are involved. Specifically,
for a given prompt prompt(·, c), Bias-O is calculated as Bias-O(prompt(·, c)) =

1
|A|(|A|−1)/2

∑
ai,aj∈|A|:i<j |freq(ai)− freq(aj)|, where freq(ai) represents the frequency

of attribute ai appearing in the generated images, and |A| denotes the number of elements in
the attribute set.

• Bias-Quality (Bias-Q) quantifies the degree of bias in the generation quality of differ-
ent attributes in the generated images when unspecified attributes are involved. Specifi-
cally, for a given prompt prompt(·, c), Bias-Q is calculated as Bias-Q(prompt(·, c)) =

1
|A|(|A|−1)/2

∑
ai,aj∈|A|:i<j |qual(ai)−qual(aj)|, where qual(ai) represents the generation

quality of images containing attribute ai, calculated using the CLIP Score (The calculation
is the same as that in the following CLIP-T.).

To evaluate the Quality of the model, we use the following six metrics:

• CLIP-T (CLIP Score of Text) [34] measures the semantic alignment between generated
images and their corresponding textual descriptions. By calculating the similarity between
image and text embeddings, it evaluates their semantic relevance. In our experiments, the
clip-vit-large-patch14 2 model is used to compute this metric. A higher CLIP-T reflects
better alignment between images and descriptions.

• CLIP-I (CLIP Score of Image) [34] measures the similarity between the generated image
and the original Stable Diffusion (SD) output for the same prompt and noise. By calculating
the similarity between image embeddings, it evaluates the consistency of the generated
image relative to the original generation. Similar to CLIP-T, the clip-vit-large-patch14 model
is used to compute this metric. A higher CLIP-I indicates a smaller impact of fine-tuning on
the model’s performance.

• FID (Fréchet Inception Distance) [35] assesses the quality of generated images by comparing
the distribution of generated images with that of real images in the feature space. In our
experiments, the FairFace dataset [46] is used as a reference. A lower FID score indicates
that the generated images are closer to the real images, reflecting higher realism and visual
quality.

• IS (Inception Score) [79] evaluates the quality and diversity of generated images by analyz-
ing the prediction distribution of a classifier, such as the Inception network, on the generated
images. A higher IS value indicates better image quality and greater diversity in content.

• AS-R (Aesthetic Score - Rating) [99] evaluates the overall aesthetic quality of a given image.
The metric is computed using a regression head trained on human-rated aesthetic datasets,
and it takes the pooled visual features from a CLIP-based vision encoder as input. A higher
AS-R score indicates better visual appeal and artistic quality.

• AS-A (Aesthetic Score - Artifacts) [94] quantifies the presence of visual artifacts or distor-
tions in an image. It is computed using a separate regression model trained. A lower AS-A
score reflects fewer artifacts and higher perceptual quality.

2 https://huggingface.co/openai/clip-vit-large-patch14
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H.2 Competitors

Here we give a more detailed summary of the competitors mentioned in the experiments.

• SD (Stable Diffusion) [78] is an efficient latent space diffusion model capable of generating
high-quality images. By mapping the image generation process to a lower-dimensional
latent space, it significantly reduces computational costs. In this paper, we consider versions
v1.5 3 and v2.1 4.

• FairD (Fair Diffusion) [24] reduces bias or unfairness in generated images by randomly
incorporating additional text prompts to adjust the generation process. The original paper
conducts experiments based on SDv1.5.

• UCE (Unified Concept Editing) [27] provides a universal framework for concept editing,
enabling the effective removal, modification, or replacement of specific concepts in generated
images by updating the cross-attention layers. The original paper conducts experiments
based on SDv1.5 and SDv2.1.

• FinetuneFD (Finetune Fair Diffusion) [84] employs biased fine-tuning combined with a
distributional alignment loss to reduce bias in generated images. This method conducts
experiments based on SDv1.5 in the original paper.

• FairMapping (Fair Mapping) [51] introduces a linear network to map textual conditioning
embeddings into a debiased space, enabling demographically fair image generation. Addi-
tionally, an auxiliary detector is used to determine whether to activate the linear network
based on the input prompt. The original paper conducts experiments using SDv1.5. We
reproduced using the hyperparameters reported in the original paper due to the absence of
official code.

• BalancingAct (Balancing Act) [70] introduces an auxiliary network called the Attribute
Distribution Predictor, which maps UNet latent features to attribute distributions and guides
the generation process toward a prescribed demographic distribution. The original paper
conducts experiments using SDv1.5.

• Debias VL (Debiasing Vision-Language Model) [15] eliminates bias in vision-language
foundation models by projecting out biased directions in text embeddings. The original
paper conducts experiments using SDv2.1.

• TI (Textual Inversion) [26] enables personalized image generation by learning new pseudo-
words to represent specific visual concepts using some example images. TI can mitigate
bias by replacing biased concepts with embeddings learned from unbiased datasets. We
reconduct experiments using SDv1.5.

• AITTI (Adaptive Inclusive Token for Text-to-Image) [40] introduces an adaptive mapping
network that learns concept-specific inclusive tokens to mitigate stereotypical biases in T2I
generation. The original paper conducts experiments using SDv1.5.

• TIME (Text-to-Image Model Editing) [69] edits implicit assumptions in pre-trained diffusion
models by aligning under-specified prompts with user-desired alternatives through modifying
cross-attention projection matrices. We reconduct experiments using SDv1.5.

• MIST (Mitigating Intersectional Bias with Disentangled Cross-Attention Editing) [105]
isolates and adjusts biased attribute concepts while preserving unrelated content by editing
the cross-attention layers in a disentangled manner. The original paper conducts experiments
using SDv1.5.

• FairSM (Fair Sampling with Switching Mechanism) [14] obfuscates attribute-specific
information while preserving semantic content by switching the conditioning of sensitive
attributes at a learned transition point during the denoising process. The original paper
conducts experiments using SDv1.5.

• SANER (Societal Attribute Neutralizer) [37] removes attribute information from CLIP text
features, retaining only attribute-neutral descriptions. The original paper focuses solely on
debiasing CLIP, while we transfer the debiased model to SDv1.5.

3 https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5
4 https://huggingface.co/stabilityai/stable-diffusion-2-1
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• DEAR (Debiasing with Additive Residuals) [83] learns additive residual image representa-
tions to offset the original representations, ensuring fair output representations. The original
paper focuses solely on debiasing CLIP, while we transfer the debiased model to SDv1.5.

• EntiGen (Ethical Natural Language Interventions in Text-to-Image Generation) [1] encour-
ages models to generate images representing diverse social groups across gender, skin color,
and culture by appending natural language ethical interventions to prompts. The original
paper only modifies the input to the CLIP text encoder, while we apply it to SDv1.5 and
SDv2.1.

• ITI-GEN (Inclusive Text-to-Image Generation) [107] learning a set of prompt embeddings
to generate images that can effectively represent all desired attribute categories. The original
paper conducts experiments using SDv1.5.

H.3 Implementation Details

We perform all experiments on an NVIDIA 4090 GPU. We generate images for six occupations
(doctor, CEO, taxi driver, nurse, artist, and teacher) using the prompt template unless otherwise
specified. In the main experiments, we fine-tune LoRA [41] with a rank of 50 applied to the text
encoder. Following the default setting for Stable Diffusion v1.5 and v2.1, we fix the classifier-free
guidance (CFG) scale at 7.5 for all experiments and visualizations. We use the Adam with Weight
Decay (AdamW) [59] optimizer with a weight decay of 0.01. The initial learning rate is set within
the range of 9 × 10−6 to 7 × 10−5, depending on the version of Stable Diffusion and the specific
attribute category. The batch size is fixed at 50 across all scenarios, and the total number of epochs is
set to 160.

I Additional Experimental Results

I.1 Expanded Version of Quantitative Results

Here, we present an expanded version of the quantitative results. First, we provide comparisons
against a broader range of baseline methods. Then, we report results across additional evaluation
metrics.

Comparison with More Baselines. Tab. 6 shows a comprehensive comparison with 16 baseline
methods, including the original SD, 11 debiasing methods designed for diffusion models, and 4
debiasing methods tailored for CLIP. Our LightFair continues to achieve SOTA performance.
Notably, since our approach targets the CLIP text encoder within the diffusion model, we include
comparisons with CLIP debiasing methods. Existing CLIP debiasing approaches can be broadly
categorized into three groups:

1. Joint fine-tuning of the image and text encoders (e.g., [19, 65]): These methods are mainly
designed for classification tasks. However, due to mismatched optimization objectives, the fine-
tuned text embeddings often become incompatible with the U-Net used in diffusion models.
Consequently, replacing the original text encoder with a jointly fine-tuned one often results in
generation failures, producing noisy and semantically meaningless outputs.

2. Fine-tuning only the image encoder (e.g., DEAR in Tab. 6): Since SD primarily relies on the
CLIP text encoder for guiding generation, methods that modify only the image encoder do not
address the core bias issues in generative tasks.

3. Fine-tuning only the text encoder (e.g., SANER, EntiGen, and ITI-GEN in Tab. 6): These
methods directly perform debiasing on the CLIP text encoder and apply it to SD-based image
generation. They effectively demonstrate the importance of addressing bias at the level of text
encoding for achieving fairness in generative models. Our LightFair belongs to this category.
What distinguishes LightFair is its theoretically grounded loss functions targeting equalized
odds and equalized quality, which contribute to its superior performance.

Results on Additional Evaluation Metrics. In addition to the 2 fairness metrics and 6 quality
evaluation metrics used in our paper, several other evaluation metrics have been proposed in related
work. For example, [70] employs Fairness Discrepancy (FD) to assess fairness, and [84] uses DINO
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features to evaluate image quality. We incorporate both of these additional metrics in our evaluation,
with the results presented in Tab. 7.

The results show that FD exhibits a similar trend to Bias-O, while the DINO-based quality scores
align closely with those of CLIP-I. Notably, our LightFair consistently ranks first or second
across all ten evaluation metrics, underscoring its overall effectiveness in balancing fairness
and generation quality.

Table 6: Complete quantitative results on gender and race attributes. The champion and the runner-up
are highlighted in bold and underline, respectively. Methods marked with ∗ are reproduced using the
model architectures and hyperparameters reported in the original papers due to the absence of official
code. For clarity, methods added beyond those in Tab. 1 are highlighted in red.

Method

Gender Race

Fairness Quality Fairness Quality
Bias-O ↓ Bias-Q ↓ CLIP-T ↑ CLIP-I ↑ FID ↓ IS ↑ AS-R ↑ AS-A ↓ Bias-O ↓ Bias-Q ↓ CLIP-T ↑ CLIP-I ↑ FID ↓ IS ↑ AS-R ↑ AS-A ↓

Stable Diffusion v1.5

SD [78] 0.73 (±0.05) 1.90 (±0.67) 29.31 (±0.06) - 275.13 (±6.75) 1.26 (±0.03) 4.78 (±0.08) 2.65 (±0.04) 0.54 (±0.02) 1.60 (±0.67) 29.31 (±0.06) - 275.13 (±6.75) 1.26 (±0.03) 4.78 (±0.08) 2.65 (±0.04)

FairD [24] 0.79 (±0.04) 3.25 (±1.15) 28.79 (±0.11) 75.91 (±0.56) 269.62 (±4.42) 1.30 (±0.03) 4.57 (±0.09) 2.82 (±0.05) 0.50 (±0.02) 1.50 (±0.38) 28.95 (±0.10) 74.33 (±0.68) 262.72 (±4.84) 1.28 (±0.03) 4.55 (±0.08) 2.83 (±0.06)

UCE [27] 0.78 (±0.07) 1.79 (±0.46) 28.91 (±0.13) 82.72 (±0.81) 273.95 (±5.53) 1.26 (±0.03) 4.71 (±0.09) 2.64 (±0.04) 0.44 (±0.03) 1.40 (±0.24) 29.13 (±0.14) 90.15 (±0.70) 281.16 (±5.18) 1.26 (±0.02) 4.76 (±0.08) 2.69 (±0.05)

FinetuneFD [84] 0.38 (±0.07) 2.31 (±0.35) 29.34 (±0.13) 76.17 (±0.68) 278.21 (±7.53) 1.24 (±0.02) 4.38 (±0.06) 2.86 (±0.04) 0.20 (±0.03) 1.41 (±0.23) 29.02 (±0.15) 74.57 (±0.53) 270.09 (±5.99) 1.26 (±0.02) 4.33 (±0.06) 2.87 (±0.05)

FairMapping∗ [51] 0.46 (±0.05) 2.16 (±0.72) 29.30 (±0.16) 76.00 (±0.66) 278.81 (±5.84) 1.26 (±0.02) 4.34 (±0.07) 2.90 (±0.03) 0.34 (±0.02) 1.75 (±0.47) 29.29 (±0.15) 76.54 (±0.71) 280.95 (±5.02) 1.26 (±0.03) 4.53 (±0.08) 2.80 (±0.05)

BalancingAct [70] 0.41 (±0.05) 1.70 (±0.55) 29.30 (±0.11) 77.37 (±0.64) 272.08 (±5.16) 1.28 (±0.02) 4.71 (±0.06) 2.68 (±0.04) 0.34 (±0.02) 1.13 (±0.36) 29.34 (±0.11) 77.44 (±0.72) 271.91 (±5.35) 1.29 (±0.03) 4.72 (±0.10) 2.66 (±0.04)

TI [26] 0.56 (±0.06) 1.88 (±0.37) 28.76 (±0.10) 75.43 (±0.54) 278.92 (±6.22) 1.27 (±0.02) 4.45 (±0.07) 2.74 (±0.03) 0.47 (±0.03) 1.45 (±0.27) 28.67 (±0.17) 67.96 (±0.84) 275.20 (±5.07) 1.25 (±0.03) 4.43 (±0.04) 2.81 (±0.04)

AITTI∗ [40] 0.41 (±0.06) 1.34 (±0.44) 29.03 (±0.09) 77.25 (±0.44) 267.23 (±5.14) 1.29 (±0.02) 4.61 (±0.08) 2.69 (±0.04) 0.25 (±0.04) 1.20 (±0.31) 29.03 (±0.11) 85.43 (±0.47) 271.13 (±5.24) 1.29 (±0.01) 4.78 (±0.08) 2.73 (±0.03)

TIME [69] 0.65 (±0.04) 1.76 (±0.35) 28.45 (±0.12) 73.71 (±0.69) 279.17 (±4.43) 1.25 (±0.02) 4.45 (±0.07) 2.86 (±0.04) 0.39 (±0.04) 1.51 (±0.34) 27.97 (±0.15) 76.53 (±0.68) 275.72 (±6.84) 1.26 (±0.02) 4.57 (±0.04) 2.75 (±0.02)

MIST∗ [105] 0.39 (±0.05) 1.35 (±0.43) 29.10 (±0.13) 76.67 (±0.35) 254.33 (±4.76) 1.27 (±0.02) 4.69 (±0.05) 2.64 (±0.04) 0.26 (±0.03) 1.19 (±0.24) 29.08 (±0.09) 83.25 (±0.75) 265.83 (±6.78) 1.28 (±0.02) 4.74 (±0.07) 2.57 (±0.05)

FairSM [14] 0.65 (±0.04) 1.83 (±0.21) 27.98 (±0.11) 74.23 (±0.59) 265.60 (±5.04) 1.26 (±0.03) 4.39 (±0.07) 2.83 (±0.03) 0.42 (±0.03) 1.61 (±0.37) 28.68 (±0.06) 72.83 (±0.60) 271.58 (±5.83) 1.27 (±0.03) 4.58 (±0.07) 2.84 (±0.03)

SANER∗ [37] 0.52 (±0.02) 1.65 (±0.34) 28.13 (±0.08) 75.28 (±0.77) 275.34 (±5.40) 1.25 (±0.04) 4.53 (±0.09) 2.76 (±0.04) 0.45 (±0.03) 1.41 (±0.33) 28.50 (±0.13) 73.64 (±0.51) 273.21 (±6.42) 1.24 (±0.02) 4.38 (±0.09) 2.67 (±0.05)

DEAR [83] 0.73 (±0.05) 1.90 (±0.67) 29.31 (±0.06) - 275.13 (±6.75) 1.26 (±0.03) 4.78 (±0.08) 2.65 (±0.04) 0.54 (±0.02) 1.60 (±0.67) 29.31 (±0.06) - 275.13 (±6.75) 1.26 (±0.03) 4.78 (±0.08) 2.65 (±0.04)

EntiGen [1] 0.46 (±0.05) 2.63 (±0.88) 28.57 (±0.14) 71.89 (±0.68) 263.76 (±5.51) 1.29 (±0.04) 4.53 (±0.09) 2.78 (±0.06) 0.37 (±0.04) 2.88 (±0.63) 27.97 (±0.14) 69.56 (±0.74) 265.94 (±4.25) 1.31 (±0.04) 4.77 (±0.07) 2.57 (±0.04)

ITI-GEN [107] 0.39 (±0.06) 1.27 (±0.82) 28.36 (±0.12) 68.82 (±0.59) 246.55 (±5.97) 1.29 (±0.02) 4.36 (±0.11) 2.86 (±0.07) 0.31 (±0.04) 1.62 (±0.37) 28.13 (±0.16) 66.97 (±0.57) 269.84 (±6.61) 1.33 (±0.03) 4.14 (±0.10) 2.85 (±0.05)

LightFair (Ours) 0.30 (±0.08) 0.99 (±0.55) 30.57 (±0.16) 80.09 (±0.76) 233.53 (±5.50) 1.30 (±0.03) 4.79 (±0.08) 2.60 (±0.04) 0.18 (±0.04) 1.06 (±0.43) 31.34 (±0.20) 86.31 (±0.70) 259.96 (±7.75) 1.33 (±0.03) 4.80 (±0.10) 2.55 (±0.04)

Stable Diffusion v2.1

SD [78] 0.85 (±0.05) 1.84 (±0.63) 29.90 (±0.15) - 259.36 (±4.81) 1.23 (±0.03) 5.12 (±0.05) 2.24 (±0.03) 0.63 (±0.01) 2.06 (±0.35) 29.90 (±0.15) - 259.36 (±4.81) 1.23 (±0.03) 5.12 (±0.05) 2.24 (±0.03)

debias VL [15] 0.43 (±0.09) 1.44 (±0.48) 28.20 (±0.22) 70.01 (±0.96) 245.11 (±3.72) 1.35 (±0.03) 3.53 (±0.11) 2.93 (±0.06) 0.49 (±0.03) 1.91 (±0.92) 28.15 (±0.26) 67.42 (±0.96) 242.78 (±4.21) 1.33 (±0.03) 3.57 (±0.11) 2.85 (±0.06)

UCE [27] 0.90 (±0.04) 1.67 (±0.71) 29.41 (±0.13) 87.94 (±0.86) 268.52 (±3.92) 1.22 (±0.02) 5.12 (±0.05) 2.32 (±0.03) 0.50 (±0.03) 1.95 (±0.37) 29.44 (±0.12) 80.46 (±1.13) 250.57 (±4.49) 1.23 (±0.03) 5.17 (±0.08) 2.25 (±0.03)

EntiGen [1] 0.42 (±0.03) 2.10 (±0.38) 29.25 (±0.16) 69.22 (±1.12) 255.01 (±3.60) 1.24 (±0.02) 4.91 (±0.08) 2.42 (±0.04) 0.55 (±0.03) 3.07 (±0.39) 28.12 (±0.12) 65.34 (±1.02) 253.53 (±3.83) 1.23 (±0.03) 5.28 (±0.07) 2.21 (±0.05)

LightFair (Ours) 0.33 (±0.10) 1.40 (±0.28) 30.82 (±0.19) 75.29 (±0.99) 231.46 (±3.30) 1.35 (±0.02) 5.14 (±0.09) 2.24 (±0.06) 0.40 (±0.03) 1.82 (±0.44) 30.26 (±0.16) 77.47 (±1.05) 230.59 (±6.53) 1.35 (±0.01) 5.29 (±0.11) 2.14 (±0.06)

Table 7: Results on two additional evaluation metrics (FD and DINO). The champion and the runner-
up are highlighted in bold and underline, respectively.

Method
Gender Race

Bias-O ↓ FD ↓ CLIP-I ↑ DINO ↑ Bias-O ↓ FD ↓ CLIP-I ↑ DINO ↑

Stable Diffusion v1.5

SD 0.73 (±0.05) 0.45 (±0.03) - - 0.54 (±0.02) 0.17 (±0.01) - -
FairD 0.79 (±0.04) 0.45 (±0.02) 75.91 (±0.56) 0.53 (±0.02) 0.50 (±0.02) 0.15 (±0.01) 74.33 (±0.68) 0.53 (±0.02)

UCE 0.78 (±0.07) 0.48 (±0.04) 82.72 (±0.81) 0.70 (±0.02) 0.44 (±0.03) 0.13 (±0.01) 90.15 (±0.70) 0.83 (±0.02)

FinetuneFD 0.38 (±0.07) 0.22 (±0.04) 76.17 (±0.68) 0.57 (±0.01) 0.20 (±0.03) 0.07 (±0.01) 74.57 (±0.53) 0.54 (±0.01)

FairMapping 0.46 (±0.05) 0.30 (±0.03) 76.00 (±0.66) 0.53 (±0.02) 0.34 (±0.02) 0.10 (±0.01) 76.54 (±0.71) 0.54 (±0.02)

BalancingAct 0.41 (±0.05) 0.24 (±0.03) 77.37 (±0.64) 0.55 (±0.02) 0.34 (±0.02) 0.07 (±0.01) 77.44 (±0.72) 0.55 (±0.02)

TI 0.56 (±0.06) 0.33 (±0.04) 75.43 (±0.54) 0.54 (±0.02) 0.47 (±0.03) 0.14 (±0.01) 67.96 (±0.84) 0.43 (±0.04)

AITTI 0.41 (±0.06) 0.25 (±0.02) 77.25 (±0.44) 0.56 (±0.02) 0.25 (±0.04) 0.08 (±0.02) 85.43 (±0.47) 0.79 (±0.01)

TIME 0.65 (±0.04) 0.40 (±0.02) 73.71 (±0.69) 0.52 (±0.02) 0.39 (±0.04) 0.12 (±0.01) 76.53 (±0.68) 0.54 (±0.02)

MIST 0.39 (±0.05) 0.22 (±0.03) 76.67 (±0.35) 0.55 (±0.01) 0.26 (±0.03) 0.08 (±0.01) 83.25 (±0.75) 0.76 (±0.02)

FairSM 0.65 (±0.04) 0.43 (±0.02) 74.23 (±0.59) 0.52 (±0.02) 0.42 (±0.03) 0.13 (±0.01) 72.83 (±0.60) 0.51 (±0.03)

SANER 0.52 (±0.02) 0.35 (±0.02) 75.28 (±0.77) 0.52 (±0.02) 0.45 (±0.03) 0.13 (±0.02) 73.64 (±0.51) 0.50 (±0.02)

DEAR 0.73 (±0.05) 0.45 (±0.03) - - 0.54 (±0.02) 0.17 (±0.01) - -
EntiGen 0.46 (±0.05) 0.27 (±0.03) 71.89 (±0.68) 0.50 (±0.01) 0.37 (±0.04) 0.09 (±0.01) 69.56 (±0.74) 0.47 (±0.01)

ITI-GEN 0.39 (±0.06) 0.18 (±0.04) 68.82 (±0.59) 0.45 (±0.02) 0.31 (±0.04) 0.10 (±0.01) 66.97 (±0.57) 0.42 (±0.01)

LightFair (Ours) 0.30 (±0.08) 0.17 (±0.04) 80.09 (±0.76) 0.63 (±0.02) 0.18 (±0.04) 0.06 (±0.01) 86.31 (±0.70) 0.81 (±0.02)

Stable Diffusion v2.1

SD 0.85 (±0.05) 0.54 (±0.03) - - 0.63 (±0.01) 0.21 (±0.01) - -
debias VL 0.43 (±0.09) 0.28 (±0.05) 70.01 (±0.96) 0.49 (±0.02) 0.49 (±0.03) 0.14 (±0.01) 67.42 (±0.96) 0.46 (±0.02)

UCE 0.90 (±0.04) 0.59 (±0.02) 87.94 (±0.86) 0.71 (±0.02) 0.50 (±0.03) 0.16 (±0.01) 80.46 (±1.13) 0.64 (±0.02)

EntiGen 0.42 (±0.03) 0.25 (±0.02) 69.22 (±1.12) 0.49 (±0.02) 0.55 (±0.03) 0.14 (±0.01) 65.34 (±1.02) 0.45 (±0.02)

LightFair (Ours) 0.33 (±0.10) 0.21 (±0.05) 75.29 (±0.99) 0.63 (±0.02) 0.40 (±0.03) 0.11 (±0.01) 77.47 (±1.05) 0.53 (±0.03)
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I.2 Expanded Version of Qualitative Results

Here, we present an expanded version of qualitative results. Fig. 12 showcases the outcomes of our
gender-debiased SD v1.5 and v2.1, while Fig. 13 highlights the results of our race-debiased SD v1.5
and v2.1. Fig. 14 and Fig. 15 present the visual comparison between our debiased SD and those of
other competitors.

(a) Prompt: “Photo portrait of a doctor, a person”. Left: original SD v1.5. Right: our gender-debiased SD v1.5.

(b) Prompt: “Photo portrait of an artist, a person”. Left: original SD v1.5. Right: our gender-debiased SD v1.5.

(c) Prompt: “Photo portrait of a taxi driver, a person”. Left: original SD v2.1. Right: our gender-debiased SD
v2.1.

(d) Prompt: “Photo portrait of a CEO, a person”. Left: original SD v2.1. Right: our gender-debiased SD v2.1.

Figure 12: Expanded version of qualitative results. Images generated by the original SD (left) and
our debiased SD (right). For the same prompt, the images in corresponding positions are generated
using the same random noise. Bounding boxes denote detected faces (Gender: Male, Female; Race:
White, Asian, Black).
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(a) Prompt: “Photo portrait of a nurse, a person”. Left: original SD v1.5. Right: our race-debiased SD v1.5.

(b) Prompt: “Photo portrait of a taxi driver, a person”. Left: original SD v1.5. Right: our race-debiased SD
v1.5.

(c) Prompt: “Photo portrait of an artist, a person”. Left: original SD v2.1. Right: our race-debiased SD v2.1.

(d) Prompt: “Photo portrait of a teacher, a person”. Left: original SD v2.1. Right: our race-debiased SD v2.1.

Figure 13: Expanded version of qualitative results. Images generated by the original SD (left) and
our debiased SD (right). For the same prompt, the images in corresponding positions are generated
using the same random noise. Bounding boxes denote detected faces (Gender: Male, Female; Race:
White, Asian, Black).
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Figure 14: Expanded version of qualitative results. The performance of our gender-debiased SD
and other competitors in terms of attribute transformation (‘Male’→ ‘Female’) and preservation
(‘Male’→ ‘Male’). For the same row, the images in corresponding positions are generated using
the same random noise.
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Figure 15: Expanded version of qualitative results. The performance of our race-debiased SD and
other competitors in terms of attribute transformation (‘White’→ ‘Black’, ‘White’→ ‘Asian’)
and preservation (‘White’→ ‘White’). For the same row, the images in corresponding positions
are generated using the same random noise.

I.3 Prompts from LAION-Aesthetics V2

We obtain the following 30 prompts from the LAION-Aesthetics V2 dataset [81], following the
settings of [84]. In addition, we use the sentence structure “Photo of a person, describing {prompt}”
as the prompt to ensure that the output is a person.

[‘Photograph of a doctor holding a headset sitting in front of a laptop’, ‘a doctor examines a patients
thyroid’, ‘A doctor in a white coat on a computer screen’, ‘A doctor speaks with a cancer patient’, ‘A
doctor giving a patient an eye exam’, ‘Leadership Management Strategy. Concept as a ceo rowing a
giant 3D illustration king crown in water as a business and financial metaphor for navigating and
stock illustration’, ‘a CEO talking to an advisor on video call’, ‘Close-up image of a ceo pointing at
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the data on the board while talking with colleagues on the foreground’, ‘Portrait of a CEO With a
Team of Business Executives Standing by a Window’, ‘A CEO tries to get out of a speeding ticket
by using a rather creative excuse, but fails’, ‘A taxi driver from Crimea’, ‘portrait of a taxi driver
with cab’, ‘A taxi driver in Malaga wearing a face mask with a Spanish flag amid the coronavirus
outbreak’, ‘A taxi driver reads a newspaper while waiting for customers at a taxi rank in Ljubljana,
Slovenia, on Friday, May 10, 2013’, ‘TAXI – A taxi driver went on a tirade about Uber drivers at
a council meeting on Dec. 16’, ‘Ladies leg in Cast being treated by a Nurse’, ‘A nurse and an old
man in a wheelchair high five’, ‘white backround vector illustration of a nurse baby Illusztráció’,

‘A nurse and a smiling elderly patient in a wheelchair in the hall’, ‘A nurse places electrodes on
Natalia Rodriguez’s forehead, prepping her for bilateral ECT treatment’, ‘Young Artist Paints Sacre
Coeur from the Ancient Rue Narvins by Ed Clark’, ‘An artist sketching a portrait of His Holiness
the Dalai Lama on the third day of ’Thank You India’ program at Kozhikode, Kerala, 13 Sept 2016’,

‘The two hands of an artist making a pot on the Ganges Art Studio Tour, one of the best things to do
in Salt Spring Island in the summer’, ‘An artist paints a creature from ancient epics to decorate the
royal crematorium and funeral complex. (AP Photo/Sakchai Lalit)’, ‘Doo Style’, an artist tagging
the basement levels at Le Bloc’, ‘A teacher in front of the school building vector image’, ‘A teacher
leads class in Yixing Middle School in Lianshui County, Jiangsu Province, China’, ‘A teacher asks a
question during a class at the Yeshiva high school Chachme Lev in Jerusalem. March 15, 2016’, ‘A
teacher talking at the front of a classroom, Ghana’, ‘A teacher put a beaker of water on a hot plate’]

I.4 Qualitative Results on Diverse Prompts

In this section, we present qualitative results on diverse prompts. Fig. 16 showcases the results for
non-templated prompts. Fig. 17 highlights the results in scenarios involving multiple people.
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(a) Prompt: “Photograph of a doctor holding a headset sitting in front of a laptop”. Left: original SD v1.5. Right:
our debiased SD v1.5.

(b) Prompt: “A doctor in a white coat on a computer screen”. Left: original SD v1.5. Right: our debiased SD
v1.5.

(c) Prompt: “A taxi driver from Crimea”. Left: original SD v1.5. Right: our debiased SD v1.5.

(d) Prompt: “A taxi driver reads a newspaper while waiting for customers at a taxi rank in Ljubljana, Slovenia,
on Friday, May 10, 2013”. Left: original SD v1.5. Right: our debiased SD v1.5.

(e) Prompt: “Close-up image of a ceo pointing at the data on the board while talking with colleagues on the
foreground”. Left: original SD v2.1. Right: our debiased SD v2.1.

(f) Prompt: “a CEO talking to an advisor on video call”. Left: original SD v2.1. Right: our debiased SD v2.1.

Figure 16: Qualitative results on non-templated prompts. Images generated by the original SD (left)
and our gender-debiased SD (right). For the same prompt, the images in corresponding positions
are generated using the same random noise. Bounding boxes denote detected faces (Gender: Male,
Female).
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(a) Prompt: “Photo portrait of two taxi drivers, two people”. Left: original SD v1.5. Right: our debiased SD
v1.5.

(b) Prompt: “Photo portrait of two doctors, two people”. Left: original SD v2.1. Right: our debiased SD v2.1.

(c) Prompt: “Photo portrait of three nurses, three people”. Left: original SD v1.5. Right: our debiased SD v1.5.

(d) Prompt: “Photo portrait of three CEOs, three people”. Left: original SD v2.1. Right: our debiased SD v2.1.

Figure 17: Qualitative results on multiple people scenarios. Images generated by the original SD (left)
and our gender-debiased SD (right). For the same prompt, the images in corresponding positions are
generated using the same random noise. Each stripe below the images corresponds to one person in
the generated image (Gender: Male, Female).
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I.5 Results of Mitigating Gender×Race Bias

In this section, we explore the performance of debiasing both Gender and Race attributes simul-
taneously. Specifically, we consider the attributes ‘Male White’, ‘Male Black’, ‘Male Asian’,
‘Female White’, ‘Female Black’, and ‘Female Asian’. Since we have already performed debias-
ing for gender and race attributes separately in Sec. 5.2, we leverage the previously obtained training
results to decouple the cross-attribute problem into two single-attribute problems. Specifically, we
load both the gender-debiased and race-debiased LoRA modules simultaneously and conduct testing.
The results are shown in Tab. 8 and Fig. 18. The results indicate that our model achieves excellent
cross-attribute debiasing on SD v1.5 and v2.1, further demonstrating that our debiasing modules can
be combined to effectively address multiple attributes simultaneously.

Table 8: Quantitative results on Gender×Race attributes.

Backbone Method
Fairness Quality

Bias-O ↓ Bias-Q ↓ CLIP-T ↑ CLIP-I ↑ FID ↓ IS ↑

SD v1.5
SD 0.29 (±0.01) 1.31 (±0.54) 29.32 (±0.06) - 275.85 (±6.29) 1.26 (±0.03)

Ours 0.14 (±0.01) 0.91 (±0.32) 31.34 (±0.20) 62.82 (±5.57) 259.96 (±7.75) 1.33 (±0.03)

SD v2.1
SD 0.32 (±0.01) 1.12 (±0.37) 29.90 (±0.15) - 259.36 (±4.81) 1.23 (±0.03)

Ours 0.23 (±0.02) 0.89 (±0.22) 30.32 (±0.19) 56.41 (±2.04) 230.39 (±5.95) 1.25 (±0.01)

(a) Prompt: “Photo portrait of a taxi driver, a person”. Left: original SD v1.5. Right: our debiased SD v1.5.

(b) Prompt: “Photo portrait of a teacher, a person”. Left: original SD v2.1. Right: our debiased SD v2.1.

Figure 18: Qualitative results on gender×race debiasing. Images generated by the original SD
(left) and our gender×race-debiased SD (right). For the same prompt, the images in corresponding
positions are generated using the same random noise. Each stripe below the images represents a
specific attribute (Gender: Male, Female; Race: White, Asian, Black).

I.6 Results of Mitigating Age Bias

In this section, we focus on debiasing the age attribute. Specifically, we consider two attributes:
‘Young (ages 0 to 39)’ and ‘Old (ages 39 and above)’. Our goal is to achieve fairness
generation across these two attributes. The experimental settings are consistent with those used in
Sec. 5. The results, presented in Tab. 9 and Fig. 19, demonstrate that our method achieves effective
debiasing on both versions of SD. This highlights the strong generalization capability of our approach,
extending beyond gender and race to other attributes like age.
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Table 9: Quantitative results on Age attributes.

Backbone Method
Fairness Quality

Bias-O ↓ Bias-Q ↓ CLIP-T ↑ CLIP-I ↑ FID ↓ IS ↑

SD v1.5
SD 0.65 (±0.04) 1.23 (±0.44) 29.23 (±0.06) - 311.56 (±11.95) 1.23 (±0.02)

Ours 0.34 (±0.02) 0.95 (±0.33) 30.15 (±0.06) 79.56 (±4.11) 278.66 (±9.54) 1.25 (±0.02)

SD v2.1
SD 0.83 (±0.07) 1.14 (±0.32) 29.30 (±0.11) - 287.64 (±10.67) 1.24 (±0.01)

Ours 0.32 (±0.04) 0.89 (±0.23) 31.23 (±0.07) 82.22 (±6.23) 246.36 (±9.03) 1.26 (±0.01)

(a) Prompt: “Photo portrait of a doctor, a person”. Left: original SD v1.5. Right: our debiased SD v1.5.

(b) Prompt: “Photo portrait of a CEO, a person”. Left: original SD v2.1. Right: our debiased SD v2.1.

Figure 19: Qualitative results on age debiasing. Images generated by the original SD (left) and our
age-debiased SD (right). For the same prompt, the images in corresponding positions are generated
using the same random noise. Each stripe below the images represents a specific attribute (Age:
Young, Old).

I.7 Results of Debiasing under Diverse Target Distributions

We evaluate our LightFair under imbalanced target distributions. To achieve this, we modify the
centroid-to-attribute distance to support debiasing toward arbitrary attribute distributions. Specifically,
we revise Equ. (9) as follows:

ℓo =

√√√√ 1

|A|

|A|∑
i=1

[
γis
(

embTc (·),E
[
embIc(ai)

] )
− s
]2
, (52)

where γi controls the target distribution.

In the original SD, the gender bias for the concept ‘doctor’ exhibits a male-to-female ratio of 9 : 1.
We set the target distributions to 7 : 3 and 3 : 7, respectively. Using LightFair, we generate 1000
images and record the resulting gender distribution, as shown in Figure 1. The results demonstrate
that LightFair can be extended to support debiasing toward arbitrary attribute distributions.
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Figure 20: Results of debiasing under diverse target distributions.

I.8 Ablation Study Results on the Impact of Adaptive Foreground Extraction

In Sec. 5.3, we conducted an initial ablation of the adaptive foreground extraction (AFE) module. In
this section, we further investigate whether semantic information contained in background elements
affects the results.

The AFE module is designed to follow the highest-salience regions linked to the prompt’s main
subject. Our prompts specify foreground-related content, such as “male doctor”, so the module
continues functioning even when background elements include attribute-related semantics, like
uniforms.

To test a worst-case scenario, we generate 100 images using prompts that explicitly require uniforms
in the background and examine the resulting attention maps. In 94 of these cases, the peak activations
still concentrate on the foreground subject. As shown in Tab. 10, applying our LightFair to these
images required only about 10% additional training epochs to achieve the same level of debiasing
as with standard prompts. This finding suggests that the method remains robust in practice. We
conclude that for more complex scenes, a modest increase in training epochs is sufficient to
maintain performance.

Table 10: Results of Debiasing with AFE under Distracting Backgrounds.
Method Bias-O (↓) Bias-Q (↓)

SD 0.7 1.15
Ours (normal) 0.34 0.81

Ours (worst-case) 0.43 0.97
Ours (worst-case + 10% training epochs) 0.36 0.85

I.9 Ablation Study Results on the Impact of Batch Size and Training Epochs

In this section, we present an extended version of the ablation study on hyperparameters, conducting
detailed experiments on batch size and training epochs.

Fig. 21a ablates the hyperparameter batch size, which represents the number of images used to
approximate attribute centroids in each iteration. The optimal value is 50. A smaller batch size fails
to approximate the attribute centroids effectively, leading to insufficient debiasing. In contrast, a
larger batch size does not further reduce bias but requires more images during training, resulting
in additional computational overhead. Fig. 21b ablates the hyperparameter training epochs, with
the optimal value being 160. A smaller number of epochs results in insufficient training, leading
to inadequate debiasing. On the other hand, a larger number of epochs provides only marginal
improvements in bias reduction while introducing significant computational costs that outweigh the
benefits.
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Figure 21: Expanded Version of Ablation Study on Hyper-Parameters.

I.10 Result of Collaborating with Other Debiasing Methods

The sources of bias in diffusion models are complex. In this work, we emphasize the critical role of
debiasing the CLIP component and propose an effective approach for doing so. Our results show that
debiasing CLIP alone is sufficient to achieve SOTA performance. Notably, LightFair functions
as a plug-and-play module that can be seamlessly integrated with existing debiasing methods
targeting other components, further improving overall fairness. We conduct experiments by
combining our LightFair with debiased U-Nets from UCE and FinetuneFD. The results, presented
in Tab. 11, demonstrate that LightFair can effectively complement other debiasing techniques.

Table 11: Result of collaborating with other debiasing methods.

Method Bias-O ↓ Bias-Q ↓ CLIP-T ↑

UCE 0.78 1.79 28.91
+LightFair 0.31 1.02 30.64

FinetuneFD 0.38 2.31 29.34
+LightFair 0.23 0.92 31.01

I.11 Results of SD Models Based on the DiT Architecture

In this section, we replace the U-Net denoising network with a DiT-based architecture and conduct
a preliminary evaluation. LightFair only applies lightweight modifications to the text encoder
and places no constraints on the denoising network architecture. This is one reason why our
method is easily generalized to various diffusion models. The results are shown in Tab. 12. They
indicate that our method remains effective even with a DiT-style backbone.

Table 12: Result of SD models based on the DiT architecture.

Method Bias-O (↓) Bias-Q (↓)

SD (DiT) 0.33 1.42
+LightFair 0.29 1.23

I.12 Results of User Studies

In this section, we conduct an additional user study to support the quantitative results with human
judgment. We recruit 30 participants and show each of them images generated by four baselines (SD,
FinetuneFD, FairMapping, BalancingAct) and our LightFair.

Participants rate perceived fairness, diversity, and image quality using a five-point Likert scale. The
results are shown in Tab. 13. LightFair achieves a mean fairness score of 4.3, compared to 3.8
for the best-performing baseline. It also receives the highest scores for diversity and image quality.
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Inter-rater agreement, measured by Fleiss’ kappa, reaches 0.16. These findings confirm that the
improvements are clearly perceived by human evaluators without reducing variety.

Table 13: Results of user studies.

Method Fairness Diversity Quality

SD 1.9 3.1 3.3
FinetuneFD 3.2 3.4 3.6
FairMapping 3.8 3.9 4
BalancingAct 3.5 3.6 3.7
LightFair 4.3 4.2 4

I.13 Evaluation on Prompts with Attribute

This section demonstrates that eliminating bias does not impact the semantic understanding of
the attributes themselves. We use our debiased Stable Diffusion model to generate 20 images for
each specified attribute prompt, shown in Fig. 22. In this case, we perform debiasing on gender, but it
does not affect the semantics of the terms ‘male’ and ‘female’. First, our model correctly identifies
the term ‘male’ without generating female images (Fig. 22a & Fig. 22c), and it correctly identifies the
term ‘female’ without generating male images (Fig. 22b & Fig. 22d). Second, no semantic bias is
introduced, whether the prompt used during training (Fig. 22a & Fig. 22b) or a new prompt (Fig. 22c
& Fig. 22d) is employed.

Next, we verify that our method does not lead to the generation of neutral images. Specifically, for
the gender attribute, our approach avoids producing androgynous or ambiguous images. To evaluate
this, we measure the number of generated “doctor” images falling near the gender decision boundary
(0.45 ≤ Pmale ≤ 0.55) out of 100 samples, comparing the original SD with our debiased version.
The results are as follows: SD (6/100), LightFair (5/100). These results indicate that only a small
fraction of images fall within this ambiguous range, confirming that our method does not induce
neutrality in attribute expression.

This happens because the U-Net, trained with sufficient data, learns the relevant associations and
directs image generation toward a single attribute. Since we do not modify the U-Net, our method
avoids generating neutral images. This phenomenon is also confirmed in [51].
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(a) Prompt: “Photo portrait of a male doctor, a person”.

(b) Prompt: “Photo portrait of a female doctor, a person”.

(c) Prompt: “a portrait of a male with light blue skin, gills on his neck, style by donato giancola, wayne reynolds,
jeff easley dramatic light, high detail, cinematic lighting, artstation, dungeons and dragons”.

(d) Prompt: “close up portrait of beautiful female supermodel wearing olive dress, hotography by amy leibowitz,
wlop, jeremy lipkin, beeple, intricate, symmetrical front portrait, artgerm, ilya kuvshinov”.

Figure 22: Images generated using prompts with attribute. All images are generated using our
gender-debiased SD v1.5.

I.14 Evaluaton on General Prompts

This section examines the effect of our method on image generation for general prompts, which are not
necessarily related to specific occupations. We randomly select 16 prompts from the DiffusionDB [94]
dataset, written by real users. For each prompt, we generate six images using both the original Stable
Diffusion model (SD v1.5 & SD v2.1) and our debiased version, with the same set of noises. The
generated images are displayed in Fig. 23, Fig. 24, Fig. 25 and Fig. 26.

We find that our debiased SD generates images almost identical to those produced by the
original SD, ensuring that fine-tuning does not affect the semantics of general prompts.
Our debiased SD maintains a strong understanding of various concepts, including people such
as ‘Cristiano Ronaldo’ (Fig. 23a) and ‘Taylor Swift’ (Fig. 23b), animals like ‘dog’ (Fig. 23c)
and ‘tiger’ (Fig. 23d), plants such as ‘sunflower’ (Fig. 24a) and ‘rose’ (Fig. 24b), landscapes
like ‘grand canyon’ (Fig. 24c) and ‘old ruin’ (Fig. 24d), cartoons like ‘magic ritual place
cartoon’ (Fig. 25a) and ‘lion cartoon’ (Fig. 25b), oil paintings such as ‘babylon’ (Fig. 25c)
and ‘abandoned stone brick ruin’ (Fig. 25d), artistic styles like ‘Van Gogh’ (Fig. 26a) and
‘Cassius Marcellus Coolidge’ (Fig. 26b). At the same time, the debiased SD still retains its
creativity, such as generating dinosaurs kissing (Fig. 26c) or UFOs seamlessly integrated into realistic
scenes (Fig. 26d).
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(a) Prompt: “cristiano ronaldo fifa card”.

(b) Prompt: “taylor swift by nick knight, vogue magazine, award winning, photoshoot,
dramatic, cooke anamorphic / i lenses, highly detailed, cinematic lighting”.

(c) Prompt: “cute big dog sleeping in magistral forest, 8 k resolution matte fantasy
painting, cinematic lighting, deviantart artstation, jason felix steve argyle tyler jacobson
peter mohrbacher”.

*

(d) Prompt: “a muscled warrior girl mounted on a large siberian tiger”.

Figure 23: Images generated using general prompts. For every subfigure, the top row is generated
using the original SD v1.5, and the bottom row is generated using our gender-debiased SD v1.5.
The pair of images in the same column are generated using the same noise.
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(a) Prompt: “sunflower from plants vs zombies in real life”.

(b) Prompt: “5 5 mm photo of wine - glass on a zen minimalist table with white roses and
houseplants in the background. highly detailed 8 k. intricate. lifelike. soft light. nikon d 8
5 0”.

(c) Prompt: “grand canyon on the moon, digital art, illustration, 4 k, 8 k”.

(d) Prompt: “painting by sargent and leyendecker and greg hildebrandt, apollinaris vas-
netsov, savrasov levitan polenov, studio ghibly style mononoke, huge old ruins giovanni
paolo panini, middle earth above the layered low clouds waterfall road between forests
big lake wide river trees sunrise sea bay view faroe azores overcast storm masterpiece”.

Figure 24: Images generated using general prompts. For every subfigure, the top row is generated
using the original SD v1.5, and the bottom row is generated using our race-debiased SD v1.5. The
pair of images in the same column are generated using the same noise.
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(a) Prompt: “photo cartoon illustration comics manga painting of magic ritual place : 6
fantasy, digital painting, unreal engine, 8 k, volumetric lighting, contrast”.

(b) Prompt: “lion cartoon portrait by yuga labs”.

(c) Prompt: “highly detailed oil painting of the city of babylon. luscious green plants and
waterfalls flowing out of the stone walls”.

(d) Prompt: “classic oil painting, abandoned stone brick ruins, as a dnd environment,
surrounded by jungle and waterfalls, as a book cover illustration, readability, cottagecore,
extremely detailed, concept art, smooth, sharp focus, art by brothers hildebrandt”.

Figure 25: Images generated using general prompts. For every subfigure, the top row is generated
using the original SD v2.1, and the bottom row is generated using our gender-debiased SD v2.1.
The pair of images in the same column are generated using the same noise.
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(a) Prompt: “an abstract painting of a vase with sunflowers by pablo picasso, vincent van
gogh, black and white”.

(b) Prompt: “oil painting by cassius marcellus coolidge of some dogs playing poker”.

(c) Prompt: “2 dinosaurs kissing”.

(d) Prompt: “a ufo landing in the middle of the las vegas strip. in front the bellagio hotel.
professional photography”.

Figure 26: Images generated using general prompts. For every subfigure, the top row is generated
using the original SD v2.1, and the bottom row is generated using our race-debiased SD v2.1. The
pair of images in the same column are generated using the same noise.
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I.15 Analysis of Time and Spatial Complexity

In this section, we analyze the spatial and time complexities of our LightFair compared to other
methods, as summarized in Tab. 14. For spatial complexity, we report the number of trainable
parameters. For time complexity, we measure the time required for each training iteration and the
time needed for each denoising step. The results show that, compared to post-processing methods
(FairD and Debias VL), our method achieves faster sampling speeds by eliminating the need for
additional auxiliary networks. Furthermore, compared to fine-tuning methods (UCE, FinetuneFD,
FairMapping and BalancingAct), our method identifies the key structures causing bias more precisely,
resulting in fewer parameters to fine-tune and faster training speeds.

Table 14: Analysis of the complexity (time complexity (TC), spatial complexity (SC)) and effective-
ness (Bias-O, Bias-Q, CLIP-T) of different methods.

Method SC (Parameters) TC (Training) TC (Sampling) Bias-O Bias-Q CLIP-T

Stable Diffusion v1.5

FairD - - 0.1179 s 0.79 3.25 28.79
UCE 859.5210 M 10.8213 s 0.0662 s 0.78 1.79 28.91

FinetuneFD 18.2592 M 14.4 s 0.0699 s 0.38 2.31 29.34
FairMapping 0.7855 M 3.6383 s 0.0658 s 0.46 2.16 29.30
BalancingAct 8.1921 M 3.0273 s 0.1379 s 0.41 1.70 29.30

LightFair (Ours) 3.6864 M 2.4221 s 0.0631 s 0.30 0.99 30.57

Stable Diffusion v2.1

Debias VL - - 0.0874 s 0.43 1.44 28.20
UCE 865.9107 M 8.1834 s 0.0585 s 0.90 1.67 29.41

LightFair (Ours) 9.4208 M 3.3960 s 0.0567 s 0.33 1.40 30.82

J Limitations and Future Works

J.1 Limitations

• Evaluation metrics themselves may introduce bias, potentially affecting model assessment.
This is a common challenge across nearly all fairness evaluations in generative models.
Nevertheless, these metrics are widely adopted in the generative modeling community, and
we follow standard practice by using them as well. To mitigate the limitations of any single
metric and reduce evaluation bias, we adopt a comprehensive evaluation protocol comprising
3 fairness metrics and 7 quality metrics, making our results more robust and persuasive.

• Some of the baseline methods (marked with ∗ in Tab. 6) do not have official code. We
re-implement them based on the descriptions in their original papers, strictly adhering to
the reported configurations, including model architectures and hyperparameters. However,
certain experimental details (e.g., data augmentation strategies and random seed settings)
are not specified in the original works. In these cases, we adopted the same settings used in
our LightFair implementation. As a result, the reported metrics may differ slightly from
those in the original papers. We have thoroughly examined these differences and confirmed
that they are minimal. We will provide comprehensive comparisons once the official code of
these methods becomes available.

• Our debiased SD occasionally generates artifacts such as non-smooth images, as shown
in Fig. 17a and Fig. 23d. However, since the original SD exhibits similar issues, it is
challenging to determine whether these artifacts are caused by our LightFair or are
inherited characteristics of the original SD.

• As text-to-image generation models continue to evolve, a diverse array of model architectures
is emerging. Our method is specifically designed for models with a text encoder and noise
prediction network structure, and it is not yet applicable to other architectures.

J.2 Future Works

We aim to develop methods for generating higher-quality debiased images and to explore fair-
generation techniques for text-to-image models with diverse architectures. While our current method
generalizes across multiple attributes, we acknowledge that fully continuous or user-defined attributes
remain an open challenge. In the future, we plan to support continuous attributes by sampling
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representative anchors along the spectrum or by optimizing against attribute regressors. At the same
time, precisely defining a model’s “fairness” remains challenging, as it largely depends on specific
contexts and external factors. We envision that achieving genuine fairness will ultimately require
joint efforts from researchers, policymakers, and practitioners.

K Statement

The “biases” discussed in this work are confined to those stemming from inherent statistical imbal-
ances in training datasets, which often manifest as unequal representations of physical attributes such
as gender, race, or age. Our objective is to address these biases to foster fairer and more accurate
model outputs, particularly in scenarios where these outputs may significantly impact downstream
applications.

That said, our approach has inherent limitations in mitigating biases affecting individuals whose
identities do not conform to conventional societal categories, such as those with non-binary gender
identities or mixed racial backgrounds.

It is important to clarify that this work does not seek to redefine or challenge societal norms or
beliefs, nor does it attempt to provide solutions to the multifaceted and systemic issues of societal
bias. Instead, our focus remains within the technical domain of machine learning, aiming to improve
the robustness and fairness of generative models based on clear and measurable criteria.

Finally, while this study underscores the ethical significance of addressing bias in artificial intelligence,
we acknowledge that technical interventions alone are insufficient to tackle deeper societal inequities.
We advocate for multidisciplinary collaboration among researchers, policymakers, and practitioners
to ensure that AI advancements align with and support broader societal values.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We briefly summarize it in the abstract and detail the paper’s contributions and
scope in the introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss this issue in Sec. J.1.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We provide complete proofs for each theoretical result in Sec. D and Sec. E.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We describe our algorithm in Sec. 4 and fully disclose all the information
needed to reproduce the main experimental results of the paper in Sec. 5.1 and Sec. H.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We provide a link to the data and code in the abstract.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines ( https://nips.cc/pu
blic/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines (
https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide the completed experimental setting in Sec. H.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report this issue in Sec. 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide sufficient information on the computer resources in Sec. H.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms in every respect with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss this issue in Sec. K.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not release data or models that have a high risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the original paper that produced the code package and dataset.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide the code with documentation in the link within the abstract.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing and research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing and research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The usage of LLMs is not an important component of the core methods in this
research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy ( https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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