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Abstract

Transformer-based models have recently shown
promise in time series forecasting, yet effectively
modeling multivariate time series remains chal-
lenging due to the need to capture both tempo-
ral (cross-time) and variate (cross-variate) depen-
dencies. While prior methods attempt to address
both, it remains unclear how to optimally inte-
grate these dependencies within the Transformer
architecture for both accuracy and efficiency. We
re-purpose the Transformer to explicitly model
these two types of dependencies: first embedding
each variate independently to capture temporal dy-
namics, then applying attention over these embed-
dings to model cross-variate relationships. Gating
mechanisms in both stages regulate information
flow, enabling the model to focus on relevant fea-
tures. Our approach achieves state-of-the-art per-
formance on 13 real-world datasets and can be in-
tegrated into Transformer-, LLM-based, and foun-
dation time series models, improving performance
by up to 20.7%. Code is available at this reposi-
tory: https://github.com/nyuolab/Gateformer.

1. Introduction
Time series forecasting plays a critical role in domains such
as traffic (Lv et al., 2014), energy (Zhu et al., 2023), weather
(Angryk et al., 2020), healthcare (Kaushik et al., 2020),
and finance (Chen et al., 2012). In multivariate settings,
accurate forecasting depends on modeling both intra-series
(temporal) and inter-series (cross-variable) dependencies
(Zhang & Yan, 2023). Transformers (Vaswani et al., 2017),
originally successful in NLP, have been adapted for time
series due to their ability to model long-range dependencies
(Wen et al., 2023).
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Many Transformer-based models (Kitaev et al., 2020; Li
et al., 2021; Liu et al., 2022b) embed all variables at each
time step into a single token and apply attention across time.
However, these tokens often lack semantic depth, weaken-
ing temporal modeling—sometimes allowing simple linear
models to outperform them (Zeng et al., 2023). PatchTST
(Nie et al., 2023) addresses this by using patch-level tem-
poral attention but overlooks cross-variable dependencies.
iTransformer (Liu et al., 2024b) models cross-variable cor-
relations via coarse embeddings, sacrificing fine-grained
temporal detail.

We propose Gateformer, a Transformer-based model that
explicitly captures both temporal and cross-variate depen-
dencies. Each variate is first encoded independently to
capture temporal patterns, then integrated with global tem-
poral context through a gating mechanism that regulates
information flow. These representations serve as inputs for
cross-variate modeling.

To model cross-variate dependencies, we apply self-
attention over variate representations, producing variate-
interacting embeddings. While such modeling improves
capacity (Han et al., 2024), it may degrade performance
on low-dimensional datasets. To address this, we fuse
variate-interacting and non-interacting embeddings through
a second gating mechanism, dynamically controlling cross-
variate influence and ensuring robust performance across
dataset scales. Our main contributions in this work can be
summarized as follows:

• We introduce Gateformer, which combines temporal
and variate-wise attention with gated representations
to improve multivariate time series forecasting.

• Gateformer achieves state-of-the-art results on 13 real-
world benchmarks, ranking top-1 in 91 and top-2 in
122 out of 130 settings.

• Our propsed framework seamlessly integrates with
Transformer-based, LLM-based, and foundation time
series models, achieving performance improvements
of up to 20.7% and facilitating the development of
foundational multivariate models.
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Figure 1. Overall model architecture: The model encodes each variate’s series independently through two distinct pathways to obtain
variate-wise representations: (1) temporal dependency embeddings that capture cross-time dependencies through patching and temporal-
wise attention, and (2) global temporal embeddings that encode global temporal patterns through an MLP. These complementary
embeddings are integrated through a gating operation to form variate embeddings, which serve as input for cross-variate dependency
modeling. Variate-wise attention is then applied on variate embeddings to model multivariate dependencies, producing variate-interacting
embeddings. Finally, a copy of the variate embeddings (without interaction) is combined with the variate-interacting embeddings through
gating to regulate cross-variate correlations. The resulting output is then passed through a projection layer to generate predictions.

2. Methodology
2.1. Problem Definition

Given multivariate time series data X ∈ RN×T , the goal
is to forecast the next F steps, Ŷ ∈ RN×F , where N is
the number of variates and T is the look-back window. The
objective is to minimize the MSE between Ŷ and the ground
truth Y.

2.2. Model Overview

As shown in Figure 1, our model captures both temporal
and cross-variate dependencies.

Cross-time Dependency Modeling. Each variate is pro-

cessed independently to capture intra-series patterns. Two
parallel paths are used: (1) patch-based temporal attention
to capture local dependencies, and (2) a shared MLP to
learn global temporal patterns. These are fused via a gating
mechanism to form variate embeddings.

Cross-variate Dependency Modeling. Variate embeddings
are passed through a variate-wise attention module to model
inter-series relationships. To maintain performance on small
datasets, these outputs are gated with original variate em-
beddings to dynamically control cross-variate influence.

Output Projection. Final embeddings are passed through
a linear layer to produce predictions Ŷ, followed by de-
normalization. MSE is used for training.
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Table 1. Multivariate forecasting results with prediction lengths T ∈ {96, 192, 336, 720} and fixed look-back length L = 96. Results are
averaged from all prediction lengths. A lower value indicates better performance. Full results are listed in the Appendix J.

Models Gateformer iTransformer PatchTST Crossformer FEDformer Autoformer Stationary TimesNet SCINet DLinear
(Ours) (2024b) (2023) (2023) (2022) (2021) (2022c) (2023) (2022a) (2023)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETT(Avg) 0.373 0.394 0.383 0.399 0.381 0.397 0.685 0.578 0.408 0.428 0.465 0.459 0.471 0.464 0.391 0.404 0.689 0.597 0.442 0.444

Weather 0.253 0.276 0.258 0.278 0.259 0.281 0.259 0.315 0.309 0.360 0.338 0.382 0.288 0.314 0.259 0.287 0.292 0.363 0.265 0.317

Electricity 0.176 0.267 0.178 0.270 0.205 0.290 0.244 0.334 0.214 0.327 0.227 0.338 0.193 0.296 0.192 0.295 0.268 0.365 0.212 0.300

Traffic 0.412 0.276 0.428 0.282 0.481 0.304 0.550 0.304 0.610 0.376 0.628 0.379 0.624 0.340 0.620 0.336 0.804 0.509 0.625 0.383

Exchange 0.326 0.386 0.360 0.403 0.367 0.404 0.940 0.707 0.519 0.429 0.613 0.539 0.461 0.454 0.416 0.443 0.750 0.626 0.354 0.414

Solar-Energy 0.224 0.258 0.233 0.262 0.270 0.307 0.641 0.639 0.291 0.381 0.885 0.711 0.261 0.381 0.301 0.319 0.282 0.375 0.330 0.401

PEMS(Avg) 0.070 0.169 0.072 0.173 0.104 0.211 0.103 0.195 0.137 0.253 0.346 0.431 0.089 0.193 0.091 0.193 0.072 0.174 0.133 0.252

1st Count 7 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2. Ablation study of model components across eight datasets, using prediction length T = 96 and look-back window L = 96.

Models ETTh1 ETTm1 ETTh2 ETTm2 Exchange Electricity Traffic Weather Avg. rank

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Gateformer 0.383 0.398 0.320 0.360 0.306 0.351 0.176 0.260 0.081 0.199 0.146 0.238 0.390 0.261 0.168 0.208 1.375 1.125
w/o Temporal-wise Attn. 0.393 0.404 0.327 0.361 0.325 0.360 0.179 0.261 0.084 0.203 0.147 0.239 0.395 0.266 0.176 0.217 3.25 3.000

w/o Gate in Variate-wise Attn. 0.385 0.400 0.327 0.362 0.334 0.367 0.182 0.264 0.082 0.200 0.144 0.239 0.387 0.261 0.168 0.208 2.250 2.375

w/o Global Temporal Embeddings 0.381 0.397 0.323 0.362 0.343 0.367 0.179 0.262 0.084 0.200 0.146 0.241 0.392 0.261 0.172 0.212 2.750 2.500

2.3. Model Details

2.3.1. CROSS-TIME DEPENDENCY MODELING

Each series x(i) ∈ RT is normalized with RevIN (Kim et al.,
2022), then divided into P non-overlapping patches. Each
patch is projected to a dm-dimensional space and passed
through self-attention:

O
(i)
cross−time = SOFTMAX

(
Q(i)K(i)⊤

√
dk

)
V(i)

The attention output is reshaped and passed through an FFN
to obtain temporal embeddings v(i)

T ∈ Rdm .

Global Temporal Pattern. To address the loss of global
context from patching, each raw series is also processed by
a shared MLP to obtain a global embedding v

(i)
G ∈ Rdm .

2.3.2. GATED FUSION

We fuse v
(i)
T and v

(i)
G using a gate:

Gate = σ(v
(i)
T W g1 + v

(i)
G W g2)

s(i) = Gate⊙ v
(i)
T + (1−Gate)⊙ v

(i)
G

s(i) serves as the final variate embedding.

2.3.3. CROSS-VARIATE DEPENDENCY MODELING

Given all variate embeddings S ∈ RN×dm , we apply self-
attention:

Ocross−variate = SOFTMAX

(
QK⊤
√
dm

)
V

To ensure robustness across dataset sizes, the output is gated
with the original S embeddings.

2.3.4. OUTPUT PROJECTION LAYER

We apply a linear head on Ocross−variate to obtain final
predictions Ŷ ∈ RN×F . Predictions are de-normalized
using stored mean and standard deviation, and MSE is used
as the training loss.

3. Experiments
We evaluate our model on short- and long-term forecasting
tasks against nine SOTA methods. Results show strong
performance and notable gains when applied to Transformer-
and LLM-based forecasters. Ablation studies highlight the
contribution of each component.

Datasets. We use 13 real-world datasets, including Traf-
fic, Electricity, Weather, Exchange, four ETT subsets (Wu
et al., 2021), Solar-Energy (Lai et al., 2018), and four PEMS
subsets (Liu et al., 2022a). Dataset details are provided in
Appendix B.1.

3.1. Forecasting Results

Baselines We compare our model against nine SOTA
methods: Transformer-based (Autoformer, FEDformer, Sta-
tionary, Crossformer, PatchTST, iTransformer), linear-based
(DLinear), and TCN-based (SCINet, TimesNet).

Experimental Setup All models use a look-back win-
dow of L = 96 and are trained for 10 epochs. Pre-

3



Gateformer

Table 3. Full results of performance improvements achieved using our proposed framework.

Models Autoformer Flowformer GPT4TS Moment
(2021) (2022) (2023) (2024)

Metric MSE MAE MSE MAE MSE MAE MSE MAE

Electricity

Original

96 0.201 0.317 0.215 0.320 0.197 0.290 0.204 0.296
192 0.222 0.334 0.259 0.355 0.201 0.292 0.207 0.299
336 0.231 0.338 0.296 0.383 0.217 0.309 0.219 0.310
720 0.254 0.361 0.296 0.380 0.253 0.339 0.256 0.341

Avg 0.227 0.338 0.267 0.359 0.217 0.308 0.221 0.311

+ Our framework

96 0.173 0.259 0.144 0.237 0.150 0.241 0.163 0.254
192 0.180 0.267 0.160 0.251 0.163 0.254 0.177 0.269
336 0.198 0.285 0.175 0.269 0.180 0.272 0.195 0.283
720 0.241 0.320 0.205 0.296 0.214 0.301 0.226 0.311

Avg 0.198 0.283 0.187 0.274 0.177 0.267 0.190 0.279

Weather

Original

96 0.266 0.336 0.182 0.233 0.203 0.244 0.192 0.234
192 0.307 0.367 0.250 0.288 0.247 0.277 0.246 0.278
336 0.359 0.395 0.309 0.329 0.297 0.311 0.287 0.305
720 0.419 0.428 0.404 0.385 0.368 0.356 0.360 0.350

Avg 0.338 0.382 0.286 0.308 0.279 0.297 0.271 0.292

+ Our framework

96 0.175 0.218 0.171 0.213 0.175 0.214 0.184 0.223
192 0.219 0.258 0.220 0.258 0.228 0.260 0.225 0.259
336 0.281 0.300 0.275 0.297 0.282 0.301 0.281 0.301
720 0.353 0.350 0.353 0.349 0.359 0.352 0.356 0.349

Avg 0.257 0.281 0.255 0.279 0.261 0.282 0.261 0.283

diction lengths are T ∈ {3, 6, 12, 24} for PEMS, and
T ∈ {96, 192, 336, 720} for others. Baseline results fol-
low Liu et al. (2024b).

Main Results Table 1 shows that Gateformer consistently
outperforms all baselines across 13 datasets. Although
iTransformer and Crossformer capture cross-variate depen-
dencies, they fall short due to limitations in modeling tem-
poral dynamics or introducing noise through patch-wise
interactions. Our method encodes both temporal and global
patterns via gated representations, enabling robust cross-
variate modeling. This flexibility allows strong performance
across dataset scales. On low-dimensional datasets (e.g.,
ETT), Gateformer matches or exceeds PatchTST, a strong
channel-independent baseline, thanks to its gated control of
cross-variate interactions.

3.2. Ablation Study

We assess component contributions on eight datasets (ETT,
Weather, Traffic, Electricity, Exchange) by removing: (1)
Temporal-wise Attention (keeps only global patterns), (2)
Gate in Variate-wise Attention, and (3) Global Temporal
Embeddings (keeps only local patterns). Table 2 shows full
Gateformer achieves the best results. Removing temporal
attention significantly degrades performance, especially on
small datasets, confirming its importance. Removing the
variate-wise gate slightly improves performance on large

datasets but harms it on smaller ones. Overall, the gated in-
tegration of temporal and variate-wise dependencies ensures
strong, consistent forecasting performance.

3.3. Framework Generalizability

While capturing cross-variate dependencies is essential, the
quadratic cost of self-attention limits scalability with many
variates. Our Transformer-based framework addresses this
by easily integrating efficient attention modules from mod-
els like Autoformer (Wu et al., 2021) and Flowformer (Wu
et al., 2022), and by extending to LLM-based models like
GPT4TS (Zhou et al., 2023) or foundation models such as
Moment (Goswami et al., 2024). On Weather and Electricity
datasets, our framework improves Autoformer by 19.9%,
Flowformer by 20.7%, GPT4TS by 10.8% and Moment
by 6.9%, as shown in Table 3. These gains highlight the
flexibility and effectiveness of our approach.

4. Conclusion and Future Work
We present a model that captures both temporal and cross-
variate dependencies using attention and gating mechanisms
for improved forecasting. It achieves state-of-the-art re-
sults and boosts performance of existing Transformer-based
models by up to 20.7%. Future work includes large-scale
pre-training and broader time series applications.
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Software and Data
Code, dataset details, metrics, and experimental settings are
included in Appendix B.
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A. Related work
As shown in Figure 2, Transformer-based time series models can be categorized based on their granularity of representations
(point-wise, patch-wise, and variate-wise) and their approach to modeling cross-time and cross-variate dependencies.

Point-wise Representations with Cross-time Attention
Many prior works embed multiple variates at the same timestamp into point tokens and apply attention mechanisms to
capture temporal dependencies among them. Examples include Autoformer (Wu et al., 2021), FEDformer (Zhou et al., 2022),
and Pyraformer (Liu et al., 2022b), which focus on optimizing the quadratic complexity of self-attention. Autoformer detects
sub-series similarities with O(L logL) complexity, FEDformer leverages frequency-domain sparsity with O(L) complexity,
and Pyraformer uses pyramidal attention for short- and long-term dependencies with O(L) complexity. However, these
models often fail in multivariate forecasting due to the lack of explicit semantic meaning in point tokens and the loss of
cross-variate correlations when merging all variables into single temporal tokens.

Patch-wise Representations with Cross-time Attention PatchTST (Nie et al., 2023) addresses the lack of local semantic
information through patching. It divides time series into patches to expand the receptive field and applies self-attention to
capture cross-time dependencies among patches. PatchTST processes each variate independently, allowing unique attention
patterns to be learned for each series. This approach has consistently improved performance on benchmarks and inspired
recent large-scale time series models (Zhou et al., 2023; Das et al., 2024; Jin et al., 2024; Liu et al., 2024c). However, it
focuses primarily on cross-time dependencies while neglecting critical cross-variate interactions.

Variate-wise Representations with Cross-variate Attention A notable example is iTransformer (Liu et al., 2024b),
which expands the receptive field as an extreme form of patching. iTransformer encodes each variate’s time series into
coarse variate-wise representations through linear projection and explicitly models cross-variate correlations among these
representations. However, it does not account for cross-time (intra-series) dependencies.

Patch-wise Representations with Cross-time and Cross-variate Attention Crossformer (Zhang & Yan, 2023), a repre-
sentative model, segments each variate’s series into a sequence of patches and captures both cross-time (intra-series) and
cross-variate (inter-series) dependencies among them. However, modeling multivariate correlations at such a granular level
can introduce unnecessary noise, potentially resulting in suboptimal forecasting performance.

Unlike previous works, our approach captures both cross-time and cross-variate correlations through variate-wise repre-
sentations. To enhance the quality of these representations, we integrate gating mechanisms to regulate information flow,
allowing the model to focus on the most relevant features for accurate predictions.

B. Experimental Details
B.1. Datasets

We assess long-term forecasting performance on ten widely used benchmarks, including the four ETT datasets (ETTh1,
ETTh2, ETTm1, ETTm2), Weather, Electricity, Traffic, Exchange (from Wu et al. (2021)), and Solar-Energy (from
Lai et al. (2018)). Additionally, we evaluate short-term forecasting on the four PEMS datasets (PEMS03, PEMS04,
PEMS07, PEMS08) as used in Liu et al. (2022a). We adopt the same data processing and train-validation-test split
protocol as TimesNet (Wu et al., 2023), ensuring datasets are strictly divided chronologically to prevent data leakage.
For forecasting, the lookback series length is fixed at L = 96 across all datasets. Prediction lengths are set as follows:
T ∈ {96, 192, 336, 720} for ETT, Weather, ECL, Traffic, Solar-Energy, and Exchange; T ∈ {3, 6, 12, 24} for PEMS.
Detailed dataset information is provided in Table 4.

B.2. Implementation Details

All experiments were implemented in PyTorch (Paszke et al., 2019) and conducted on a single NVIDIA A100 40GB GPU.
We used MSE as the loss function, a batch size of 8, and the Adam optimizer. The initial learning rate was selected from
{10−4, 5× 10−4, 10−3}, with training running for a maximum of 10 epochs and early stopping applied if validation loss
did not improve within three epochs. The number of encoder blocks was chosen from L ∈ {1, 2, 3, 4}, and the hidden
state dimension was selected from {64, 128, 256, 512, 1024}. Evaluation metrics included mean square error (MSE) and
mean absolute error (MAE), with results averaged over three random seeds. Baseline models were reproduced using the
TimesNet (Wu et al., 2023) repository, following configurations from their respective original papers or official code.
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Figure 2. Transformer-based forecasters can be categorized based on their attention granularity (point-wise, patch-wise, and variate-wise)
and their approach to modeling cross-time and cross-variate dependencies.

Table 4. Detailed dataset descriptions. The dimension refers to the number of variates in each dataset and the dataset size is organized in
(training, validation, testing).

Dataset Dim. Prediction Length Dataset Size Frequency Information

ETTh1, ETTh2 7 {96, 192, 336, 720} (8545, 2881, 2881) Hourly Electricity

ETTm1, ETTm2 7 {96, 192, 336, 720} (34465, 11521, 11521) 15min Electricity

Exchange 8 {96, 192, 336, 720} (5120, 665, 1422) Daily Economy

Weather 21 {96, 192, 336, 720} (36792, 5271, 10540) 10min Weather

ECL 321 {96, 192, 336, 720} (18317, 2633, 5261) Hourly Electricity

Traffic 862 {96, 192, 336, 720} (12185, 1757, 3509) Hourly Transportation

Solar-Energy 137 {96, 192, 336, 720} (36601, 5161, 10417) 10min Energy

PEMS03 358 {3, 6, 12, 24} (15617, 5135, 5135) 5min Transportation

PEMS04 307 {3, 6, 12, 24} (10172, 3375, 3375) 5min Transportation

PEMS07 883 {3, 6, 12, 24} (16911, 5622, 5622) 5min Transportation

PEMS08 170 {3, 6, 12, 24} (10690, 3548, 3548) 5min Transportation
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Figure 3. Forecasting performance (MSE) across different look-back windows L ∈ {24, 48, 96, 192, 336, 720} on Traffic, Electricity,
and Weather datasets, with prediction length T = 96.
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Figure 4. Forecasting results (MSE) varying with the number of Transformer blocks, the model’s hidden dimension, and the learning rate.
The results were collected with a prediction horizon of T = 96 and a look-back window of L = 96.

C. Varying Look-back Window
In principle, expanding the look-back window increases the receptive field, which should enhance forecasting accuracy.
However, previous studies (Zeng et al., 2023) have shown that most Transformer-based models fail to demonstrate this
expected improvement, revealing their limitations in processing extended temporal sequences. Our model, in contrast,
effectively utilizes the increased receptive field, achieving lower MSE scores with longer look-back windows, as demonstrated
in Figure 3.

D. Hyperparameter Sensitivity
To evaluate the sensitivity of our method to hyperparameter settings, we conducted experiments by varying the number
of Transformer blocks L ∈ {1, 2, 3, 4}, model dimensions D ∈ {128, 256, 512, 1024}, and learning rates lr ∈ {10−4, 3×
10−4, 5× 10−4, 10−3} on the ETTm1, Weather, Electricity, and Traffic datasets. As shown in Figure 4, the learning rate has
the strongest impact on model performance and requires careful tuning. Model performance generally improves with larger
hidden dimensions, while remaining relatively stable across different numbers of Transformer blocks.

E. Framework Generalizability
As discussed in Section 3.3, our proposed framework can be seamlessly integrated into other Transformer-based and
LLM-based models to consistently improve their performance, with full forecasting results shown in Table 3. Since our
model explicitly captures cross-variate dependencies, the variate-wise attention becomes a computational bottleneck when
training on high-dimensional datasets such as Electricity, Traffic, and Solar-Energy. To mitigate this, we replace the
conventional quadratic-time attention mechanism with the linear-time attention proposed in Flowformer (Wu et al., 2022)
and compare its performance against competitive baselines. These results are provided in Figure 5.
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Figure 5. Performance comparison on high-dimensional datasets. Gateformer (Efficient) replaces the conventional quadratic-time attention
mechanism with Flowformer’s optimized linear-time attention to improve computational efficiency. Prediction horizon T = 96; look-back
window L = 96.
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Figure 6. Analysis of unified cross-dataset training: Models are pre-trained on four combinations of PEMS datasets with increasing
training set sizes, then fine-tuned on target datasets. Prediction length T = 24; look-back window L = 96.

F. Unified Cross-Dataset Training
We selected the PEMS dataset as our benchmark as it contains four high-dimensional time-series subsets (PEMS03, PEMS04,
PEMS07, and PEMS08), each with substantial data that ensures robust evaluation. Our model includes temporal-wise and
variate-wise self-attention modules. The temporal-wise attention module captures intra-series dependencies for each series
independently. The variate-wise attention module operates on the variate dimension, enabling unified training across datasets
with varying numbers of variates. To investigate the benefits of data scaling, we trained our model on four progressively
larger combined datasets: (1) PEMS08, (2) PEMS08 + PEMS04, (3) PEMS08 + PEMS04 + PEMS03, and (4) PEMS08 +
PEMS04 + PEMS03 + PEMS07. These datasets were combined in ascending order of dimensionality. As shown in Figure
6, forecasting accuracy improved consistently across all PEMS datasets with larger training set sizes. This highlights our
model’s ability to learn generalizable and transferable representations through unified training while preventing catastrophic
forgetting, a common challenge in combined training (Liu et al., 2024a). Our results highlight the potential of building
large-scale multivariate forecasting models trained across datasets using our framework.
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Table 5. Transfer learning results. Gateformer∗ is pre-trained on PEMS07 dataset and then transferred to other datasets. Best results are
marked in bold, with prediction lengths T ∈ {3, 6, 12, 24} and look-back window L = 96.

Models Gateformer∗ Models Trained from Scratch on Target Dataset
Zero-shot Fine-tuning Gateformer iTransformer PatchTST Crossformer FEDformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

PE
M

S0
3

3 0.049 0.148 0.044 0.140 0.045 0.142 0.047 0.147 0.055 0.166 0.051 0.150 0.109 0.231
6 0.064 0.167 0.052 0.152 0.053 0.153 0.057 0.159 0.069 0.184 0.060 0.161 0.112 0.235

12 0.092 0.198 0.065 0.168 0.066 0.170 0.071 0.174 0.099 0.216 0.090 0.203 0.126 0.251
24 0.146 0.251 0.088 0.197 0.092 0.201 0.093 0.201 0.142 0.259 0.121 0.240 0.149 0.275

Avg 0.088 0.191 0.062 0.164 0.064 0.166 0.067 0.170 0.091 0.206 0.081 0.189 0.124 0.248

PE
M

S0
4

3 0.064 0.164 0.060 0.156 0.061 0.159 0.064 0.164 0.071 0.184 0.062 0.162 0.122 0.250
6 0.077 0.181 0.067 0.166 0.068 0.168 0.073 0.175 0.081 0.191 0.069 0.173 0.119 0.245

12 0.101 0.210 0.081 0.183 0.083 0.186 0.078 0.183 0.105 0.224 0.098 0.218 0.138 0.262
24 0.162 0.269 0.110 0.216 0.114 0.221 0.095 0.205 0.153 0.275 0.131 0.256 0.177 0.293

Avg 0.101 0.206 0.080 0.180 0.081 0.184 0.078 0.182 0.103 0.219 0.090 0.202 0.139 0.263

PE
M

S0
8

3 0.057 0.155 0.051 0.144 0.052 0.147 0.055 0.153 0.064 0.175 0.117 0.161 0.153 0.255
6 0.070 0.172 0.059 0.154 0.060 0.156 0.064 0.165 0.076 0.190 0.129 0.173 0.157 0.257

12 0.094 0.200 0.073 0.170 0.075 0.172 0.079 0.182 0.168 0.232 0.165 0.214 0.173 0.273
24 0.157 0.258 0.104 0.200 0.108 0.204 0.115 0.219 0.224 0.281 0.215 0.260 0.210 0.301

Avg 0.094 0.196 0.072 0.167 0.074 0.170 0.078 0.180 0.133 0.220 0.157 0.202 0.173 0.272

G. REPRESENTATION LEARNING
We evaluate the representations learned by our model, focusing on their generalization and transferability across datasets.
The PEMS datasets are used as a benchmark, as they comprise four high-dimensional time series subsets, each containing
a substantial amount of data to ensure robust and reliable evaluation results. To assess representation transferability, we
pre-trained the model on the largest dataset (PEMS07) for 10 epochs, then transferring it to PEMS03, PEMS04, and PEMS08
datasets. As shown in Table 5, the model’s zero-shot forecasting performance is comparable to most competitive baseline
models. A key strength of our method lies in its ability to effectively capture cross-variate correlations, enabling superior
generalization and transferability to unseen datasets. Furthermore, pre-training followed by fine-tuning for a few epochs
consistently outperforms training solely on downstream datasets, demonstrating the value of transferable representations
learned during pre-training.

H. MODEL EFFICIENCY
H.1. Memory-Efficient Training Strategy

Our model captures multivariate correlations by applying the attention mechanism along the variate dimension. However,
the quadratic complexity of the attention mechanism becomes a computational bottleneck when training models on high-
dimensional datasets such as Traffic. To mitigate this, we implement a computationally efficient training strategy that
randomly samples a subset of variates for each batch, allowing the model to train on only the selected variates. During
inference, the model generates forecasts for all variates. This random sampling of variates acts as a form of regularization,
enabling the model to learn robust and generalizable patterns. As shown in Figure 7, the forecasting performance remains
stable across various sampling ratios, while the memory footprint is significantly reduced.

H.2. Model Efficiency

To evaluate the efficiency of our model, we compare the forecasting accuracy, training time, and memory footprint of the
following models: Gateformer, Gateformer with the memory-efficient training strategy, iTransformer (Liu et al., 2024b),
PatchTST (Nie et al., 2023), Crossformer (Zhang & Yan, 2023), TimesNet (Wu et al., 2023), and DLinear (Zeng et al.,
2023). For a fair comparison, all models use the same hidden dimension and batch size on a representative high-dimensional
dataset (Traffic).

As shown in Figure 8, in terms of training speed, the linear model (DLinear) is the fastest. Gateformer, which captures both
cross-time and cross-variate dependencies, is slower than iTransformer, which models only multivariate correlations, and
PatchTST, which focuses purely on cross-time correlations. However, by adopting an efficient training strategy (training on a
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Figure 7. Investigation of the memory-efficient training strategy: The memory footprint (right) is significantly reduced when training on
randomly selected variates, while maintaining consistent results (left) across different sampling ratios.

randomly sampled 20% of variates in each batch while forecasting all variates), Gateformer (Efficient) achieves comparable
training speed to iTransformer with a lower memory footprint and superior forecasting performance.

I. Visualization
We visualize long-term forecasting results of Gateformer against baseline models on the Traffic dataset in Figure 9, where
Gateformer demonstrates superior prediction accuracy. Figure 10 compares the forecasting performance of Transformer-
based models with and without integration of our framework on the Electricity dataset. Models integrated with our approach
consistently show improved prediction accuracy.

J. Full Multivariate Forecasting Results
We extensively evaluated our model’s performance against competitive baselines on well-acknowledged forecasting
benchmarks. Table 6 presents comprehensive short-term forecasting results on the four PEMS subsets. Table 7 details
long-term forecasting results across nine challenging benchmarks.

12



Gateformer

100 0 100 200 300 400 500 600

Training Time (ms/iter)

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

M
SE

PatchTST
4.65GB, 136ms

iTransformer
2.66GB, 50ms

DLinear
0.05GB, 20ms

TimesNet
5.99GB, 244ms

Gateformer (Efficient)
1.67GB, 53ms

Gateformer
5.45GB, 183ms

Crossformer
15.29GB, 504ms

Models
PatchTST
iTransformer
DLinear
TimesNet
Gateformer (Efficient)
Gateformer
Crossformer

Models
PatchTST
iTransformer
DLinear
TimesNet
Gateformer (Efficient)
Gateformer
Crossformer

Figure 8. Model efficiency comparison on Traffic dataset.
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Figure 9. Visualization of 96-step forecasting on Traffic dataset with look-back window L = 96.

14



Gateformer

Autoformer* Flowformer* GPT4TS*

Autoformer Flowformer GPT4TS

Figure 10. Visualization of 96-step forecasting on Electricity dataset with look-back window L = 96. ∗ denotes models integrated with
our framework.
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Table 6. Full short-term multivariate forecasting results with prediction lengths T ∈ {3, 6, 12, 24} and input length L = 96. The best
results are highlighted in red and the second bests are marked in blue.

Model Gateformer iTransformer PatchTST Crossformer FEDformer Autoformer Stationary TimesNet SCINet DLinear
(Ours) (2024b) (2023) (2023) (2022) (2021) (2022c) (2023) (2022a) (2023)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

PE
M

S0
3

3 0.045 0.142 0.047 0.147 0.055 0.166 0.051 0.150 0.109 0.231 0.285 0.394 0.063 0.168 0.068 0.173 0.048 0.147 0.069 0.183
6 0.053 0.153 0.057 0.159 0.069 0.184 0.060 0.161 0.112 0.235 0.254 0.363 0.070 0.176 0.074 0.179 0.056 0.158 0.086 0.204

12 0.066 0.170 0.071 0.174 0.099 0.216 0.090 0.203 0.126 0.251 0.272 0.385 0.081 0.188 0.085 0.192 0.066 0.172 0.122 0.243
24 0.092 0.201 0.093 0.201 0.142 0.259 0.121 0.240 0.149 0.275 0.334 0.440 0.105 0.214 0.118 0.223 0.085 0.198 0.201 0.317

Avg 0.064 0.166 0.067 0.170 0.091 0.206 0.081 0.189 0.124 0.248 0.286 0.396 0.080 0.187 0.086 0.192 0.064 0.169 0.120 0.237

PE
M

S0
4

3 0.061 0.159 0.064 0.164 0.071 0.184 0.062 0.162 0.122 0.250 0.305 0.414 0.076 0.181 0.075 0.179 0.060 0.159 0.096 0.218
6 0.068 0.168 0.073 0.175 0.081 0.191 0.069 0.173 0.119 0.245 0.361 0.449 0.080 0.187 0.079 0.183 0.067 0.169 0.113 0.236

12 0.083 0.186 0.078 0.183 0.105 0.224 0.098 0.218 0.138 0.262 0.424 0.491 0.088 0.196 0.087 0.195 0.073 0.177 0.148 0.272
24 0.114 0.221 0.095 0.205 0.153 0.275 0.131 0.256 0.177 0.293 0.459 0.509 0.104 0.216 0.103 0.215 0.084 0.193 0.224 0.340

Avg 0.081 0.184 0.078 0.182 0.103 0.219 0.090 0.202 0.139 0.263 0.387 0.466 0.087 0.195 0.086 0.193 0.071 0.175 0.145 0.267

PE
M

S0
7

3 0.042 0.130 0.046 0.139 0.052 0.158 0.050 0.141 0.102 0.218 0.201 0.326 0.069 0.169 0.068 0.165 0.043 0.132 0.061 0.172
6 0.049 0.141 0.054 0.150 0.061 0.169 0.057 0.152 0.104 0.219 0.253 0.373 0.074 0.175 0.073 0.171 0.050 0.144 0.078 0.196

12 0.061 0.156 0.067 0.165 0.095 0.207 0.094 0.200 0.109 0.225 0.199 0.336 0.083 0.185 0.082 0.181 0.068 0.171 0.115 0.242
24 0.086 0.187 0.088 0.190 0.150 0.262 0.139 0.247 0.125 0.244 0.323 0.420 0.102 0.207 0.101 0.204 0.119 0.225 0.210 0.329

Avg 0.060 0.154 0.064 0.161 0.090 0.199 0.085 0.185 0.110 0.227 0.244 0.364 0.082 0.184 0.081 0.180 0.070 0.168 0.116 0.235

PE
M

S0
8

3 0.052 0.147 0.055 0.153 0.064 0.175 0.117 0.161 0.153 0.255 0.434 0.463 0.084 0.183 0.088 0.186 0.059 0.158 0.094 0.215
6 0.060 0.156 0.064 0.165 0.076 0.190 0.129 0.173 0.157 0.257 0.526 0.541 0.092 0.191 0.096 0.195 0.065 0.167 0.112 0.234

12 0.075 0.172 0.079 0.182 0.168 0.232 0.165 0.214 0.173 0.273 0.436 0.485 0.109 0.207 0.112 0.212 0.087 0.184 0.154 0.276
24 0.108 0.204 0.115 0.219 0.224 0.281 0.215 0.260 0.210 0.301 0.467 0.502 0.140 0.236 0.141 0.238 0.122 0.221 0.248 0.353

Avg 0.074 0.170 0.078 0.180 0.133 0.220 0.157 0.202 0.173 0.272 0.466 0.498 0.106 0.204 0.109 0.208 0.083 0.183 0.152 0.270

1st Count 14 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 5 0 0
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Table 7. Full results of multivariate long-term forecasting with a fixed input length L = 96 for all datasets. Baseline results are from Liu
et al. (2024b). The best results are highlighted in red and the second bests are marked in blue.

Model Gateformer iTransformer PatchTST Crossformer FEDformer Autoformer Stationary TimesNet SCINet DLinear
(Ours) (2024b) (2023) (2023) (2022) (2021) (2022c) (2023) (2022a) (2023)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Tr
af

fic

96 0.390 0.261 0.395 0.268 0.462 0.295 0.522 0.290 0.587 0.366 0.613 0.388 0.612 0.338 0.593 0.321 0.788 0.499 0.650 0.396
192 0.409 0.270 0.417 0.276 0.466 0.296 0.530 0.293 0.604 0.373 0.616 0.382 0.613 0.340 0.617 0.336 0.789 0.505 0.598 0.370
336 0.424 0.278 0.433 0.283 0.482 0.304 0.558 0.305 0.621 0.383 0.622 0.337 0.618 0.328 0.629 0.336 0.797 0.508 0.605 0.373
720 0.459 0.296 0.467 0.302 0.514 0.322 0.589 0.328 0.626 0.382 0.660 0.408 0.653 0.355 0.640 0.350 0.841 0.523 0.645 0.394

Avg 0.421 0.276 0.428 0.282 0.481 0.304 0.550 0.304 0.610 0.376 0.628 0.379 0.624 0.340 0.620 0.336 0.804 0.509 0.625 0.383

So
la

r-
E

ne
rg

y 96 0.182 0.222 0.203 0.237 0.234 0.286 0.310 0.331 0.242 0.342 0.884 0.711 0.215 0.249 0.250 0.292 0.237 0.344 0.290 0.378
192 0.227 0.257 0.233 0.261 0.267 0.310 0.734 0.725 0.285 0.380 0.834 0.692 0.254 0.272 0.296 0.318 0.280 0.380 0.320 0.398
336 0.242 0.274 0.248 0.273 0.290 0.315 0.750 0.735 0.282 0.376 0.941 0.723 0.290 0.296 0.319 0.330 0.304 0.389 0.353 0.415
720 0.245 0.279 0.249 0.275 0.289 0.317 0.769 0.765 0.357 0.427 0.882 0.717 0.285 0.295 0.338 0.337 0.308 0.388 0.356 0.413

Avg 0.224 0.258 0.233 0.262 0.270 0.307 0.641 0.639 0.291 0.381 0.885 0.711 0.261 0.381 0.301 0.319 0.282 0.375 0.330 0.401

E
le

ct
ri

ci
ty

96 0.146 0.238 0.148 0.240 0.181 0.270 0.219 0.314 0.193 0.308 0.201 0.317 0.169 0.273 0.168 0.272 0.247 0.345 0.197 0.282
192 0.160 0.252 0.162 0.253 0.188 0.274 0.231 0.322 0.201 0.315 0.222 0.334 0.182 0.286 0.184 0.289 0.257 0.355 0.196 0.285
336 0.176 0.270 0.178 0.269 0.204 0.293 0.246 0.337 0.214 0.329 0.231 0.338 0.200 0.304 0.198 0.300 0.269 0.369 0.209 0.301
720 0.221 0.306 0.225 0.317 0.246 0.324 0.280 0.363 0.246 0.355 0.254 0.361 0.222 0.321 0.220 0.320 0.299 0.390 0.245 0.333

Avg 0.176 0.267 0.178 0.270 0.205 0.290 0.244 0.334 0.214 0.327 0.227 0.338 0.193 0.296 0.192 0.295 0.268 0.365 0.212 0.300

W
ea

th
er

96 0.168 0.208 0.174 0.214 0.177 0.218 0.158 0.230 0.217 0.296 0.266 0.336 0.173 0.223 0.172 0.220 0.221 0.306 0.196 0.255
192 0.216 0.253 0.221 0.254 0.225 0.259 0.206 0.277 0.276 0.336 0.307 0.367 0.245 0.285 0.219 0.261 0.261 0.340 0.237 0.296
336 0.276 0.296 0.278 0.296 0.278 0.297 0.272 0.335 0.339 0.380 0.359 0.395 0.321 0.338 0.280 0.306 0.309 0.378 0.283 0.335
720 0.352 0.348 0.358 0.347 0.354 0.348 0.398 0.418 0.403 0.428 0.419 0.428 0.414 0.410 0.365 0.359 0.377 0.427 0.345 0.381

Avg 0.253 0.276 0.258 0.278 0.259 0.281 0.259 0.315 0.309 0.360 0.338 0.382 0.288 0.314 0.259 0.287 0.292 0.363 0.265 0.317

E
xc

ha
ng

e 96 0.081 0.199 0.086 0.206 0.088 0.205 0.256 0.367 0.148 0.278 0.197 0.323 0.111 0.237 0.107 0.234 0.267 0.396 0.088 0.218
192 0.167 0.293 0.177 0.299 0.176 0.299 0.470 0.509 0.271 0.315 0.300 0.369 0.219 0.335 0.226 0.344 0.351 0.459 0.176 0.315
336 0.312 0.403 0.331 0.417 0.301 0.397 1.268 0.883 0.460 0.427 0.509 0.524 0.421 0.476 0.367 0.448 1.324 0.853 0.313 0.427
720 0.744 0.650 0.847 0.691 0.901 0.714 1.767 1.068 1.195 0.695 1.447 0.941 1.092 0.769 0.964 0.746 1.058 0.797 0.839 0.695

Avg 0.326 0.386 0.360 0.403 0.367 0.404 0.940 0.707 0.519 0.429 0.613 0.539 0.461 0.454 0.416 0.443 0.750 0.626 0.354 0.414

E
T

T
m

1

96 0.320 0.360 0.334 0.368 0.329 0.367 0.404 0.426 0.379 0.419 0.505 0.475 0.386 0.398 0.338 0.375 0.418 0.438 0.345 0.372
192 0.367 0.383 0.377 0.391 0.367 0.385 0.450 0.451 0.426 0.441 0.553 0.496 0.459 0.444 0.374 0.387 0.439 0.450 0.380 0.389
336 0.406 0.411 0.426 0.420 0.399 0.410 0.532 0.515 0.445 0.459 0.621 0.537 0.495 0.464 0.410 0.411 0.490 0.485 0.413 0.413
720 0459 0.447 0.491 0.459 0.454 0.439 0.666 0.589 0.543 0.490 0.671 0.561 0.585 0.516 0.478 0.450 0.595 0.550 0.474 0.453

Avg 0.388 0.400 0.407 0.410 0.387 0.400 0.513 0.496 0.448 0.452 0.588 0.517 0.481 0.456 0.400 0.406 0.485 0.481 0.403 0.407

E
T

T
m

2

96 0.176 0.260 0.180 0.264 0.175 0.259 0.287 0.366 0.203 0.287 0.255 0.339 0.192 0.274 0.187 0.267 0.286 0.377 0.193 0.292
192 0.245 0.307 0.250 0.309 0.241 0.302 0.414 0.492 0.269 0.328 0.281 0.340 0.280 0.339 0.249 0.309 0.399 0.445 0.284 0.362
336 0.305 0.343 0.311 0.348 0.305 0.343 0.597 0.542 0.325 0.366 0.339 0.372 0.334 0.361 0.321 0.351 0.637 0.591 0.369 0.427
720 0.404 0.399 0.412 0.407 0.402 0.400 1.730 1.042 0.421 0.415 0.433 0.432 0.417 0.413 0.408 0.403 0.960 0.735 0.554 0.522

Avg 0.283 0.327 0.288 0.332 0.281 0.326 0.757 0.610 0.305 0.349 0.327 0.371 0.306 0.347 0.291 0.333 0.571 0.537 0.350 0.401

E
T

T
h1

96 0.383 0.398 0.386 0.405 0.414 0.419 0.423 0.448 0.376 0.419 0.449 0.459 0.513 0.491 0.384 0.402 0.654 0.599 0.386 0.400
192 0.433 0.435 0.441 0.436 0.460 0.445 0.471 0.474 0.420 0.448 0.500 0.482 0.534 0.504 0.436 0.429 0.719 0.631 0.437 0.432
336 0.464 0.452 0.487 0.458 0.501 0.466 0.570 0.546 0.459 0.465 0.521 0.496 0.588 0.535 0.491 0.469 0.778 0.659 0.481 0.459
720 0.485 0.484 0.503 0.491 0.500 0.488 0.653 0.621 0.506 0.507 0.514 0.512 0.643 0.616 0.521 0.500 0.836 0.699 0.519 0.516

Avg 0.441 0.442 0.454 0.447 0.469 0.454 0.529 0.522 0.440 0.460 0.496 0.487 0.570 0.537 0.458 0.450 0.747 0.647 0.456 0.452

E
T

T
h2

96 0.306 0.351 0.297 0.349 0.302 0.348 0.745 0.584 0.358 0.397 0.346 0.388 0.476 0.458 0.340 0.374 0.707 0.621 0.333 0.387
192 0.371 0.394 0.380 0.400 0.388 0.400 0.877 0.656 0.429 0.439 0.456 0.452 0.512 0.493 0.402 0.414 0.860 0.689 0.477 0.476
336 0.415 0.430 0.428 0.432 0.426 0.433 1.043 0.731 0.496 0.487 0.482 0.486 0.552 0.551 0.452 0.452 1.000 0.744 0.594 0.541
720 0.425 0.442 0.427 0.445 0.431 0.446 1.104 0.763 0.463 0.474 0.515 0.511 0.562 0.560 0.462 0.468 1.249 0.838 0.831 0.657

Avg 0.379 0.404 0.383 0.407 0.387 0.407 0.942 0.684 0.437 0.449 0.450 0.459 0.526 0.516 0.414 0.427 0.954 0.723 0.559 0.515

1st Count 28 33 1 5 10 9 3 0 4 0 0 0 0 0 1 1 0 0 1 0
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