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Abstract
The proliferation of fake news has emerged as001
a severe societal problem, raising significant002
interest from industry and academia. While ex-003
isting deep-learning based methods have made004
progress in detecting fake news accurately, they005
often suffer from users’ suspicion caused by006
the non-transparent reasoning processes, poor007
generalization abilities and inherent risks of in-008
tegration with large language models (LLMs).009
To address this challenge, we propose TELLER,010
a novel framework for trustworthy fake news011
detection that prioritizes explainability, gener-012
alizability and controllability of models. This013
is achieved via a dual-system framework that014
integrates cognition and decision systems, ad-015
hering to the principles above. The cognition016
system harnesses human expertise to generate017
logical predicates, which guide LLMs in gen-018
erating human-readable logic atoms. Mean-019
while, the decision system deduces generaliz-020
able logic rules to aggregate these atoms, en-021
abling the identification of the truthfulness of022
the input news across diverse domains and en-023
hancing transparency in the decision-making024
process. Finally, we present comprehensive025
evaluation results on four datasets, demonstrat-026
ing the feasibility and trustworthiness of our027
proposed framework.028

1 Introduction029

Fake news has emerged as a prominent social prob-030

lem due to the rampant dissemination facilitated by031

social media platforms (Zhou and Zafarani, 2021).032

Additionally, the swift progress of generative ar-033

tificial intelligence has further amplified this is-034

sue (Cardenuto et al., 2023). While human fact-035

checking experts can accurately verify the authen-036

ticity of news, their efforts cannot scale with the037

overwhelming volume of online information. Con-038

sequently, researchers have turned to automatic039

fake news detection techniques.040

Despite the improved predictive accuracy041

achieved by current deep learning-based detection042

Figure 1: Three crucial aspects of trustworthy fake news
detection algorithms and the correlation between these
principles and our dual-sytem framework TELLER.

approaches (Ma et al., 2023; Qi et al., 2021; Mehta 043

et al., 2022), these methods suffer from the lack 044

of transparency because of the black-box nature 045

of neural networks (Cui et al., 2019) and a lim- 046

ited ability to generalize to unseen data, given the 047

inherent diversity of online information (e.g., top- 048

ics, styles and media platforms) (Liu et al., 2024). 049

Moreover, the increasing integration with LLMs 050

is prone to uncontrollable risks due to hallucina- 051

tions when LLMs make false conclusions. Thus, a 052

growing awareness emphasizes trustworthiness1 of 053

these systems (Liu et al., 2023; Sheng et al., 2022). 054

Unfortunately, the characteristics of a trustwor- 055

thy fake news detector remain an open question. 056

Hence, based on recent surveys of Trustworthy AI 057

(Li et al., 2023; Jobin et al., 2019) and fake news 058

detection (Shu, 2023), we identify three crucial 059

aspects that go beyond accuracy performance for 060

fake news detection technologies: explainability, 061

generalizability, and controllability. These aspects 062

work collectively to enhance system security and 063

trustworthiness. 064

Firstly, explainability refers to understanding 065

how an AI model assesses misinformation. The 066

1In AI, trustworthiness refers to the extent to which an AI
system can be trusted to operate ethically, responsibly, and
reliably (Jobin et al., 2019).
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mechanism serves as a fundamental requirement067

for establishing end-user trust in these tools, as it068

enables the disclosure of complex reasoning pro-069

cesses and the identification of potential flaws in070

neural networks. Secondly, generalizability rep-071

resents the capability to acquire knowledge from072

limited training data to predict accurately in unseen073

situations (Wang et al., 2023a). Given the imprac-074

ticality of exhaustively collecting and annotating075

vast amounts of data across various news domains,076

generalization ensures the affordable and sustain-077

able deployment of data-driven fake news detection078

algorithms. Lastly, controllability encompasses the079

capacity for human guidance and noise tolerance080

in the behavior of models (Ji et al., 2023a). This081

objective benefits models in understanding specific082

misinformation regulatory policies and rectifying083

deviations if necessary. While recent practices may084

satisfy the requirements of explainability (Xu et al.,085

2022; Liu et al., 2023) or generalization (Kochkina086

et al., 2018; Yue et al., 2023), they often fail to087

adhere to all three principles simultaneously.088

To this end, we propose TELLER, a Trustworthy089

framework for Explainable, generaLizable and con-090

troLlabe dEtectoR, drawing inspiration from the091

dual-system theory2 (Daniel, 2017). This frame-092

work abstracts the existing pipeline of fake news de-093

tection into two components: the cognition and de-094

cision systems. As depicted in Fig. 1, the cognition095

system serves as the first step and is responsible096

for transforming meaningful human expertise from097

renowned journalism teams (Tsang, 2023; Sanders,098

2023) into a set of Yes/No question templates that099

correspond to logic predicates. These decomposed100

questions are then answered using LLMs, which101

provide truth values for corresponding logic atoms.102

On the other hand, the decision system, em-103

powered by a differentiable neural-symbolic model104

(Cingillioglu and Russo, 2021), can integrate the105

output of the cognition system to deduce the final106

authenticity of input news by leveraging domain107

invariant logic rules learned from data automati-108

cally. This visible logic-based ensemble not only109

mitigates the negative effects caused by inaccurate110

predictions of LLMs but also allows for the cor-111

rection of unreasonable rules through adjusting the112

weights in the model manually to align with human113

expertise.114

2System 1 provides tools for intuitive, imprecise, and un-
conscious decisions akin to deep learning, while system 2 han-
dles complex situations requiring logical and rational thinking
akin to symbolic learning (Booch et al., 2021).

Our framework ensures explainability by incor- 115

porating human-readable question templates (pred- 116

icates) and a transparent decision-making process 117

based on logic rules. This interpretability further 118

enables the flexibility to adjust rules and enhances 119

the model’s robustness against false LLM predic- 120

tions, thereby guaranteeing controllability. More- 121

over, our model exhibits generalizability, attributed 122

to the generalizable performance of LLMs, com- 123

bined with reliable human experience as guidance 124

and the utilization of the neural-symbolic model, 125

which can learn domain-generalizable rules. 126

To summarize, the contributions of this work 127

include: 1) We introduce a systematic framework 128

comprising cognition and decision modules, aim- 129

ing to uphold three crucial principles for estab- 130

lishing a trustworthy fake news detection system: 131

explainability, generalizability, and controllability. 132

2) We validate the effectiveness of our framework 133

by conducting comprehensive experiments using 134

various LLMs on four benchmarks. The results 135

demonstrate the feasibility and trustworthiness of 136

TELLER across different scenarios. 137

2 Related Work 138

2.1 Trustworthy AI 139

Establishing comprehensive trustworthiness in AI 140

is non-trivial due to its multi-objective nature, in- 141

cluding robustness, security, transparency, fairness, 142

safety, and ethical standards (Jobin et al., 2019). 143

Achieving such trustworthiness necessitates consid- 144

ering the entire lifecycle of an AI system, spanning 145

from data preparation and algorithm design, devel- 146

opment, and deployment to management and gover- 147

nance (Li et al., 2023; Eykholt et al., 2018). Recent 148

researchers have explored diverse approaches to 149

enhance AI trustworthiness across various goals 150

and stages to address this challenge. For example, 151

regarding algorithm design, several topics, such 152

as transfer learning, federated learning, and inter- 153

pretable AI, have been proposed to improve mod- 154

els’ robustness, security, and transparency. More- 155

over, the deployment of AI systems necessitates ex- 156

ternal government oversight, particularly for AGI 157

(Bengio et al., 2023). Although our work focuses 158

on enhancing the trustworthiness of detection sys- 159

tems from the algorithm design aspect, we acknowl- 160

edge that there is still much room for improvement 161

to achieve the ultimate goal. 162
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2.2 Trustworthy Fake News Detection163

Recent fake news detection research has witnessed164

a notable paradigm shift from prioritizing accuracy165

to considering trustworthiness. In line with our166

work, we primarily examine studies that aim to en-167

hance algorithms’ explainability, generalizability,168

and controllability.169

Regarding explainability, Cui et al. (2019); Xu170

et al. (2022); Liao et al. (2023) suggested obtain-171

ing key evidence for interpretation based on fea-172

ture importance, while Liu et al. (2023) utilized173

logic clauses to illustrate the reasoning process-174

ing. However, these methods still need to be more175

transparent due to their probabilistic nature and176

complex architecture. Furthermore, another group177

of works, such as Huang and Sun (2023), explored178

large generative language models (e.g., ChatGPT)179

and regarded the intermediate chain of thoughts as180

an explanation. Nevertheless, these explanations181

may not be reliable due to the hallucination phe-182

nomenon (Ji et al., 2023b) and the misalignment183

problem of AGI (Ji et al., 2023a). Moving on to184

generalizability, most methods, such as (Yue et al.,185

2023; Zhu et al., 2023; Kochkina et al., 2018), en-186

hanced fake news detectors through transfer learn-187

ing algorithms to learn domain-invariant features.188

However, these methods inevitably introduce ex-189

ternal costs of domain alignment, such as annotat-190

ing domain labels. As for controllability, although191

some works (Silva et al., 2021; Mendes et al., 2023)192

incorporated the human-in-loop technique in data193

sampling and model evaluation, few works explore194

how to intervene and edit models to align with hu-195

man expertise.196

3 Methodology197

Formally, given a piece of news T , the objective of198

the fake news detection task is to predict its label199

of truthfulness y ∈ Y where Y can fit in different200

levels of classification granularity. For example, in201

binary classification setting, Y = {true, false}, and202

T is identified as real (fake) when y is true (false).203

As depicted in Fig. 2, TELLER involves two204

main components: cognition and decision systems.205

The cognition system decomposes human expertise206

into Yes/No question templates corresponding to207

logic predicates. When presented with a new input208

T , the templates and predicates can be instantiated209

accordingly to form questions and logic atoms. By210

leveraging the parametric knowledge inside LLMs211

and gathering additional information from exter-212

nal tools (such as search engines), the cognition 213

system can generate answers to these questions, 214

represented as truth values of logic atoms. Then, 215

the decision system takes these truth values as input 216

and generates interpretable logic clauses to debunk 217

misinformation through a neural-symbolic model, 218

which can learn generic logic rules from data in an 219

end-to-end manner. 220

3.1 Cognition System 221

To combat misleading information, existing deep 222

learning-based algorithms fall short in gaining pub- 223

lic trust, while fact-checking experts rigorously fol- 224

low designated guidance and principles to facilitate 225

transparent and fair evaluation. Our cognitive sys- 226

tem aims to integrate the strengths of deep learning- 227

based methods that can handle large-scale online 228

information while maintaining the trustworthiness 229

of manual checking. 230

3.1.1 Predicate Construction 231

To begin with, we describe the following symbol 232

convention for clarity: calligraphic font Q and P 233

for sets of question templates and predicates, capi- 234

talized letters Q, P, X for question templates, pred- 235

icates, and variables, and corresponding lowercase 236

letters q, p, x for instances of these entities (ques- 237

tions, logic atoms, values). The truth values of 238

logic atoms are denoted by µ. 239

Inspired by the well-established fact-checking 240

process in Table 5, we initially decompose it into 241

a question template set, denoted as Q, contain- 242

ing eight questions as detailed in Appendix A.1. 243

Each template Qi in Q consists of Ni variables and 244

can be transformed into an Ni-ary logic predicate 245

Pi(Xi,1, . . . ,Xi,Ni) in P . The logic semantics of 246

Pi is interpreted as the affirmative answer to Qi and 247

its truth value µi represents the probability that Pi 248

holds. For instance, take Q1 (i.e., "Background In- 249

formation: X1,1. Statement: X1,2. Is the statement 250

true?") in Fig. 2 as an example. The correspond- 251

ing predicate P1(X1,1,X1,2) can be explained as 252

"Given the background information X1,1, the state- 253

ment X1,2 is true". 254

For each predicate Pi(Xi,1, . . . ,Xi,Ni), we can 255

instantiate the variables Xi,1, . . . ,Xi,Ni with the 256

actual contents taken from any input news to ob- 257

tain logic atoms. Since an input piece of news may 258

contain multiple background information and state- 259

ments (instantiations), we use k to denote the kth 260

instantiation where 1 ≤ k ≤
Ni∏
j=1

|Xi,j |. Here |Xi,j | 261
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Figure 2: The architecture of the proposed framework TELLER. N represents the number of question templates (logic
predicates), Mi denotes the number of logic atoms corresponding to the ith predicate, Y denotes the truthfulness
label set. The semantics of question templates and logic predicates are described in Table 6.

indicates the total number of possible instantiations262

for variable Xi,j . Then we denote by pi,k the in-263

stantiated logic atom corresponding to the question264

qi,k. Next, we introduce how to acquire the truth265

value of each logic atom.266

3.1.2 Logic evaluation with LLMs267

While decomposed questions can provide a com-268

prehensive explanation of how the decision is made269

(Chen et al., 2022; Fan et al., 2020), directly an-270

swering these questions poses a challenge due to271

the impracticality of annotating enormous data to272

train multiple models for different questions. To273

address this issue, we resort to the more general-274

purpose LLMs (e.g., FLAN-T5 (Chung et al.,275

2022), Llama2 (Touvron et al., 2023), and GPT-276

3.5) as the foundation for effectively answering277

these questions. Existing LLMs can be categorized278

into two groups: LLMopen, such as FLAN-T5 and279

Llama2, where the logits of output vocabulary can280

be obtained, and LLMclose, such as GPT-3.5, where281

the logits are not accessible.282

To ensure compatibility with both categories of283

LLMs, we propose two strategies to obtain the final284

truth values of logic atoms. Concretely, we first285

input the question qi,k with a suffix (i.e., "Yes or286

No? Response:") to LLMs in order to measure287

their preference for the affirmative answer "Yes"288

versus the negative one "No". This preference is289

subsequently used to compute the truth value of the290

corresponding logic atom pi,k.291

For LLMopen, we follow (Gallego, 2023; Burns292

et al., 2023) to obtain pre-softmax logits of "Yes"293

and "No" tokens, denoted as vY es and vNo respec-294

tively. Compared with post-softmax logits, pre-295

softmax logits can mitigate the influence of other to- 296

kens in output vocabulary, particularly when LLMs 297

tend to generate irrelevant tokens that may result in 298

vY es or vNo becoming zero. Then the truth value 299

µ for the logic atom p (here we omit the under- 300

script i, k for ease of illustration) can be obtained 301

as follows: 302

µ = 2
evY es

evNo + evY es
− 1. (1) 303

For LLMclose, we sample m times during de- 304

coding and count the frequency of "Yes" and "No" 305

responses as mY es and mNo. Then we compute 306

µ = 2
mY es

mNo +mY es
− 1. (2) 307

In either case, µ is in the range of [−1, 1]. When 308

µ ∈ [−1, 0), µ ∈ (0, 1], and µ = 0, the corre- 309

sponding logic atom p is evaluated as false, true, 310

and unknown, respectively. Once the truth values 311

of all logic atoms for a single predicate Pi (cor- 312

responding to a single question template) are ob- 313

tained, we concatenate them as one vector, denoted 314

as µi. Then we concatenate the value vectors for all 315

predicates as the input for the final decision system. 316

In conclusion, our cognition system can generate 317

diversified questions and logic atoms based on the 318

input news T . These human-readable entities en- 319

hance explainability by showcasing potential inter- 320

mediate reasoning steps and ensure controllability 321

by allowing adjustments to Q and P . Moreover, 322

combining human expertise and LLMs provides 323

the basis for the cognition system’s satisfactory 324

generalization performance in unseen domains. 325
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3.2 Decision System326

After acquiring responses to all questions, it is im-327

perative to develop a decision system to effectively328

aggregate them to predict the label of the input329

news T while preserving trustworthiness in the330

reasoning process. However, prevalent heuristic331

strategies (e.g., majority voting) lack the flexibil-332

ity to handle complex relationships among differ-333

ent questions and cannot tolerate false predictions,334

and deep-learning-based models cannot be compre-335

hended literally by humans (Wang et al., 2023b).336

Hence, we utilize a neural-symbolic model,337

named Disjunctive Normal Form (DNF) Layer338

(Cingillioglu and Russo, 2021; Baugh et al., 2023),339

as our decision system. This model includes con-340

junctive layers (SL∧) and disjunctive layers (SL∨),341

which can progressively converge to symbolic se-342

mantics such as conjunction ∧ and disjunction ∨343

respectively during model training. Consequently,344

this model can automatically learn logic rules from345

data in an end-to-end manner, capturing general-346

izable relationships between logic predicates and347

the target label. As illustrated in Fig. 2, we stack348

C conjunctive layers SL∧ beneath |Y| disjunctive349

layers SL∨ to construct the DNF Layer, where each350

SL∨ corresponds to a truthfulness label y ∈ Y .351

However, the original DNF Layer proposed in352

(Cingillioglu and Russo, 2021) is not directly ap-353

plicable to our work due to two issues. Firstly,354

the truth value of logic atoms µ ranges in [−1, 1],355

while the original model can only handle values of356

−1 and 1. Secondly, each logic atom in the orig-357

inal DNF Layer is treated differently which loses358

logic semantics where atoms for the same logic359

predicate should share similar functionality. To ad-360

dress the aforementioned challenges, we propose a361

modified DNF layer which takes continuous values362

µ ∈ [−1, 1] as input and assigns the same weight363

for those atoms instantiated from the same logic364

predicate. The detailed description of our modified365

DNF layer can be found in Appendix E.366

More concretely, in our proposed DNF Layer,367

every SL∧ takes truth values µ of all logic atoms368

obtained in the cognition system as input, aiming369

to learn a conjunctive clause conj =
∧

pi,k∈A pi,k370

where A ⊆ {p1,1, . . . , pN,MN
}, referring to a sub-371

set of the complete logic atoms, and outputs the372

truth value of this conjunctive clause. Subsequently,373

each SL∨ receives the truth values of C conjunctive374

clauses to represent a disjunction of these conjunc-375

tions:
∨

c∈C conjc where C ⊆ {1, . . . , C}, referring376

to a subset of all conjs. It then outputs the truth 377

value of this disjunction formula, corresponding 378

to the final probability that the input news T is 379

identified as the label y. Hence, each label y will 380

be associated with a DNF clause learned by the 381

DNF layer. Intuitively, the conjunction simulates 382

the idea that if the input news T gives affirmative 383

answers to some questions simultaneously, it is 384

highly probable that it should be assigned to label 385

y. On the other hand, the disjunction provides more 386

flexibility by considering different alternatives (the 387

output is true if at least one of the conj is true) 388

which makes the final decision less sensitive to in- 389

correct atom values due to wrong predictions given 390

by LLMs. For example, assume the learned rules 391

are conj1 ∨ conj2 where conj1 = p1,1 ∧ p1,2 and 392

conj2 = p2,1 ∧ p3,1. Suppose conj1 is true, then 393

we can conclude that conj1 ∨ conj2 is true even if 394

conj2 gives an incorrect value. 395

Last but not the least, we apply softmax function 396

to the output of all disjunction layers SL∨ to obtain 397

the probability z ∈ R|Y| for all possible labels. The 398

entire decision system can be trained in an end-to- 399

end fashion by minimizing the cross-entropy loss 400

function as below: 401

L = −
|Y|∑
l=1

I(yl = yT ) log zl, (3) 402

where yT represents the ground truth label of T . 403

During inference, we select the label corresponding 404

to the highest value in z as the final result. 405

In summary, our decision system can extract in- 406

terpretable symbolic rules from data that exhibit 407

robustness across diverse domains and enable inter- 408

vention by adjusting weights in the DNF Layer to 409

align with prior knowledge (refer to Appendix C). 410

4 Experiments 411

In this section, we present the experiment setup 412

and demonstrate the feasibility, explainability, gen- 413

eralizability and controllability of TELLER through 414

extensive experiments. 415

4.1 Experimental Setting 416

Dataset. We conducted experiments using four 417

challenging datasets, namely LIAR (Wang, 2017), 418

Constraint (Patwa et al., 2021), Politifact, and Gos- 419

sipCop (Shu et al., 2020). LIAR comprises the 420

binary classification and multi-classification set- 421

ting with six fine-grained labels for truthfulness 422

ratings. Moreover, Wang (2017); Alhindi et al. 423
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(2018) curated relevant evidence (e.g., background424

information), serving as gold knowledge in an open425

setting. Constraint, Politifact and GossipCop are426

binary classification datasets related to COVID-19,427

politics, and entertainment domains, respectively.428

LLMs. We select the FLAN-T5 and Llama2 se-429

ries, which encompass various parameter sizes, as430

large language models for constructing the cogni-431

tion system of TELLER because their open-source432

nature and unrestricted availability can ensure re-433

producibility in the future. Moreover, we also con-434

duct experiments using GPT-3.5-turbo on the LIAR435

dataset to examine the versatility of our framework.436

Baselines. We compare our model against Direct,437

Few-shot Direct, Zero-shot COT, Few-shot COT,438

Few-shot Logic. The baselines suffixed with Direct439

involve prompting large language models (LLMs)440

to predict the label of input news directly; those441

suffixed with COT utilize chain-of-thought tech-442

niques to enhance the performance of LLMs; those443

suffixed with Logic replace the thought process in444

COT with questions paired with their answers.445

Implementation Detail. We evaluate the perfor-446

mance of our framework using the accuracy and447

Macro-F1, which accommodates class imbalance.448

For each dataset, we train our decision system using449

the training split; select the optimal model based on450

its performance on the validation split; and report451

the results on the test split. To assess the generaliz-452

ability of our model, we train our models using the453

train split from source domains; choose the best454

model on the validation split of source ones; and455

report results on the test split from the target do-456

main. Moreover, to highlight the robustness of our457

framework, we keep all hyperparameters fixed in458

each setting. The experiment setting and utilized459

prompts are elaborated thoroughly in Appendix B.460

4.2 Feasibility Study461

To validate the feasibility of our framework, we462

compare it against multiple baselines across a wide463

range of LLMs and scenarios (e.g., different classi-464

fication granularities) in Table 1 and Table 2. These465

results uncover two crucial findings listed below:466

Firstly, our framework demonstrates satisfactory467

performance in fake news detection tasks. Specifi-468

cally, in the binary classification setting, TELLER469

achieves an accuracy of approximately 76% on the470

GossipCop dataset and over 80% on the other three471

datasets. Notably, when utilizing Llama 2 (13B) to472

drive the cognition system, TELLER outperforms473

all GPT-3.5-turbo based methods by a significant474

margin. These results highlight the effectiveness of 475

TELLER in distinguishing between fake and gen- 476

uine news. In the multi-classification setting on the 477

LIAR dataset, our framework consistently outper- 478

forms Direct for FLAN-T5 and Llama2 series, even 479

though these models may struggle to discriminate 480

fine-grained labels. This observation underscores 481

the capability of our decision system to mitigate 482

the negative influences of noisy predictions in the 483

cognition system, effectively unleashing the poten- 484

tial of LLMs through logic-based aggregation of 485

answers to decomposed questions. 486

Secondly, our framework exhibits significant po- 487

tential for the future. In the binary classification 488

setting across four datasets, TELLER consistently 489

outperforms Direct in terms of accuracy and macro- 490

F1 scores by an average of 7% and 6%, respectively. 491

Considering the swift improvement of LLM intelli- 492

gence, these results imply that the performance of 493

our framework is likely to scale with the evolution 494

of LLMs. Additionally, due to the notable perfor- 495

mance difference between closed and open settings 496

on the LIAR dataset, it is promising to integrate 497

external tools to acquire extensive evidence from 498

credible sources, such as official government web- 499

sites, to enhance the performance of our systems. 500

4.3 Explainability Verification 501

Explainability is a fundamental factor for establish- 502

ing trust in AI technology. We demonstrate that our 503

framework satisfies this aspect through its inherent 504

mechanism and the visualization of rules. 505

Unlike approaches that rely heavily on LLMs, 506

our cognition system incorporates expert knowl- 507

edge to construct a more well-grounded worldview 508

by generating well-defined question templates and 509

logic predicates. Moreover, our decision system 510

can learn interpretable rules from data to deduce 511

logic clauses to debunk fake news by converging 512

implicit parameters to conjunctive and disjunctive 513

semantics. These symbolic units (e.g., questions 514

and logic atoms) and the interpretable DNF Layer 515

contribute to our framework’s overall explainability 516

and transparency. 517

However, as the number of conjunctive and dis- 518

junctive layers grows, it is difficult for human be- 519

ings to investigate logic rules derived from our 520

decision system. To address this issue, we propose 521

a strategy to prune unnecessary weights in the DNF 522

Layer. For example, we present the rules extracted 523

from the pruned model for GossipCop in Table 4, 524

where each conjunctive clause identifies one can- 525
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Large Language Models Method
Binary Classification Multi-Classification

Closed Open Closed Open
Acc(%) Macro-F1(%) Acc(%) Macro-F1(%) Acc(%) Macro-F1(%) Acc(%) Macro-F1(%)

FLAN-T5-small (80M) Direct 44.99 31.63 45.08 32.41 18.17 9.28 19.51 10.13

FLAN-T5-base (250M) Direct 54.02 50.79 61.47 61.43 19.43 11.79 21.40 21.40

FLAN-T5-large (780M)
Direct 57.30 52.20 74.38 73.84 19.43 17.84 29.50 24.95

TELLER 66.83(9.53↑) 66.33(14.13↑) 77.76(3.38↑) 77.32(3.49↑) 26.99(7.55↑) 18.04(0.20↑) 33.67(4.17↑) 27.50(2.55↑)
w/ Intervention 65.64 65.12 77.46 77.14 26.28 18.49 35.25 30.05

FLAN-T5-xl (3B)
Direct 58.89 58.62 75.97 75.67 19.67 16.57 29.43 24.74

TELLER 62.36(3.48↑) 60.18(1.56↑) 78.75(2.78↑) 78.55(2.88↑) 24.31(4.64↑) 17.40(0.83↑) 33.52(4.09↑) 27.22(2.48↑)
w/ Intervention 63.65 61.82 79.34 79.07 25.57 19.62 34.46 33.59

FLAN-T5-xxl (11B)
Direct 56.41 56.08 75.17 75.15 22.42 18.31 32.18 28.12

TELLER 66.63(10.23↑) 65.91(9.82↑) 80.24(5.06↑) 79.85(4.70↑) 26.83(4.41↑) 19.68(1.36↑) 35.48(3.30↑) 30.42(2.30↑)
w/ Intervention 67.03 66.19 80.73 80.41 26.91 21.30 35.88 31.63

Llama2 (7B)
Direct 59.88 59.19 72.29 69.63 18.02 9.97 11.01 6.88

TELLER 62.46(2.58↑) 62.45(3.26↑) 79.94(7.65↑) 79.80(10.16↑) 23.29(5.27↑) 15.51(5.55↑) 32.73(21.72↑) 25.55(18.67↑)
w/ Intervention 64.15 62.77 81.93 81.84 23.92 15.14 34.30 27.58

Llama2 (13B)
Direct 56.90 56.90 69.31 63.77 7.32 2.85 10.86 8.25
Ours 66.04(9.14↑) 66.03(9.13↑) 82.52(13.21↑) 82.37(18.60↑) 25.81(18.49↑) 17.71(14.86↑) 38.08(27.22↑) 29.27(21.02↑)

w/ Intervention 67.73 66.97 84.21 84.03 25.10 16.78 38.63 30.60

GPT-3.5-turbo

Direct 42.40 51.48 76.27 74.21 20.46 20.34 26.20 25.12
TELLER - - 79.15(2.88↑) 78.90(4.69↑) - - 31.94(5.74↑) 29.53(4.41↑)

Zero-shot COT 30.88 41.87 72.49 70.83 7.16 9.20 39.81 36.49
Few-shot 61.67 64.05 81.02 81.00 25.65 25.56 46.81 44.61

Few-shot COT 52.04 56.15 74.48 76.21 20.69 17.20 45.63 36.36
Few-shot Logic 49.26 48.85 61.67 60.92 16.37 13.98 20.54 19.22

Table 1: Results on LIRA dataset. "Closed" represents the cognitive system does not have access to any external
knowledge source, while "Open" indicates that it can utilize gold evidence collected by human experts. The best
results for each setting are highlighted with bold numbers and an underline, whereas sub-optimal results are only
highlighted in bold. The number indicates that the performance of w/ Intervention is worse than TELLER. The
number with ↑ indicates the performance gain of TELLER over Direct.

LLMs Method
Constraint Politifact GossipCop

Acc(%) Macro-F1(%) Acc(%) Macro-F1(%) Acc(%) Macro-F1(%)

FLAN-T5-large
Direct 78.06 77.97 56.62 54.84 67.43 58.76

TELLER 80.32(2.27↑) 80.11(2.14↑) 67.65(11.03↑) 67.65(12.81↑) 69.53(2.10↑) 59.39(0.63↑)
w/ Intervention 80.46 80.31 68.38 68.29 70.28 60.74

FLAN-T5-xl
Direct 75.32 74.79 55.88 50.72 67.73 52.80

TELLER 83.77(8.45↑) 83.66(8.88↑) 68.82(9.14↑) 64.68(13.95↑) 69.58(1.85↑) 58.72(5.91↑)
w/ Intervention 83.95 83.88 69.12 68.79 72.23 63.84

FLAN-T5-xxl
Direct 74.80 73.23 52.21 43.65 68.93 52.82

TELLER 83.39(8.59↑) 83.24(10.01↑) 69.12(16.91↑) 68.57(24.92↑) 69.18(0.25↑) 57.21(4.39↑)
w/ Intervention 83.62 83.54 69.12 68.95 71.48 62.12

Llama2 (7B)
Direct 81.83 81.73 77.21 77.00 66.78 52.23

TELLER 83.72(1.89↑) 83.54(1.81↑) 83.82(6.62↑) 83.81(6.81↑) 70.68(3.90↑) 59.58(7.35↑)
w/ Intervention 85.13 85.04 83.82 83.82 73.38 65.32

Llama2 (13B)
Direct 57.53 51.75 77.94 77.10 52.55 52.27

TELLER 87.31(29.78↑) 87.29(35.53↑) 79.41(1.47↑) 79.41(2.30↑) 74.48(21.93↑) 66.32(14.06↑)
w/ Intervention 87.78 87.71 78.68 78.65 75.92 69.30

Table 2: Results on Constraint, Politifact, and GossipCop datasets without access to retrieved background informa-
tion. The best results for each setting are highlighted with bold numbers. The number and the number with ↑ have
the same meaning as in Table. 1.

didate rule. The pruning algorithm and rules for526

other datasets are described in Appendix C.527

Table 4 can be interpreted as learning DNF528

rules for both true and false labels of an input529

news. Specifically, the true label is predicted530

if either ¬conj34 or ¬conj43 is true, i.e., either531

¬P2 ∧ P3 ∧ P6 ∧ P8 or P3 ∧ P6 ∧ P8 is false532

when removing the negation. Given the semantics533

of these logic predicates shown in Table 6, we know534

that P2, P3 and P8 check the consistency between535

the background information and a given message,536

whereas P6 scrutinises improper intention from the537

message alone. On the other hand, the news will538

be predicted as false if conj27 is true, i.e., P4 is539

false which means that the background informa-540

tion in the message is neither accurate or objective541

according to Table 6. 542

4.4 Generalizability Verification 543

Ensuring the generalization ability of fake news de- 544

cision systems is vital for their sustainable and prac- 545

tical deployment. As observed in Table 3, TELLER 546

consistently outperforms Direct across all domains 547

and LLMs without the assistance of any generaliza- 548

tion algorithm, while only exhibiting a negligible 549

performance drop in the GP−→C domain using 550

Llama2 7B. This is attributed to the remarkable 551

zero-shot ability of LLMs and the effectiveness of 552

the DNF layer which further compensates for bi- 553

ased predictions made by LLMs through rule-based 554

aggregation. Particularly, the performance gains 555

of TELLER in cross-domain and in-domain exper- 556
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LLMs Method
CP−→G GP−→C CG−→P

Acc(%) Macro-F1(%) Acc(%) Macro-F1(%) Acc(%) Macro-F1(%)

FLAN-T5-xl
Direct 67.73 52.80 75.32 74.79 55.88 50.72

TELLER 68.13(0.40↑) 56.54(3.74↑) 82.40(7.0↑) 82.09(7.31↑) 61.76(5.88↑) 60.92(10.19↑)

FLAN-T5-xxl
Direct 68.93 52.82 74.80 73.23 52.21 43.65

TELLER 69.13(0.2↑) 53.15(0.34↑) 77.44(2.64↑) 76.21(2.98↑) 66.18(13.97↑) 66.17(22.52↑)

Llama2 7B
Direct 66.78 52.23 81.83 81.73 77.21 77.00

TELLER 68.33(1.55↑) 59.33(7.10↑) 81.60(−0.24↓) 81.04(−0.69↓) 83.09(5.88↑) 82.82(5.82↑)

Llama2 13B
Direct 52.55 52.27 57.53 51.75 77.94 77.10

TELLER 70.93(18.38↑) 60.90(8.63↑) 85.09(27.56↑) 84.87(33.1↑) 79.41(1.47↑) 79.41(2.30↑)

Table 3: Results on cross-domain experiments. C, P and G represent Constraint, Politifact, and GossipCop datasets.

conj34 = ¬P2 ∧ P3 ∧ P6 ∧ P8

conj43 = P3 ∧ P6 ∧ P8

conj27 = ¬P4

Ptrue = ¬conj34 ∨ ¬conj43
Pfalse = conj27

Table 4: Extracted rules for the GossipCop dataset when
using Llama2 (13B)

iments (refer to Table 2) are positively correlated,557

implying that the decision system manages to learn558

domain-agnostic rules. Moreover, the Pearson cor-559

relation coefficient between these two groups of560

performance gains shows a substantial improve-561

ment from 0.01 to 0.53 when transitioning from the562

FLAN-T5 series to the more powerful Llama2 se-563

ries. This finding suggests that leveraging stronger564

LLMs to drive the cognition system enhances the565

generalization capability of our framework.566

4.5 Controllability Verification567

Controllability ensures that fake news detection sys-568

tems are subject to effective human oversight and569

intervention. We demonstrate TELLER satisfies this570

attribute from two aspects. Firstly, we verify the571

feasibility of manually rectifying rules learned by572

our decision system that may exhibit irrational be-573

havior. For instance, we observe that P3 (i.e., "The574

message contains adequate background informa-575

tion") should have a positive logical relation with576

Ptrue instead of negation in Table 4. To correct577

this, we perform a manual adjustment by setting578

the corresponding weight to zero, effectively re-579

moving P3 from the logic rule. However, this mod-580

ification only leads to a negligible improvement in581

the test split. Further investigation reveals that the582

truth value of logic atoms pertaining to P3 of most583

real samples is negative, possibly due to the prefer-584

ence of LLMs. This suggests the superiority of our585

logic-based decision system in reducing the nega-586

tive effect of incorrect predictions made by LLMs587

automatically. Secondly, we simulate human ex-588

perts by intervening in the actions of our cognition589

system. We achieve this by guiding LLMs to ex-590

pand the question template set Q using Algorithm 591

1, referred to as w/ intervention in Table 1 and Table 592

2. The new question template set for intervention 593

is shown in Table 7 in the Appendix. The results 594

consistently indicate that w/ intervention outper- 595

forms TELLER, highlighting the potential of LLMs 596

as an agency for automatically regulating the be- 597

haviors of the cognition system. Consequently, our 598

framework ensures a comprehensive control mech- 599

anism by simultaneously facilitating human and AI 600

agents’ oversight. 601

Furthermore, we conduct additional experiments 602

to verify the effectiveness of the DNF Layer within 603

logic formulation over other decision systems, 604

namely decision trees and Naive Bayes classifiers, 605

both of which are conventional machine learning 606

algorithms. We replace the DNF Layers with these 607

two algorithms to derive the final decisions. The re- 608

sults are shown in Table 11 and Table 12 for single- 609

domain and cross-domain settings, respectively in 610

Appendix D. 611

5 Conclusion 612

In this work, we address the limitations of existing 613

fake news detection methods, which struggle to 614

establish reliability and end-user trust. To tackle 615

this issue, we identify three crucial aspects for con- 616

structing trustworthy misinformation detection sys- 617

tems: explainability, generalizability, and controlla- 618

bility. By prioritizing these principles, we propose 619

a dual-system framework TELLER that incorpo- 620

rates cognition and decision systems. To validate 621

our framework’s feasibility, explainability, general- 622

izability, and controllability, we conduct extensive 623

experiments on diverse datasets and LLMs. These 624

results affirm the effectiveness and trustworthiness 625

of our approach and highlight its significant poten- 626

tial through evolving both subsystems in the future. 627

While we achieve trustworthiness from an algorith- 628

mic perspective, we emphasize the importance of 629

further research to improve the trustworthiness of 630

the entire lifecycle of fake news detection systems. 631
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Limitations632

We identify three main limitations of our work.633

Firstly, although our framework focuses on enhanc-634

ing the trustworthiness of fake news detection algo-635

rithms, trustworthiness is also influenced by other636

stages of the AI system lifecycle, such as data col-637

lection and deployment. Given the advancements638

in AI techniques and the importance of online in-639

formation security, we encourage future research640

to address the challenges of building trustworthy641

AI systems comprehensively.642

Secondly, as shown in Table 1, integrating exter-643

nal tools to acquire high-quality background knowl-644

edge significantly improves the performance of645

fake news detection systems. However, collecting646

information that can effectively support detection647

tasks using such tools is non-trivial due to the com-648

plexities of open-domain information retrieval and649

the diversity of news content. For instance, we650

search for background information by inputting651

check-worthy claims of P1 into a search engine652

and filter out as much useful information as possi-653

ble using GPT-3.5-turbo. However, integrating this654

evidence lead to a slight performance drop on Con-655

straint, Politifact, and GossipCop datasets (Due to656

page limitations, we do not include this experiment657

in our paper). Therefore, we leave this for future658

research.659

Thirdly, despite the effectiveness of our decision660

system, the learning ability and expressiveness of661

the DNF Layer are limited due to its simple ar-662

chitecture. For example, the DNF Layer learns663

rules from data without considering the semantics664

of logic predicates. It may be crucial to develop665

more powerful decision models to fully unleash666

the potential of large language models, such as667

incorporating the semantics of logic predicates.668

Ethics Statement669

This paper adheres to the ACM Code of Ethics and670

Professional Conduct. Specifically, the datasets we671

utilize do not include sensitive private information672

and do not pose any harm to society. Furthermore,673

we will release our codes following the licenses of674

any utilized artifacts.675

Of paramount importance, our proposed dual-676

system framework serves as an effective measure677

to combat fake news and safeguard individuals,678

particularly in the current era dominated by large679

generative models that facilitate the generation of680

deceptive content with increasing ease. Moreover,681

our approach fulfills explainability, generalizabil- 682

ity, and controllability, thereby mitigating concerns 683

regarding the security of AI products and enabling 684

their deployment in real-world scenarios. 685
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A Details of Cognition System1017

Unlike convolutional deep learning-based fake1018

news detection frameworks that classify in a la-1019

tent space, the cognition system of TELLER, aims1020

to emulate human fact-checking experts by com-1021

plying with specific policies to ensure transparency1022

and controllability of the detection process. In this1023

section, we describe the construction of the set1024

of question templates Q and Q′ for TELLER and1025

w/Intervention respectively in Appendix A.1.1026

Furthermore, we introduce a trick for batch training1027

by fixing the number of logic atoms for different1028

inputs in Appendix A.2 and outline some potential1029

techniques for further improvement of the cogni-1030

tion system in Appendix A.3.1031

A.1 Construction of Question Templates1032

To provide an overview, we present the referenced1033

human-checking process in Table 5. In this table,1034

Steps I, VI and VII are excluded from detection1035

algorithms, as they either fall into the preliminary1036

procedures or the post-processing stages of the fake1037

news detection pipeline. These steps may involve1038

data crawl, human-computer interaction, machine1039

translation, etc. As a result, we concentrate on the1040

other steps.1041

Subsequently, we decompose the process into a1042

Yes/No question template set Q, where each tem-1043

plate Qi in Q corresponds to a predicate Pi in1044

the predicate set P . All question templates and1045

their corresponding predicates are listed in Table 6.1046

Specifically, for Q1, our objective is to determine1047

the trustworthiness of statements in the input news.1048

Here, statements represent crucial information in1049

news articles, playing a vital role in debunking mis-1050

information. Additionally, extracting statements1051

from news is a challenging task. While previous1052

studies like Liao et al. (2023); Fung et al. (2021)1053

used pre-trained language models to generate sum-1054

maries as statements, we choose to utilize GPT3.5-1055

turbo to generate statements for simplicity in im-1056

plementation. The prompt used for this purpose is1057

as follows:1058

To verify the MESSAGE, what are the critical

claims related to this message we need to
verify? Please use the following format to
answer. If there are no important claims,
answer “not applicable”.

MESSAGE:
CLAIM:
CLAIM:

MESSAGE: $MESSAGE$.

Then, we replace the "$MESSAGE$" with input 1059

news and take the generated claims as statements 1060

for Q1 (P1). 1061

Additionally, when verifying the controllability 1062

of our framework, we propose adjusting the ques- 1063

tion template set to deal with the diversity of fake 1064

news. While this adjustment should be done by 1065

fact-checking experts to ensure the reasonableness 1066

of new questions, our empirical findings demon- 1067

strate the feasibility of guiding large language mod- 1068

els, such as GPT-3.5-turbo, to generate new ques- 1069

tion templates. These templates are then manually 1070

filtered by us to create the final question template 1071

set Q′, and the corresponding predicate set P ′ for 1072

intervention, as outlined in Algorithm 1. Table 7 1073

presents these newly added question templates and 1074

predicates. The prompt R used in this algorithm is 1075

as follows: 1076

Write some questions that can be used to de-
termine whether a news report is misinforma-
tion. The questions should be answerable by
large language models in a close-book situa-
tion without requiring additional information.
Please format each question using the <s> and
</s> tags, such as <s>A question</s>.

A.2 Trick for Batch Training 1077

To enable batch training, we fix the number of logic 1078

atoms, denoted as Mi for each predicate Pi. Specif- 1079

ically, If Mi <
Ni∏
j=1

|Xi,j |, we randomly select Mi 1080

atoms. Conversely, if Mi >
Ni∏
j=1

|Xi,j |, we pad the 1081

vector by 0 accordingly. In the end, µ can be repre- 1082

sented as [µ1,1, . . . , µ1,M1 , . . . , µN,1, . . . , µN,MN
], 1083

where µ ∈ RM and M =
N∑
i
Mi. 1084
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A.3 The Potential of Cognition System1085

It is noteworthy that specific techniques can be1086

employed to improve the performance of our cog-1087

nitive system. For instance, when obtaining the an-1088

swers to questions as truth values for corresponding1089

logic atoms in Sec. 3.1.2, we exclusively consider1090

"Yes" and "No" tokens. However, considering the1091

relationship between model outputs and final pre-1092

dictions, "Right" and "Wrong" tokens can also be1093

suitable candidates. Therefore, drawing motivation1094

from (Gao et al., 2021; Cui et al., 2022), existing1095

manual or automatic verbalizer techniques that es-1096

tablish mappings between diverse model outputs1097

and final labels can be leveraged to enhance per-1098

formance. Additionally, the ensemble of prompts,1099

similar to "Yes or No? The answer is: ", has proven1100

effective for the "Yes" and "No" classification task1101

in (Gallego, 2023). Consequently, our dual-system1102

framework exhibits substantial potential for future1103

improvements in the cognitive system.1104

Algorithm 1 Question Template Generation for
Intervention Algorithm

Input: Prompt R, the original question template
set Q, and a copy of Q denoted as Q̂

Output: The question template set Q′ for inter-
vention

1: Set the number of iteration steps as T
2: for Iteration t = 1, . . . , T do
3: Use R to guide GPT-3.5-turbo in generating

a set of new question templates Q′

4: for each question template Q′
i in Q′ do

5: Compute the average similarity score be-
tween Q′

i and all templates in Q̂ using
Sentence BERT.

6: end for
7: Add Q′

i ∈ Q′ with the lowest similarity
score to Q̂.

8: end for
9: Q′ = Q̂ \ Q

10: Manually refine Q′ by removing duplicate and
impractical templates that are non-verifiable
through LLMs, resulting in the final Q′.
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Step I: Selecting claims
(1) To filter the information on news websites, social media, and online databases through manual selection
and computer-assisted selection.
(2) The public can submit suspicious claims.
(3) Selecting suspicious claims based on their hotness in Hong Kong, considering factors such as the
amount of likes, comments, and shares the message has received.

A) Is the content checkable?
B) Any misleading or false content?
C) Does it meet public interest?
D) Is it widespread?

Step II: Tracing the source
(1) Determining the source of the information.
(2) Identifying the publication date.
(3) Investigating the publisher and their background and reputation.
(4) Checking for similar information.
(5) Capturing a screen record and attaching the URL link.
(6) Providing two or more additional sources of information.
Step III: Fact-checking the suspicious information
(1) Applying the Five Ws and an H: When, Where, Who, What, Why, How.
(2) Searching for evidence to verify the information, such as official press releases, authoritative media
reports, and research reports.
(3) Attempting to engage the person or organization making the claim through email or telephone, if
necessary.
(4) Consulting experts in the relevant field, if necessary.
Step IV: Retrieving contextual information
(1) Checking if the original claim contains adequate background information.
(2) Assessing the accuracy and objectivity of the background information.
(3) Identifying any intentionally eliminated content that distorts the meaning.
Step V: Evaluating improper intentions
(1) Assessing if there is any improper intention (e.g., political motive, commercial purpose) in the
information.
(2) Investigating if the publisher has a history of publishing information with improper intentions.
Step VI: Self-checking
(1) Fact-checkers signing a Declaration of Interest Form before joining the team.
(2) Ensuring fact-checkers maintain objectivity and avoid biases during the process.
(3) Upholding the principle of objectivity and avoiding emotional involvement.
Step VII: Publishing and reviewing reports
(1) Completing a draft of the fact-check report, followed by editing and reviewing by professional editors
and consultants.
(2) Updating the report if any mistakes or defects are found, and providing clarification on correction
reasons and date.

Table 5: Fake news detection policy of HKBU FACT CHECK Team (Tsang, 2023)
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Question Template Logic Predicate: Logic Semantics Annotation
Q1: Background Information: X1,1.
Statement: X1,2. Is the statement true?

P1(X1,1,X1,2): Given the back-
ground information X1,1, the
statement is true.

X1,1: Background information for
input news, X1,2: Check-worthy
statements in input news.

Q2: Background Information: X2,1.
Message: X2,2. Is the message true?

P2(X2,1,X2,2): Given the back-
ground information X2,1, the mes-
sage is true.

X2,1: Background information for
input news, X2,2: Input news.

Q3: Message: X3,1. Did the message
contain adequate background informa-
tion?

P3(X3,1): The message con-
tains adequate background infor-
mation.

X3,1: Input news.

Q4: Message: X4,1. Is the background
information in the message accurate and
objective?

P4(X4,1): The background infor-
mation in the message is accurate
and objective.

X4,1: Input news.

Q5: Message: X5,1. Is there any content
in the message that has been intention-
ally eliminated with the meaning being
distorted?

P5(X5,1): The content in the mes-
sage has been intentionally elimi-
nated with the meaning being dis-
torted

X5,1: Input news.

Q6: Message: X6,1. Is there an im-
proper intention (political motive, com-
mercial purpose, etc.) in the message?

P6(X6,1): The message has an im-
proper intention.

X6,1: Input news.

Q7: Publisher Reputation: X7,1. Does
the publisher have a history of publish-
ing information with an improper inten-
tion?

P7(X7,1): Given the publisher
reputation X7,1, the publisher has
a history of publishing informa-
tion with an improper intention.

X7,1: Publishing history.

Q8: Background Information: X8,1.
Message: X8,2. Is the message false?

P8(X8,1,X8,2): Given the back-
ground information X8,1, the mes-
sage is false.

X8,1: Background information for
input news, X8,2: Input news.

Table 6: Question template set Q and logic predicate set P

Question Template Logic Predicate: Logic Semantics Annotation
Q9: News Report: X9,1. Is the news report
based on facts or does it primarily rely on
speculation or opinion?

P9(X9,1): The news report is based on
facts and relies on speculation or opinion.

X9,1: Input news.

Q10: News Report X10,1: Are there any
logical fallacies or misleading arguments
present in the news report?

P10(X10,1): The news report has logical
fallacies or misleading arguments.

X10,1: Input news.

Q11: Message: X11,1. Does the message
exhibit bias?

P11(X11,1): The message exhibits bias. X11,1: Input news.

Q12: News report: X12,1. Are there any
grammatical or spelling errors in the news
report that may indicate a lack of profes-
sional editing??

P12(X12,1): The news report has grammat-
ical and spelling errors.

X12,1: Input news.

Q13: News report: X13,1. Does the news
report use inflammatory language or make
personal attacks?

P13(X13,1): The news report uses inflam-
matory language and makes personal at-
tacks.

X13,1: Input news.

Table 7: Question template set Q′ and logic predicate set P ′ generated by GPT-3.5-turbo for intervention
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B Details of Experimental Setting1105

B.1 Datasets1106

LIAR is a publicly available dataset for fake1107

news detection, sourced from POLITIFACT.COM.1108

This dataset comprises six fine-grained labels for1109

truthfulness ratings: true, mostlytrue, halftrue,1110

barelytrue, false, and pantsfire. To align with1111

the binary classification problem, we merge true,1112

mostlytrue into true and merge barelytrue,1113

false, and pantsfire into false, following (Liao1114

et al., 2023). Moreover, Wang (2017); Alhindi1115

et al. (2018) curated relevant evidences from fact-1116

checking experts (e.g., publisher information, back-1117

ground information, etc.), which serve as gold1118

knowledge in an open setting.1119

Constraint is a manually annotated dataset of real1120

and fake news related to COVID-19. We adopt1121

the data pre-processing procedures described in1122

(Patwa et al., 2021), which involve removing all1123

links, non-alphanumeric characters, and English1124

stop words.1125

Politifact and GossipCop are two binary classifi-1126

cation subsets extracted from FakenewsNet (Shu1127

et al., 2020). The Politifact subset comprises polit-1128

ical news, while the GossipCop subset comprises1129

entertainment stories. To optimize experimental1130

costs and adhere to maximum context limitations,1131

we exclude news samples longer than 3,000 words.1132

For dataset partitioning, we follow the default1133

partition if specified; otherwise, we use a 7:1:21134

ratio. Table 8 presents the statistics of each dataset.1135

Split LIAR Constraint Politifact GossipCop
Train 10202 6299 469 6999

Validation 1284 2139 66 999
Test 1271 2119 136 2002

Table 8: Statistics of four benchmarks

1136

B.2 Illustration of Different Baselines1137

We compare our model against Direct, Few-shot1138

Direct, Zero-shot COT, Few-shot COT, Few-shot1139

Logic. Direct utilizes LLMs to calculate the prob-1140

ability of each label using Eqs. 1-2 and then se-1141

lects the label with the highest likelihood as the1142

predicted label. Building upon Direct, Few-shot1143

Direct incorporates demonstration samples with1144

known labels as contextual information to enhance1145

the model’s performance. Zero-shot COT and Few-1146

shot COT employ the chain-of-thought (COT) tech-1147

nique (Wei et al., 2022), enabling LLMs to engage 1148

in step-by-step reasoning. While Zero-shot COT 1149

immediately adds the prompt "Let us think step by 1150

step!", Few-shot COT provides multiple COT exem- 1151

plars. For Few-shot Logic, we replace the thought 1152

process in COT with instantiated questions accom- 1153

panied by corresponding answers generated by our 1154

cognition system. Since COT prompts have been 1155

found to yield performance gains basically when 1156

used with models of approximately 100B parame- 1157

ters (Wei et al., 2022), we exclusively implement 1158

COT-related methods using GPT-3.5-turbo. 1159

Below we show the templates for these five base- 1160

lines for the fake news detection task in the closed 1161

setting without the access to any external knowl- 1162

edge source. 1163

Direct: 1164

Message: $MESSAGE$.
Is the message $Label$?
Yes or No? Response:

Then, we replace the "$MESSAGE$" with input 1165

news, "$Label$" with candidate truthfulness labels. 1166

Few-shot Direct: 1167

Following given examples to answer Yes/No
questions.

Message: Says the Annies List political
group supports third-trimester abortions on
demand.
Is the message true?
Yes or No? Response: No

Message: Says the Annies List political
group supports third-trimester abortions on
demand.
Is the message false?
Yes or No? Response: Yes

(· · · more examples here · · ·)

Message: $MESSAGE$.
Is the message $Label$?
Yes or No? Response:

Then, we replace the "$MESSAGE$" with in- 1168

put news, "$Label$" with candidate truthfulness 1169

labels. Furthermore, during the testing phase, the 1170

examples are randomly selected from the training 1171

set. 1172
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Zero-shot COT:1173

You will be provided with a statement, and
your task is to classify its truthfulness into one
of two categories: true and false.
Message: $MESSAGE$.
Let’s think step by step and give answer with
the suffix “So the final answer is".

Then, we replace the "$MESSAGE$" with the1174

input news.1175

Few-shot COT:1176

You will be provided with a statement, and
your task is to classify its truthfulness into one
of two categories: true and false.

Example One
Message: Says the Annies List political group
supports third-trimester abortions on demand.
Let’s think step by step and give answer with
suffix “So the final answer is".
Annie’s List was comfortable with candidates
who oppose more limits on late-term abortions
while he also supported candidates who voted
for more limits this year. Both dose not
mention of third-trimester abortions.
So the final answer is false.

(· · · more examples here · · ·)

Message: $MESSAGE$.
Let’s think step by step and give answer with
the suffix “So the final answer is".

Then, we replace the "$MESSAGE$" with the1177

input news.1178

Few-shot Logic:1179

You will be provided with a statement, and

your task is to classify its truthfulness into one
of two categories: true and false.

Example One
Message: Says the Annies List political group
supports third-trimester abortions on demand.
Decomposed Questions:
(1) Statement: The Annies List is a political
group. Is the statement true?
Yes
(2) Statement: The Annies List supports
third-trimester abortions. Is the statement
true?
No
(3) Did the message contain adequate back-
ground information?
False

(· · · more examples here · · ·)

Message: $MESSAGE$.
Let’s think step by step and give answer with
the suffix “So the final answer is".

Then, we replace the "$MESSAGE$" with the 1180

input news. 1181

B.3 Model Training for Decision System 1182

In the decision system of our framework, we em- 1183

ploy the DNF Layer to learn human-readable rules 1184

from data differentially. To train this model, we 1185

utilize the Adam optimizer with a learning rate of 1186

1e-3. Regarding the hyperparameters, we search 1187

the conjunction number C within the range [10, 20, 1188

30, 40, 50], and the weight decay within the range 1189

[1e-3, 5e-4, 1e-4]. Furthermore, to showcase the 1190

superiority of our approach, we maintain consistent 1191

hyperparameters across different LLMs in each set- 1192

ting. For instance, all hyperparameters of TELLER 1193

in the closed setting for the binary classification 1194

task on the LIAR dataset remain unchanged. The 1195

batch size is set to 64, and the number of epochs is 1196

set to 30. Additionally, we progressively converge 1197

the model towards symbolic semantics by adjusting 1198

δ (refer to Appendix E for detail) to 1 or -1 before 1199

the first 15 epochs using exponential decay. 1200
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C Details of Explainability Study1201

To enhance the accessibility of the rules generated1202

by the DNF Layer, we propose a pruning algo-1203

rithm that extracts more concise logic clauses by1204

eliminating insignificant weights. The algorithm is1205

described in Algorithm 2. Furthermore, to demon-1206

strate the explainability of our framework, we visu-1207

alize the extracted rules obtained from the pruned1208

model for Constraint, Politifact, and GossipCop1209

datasets in Table 9, Table 10 and Table 4, respec-1210

tively. In these tables, Ptrue and Pfalse represent the1211

proposition that the input news is identified as true1212

or false, respectively. In our visualization experi-1213

ments, we employ Llama2 (13B) as the LLM in the1214

cognition system. We set the number of conjunc-1215

tive layers C as 50, the performance drop threshold1216

ϵ as 0.005, and b as 0.0001 to reduce the number of1217

conjunction clauses. More details regarding these1218

parameters can be found in Appendix E.1219

Algorithm 2 Pruning Algorithm for the DNF Layer
Input: Trained DNF Layer Φ, performance drop threshold ϵ
Output: Pruned DNF Layer Φ′ and extracted rule set R
1: Initialize R′ as an empty set
2: Initialize R by extracting rules from Φ
3: Initialize Φ′ using Φ
4: while |R′| ̸= |R| do
5: Initialize R by extracting rules from Φ′

6: Prune disjunctions if the removal of a disjunction
results in a performance drop smaller than ϵ

7: Prune unused conjunctions that are not utilized by any
disjunction

8: Prune conjunctions if the removal of a conjunction
results in a performance drop smaller than ϵ

9: Prune disjunctions that use empty conjunctions
10: Prune disjunctions again if the removal of a disjunc-

tion results in a performance drop smaller than ϵ
11: Update the pruned model as Φ′ and extract rules from

Φ′ to obtain R′;
12: end while

conj48 = P4 ∧ ¬P8

conj25 = ¬P4 ∧ ¬P5 ∧ P8

conj40 = P2 ∧ P4

Ptrue = conj48
Pfalse = conj25 ∨ ¬conj40

Table 9: Extracted rules for the Constraint dataset when
using Llama2 (13B).

conj36 = P3 ∧ P6 ∧ P8

conj44 = P5 ∧ P1 ∧ P8

conj0 = P1

conj49 = P2 ∧ P3 ∧ P4

Ptrue = ¬conj36 ∨ ¬conj44
Pfalse = ¬conj0 ∨ ¬conj49

Table 10: Extracted rules for the Politifact dataset when
using Llama2 (13B).
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D Comparison with Different Decision1220

Models1221

In our work, we utilize the DNF Layer to construct1222

our decision system, guaranteeing explainability1223

and controllability. However, there are also other1224

alternatives, such as existing neural symbolic archi-1225

tectures and interpretable machine learning algo-1226

rithms. By comparing the DNF Layer with these1227

candidates, we demonstrate that our dual-system1228

framework can achieve better performance by in-1229

venting a more effective decision model to unleash1230

the ability of LLMs.1231

While existing neural symbolic architectures can1232

extract useful rules from data (Booch et al., 2021),1233

they indeed have certain limitations. Firstly, these1234

architectures often require complex mechanisms to1235

implement logical operations, which makes them1236

unsuitable for immediate application in fake news1237

detection tasks. For example, Qu et al. (2021);1238

Cheng et al. (2023) developed neural-symbolic1239

models for knowledge graph completion, but their1240

reliance on well-defined graph structures makes1241

them infeasible for our task. Secondly, these ar-1242

chitectures often suffer from efficiency issues. For1243

instance, δLP proposed in (Evans and Grefenstette,1244

2018) had high computational complexity, and HRI1245

(Glanois et al., 2022) was incompatible with batch1246

training, which externally required users to pre-1247

define rule templates to constrain the search space.1248

Furthermore, to the best of our knowledge, there1249

may be no neural-symbolic framework available1250

that can simultaneously handle the challenges of1251

missing values and multi-grounding problems (i.e.,1252

one predicate can be instantiated as multiple logic1253

atoms), which are common in our tasks. There-1254

fore, we acknowledge the need for future research1255

to develop a more suitable and powerful neural-1256

symbolic framework in the context of fake news1257

detection.1258

Since each dimension in µ is precisely bonded1259

to a question template (logic predicate), we can em-1260

ploy traditional machine learning classification al-1261

gorithms, including decision tree3 and naive Bayes1262

Classifier4 to replace the DNF Layer to drive our1263

decision system, while maintaining partial aspects1264

of trustworthy AI. Therefore, we compare the DNF1265

Layer with these two methods in both in-domain1266

3https://scikit-learn.org/stable/modules/tree.
html

4https://scikit-learn.org/stable/modules/
naive_bayes.html

and cross-domain settings on three datasets, shown 1267

in Table 11 and Table 12, respectively. 1268

According to the results, we conclude that deci- 1269

sion trees perform better when the training and test- 1270

ing data are from the same domain. Meanwhile, the 1271

naive Bayes Classifier demonstrates more satisfac- 1272

tory generalization performance in cross-domain 1273

experiments across various LLMs. This implies 1274

that our proposed dual-system framework shows 1275

potential in developing a more powerful decision 1276

module, such as an ensemble of these algorithms. 1277

However, the DNF Layer still outperforms these 1278

two methods in most cases when using Llama2 1279

(13B) as the driver of the cognition system, achiev- 1280

ing a better trade-off between accuracy and gener- 1281

alization ability. Moreover, the DNF Layer also ex- 1282

hibits advantages over these two methods in terms 1283

of its ability to handle missing values and multi- 1284

grounding problems, as well as its flexibility in 1285

efficiently searching logic rules in a large space, 1286

whereas the decision tree is constrained by depth 1287

and width. 1288
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LLMs Method
Constraint Politifact GossipCop

Acc(%) Macro-F1(%) Acc(%) Macro-F1(%) Acc(%) Macro-F1(%)

FLAN-T5-large
Decision Tree 78.53 78.30 67.65 67.19 70.88 62.76

Bayes Classifier 80.93 80.86 66.18 66.15 68.33 61.04
TELLER 80.32 80.11 67.65 67.65 69.53 59.39

FLAN-T5-xl
Decision Tree 84.29 84.27 66.91 66.10 71.13 61.58

Bayes Classifier 82.40 82.22 68.38 67.88 68.23 60.23
TELLER 83.77 83.66 68.82 64.68 69.58 58.72

FLAN-T5-xxl
Decision Tree 84.14 84.12 72.06 71.00 72.13 67.08

Bayes Classifier 82.49 82.30 68.38 67.61 68.38 57.62
TELLER 83.39 83.24 69.12 68.57 69.18 57.21

Llama2 (7B)
Decision Tree 84.33 84.32 79.41 77.00 72.38 65.24

Bayes Classifier 83.11 82.97 76.47 76.29 71.98 66.67
TELLER 83.72 83.54 83.82 83.81 70.68 59.58

Llama2 (13B)
Decision Tree 86.50 86.49 83.09 83.07 74.43 68.99

Bayes Classifier 84.99 84.92 80.15 80.06 73.58 69.59
TELLER 87.31 87.29 79.41 79.41 74.48 66.32

Table 11: Results of different decision models on Constraint, Politifact, and GossipCop datasets without access to
retrieved background information. The best results for each dataset are highlighted with bold numbers.

LLMs Method
CP−→G GP−→C CG−→P

Acc(%) Macro-F1(%) Acc(%) Macro-F1(%) Acc(%) Macro-F1(%)

FLAN-T5-xl
Decision Tree 68.98 62.33 73.67 73.32 63.97 62.71

Bayes Classifier 67.13 59.26 82.49 82.49 64.71 64.64
TELLER 68.13 56.54 82.40 82.09 61.76 60.92

FLAN-T5-xxl
Decision Tree 68.33 55.53 70.60 70.35 61.03 60.98

Bayes Classifier 68.33 54.71 82.63 82.51 62.50 62.50
TELLER 69.13 53.15 77.44 76.21 66.18 66.17

Llama2 7B
Decision Tree 52.20 52.05 76.40 75.02 66.91 64.84

Bayes Classifier 65.98 62.46 82.82 82.60 67.65 65.49
TELLER 68.33 59.33 81.60 81.04 83.09 82.82

Llama2 13B
Decision Tree 61.59 61.14 71.54 68.21 71.32 71.32

Bayes Classifier 71.53 69.09 82.59 82.25 78.68 78.25
TELLER 70.93 60.90 85.09 84.87 79.41 79.41

Table 12: Results of different decision models on cross-domain experiments. C, P and G represent Constraint,
Politifact, and GossipCop datasets, respectively. The best results for each dataset are highlighted with bold numbers.
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E Formal Description of DNF Layer1289

In this section, we introduce modified Disjunctive1290

Normal Form (DNF) Layer employed in our frame-1291

work. The DNF Layer is built from semi-symbolic1292

layers (SL), which can progressively converge to1293

symbolic semantics such as conjunction ∧ and dis-1294

junction ∨.1295

Specifically, for the truth value vector µ ∈ RM1296

mentioned in Sec. 3.1.2, SL can be formulated as1297

follows:1298

µo = tanh

 M∑
j

wjµj + β

 , (4)1299

β = δ

b−
∑
j

|wjµj |

 , (5)1300

where wj represents learnable parameters, b =1301

max
j

|wjµj | and δ ∈ [−1, 1] represents the seman-1302

tic gate selector. µj is the truth value for the jth1303

logic atom obtained from the cognitive system. The1304

sign of the learned weight wj indicates whether µj1305

(if wj is positive) or its negation (if wj is negative)1306

contributes to µo. Thus, logical negation (e.g., ¬pj)1307

can be computed as the multiplicative inverse of1308

the input: −µj .1309

Eq. 4 resembles a standard feed-forward layer,1310

aiming to compute a single truth value from a col-1311

lection of values µj corresponding to different in-1312

stantiations of a single predicate/question. β serves1313

as the bias term. As shown by (Cingillioglu and1314

Russo, 2021), by adjusting δ from 0 to 1 during1315

training, SL tends to converge to conjunctive se-1316

mantics as SL∧ (e.g., p1 ∧ p2, . . . ,∧pM ), indicat-1317

ing that if at least one wjµj is false, the output1318

µo will be false; otherwise, µo will be true. Con-1319

versely, by gradually adjusting δ from 0 to −1,1320

SL can attain disjunctive semantics as SL∨ (e.g.,1321

p1 ∨ p2, . . . ,∨pM ), where if at least one wjµj is1322

true, µo will be true; otherwise, µo will be false.1323

Additionally, b can guarantee µo being true (false)1324

when all wjµj are true (false) for SL∧ (SL∨).1325

Since each dimension in µ corresponds to the1326

same predicate for different inputs, SL effectively1327

represents the relationship among different instanti-1328

ations and the target output µo, enabling the learn-1329

ing of generic rules for various inputs. Moreover,1330

by employing rule-based aggregation, our frame-1331

work exhibits noise tolerance against incorrect pre-1332

dictions of LLMs in the cognition system, particu-1333

larly owing to the SL∨.1334

Notably, one predicate can be instantiated by 1335

multiple assignments, i.e., Pi pertains to Mi logic 1336

atoms in Appendix A.2. Thus, the parameters 1337

bound to these Mi logic atoms should naturally 1338

share the logical semantics of Pi. Instead of gath- 1339

ering all possible combinations of Mi logic atoms 1340

for training (
Mi∏
j=1

j), we let these logic atoms share 1341

the same w. In this scenario, SL can be represented 1342

as follows: 1343

µo = tanh(

N∑
i

Mi∑
j

wiµi,j + β), (6) 1344

β = δ(b−
N∑
i

Mi∑
j

|wiµi,j |), (7) 1345

where N is the number of predicates. 1346

22


	Introduction
	Related Work
	Trustworthy AI
	Trustworthy Fake News Detection

	Methodology
	Cognition System
	Predicate Construction
	Logic evaluation with LLMs

	Decision System

	Experiments
	Experimental Setting
	Feasibility Study
	Explainability Verification
	Generalizability Verification
	Controllability Verification

	Conclusion
	Details of Cognition System
	Construction of Question Templates
	Trick for Batch Training
	The Potential of Cognition System

	Details of Experimental Setting
	Datasets
	Illustration of Different Baselines
	Model Training for Decision System

	Details of Explainability Study
	Comparison with Different Decision Models
	Formal Description of DNF Layer

