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Abstract

The proliferation of fake news has emerged as
a severe societal problem, raising significant
interest from industry and academia. While ex-
isting deep-learning based methods have made
progress in detecting fake news accurately, they
often suffer from users’ suspicion caused by
the non-transparent reasoning processes, poor
generalization abilities and inherent risks of in-
tegration with large language models (LLMs).
To address this challenge, we propose TELLER,
a novel framework for trustworthy fake news
detection that prioritizes explainability, gener-
alizability and controllability of models. This
is achieved via a dual-system framework that
integrates cognition and decision systems, ad-
hering to the principles above. The cognition
system harnesses human expertise to generate
logical predicates, which guide LLMs in gen-
erating human-readable logic atoms. Mean-
while, the decision system deduces generaliz-
able logic rules to aggregate these atoms, en-
abling the identification of the truthfulness of
the input news across diverse domains and en-
hancing transparency in the decision-making
process. Finally, we present comprehensive
evaluation results on four datasets, demonstrat-
ing the feasibility and trustworthiness of our
proposed framework.

1 Introduction

Fake news has emerged as a prominent social prob-
lem due to the rampant dissemination facilitated by
social media platforms (Zhou and Zafarani, 2021).
Additionally, the swift progress of generative ar-
tificial intelligence has further amplified this is-
sue (Cardenuto et al., 2023). While human fact-
checking experts can accurately verify the authen-
ticity of news, their efforts cannot scale with the
overwhelming volume of online information. Con-
sequently, researchers have turned to automatic
fake news detection techniques.

Despite the improved predictive accuracy
achieved by current deep learning-based detection
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Figure 1: Three crucial aspects of trustworthy fake news
detection algorithms and the correlation between these
principles and our dual-sytem framework TELLER.

approaches (Ma et al., 2023; Qi et al., 2021; Mehta
et al., 2022), these methods suffer from the lack
of transparency because of the black-box nature
of neural networks (Cui et al., 2019) and a lim-
ited ability to generalize to unseen data, given the
inherent diversity of online information (e.g., top-
ics, styles and media platforms) (Liu et al., 2024).
Moreover, the increasing integration with LLMs
is prone to uncontrollable risks due to hallucina-
tions when LLMs make false conclusions. Thus, a
growing awareness emphasizes trustworthiness' of
these systems (Liu et al., 2023; Sheng et al., 2022).

Unfortunately, the characteristics of a trustwor-
thy fake news detector remain an open question.
Hence, based on recent surveys of Trustworthy Al
(Liet al., 2023; Jobin et al., 2019) and fake news
detection (Shu, 2023), we identify three crucial
aspects that go beyond accuracy performance for
fake news detection technologies: explainability,
generalizability, and controllability. These aspects
work collectively to enhance system security and
trustworthiness.

Firstly, explainability refers to understanding
how an Al model assesses misinformation. The

'In Al trustworthiness refers to the extent to which an Al
system can be trusted to operate ethically, responsibly, and
reliably (Jobin et al., 2019).



mechanism serves as a fundamental requirement
for establishing end-user trust in these tools, as it
enables the disclosure of complex reasoning pro-
cesses and the identification of potential flaws in
neural networks. Secondly, generalizability rep-
resents the capability to acquire knowledge from
limited training data to predict accurately in unseen
situations (Wang et al., 2023a). Given the imprac-
ticality of exhaustively collecting and annotating
vast amounts of data across various news domains,
generalization ensures the affordable and sustain-
able deployment of data-driven fake news detection
algorithms. Lastly, controllability encompasses the
capacity for human guidance and noise tolerance
in the behavior of models (Ji et al., 2023a). This
objective benefits models in understanding specific
misinformation regulatory policies and rectifying
deviations if necessary. While recent practices may
satisfy the requirements of explainability (Xu et al.,
2022; Liu et al., 2023) or generalization (Kochkina
et al., 2018; Yue et al., 2023), they often fail to
adhere to all three principles simultaneously.

To this end, we propose TELLER, a Trustworthy
framework for Explainable, generaLizable and con-
troLlabe dEtectoR, drawing inspiration from the
dual-system theory? (Daniel, 2017). This frame-
work abstracts the existing pipeline of fake news de-
tection into two components: the cognition and de-
cision systems. As depicted in Fig. 1, the cognition
system serves as the first step and is responsible
for transforming meaningful human expertise from
renowned journalism teams (Tsang, 2023; Sanders,
2023) into a set of Yes/No question templates that
correspond to logic predicates. These decomposed
questions are then answered using LLMs, which
provide truth values for corresponding logic atoms.

On the other hand, the decision system, em-
powered by a differentiable neural-symbolic model
(Cingillioglu and Russo, 2021), can integrate the
output of the cognition system to deduce the final
authenticity of input news by leveraging domain
invariant logic rules learned from data automati-
cally. This visible logic-based ensemble not only
mitigates the negative effects caused by inaccurate
predictions of LLMs but also allows for the cor-
rection of unreasonable rules through adjusting the
weights in the model manually to align with human
expertise.

2System 1 provides tools for intuitive, imprecise, and un-
conscious decisions akin to deep learning, while system 2 han-
dles complex situations requiring logical and rational thinking
akin to symbolic learning (Booch et al., 2021).

Our framework ensures explainability by incor-
porating human-readable question templates (pred-
icates) and a transparent decision-making process
based on logic rules. This interpretability further
enables the flexibility to adjust rules and enhances
the model’s robustness against false LLLM predic-
tions, thereby guaranteeing controllability. More-
over, our model exhibits generalizability, attributed
to the generalizable performance of LLMs, com-
bined with reliable human experience as guidance
and the utilization of the neural-symbolic model,
which can learn domain-generalizable rules.

To summarize, the contributions of this work
include: 1) We introduce a systematic framework
comprising cognition and decision modules, aim-
ing to uphold three crucial principles for estab-
lishing a trustworthy fake news detection system:
explainability, generalizability, and controllability.
2) We validate the effectiveness of our framework
by conducting comprehensive experiments using
various LLMs on four benchmarks. The results
demonstrate the feasibility and trustworthiness of
TELLER across different scenarios.

2 Related Work

2.1 Trustworthy Al

Establishing comprehensive trustworthiness in Al
is non-trivial due to its multi-objective nature, in-
cluding robustness, security, transparency, fairness,
safety, and ethical standards (Jobin et al., 2019).
Achieving such trustworthiness necessitates consid-
ering the entire lifecycle of an Al system, spanning
from data preparation and algorithm design, devel-
opment, and deployment to management and gover-
nance (Li et al., 2023; Eykholt et al., 2018). Recent
researchers have explored diverse approaches to
enhance Al trustworthiness across various goals
and stages to address this challenge. For example,
regarding algorithm design, several topics, such
as transfer learning, federated learning, and inter-
pretable Al, have been proposed to improve mod-
els’ robustness, security, and transparency. More-
over, the deployment of Al systems necessitates ex-
ternal government oversight, particularly for AGI
(Bengio et al., 2023). Although our work focuses
on enhancing the trustworthiness of detection sys-
tems from the algorithm design aspect, we acknowl-
edge that there is still much room for improvement
to achieve the ultimate goal.



2.2 Trustworthy Fake News Detection

Recent fake news detection research has witnessed
a notable paradigm shift from prioritizing accuracy
to considering trustworthiness. In line with our
work, we primarily examine studies that aim to en-
hance algorithms’ explainability, generalizability,
and controllability.

Regarding explainability, Cui et al. (2019); Xu
et al. (2022); Liao et al. (2023) suggested obtain-
ing key evidence for interpretation based on fea-
ture importance, while Liu et al. (2023) utilized
logic clauses to illustrate the reasoning process-
ing. However, these methods still need to be more
transparent due to their probabilistic nature and
complex architecture. Furthermore, another group
of works, such as Huang and Sun (2023), explored
large generative language models (e.g., ChatGPT)
and regarded the intermediate chain of thoughts as
an explanation. Nevertheless, these explanations
may not be reliable due to the hallucination phe-
nomenon (Ji et al., 2023b) and the misalignment
problem of AGI (Ji et al., 2023a). Moving on to
generalizability, most methods, such as (Yue et al.,
2023; Zhu et al., 2023; Kochkina et al., 2018), en-
hanced fake news detectors through transfer learn-
ing algorithms to learn domain-invariant features.
However, these methods inevitably introduce ex-
ternal costs of domain alignment, such as annotat-
ing domain labels. As for controllability, although
some works (Silva et al., 2021; Mendes et al., 2023)
incorporated the human-in-loop technique in data
sampling and model evaluation, few works explore
how to intervene and edit models to align with hu-
man expertise.

3 Methodology

Formally, given a piece of news T, the objective of
the fake news detection task is to predict its label
of truthfulness y € ) where ) can fit in different
levels of classification granularity. For example, in
binary classification setting, ) = {true, false}, and
T is identified as real (fake) when y is true (false).

As depicted in Fig. 2, TELLER involves two
main components: cognition and decision systems.
The cognition system decomposes human expertise
into Yes/No question templates corresponding to
logic predicates. When presented with a new input
T, the templates and predicates can be instantiated
accordingly to form questions and logic atoms. By
leveraging the parametric knowledge inside LLMs
and gathering additional information from exter-

nal tools (such as search engines), the cognition
system can generate answers to these questions,
represented as truth values of logic atoms. Then,
the decision system takes these truth values as input
and generates interpretable logic clauses to debunk
misinformation through a neural-symbolic model,
which can learn generic logic rules from data in an
end-to-end manner.

3.1 Cognition System

To combat misleading information, existing deep
learning-based algorithms fall short in gaining pub-
lic trust, while fact-checking experts rigorously fol-
low designated guidance and principles to facilitate
transparent and fair evaluation. Our cognitive sys-
tem aims to integrate the strengths of deep learning-
based methods that can handle large-scale online
information while maintaining the trustworthiness
of manual checking.

3.1.1 Predicate Construction

To begin with, we describe the following symbol
convention for clarity: calligraphic font Q and P
for sets of question templates and predicates, capi-
talized letters Q, P, X for question templates, pred-
icates, and variables, and corresponding lowercase
letters g, p, x for instances of these entities (ques-
tions, logic atoms, values). The truth values of
logic atoms are denoted by .

Inspired by the well-established fact-checking
process in Table 5, we initially decompose it into
a question template set, denoted as O, contain-
ing eight questions as detailed in Appendix A.l.
Each template Q; in Q consists of N; variables and
can be transformed into an N;-ary logic predicate
P;(Xi1,...,X; n;) in P. The logic semantics of
P; is interpreted as the affirmative answer to (; and
its truth value p; represents the probability that P;
holds. For instance, take Q; (i.e., "Background In-
formation: X ;. Statement: X ». Is the statement
true?") in Fig. 2 as an example. The correspond-
ing predicate P;(X; 1, X 2) can be explained as
"Given the background information X 1, the state-
ment X o is true".

For each predicate P;(X; 1,...,X; n,), we can
instantiate the variables X; q,...,X; n, with the
actual contents taken from any input news to ob-
tain logic atoms. Since an input piece of news may
contain multiple background information and state-
ments (instantiations), we use k to denote the kth

N;
instantiation where 1 < k < [] |X; ;|. Here |X; ]
j=1
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Figure 2: The architecture of the proposed framework TELLER. N represents the number of question templates (logic
predicates), M, denotes the number of logic atoms corresponding to the ith predicate, ) denotes the truthfulness
label set. The semantics of question templates and logic predicates are described in Table 6.

indicates the total number of possible instantiations
for variable X; ;. Then we denote by p; ;. the in-
stantiated logic atom corresponding to the question
i k- Next, we introduce how to acquire the truth
value of each logic atom.

3.1.2 Logic evaluation with LL.Ms

While decomposed questions can provide a com-
prehensive explanation of how the decision is made
(Chen et al., 2022; Fan et al., 2020), directly an-
swering these questions poses a challenge due to
the impracticality of annotating enormous data to
train multiple models for different questions. To
address this issue, we resort to the more general-
purpose LLMs (e.g., FLAN-T5 (Chung et al.,
2022), Llama2 (Touvron et al., 2023), and GPT-
3.5) as the foundation for effectively answering
these questions. Existing LLMs can be categorized
into two groups: LLM,e;,, such as FLAN-TS and
Llama?2, where the logits of output vocabulary can
be obtained, and LLM_;, s, such as GPT-3.5, where
the logits are not accessible.

To ensure compatibility with both categories of
LLMs, we propose two strategies to obtain the final
truth values of logic atoms. Concretely, we first
input the question g; ; with a suffix (i.e., "Yes or
No? Response:") to LLMs in order to measure
their preference for the affirmative answer "Yes"
versus the negative one "No". This preference is
subsequently used to compute the truth value of the
corresponding logic atom p; .

For LLM,pen, we follow (Gallego, 2023; Burns
et al., 2023) to obtain pre-softmax logits of "Yes"
and "No" tokens, denoted as vy.s and vy, respec-
tively. Compared with post-softmax logits, pre-

softmax logits can mitigate the influence of other to-
kens in output vocabulary, particularly when LLMs
tend to generate irrelevant tokens that may result in
Vyes O Un, becoming zero. Then the truth value
w for the logic atom p (here we omit the under-
script 2, k for ease of illustration) can be obtained
as follows:

e”Yes
H= e f e & )
For LLM_yse, We sample m times during de-
coding and count the frequency of "Yes" and "No"
responses as myes and my,. Then we compute

w= g MYes 4 2)

MpNo + Myes
In either case, y is in the range of [—1,1]. When
p € [-1,0), u € (0,1], and p = 0, the corre-

sponding logic atom p is evaluated as false, true,
and unknown, respectively. Once the truth values
of all logic atoms for a single predicate P; (cor-
responding to a single question template) are ob-
tained, we concatenate them as one vector, denoted
as pi. Then we concatenate the value vectors for all
predicates as the input for the final decision system.
In conclusion, our cognition system can generate
diversified questions and logic atoms based on the
input news 7'. These human-readable entities en-
hance explainability by showcasing potential inter-
mediate reasoning steps and ensure controllability
by allowing adjustments to Q and P. Moreover,
combining human expertise and LLMs provides
the basis for the cognition system’s satisfactory
generalization performance in unseen domains.



3.2 Decision System

After acquiring responses to all questions, it is im-
perative to develop a decision system to effectively
aggregate them to predict the label of the input
news T' while preserving trustworthiness in the
reasoning process. However, prevalent heuristic
strategies (e.g., majority voting) lack the flexibil-
ity to handle complex relationships among differ-
ent questions and cannot tolerate false predictions,
and deep-learning-based models cannot be compre-
hended literally by humans (Wang et al., 2023b).

Hence, we utilize a neural-symbolic model,
named Disjunctive Normal Form (DNF) Layer
(Cingillioglu and Russo, 2021; Baugh et al., 2023),
as our decision system. This model includes con-
junctive layers (SLA) and disjunctive layers (SLy,),
which can progressively converge to symbolic se-
mantics such as conjunction A and disjunction V
respectively during model training. Consequently,
this model can automatically learn logic rules from
data in an end-to-end manner, capturing general-
izable relationships between logic predicates and
the target label. As illustrated in Fig. 2, we stack
C conjunctive layers SL, beneath || disjunctive
layers SLy, to construct the DNF Layer, where each
SLy corresponds to a truthfulness label y € ).

However, the original DNF Layer proposed in
(Cingillioglu and Russo, 2021) is not directly ap-
plicable to our work due to two issues. Firstly,
the truth value of logic atoms x ranges in [—1, 1],
while the original model can only handle values of
—1 and 1. Secondly, each logic atom in the orig-
inal DNF Layer is treated differently which loses
logic semantics where atoms for the same logic
predicate should share similar functionality. To ad-
dress the aforementioned challenges, we propose a
modified DNF layer which takes continuous values
p € [—1,1] as input and assigns the same weight
for those atoms instantiated from the same logic
predicate. The detailed description of our modified
DNF layer can be found in Appendix E.

More concretely, in our proposed DNF Layer,
every SL, takes truth values p of all logic atoms
obtained in the cognition system as input, aiming
to learn a conjunctive clause conj = /\pi LeADik
where A C {p11,...,pN My}, referring to a sub-
set of the complete logic atoms, and outputs the
truth value of this conjunctive clause. Subsequently,
each SLy receives the truth values of C' conjunctive
clauses to represent a disjunction of these conjunc-
tions: \/ .. conj, where C C {1,...,C}, referring

to a subset of all conjs. It then outputs the truth
value of this disjunction formula, corresponding
to the final probability that the input news 7' is
identified as the label y. Hence, each label y will
be associated with a DNF clause learned by the
DNF layer. Intuitively, the conjunction simulates
the idea that if the input news 1" gives affirmative
answers to some questions simultaneously, it is
highly probable that it should be assigned to label
/. On the other hand, the disjunction provides more
flexibility by considering different alternatives (the
output is true if at least one of the conj is true)
which makes the final decision less sensitive to in-
correct atom values due to wrong predictions given
by LLMs. For example, assume the learned rules
are conj; V conj, where conj; = p11 A p12 and
conj, = p21 A p3.1. Suppose conj; is true, then
we can conclude that conj; V conj, is true even if
conj, gives an incorrect value.

Last but not the least, we apply softmax function
to the output of all disjunction layers SLy, to obtain
the probability z € RV for all possible labels. The
entire decision system can be trained in an end-to-
end fashion by minimizing the cross-entropy loss
function as below:

||

L==> Ty =yr)loga, 3)
=1

where yr represents the ground truth label of T'.
During inference, we select the label corresponding
to the highest value in z as the final result.

In summary, our decision system can extract in-
terpretable symbolic rules from data that exhibit
robustness across diverse domains and enable inter-
vention by adjusting weights in the DNF Layer to
align with prior knowledge (refer to Appendix C).

4 Experiments

In this section, we present the experiment setup
and demonstrate the feasibility, explainability, gen-
eralizability and controllability of TELLER through
extensive experiments.

4.1 Experimental Setting

Dataset. We conducted experiments using four
challenging datasets, namely LIAR (Wang, 2017),
Constraint (Patwa et al., 2021), Politifact, and Gos-
sipCop (Shu et al., 2020). LIAR comprises the
binary classification and multi-classification set-
ting with six fine-grained labels for truthfulness
ratings. Moreover, Wang (2017); Alhindi et al.



(2018) curated relevant evidence (e.g., background
information), serving as gold knowledge in an open
setting. Constraint, Politifact and GossipCop are
binary classification datasets related to COVID-19,
politics, and entertainment domains, respectively.
LLMs. We select the FLAN-TS and Llama?2 se-
ries, which encompass various parameter sizes, as
large language models for constructing the cogni-
tion system of TELLER because their open-source
nature and unrestricted availability can ensure re-
producibility in the future. Moreover, we also con-
duct experiments using GPT-3.5-turbo on the LIAR
dataset to examine the versatility of our framework.
Baselines. We compare our model against Direct,
Few-shot Direct, Zero-shot COT, Few-shot COT,
Few-shot Logic. The baselines suffixed with Direct
involve prompting large language models (LLMs)
to predict the label of input news directly; those
suffixed with COT utilize chain-of-thought tech-
niques to enhance the performance of LLMs; those
suffixed with Logic replace the thought process in
COT with questions paired with their answers.
Implementation Detail. We evaluate the perfor-
mance of our framework using the accuracy and
Macro-F1, which accommodates class imbalance.
For each dataset, we train our decision system using
the training split; select the optimal model based on
its performance on the validation split; and report
the results on the test split. To assess the generaliz-
ability of our model, we train our models using the
train split from source domains; choose the best
model on the validation split of source ones; and
report results on the test split from the target do-
main. Moreover, to highlight the robustness of our
framework, we keep all hyperparameters fixed in
each setting. The experiment setting and utilized
prompts are elaborated thoroughly in Appendix B.

4.2 Feasibility Study

To validate the feasibility of our framework, we
compare it against multiple baselines across a wide
range of LLMs and scenarios (e.g., different classi-
fication granularities) in Table 1 and Table 2. These
results uncover two crucial findings listed below:
Firstly, our framework demonstrates satisfactory
performance in fake news detection tasks. Specifi-
cally, in the binary classification setting, TELLER
achieves an accuracy of approximately 76% on the
GossipCop dataset and over 80% on the other three
datasets. Notably, when utilizing Llama 2 (13B) to
drive the cognition system, TELLER outperforms
all GPT-3.5-turbo based methods by a significant

margin. These results highlight the effectiveness of
TELLER in distinguishing between fake and gen-
uine news. In the multi-classification setting on the
LIAR dataset, our framework consistently outper-
forms Direct for FLAN-TS5 and Llama? series, even
though these models may struggle to discriminate
fine-grained labels. This observation underscores
the capability of our decision system to mitigate
the negative influences of noisy predictions in the
cognition system, effectively unleashing the poten-
tial of LLMs through logic-based aggregation of
answers to decomposed questions.

Secondly, our framework exhibits significant po-
tential for the future. In the binary classification
setting across four datasets, TELLER consistently
outperforms Direct in terms of accuracy and macro-
F1 scores by an average of 7% and 6%, respectively.
Considering the swift improvement of LLM intelli-
gence, these results imply that the performance of
our framework is likely to scale with the evolution
of LLMs. Additionally, due to the notable perfor-
mance difference between closed and open settings
on the LIAR dataset, it is promising to integrate
external tools to acquire extensive evidence from
credible sources, such as official government web-
sites, to enhance the performance of our systems.

4.3 Explainability Verification

Explainability is a fundamental factor for establish-
ing trust in Al technology. We demonstrate that our
framework satisfies this aspect through its inherent
mechanism and the visualization of rules.

Unlike approaches that rely heavily on LLMs,
our cognition system incorporates expert knowl-
edge to construct a more well-grounded worldview
by generating well-defined question templates and
logic predicates. Moreover, our decision system
can learn interpretable rules from data to deduce
logic clauses to debunk fake news by converging
implicit parameters to conjunctive and disjunctive
semantics. These symbolic units (e.g., questions
and logic atoms) and the interpretable DNF Layer
contribute to our framework’s overall explainability
and transparency.

However, as the number of conjunctive and dis-
junctive layers grows, it is difficult for human be-
ings to investigate logic rules derived from our
decision system. To address this issue, we propose
a strategy to prune unnecessary weights in the DNF
Layer. For example, we present the rules extracted
from the pruned model for GossipCop in Table 4,
where each conjunctive clause identifies one can-



Binary Classification Multi-Classification
Large Language Models Method Closed Open Closed Open
Acc(%) Macro-F1(%) Acc(%) Macro-F1(%) Acc(%) Macro-F1(%) Acc(%) Macro-F1(%)
FLAN-T5-small (80M) Direct 44.99 31.63 45.08 32.41 18.17 9.28 19.51 10.13
FLAN-T5-base (250M) Direct 54.02 50.79 61.47 61.43 19.43 11.79 21.40 21.40
Direct 57.30 52.20 74.38 73.84 19.43 17.84 29.50 24.95
FLAN-TS-large (780M) ~~ TELLER | 66830551 66:33(4151) | 77760 778210 | 268955 18040001 | 33670am) 2750050
w/ Intervention 65.64 65.12 77.46 77.14 26.28 18.49 35.25 30.05
Direct 58.89 58.62 75.97 75.67 19.67 16.57 29.43 24.74
FLAN-T5-x1 (3B) TELLER 62.36(3.481)  60.18(1.561) 78.75(2.781) 78.55(2.881) 24.31(4.641) 17.40(0.831) 33.52(4.001) 27.22(3.481)
w/ Intervention 63.65 61.82 79.34 79.07 25.57 19.62 34.46 33.59
Direct 56.41 56.08 75.17 75.15 22.42 18.31 32.18 28.12
FLAN-TS-xxl (11B) ~~ TELLER | 66.630025) 0591 @sar) | 809500 7985070 | 2683many 1968000 | 3548ma0 30420300
w/ Intervention 67.03 66.19 80.73 80.41 26.91 21.30 35.88 31.63
Direct 59.88 59.19 72.29 69.63 18.02 9.97 11.01 6.88
Llama2 (7B) TELLER 62.46(2.581)  62.45(3.961) 79.94(¢7651)  79-80(10.161) | 23.29(s5.271) 15.515551) | 327321721y 25.55(18.671)
w/ Intervention 64.15 62.77 81.93 81.84 23.92 15.14 34.30 27.58
Direct 56.90 56.90 69.31 63.77 7.32 2.85 10.86 8.25
Llama2 (13B) Ours 66.04(9.141)  66.03(9.131) | 82.52(13211) 82.37(18601) | 25-81(18.491) 17-Tl(1aser) | 38.08(27.201)  29.27(21.001)
w/ Intervention 67.73 66.97 84.21 84.03 25.10 16.78 38.63 30.60
Direct 42.40 51.48 76.27 74.21 20.46 20.34 26.20 25.12
TELLER - - 79.15(2.881) 78.90(4.691) - - 31.94(5.741) 29.53(4.411)
Zero-shot COT 30.88 41.87 72.49 70.83 7.16 9.20 39.81 36.49
GPT-3.5-turbo
Few-shot 61.67 64.05 81.02 81.00 25.65 25.56 46.81 44.61
Few-shot COT 52.04 56.15 74.48 76.21 20.69 17.20 45.63 36.36
Few-shot Logic 49.26 48.85 61.67 60.92 16.37 13.98 20.54 19.22

Table 1: Results on LIRA dataset. "Closed" represents the cognitive system does not have access to any external
knowledge source, while "Open" indicates that it can utilize gold evidence collected by human experts. The best
results for each setting are highlighted with bold numbers and an underline, whereas sub-optimal results are only
highlighted in bold. The number indicates that the performance of w/ Intervention is worse than TELLER. The
number with 1 indicates the performance gain of TELLER over Direct.

Constraint Politifact GossipCop
LLMs Method Acc(%) Macro-F1(%) Acc(%) Macro-F1(%) Acc(%) Macro-F1(%)
Direct 78.06 77.97 56.62 54.84 67.43 58.76
FLAN-TS-large ~~ TELLER | 803207 80Ty | 67.650000) 076502510 | 0953@i0n 593900
w/ Intervention 80.46 80.31 68.38 68.29 70.28 60.74
Direct 75.32 74.79 5.88 50.72 67.73 52.80
FLAN-TSxl  TEULER | 8377545 S3.66ssr) | 65520011 046803050 | 0958080 58720
w/ Intervention 83.95 83.88 69.12 68.79 72.23 63.84
Direct 74.80 73.23 52.21 43.65 68.93 52.82
FLAN-T5-xxI ~  TELLER | 83.39ss501)  83.24(10011) | 6912016011y 08.5720021) | 69.18(0251)  57-21(a301)
w/ Intervention 83.62 83.54 69.1 68.95 71.48 62.12
Direct 81.83 81.73 77.21 77.00 66.78 52.23
Llama2 (7B)  TELLER | 83.7%0m0n 83540 | 535202 8381(0mp | 70.68ma0n  5958(amn
w/ Intervention 85.13 85.04 83.82 83.82 73.38 65.32
Direct 57.53 51.75 77.94 77.10 52.55 52.27
Llama2 (13B) TELLER 87.31(20.781)  87-29(35.531) | 79-41(1.47p) 79.412301) | T4.48(21.031)  66.32(14.061)
w/ Intervention 87.78 87.71 78.68 78.65 75.92 69.30

Table 2: Results on Constraint, Politifact, and GossipCop datasets without access to retrieved background informa-
tion. The best results for each setting are highlighted with bold numbers. The number and the number with 1 have
the same meaning as in Table. 1.

didate rule. The pruning algorithm and rules for

other datasets are described in Appendix C.

Table 4 can be interpreted as learning DNF

according to Table 6.

4.4 Generalizability Verification

rules for both true and false labels of an input
news. Specifically, the true label is predicted
if either —conj;, or —conj,s is true, i.e., either
—-Py A P3 A Pg A Pg or P35 A Pg A Pg is false
when removing the negation. Given the semantics
of these logic predicates shown in Table 6, we know
that Po, P53 and Pg check the consistency between
the background information and a given message,
whereas Pg scrutinises improper intention from the
message alone. On the other hand, the news will
be predicted as false if conjy; is true, i.e., Py is
false which means that the background informa-
tion in the message is neither accurate or objective

Ensuring the generalization ability of fake news de-
cision systems is vital for their sustainable and prac-
tical deployment. As observed in Table 3, TELLER
consistently outperforms Direct across all domains
and LLMs without the assistance of any generaliza-
tion algorithm, while only exhibiting a negligible
performance drop in the GP—C domain using
Llama2 7B. This is attributed to the remarkable
zero-shot ability of LLMs and the effectiveness of
the DNF layer which further compensates for bi-
ased predictions made by LLLMs through rule-based
aggregation. Particularly, the performance gains
of TELLER in cross-domain and in-domain exper-



LLMs Method CP—G GP—C cG—P
Acc(%) Macro-F1(%) Acc(%) Macro-F1(%) Acc(%) Macro-F1(%)
Direct 67.73 52.80 75.32 74.79 55.88 50.72
FLAN-T5-x1 o e . . . .
TELLER 68.13(0_40T) 5().54(3.74“ 82.40(7‘0“ 82.()9(7_3”) 61.76(5_837-) 60'92(10-19T)
Direct 68.93 52.82 74.80 73.23 52.21 43.65
FLAN-T5-xxl1 o 1 -
TELLER 69.13(()'2?) 53.15(0.347) 77~44(2.64T) 7621(2.987‘) 66.18(13.9”) 66.17(22.52”
Direct 66.78 52.23 81.83 81.73 77.21 77.00
Llama2 7B . -
TELLER 68.33(1_551) 09.33(71(”) 81.60(,024“ 81-04(—0.6%) 8309(5.88?) 82-82(5.82T)
Direct 52.55 52.27 57.53 51.75 77.94 77.10
Llama2 13B -
TELLER 70-93(18.38T) 60<90(8.623‘r) 80<09(27.56T) 84.87(33_11) 79'41(1-47T) 79.41(2_301)

Table 3: Results on cross-domain experiments. C, P and G represent Constraint, Politifact, and GossipCop datasets.

conjgy = ~Pa AP3 A Pg APg
conjy3 = P3 AP APy
conjoy = Py

Pirue = _‘C0nj34 \ —'COHj43
Prage = CODj27

Table 4: Extracted rules for the GossipCop dataset when
using Llama2 (13B)

iments (refer to Table 2) are positively correlated,
implying that the decision system manages to learn
domain-agnostic rules. Moreover, the Pearson cor-
relation coefficient between these two groups of
performance gains shows a substantial improve-
ment from 0.01 to 0.53 when transitioning from the
FLAN-TS5 series to the more powerful Llama2 se-
ries. This finding suggests that leveraging stronger
LLMs to drive the cognition system enhances the
generalization capability of our framework.

4.5 Controllability Verification

Controllability ensures that fake news detection sys-
tems are subject to effective human oversight and
intervention. We demonstrate TELLER satisfies this
attribute from two aspects. Firstly, we verify the
feasibility of manually rectifying rules learned by
our decision system that may exhibit irrational be-
havior. For instance, we observe that P53 (i.e., "The
message contains adequate background informa-
tion") should have a positive logical relation with
Pirye instead of negation in Table 4. To correct
this, we perform a manual adjustment by setting
the corresponding weight to zero, effectively re-
moving P3 from the logic rule. However, this mod-
ification only leads to a negligible improvement in
the test split. Further investigation reveals that the
truth value of logic atoms pertaining to P3 of most
real samples is negative, possibly due to the prefer-
ence of LLMs. This suggests the superiority of our
logic-based decision system in reducing the nega-
tive effect of incorrect predictions made by LLMs
automatically. Secondly, we simulate human ex-
perts by intervening in the actions of our cognition
system. We achieve this by guiding LLMs to ex-

pand the question template set Q using Algorithm
1, referred to as w/ intervention in Table 1 and Table
2. The new question template set for intervention
is shown in Table 7 in the Appendix. The results
consistently indicate that w/ intervention outper-
forms TELLER, highlighting the potential of LLMs
as an agency for automatically regulating the be-
haviors of the cognition system. Consequently, our
framework ensures a comprehensive control mech-
anism by simultaneously facilitating human and Al
agents’ oversight.

Furthermore, we conduct additional experiments
to verify the effectiveness of the DNF Layer within
logic formulation over other decision systems,
namely decision trees and Naive Bayes classifiers,
both of which are conventional machine learning
algorithms. We replace the DNF Layers with these
two algorithms to derive the final decisions. The re-
sults are shown in Table 11 and Table 12 for single-
domain and cross-domain settings, respectively in
Appendix D.

5 Conclusion

In this work, we address the limitations of existing
fake news detection methods, which struggle to
establish reliability and end-user trust. To tackle
this issue, we identify three crucial aspects for con-
structing trustworthy misinformation detection sys-
tems: explainability, generalizability, and controlla-
bility. By prioritizing these principles, we propose
a dual-system framework TELLER that incorpo-
rates cognition and decision systems. To validate
our framework’s feasibility, explainability, general-
izability, and controllability, we conduct extensive
experiments on diverse datasets and LLMs. These
results affirm the effectiveness and trustworthiness
of our approach and highlight its significant poten-
tial through evolving both subsystems in the future.
While we achieve trustworthiness from an algorith-
mic perspective, we emphasize the importance of
further research to improve the trustworthiness of
the entire lifecycle of fake news detection systems.



Limitations

We identify three main limitations of our work.
Firstly, although our framework focuses on enhanc-
ing the trustworthiness of fake news detection algo-
rithms, trustworthiness is also influenced by other
stages of the Al system lifecycle, such as data col-
lection and deployment. Given the advancements
in Al techniques and the importance of online in-
formation security, we encourage future research
to address the challenges of building trustworthy
Al systems comprehensively.

Secondly, as shown in Table 1, integrating exter-
nal tools to acquire high-quality background knowl-
edge significantly improves the performance of
fake news detection systems. However, collecting
information that can effectively support detection
tasks using such tools is non-trivial due to the com-
plexities of open-domain information retrieval and
the diversity of news content. For instance, we
search for background information by inputting
check-worthy claims of P; into a search engine
and filter out as much useful information as possi-
ble using GPT-3.5-turbo. However, integrating this
evidence lead to a slight performance drop on Con-
straint, Politifact, and GossipCop datasets (Due to
page limitations, we do not include this experiment
in our paper). Therefore, we leave this for future
research.

Thirdly, despite the effectiveness of our decision
system, the learning ability and expressiveness of
the DNF Layer are limited due to its simple ar-
chitecture. For example, the DNF Layer learns
rules from data without considering the semantics
of logic predicates. It may be crucial to develop
more powerful decision models to fully unleash
the potential of large language models, such as
incorporating the semantics of logic predicates.

Ethics Statement

This paper adheres to the ACM Code of Ethics and
Professional Conduct. Specifically, the datasets we
utilize do not include sensitive private information
and do not pose any harm to society. Furthermore,
we will release our codes following the licenses of
any utilized artifacts.

Of paramount importance, our proposed dual-
system framework serves as an effective measure
to combat fake news and safeguard individuals,
particularly in the current era dominated by large
generative models that facilitate the generation of
deceptive content with increasing ease. Moreover,

our approach fulfills explainability, generalizabil-
ity, and controllability, thereby mitigating concerns
regarding the security of Al products and enabling
their deployment in real-world scenarios.
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A Details of Cognition System

Unlike convolutional deep learning-based fake
news detection frameworks that classify in a la-
tent space, the cognition system of TELLER, aims
to emulate human fact-checking experts by com-
plying with specific policies to ensure transparency
and controllability of the detection process. In this
section, we describe the construction of the set
of question templates Q and Q' for TELLER and
w/Intervention respectively in Appendix A.l.
Furthermore, we introduce a trick for batch training
by fixing the number of logic atoms for different
inputs in Appendix A.2 and outline some potential
techniques for further improvement of the cogni-
tion system in Appendix A.3.

A.1 Construction of Question Templates

To provide an overview, we present the referenced
human-checking process in Table 5. In this table,
Steps I, VI and VII are excluded from detection
algorithms, as they either fall into the preliminary
procedures or the post-processing stages of the fake
news detection pipeline. These steps may involve
data crawl, human-computer interaction, machine
translation, etc. As a result, we concentrate on the
other steps.

Subsequently, we decompose the process into a
Yes/No question template set Q, where each tem-
plate Q; in Q corresponds to a predicate P; in
the predicate set P. All question templates and
their corresponding predicates are listed in Table 6.
Specifically, for 31, our objective is to determine
the trustworthiness of statements in the input news.
Here, statements represent crucial information in
news articles, playing a vital role in debunking mis-
information. Additionally, extracting statements
from news is a challenging task. While previous
studies like Liao et al. (2023); Fung et al. (2021)
used pre-trained language models to generate sum-
maries as statements, we choose to utilize GPT3.5-
turbo to generate statements for simplicity in im-
plementation. The prompt used for this purpose is
as follows:

To verify the MESSAGE, what are the critical
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claims related to this message we need to
verify? Please use the following format to
answer. If there are no important claims,
answer “not applicable”.

MESSAGE:
CLAIM:
CLAIM:

MESSAGE: $SMESSAGES$.

Then, we replace the "$MESSAGES$" with input
news and take the generated claims as statements
for Q1 (Py).

Additionally, when verifying the controllability
of our framework, we propose adjusting the ques-
tion template set to deal with the diversity of fake
news. While this adjustment should be done by
fact-checking experts to ensure the reasonableness
of new questions, our empirical findings demon-
strate the feasibility of guiding large language mod-
els, such as GPT-3.5-turbo, to generate new ques-
tion templates. These templates are then manually
filtered by us to create the final question template
set @', and the corresponding predicate set P’ for
intervention, as outlined in Algorithm 1. Table 7
presents these newly added question templates and
predicates. The prompt R used in this algorithm is
as follows:

Write some questions that can be used to de-
termine whether a news report is misinforma-
tion. The questions should be answerable by
large language models in a close-book situa-
tion without requiring additional information.
Please format each question using the <s> and
</s> tags, such as <s>A question</s>.

A.2 Trick for Batch Training

To enable batch training, we fix the number of logic
atoms, denoted as M; for each predicate P;. Specif-

ically, If M; < H 1X;,;|, we randomly select M;
j=1

atoms. Conversely, if M; > H 1X;,5], we pad the
=1

vector by 0 accordingly. In the end, p can be repre-
sented as [Ml,ly e s LMy e s NG Ly - s MN,MN],

N
where p € RM and M =" M;.
3



A.3 The Potential of Cognition System

It is noteworthy that specific techniques can be
employed to improve the performance of our cog-
nitive system. For instance, when obtaining the an-
swers to questions as truth values for corresponding
logic atoms in Sec. 3.1.2, we exclusively consider
"Yes" and "No" tokens. However, considering the
relationship between model outputs and final pre-
dictions, "Right" and "Wrong" tokens can also be
suitable candidates. Therefore, drawing motivation
from (Gao et al., 2021; Cui et al., 2022), existing
manual or automatic verbalizer techniques that es-
tablish mappings between diverse model outputs
and final labels can be leveraged to enhance per-
formance. Additionally, the ensemble of prompts,
similar to "Yes or No? The answer is: ", has proven
effective for the "Yes" and "No" classification task
in (Gallego, 2023). Consequently, our dual-system
framework exhibits substantial potential for future
improvements in the cognitive system.

Algorithm 1 Question Template Generation for
Intervention Algorithm

Input: Prompt R, the original question template
set Q, and a copy of Q denoted as Q
Output: The question template set Q' for inter-
vention
1: Set the number of iteration steps as T’
: for Iterationt =1,...,7 do
3:  Use R to guide GPT-3.5-turbo in generating
a set of new question templates Q'

[\

4:  for each question template Q; in Q" do

5: Compute the average similarity score be-
tween Q) and all templates in Q using
Sentence BERT.

6: end for

7. Add Q) € Q' with the lowest similarity

score to Q.
8: end for
9: @' =0\ Q

10: Manually refine Q' by removing duplicate and
impractical templates that are non-verifiable
through LLMs, resulting in the final Q'.
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Step I: Selecting claims
(1) To filter the information on news websites, social media, and online databases through manual selection
and computer-assisted selection.
(2) The public can submit suspicious claims.
(3) Selecting suspicious claims based on their hotness in Hong Kong, considering factors such as the
amount of likes, comments, and shares the message has received.

A) Is the content checkable?

B) Any misleading or false content?

C) Does it meet public interest?

D) Is it widespread?

Step II: Tracing the source

(1) Determining the source of the information.

(2) Identifying the publication date.

(3) Investigating the publisher and their background and reputation.
(4) Checking for similar information.

(5) Capturing a screen record and attaching the URL link.

(6) Providing two or more additional sources of information.

Step III: Fact-checking the suspicious information

(1) Applying the Five Ws and an H: When, Where, Who, What, Why, How.

(2) Searching for evidence to verify the information, such as official press releases, authoritative media
reports, and research reports.

(3) Attempting to engage the person or organization making the claim through email or telephone, if
necessary.

(4) Consulting experts in the relevant field, if necessary.

Step IV: Retrieving contextual information

(1) Checking if the original claim contains adequate background information.
(2) Assessing the accuracy and objectivity of the background information.
(3) Identifying any intentionally eliminated content that distorts the meaning.

Step V: Evaluating improper intentions

(1) Assessing if there is any improper intention (e.g., political motive, commercial purpose) in the
information.

(2) Investigating if the publisher has a history of publishing information with improper intentions.

Step VI: Self-checking

(1) Fact-checkers signing a Declaration of Interest Form before joining the team.
(2) Ensuring fact-checkers maintain objectivity and avoid biases during the process.
(3) Upholding the principle of objectivity and avoiding emotional involvement.

Step VII: Publishing and reviewing reports

(1) Completing a draft of the fact-check report, followed by editing and reviewing by professional editors
and consultants.

(2) Updating the report if any mistakes or defects are found, and providing clarification on correction
reasons and date.

Table 5: Fake news detection policy of HKBU FACT CHECK Team (Tsang, 2023)
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Question Template

Logic Predicate: Logic Semantics

Annotation

Qq: Background Information: Xj ;.
Statement: X1 o. Is the statement true?

P1(Xy,1,X1,2): Given the back-
ground information Xj;, the
statement is true.

X1,1: Background information for
input news, X o2: Check-worthy
statements in input news.

Q2: Background Information: Xy .
Message: X 2. Is the message true?

P2(Xs,1,X22): Given the back-
ground information X3 1, the mes-
sage is true.

Xa,1: Background information for
input news, Xy o: Input news.

Q3: Message: X3;. Did the message
contain adequate background informa-
tion?

P3(X31): The message con-
tains adequate background infor-
mation.

X3,1: Input news.

Q4: Message: X4 1. Is the background
information in the message accurate and
objective?

P4(X4,1): The background infor-
mation in the message is accurate
and objective.

Xy,1: Input news.

Qs: Message: X5 1. Is there any content
in the message that has been intention-
ally eliminated with the meaning being
distorted?

P5(X5,1): The content in the mes-
sage has been intentionally elimi-
nated with the meaning being dis-
torted

X5,1: Input news.

Qg: Message: Xg1. Is there an im-
proper intention (political motive, com-
mercial purpose, etc.) in the message?

Pg(Xg,1): The message has an im-
proper intention.

Xe,1: Input news.

Q7: Publisher Reputation: X7 ;. Does
the publisher have a history of publish-
ing information with an improper inten-
tion?

P7(X7,1): Given the publisher
reputation X7 1, the publisher has
a history of publishing informa-
tion with an improper intention.

X7,1: Publishing history.

Qg: Background Information: Xg .
Message: Xg 2. Is the message false?

Pg(Xs,1,Xs2): Given the back-
ground information Xg 1, the mes-
sage is false.

Xsg,1: Background information for
input news, Xg o: Input news.

Table 6: Question template set Q and logic predicate set P

Question Template

Logic Predicate: Logic Semantics

Annotation

Qo: News Report: Xg 1. Is the news report
based on facts or does it primarily rely on
speculation or opinion?

Pg(Xo,1): The news report is based on
facts and relies on speculation or opinion.

Xg,1: Input news.

Q10: News Report Xjg,1: Are there any
logical fallacies or misleading arguments
present in the news report?

P10(X10,1): The news report has logical
fallacies or misleading arguments.

Xi0,1: Input news.

Qu11: Message: Xq1,1. Does the message
exhibit bias?

P11(Xq1,1): The message exhibits bias.

Xi1,1: Input news.

Q12: News report: X1 1. Are there any
grammatical or spelling errors in the news
report that may indicate a lack of profes-
sional editing??

P12(Xj2,1): The news report has grammat-
ical and spelling errors.

Xi2.1: Input news.

Q13: News report: X;3 1. Does the news
report use inflammatory language or make
personal attacks?

P13(X13,1): The news report uses inflam-
matory language and makes personal at-
tacks.

X13,1: Input news.
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B Details of Experimental Setting

B.1 Datasets

LIAR is a publicly available dataset for fake
news detection, sourced from POLITIFACT.COM.
This dataset comprises six fine-grained labels for
truthfulness ratings: true, mostlytrue, halftrue,
barelytrue, false, and pantsfire. To align with
the binary classification problem, we merge true,
mostlytrue into true and merge barelytrue,
false, and pantsfire into false, following (Liao
et al., 2023). Moreover, Wang (2017); Alhindi
et al. (2018) curated relevant evidences from fact-
checking experts (e.g., publisher information, back-
ground information, etc.), which serve as gold
knowledge in an open setting.
Constraint is a manually annotated dataset of real
and fake news related to COVID-19. We adopt
the data pre-processing procedures described in
(Patwa et al., 2021), which involve removing all
links, non-alphanumeric characters, and English
stop words.
Politifact and GossipCop are two binary classifi-
cation subsets extracted from FakenewsNet (Shu
et al., 2020). The Politifact subset comprises polit-
ical news, while the GossipCop subset comprises
entertainment stories. To optimize experimental
costs and adhere to maximum context limitations,
we exclude news samples longer than 3,000 words.
For dataset partitioning, we follow the default
partition if specified; otherwise, we use a 7:1:2
ratio. Table 8 presents the statistics of each dataset.

Split LIAR Constraint Politifact GossipCop

Train 10202 6299 469 6999
Validation | 1284 2139 66 999

Test 1271 2119 136 2002

Table 8: Statistics of four benchmarks

B.2 Illustration of Different Baselines

We compare our model against Direct, Few-shot
Direct, Zero-shot COT, Few-shot COT, Few-shot
Logic. Direct utilizes LLMs to calculate the prob-
ability of each label using Eqgs. 1-2 and then se-
lects the label with the highest likelihood as the
predicted label. Building upon Direct, Few-shot
Direct incorporates demonstration samples with
known labels as contextual information to enhance
the model’s performance. Zero-shot COT and Few-
shot COT employ the chain-of-thought (COT) tech-
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nique (Wei et al., 2022), enabling LLMs to engage
in step-by-step reasoning. While Zero-shot COT
immediately adds the prompt "Let us think step by
step!", Few-shot COT provides multiple COT exem-
plars. For Few-shot Logic, we replace the thought
process in COT with instantiated questions accom-
panied by corresponding answers generated by our
cognition system. Since COT prompts have been
found to yield performance gains basically when
used with models of approximately 100B parame-
ters (Wei et al., 2022), we exclusively implement
COT-related methods using GPT-3.5-turbo.

Below we show the templates for these five base-
lines for the fake news detection task in the closed
setting without the access to any external knowl-
edge source.

Direct:

Message: SMESSAGES.
Is the message $Label$?
Yes or No? Response:

Then, we replace the "$MESSAGES$" with input
news, "$Label$" with candidate truthfulness labels.
Few-shot Direct:

Following given examples to answer Yes/No
questions.

Message: Says the Annies List political
group supports third-trimester abortions on
demand.

Is the message true?

Yes or No? Response: No

Message: Says the Annies List political
group supports third-trimester abortions on
demand.

Is the message false?

Yes or No? Response: Yes

(- - - more examples here - - -)

Message: SMESSAGES.
Is the message $Label$?
Yes or No? Response:

Then, we replace the "$MESSAGE$" with in-
put news, "$Label$" with candidate truthfulness
labels. Furthermore, during the testing phase, the
examples are randomly selected from the training
set.



Zero-shot COT:

You will be provided with a statement, and
your task is to classify its truthfulness into one
of two categories: true and false.

Message: SMESSAGES.

Let’s think step by step and give answer with
the suffix “So the final answer is".

Then, we replace the "SMESSAGES$" with the
input news.
Few-shot COT:

You will be provided with a statement, and
your task is to classify its truthfulness into one
of two categories: true and false.

Example One

Message: Says the Annies List political group
supports third-trimester abortions on demand.
Let’s think step by step and give answer with
suffix “So the final answer is".

Annie’s List was comfortable with candidates
who oppose more limits on late-term abortions
while he also supported candidates who voted
for more limits this year. Both dose not
mention of third-trimester abortions.

So the final answer is false.

(- - - more examples here - - -)

Message: SMESSAGES$.
Let’s think step by step and give answer with
the suffix “So the final answer is".

Then, we replace the "SMESSAGE$" with the
input news.
Few-shot Logic:

You will be provided with a statement, and
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your task is to classify its truthfulness into one
of two categories: true and false.

Example One

Message: Says the Annies List political group
supports third-trimester abortions on demand.
Decomposed Questions:

(1) Statement: The Annies List is a political
group. Is the statement true?

Yes

(2) Statement: The Annies List supports
third-trimester abortions. Is the statement
true?

No

(3) Did the message contain adequate back-
ground information?

False

(- - - more examples here - - -)

Message: SMESSAGES.
Let’s think step by step and give answer with
the suffix “So the final answer is".

Then, we replace the "$SMESSAGES$" with the
input news.

B.3 Model Training for Decision System

In the decision system of our framework, we em-
ploy the DNF Layer to learn human-readable rules
from data differentially. To train this model, we
utilize the Adam optimizer with a learning rate of
le-3. Regarding the hyperparameters, we search
the conjunction number C' within the range [10, 20,
30, 40, 50], and the weight decay within the range
[1e-3, 5e-4, 1e-4]. Furthermore, to showcase the
superiority of our approach, we maintain consistent
hyperparameters across different LLMs in each set-
ting. For instance, all hyperparameters of TELLER
in the closed setting for the binary classification
task on the LIAR dataset remain unchanged. The
batch size is set to 64, and the number of epochs is
set to 30. Additionally, we progressively converge
the model towards symbolic semantics by adjusting
d (refer to Appendix E for detail) to 1 or -1 before
the first 15 epochs using exponential decay.



C Details of Explainability Study

To enhance the accessibility of the rules generated
by the DNF Layer, we propose a pruning algo-
rithm that extracts more concise logic clauses by
eliminating insignificant weights. The algorithm is
described in Algorithm 2. Furthermore, to demon-
strate the explainability of our framework, we visu-
alize the extracted rules obtained from the pruned
model for Constraint, Politifact, and GossipCop
datasets in Table 9, Table 10 and Table 4, respec-
tively. In these tables, Pyye and Py, represent the
proposition that the input news is identified as true
or false, respectively. In our visualization experi-
ments, we employ Llama2 (13B) as the LLM in the
cognition system. We set the number of conjunc-
tive layers C' as 50, the performance drop threshold
€ as 0.005, and b as 0.0001 to reduce the number of
conjunction clauses. More details regarding these
parameters can be found in Appendix E.

Algorithm 2 Pruning Algorithm for the DNF Layer

Input: Trained DNF Layer @, performance drop threshold e

Output: Pruned DNF Layer &’ and extracted rule set R

: Initialize R’ as an empty set

Initialize R by extracting rules from &

Initialize ®’ using ®

while |R’| # |R| do
Initialize R by extracting rules from &’
Prune disjunctions if the removal of a disjunction
results in a performance drop smaller than e
Prune unused conjunctions that are not utilized by any
disjunction
Prune conjunctions if the removal of a conjunction
results in a performance drop smaller than e
Prune disjunctions that use empty conjunctions
Prune disjunctions again if the removal of a disjunc-
tion results in a performance drop smaller than €
Update the pruned model as ®’ and extract rules from
@’ to obtain R’;

12: end while

AR

11:

conjug = P4 A —Pg
conjys = P4 A —Ps A Pg
conjug = P2 APy

Pirue = conjyg
Ptalse = conjgs V mconjyg

Table 9: Extracted rules for the Constraint dataset when
using Llama2 (13B).
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conjsg = P3 A Pg A Pg
CODj44 =Ps APy APy
conj, = P

COnj49 =Py AP3 APy
Ptrue = —conjgg V —conjyy
Pfalse = —cONjj V —cONj49

Table 10: Extracted rules for the Politifact dataset when
using Llama2 (13B).



D Comparison with Different Decision
Models

In our work, we utilize the DNF Layer to construct
our decision system, guaranteeing explainability
and controllability. However, there are also other
alternatives, such as existing neural symbolic archi-
tectures and interpretable machine learning algo-
rithms. By comparing the DNF Layer with these
candidates, we demonstrate that our dual-system
framework can achieve better performance by in-
venting a more effective decision model to unleash
the ability of LLMs.

While existing neural symbolic architectures can
extract useful rules from data (Booch et al., 2021),
they indeed have certain limitations. Firstly, these
architectures often require complex mechanisms to
implement logical operations, which makes them
unsuitable for immediate application in fake news
detection tasks. For example, Qu et al. (2021);
Cheng et al. (2023) developed neural-symbolic
models for knowledge graph completion, but their
reliance on well-defined graph structures makes
them infeasible for our task. Secondly, these ar-
chitectures often suffer from efficiency issues. For
instance, JLP proposed in (Evans and Grefenstette,
2018) had high computational complexity, and HRI
(Glanois et al., 2022) was incompatible with batch
training, which externally required users to pre-
define rule templates to constrain the search space.
Furthermore, to the best of our knowledge, there
may be no neural-symbolic framework available
that can simultaneously handle the challenges of
missing values and multi-grounding problems (i.e.,
one predicate can be instantiated as multiple logic
atoms), which are common in our tasks. There-
fore, we acknowledge the need for future research
to develop a more suitable and powerful neural-
symbolic framework in the context of fake news
detection.

Since each dimension in g is precisely bonded
to a question template (logic predicate), we can em-
ploy traditional machine learning classification al-
gorithms, including decision tree® and naive Bayes
Classifier* to replace the DNF Layer to drive our
decision system, while maintaining partial aspects
of trustworthy Al. Therefore, we compare the DNF
Layer with these two methods in both in-domain

Shttps://scikit-learn.org/stable/modules/tree.
html

4https://scikit—learn.org/stable/modules/
naive_bayes.html
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and cross-domain settings on three datasets, shown
in Table 11 and Table 12, respectively.

According to the results, we conclude that deci-
sion trees perform better when the training and test-
ing data are from the same domain. Meanwhile, the
naive Bayes Classifier demonstrates more satisfac-
tory generalization performance in cross-domain
experiments across various LLMs. This implies
that our proposed dual-system framework shows
potential in developing a more powerful decision
module, such as an ensemble of these algorithms.
However, the DNF Layer still outperforms these
two methods in most cases when using Llama2
(13B) as the driver of the cognition system, achiev-
ing a better trade-off between accuracy and gener-
alization ability. Moreover, the DNF Layer also ex-
hibits advantages over these two methods in terms
of its ability to handle missing values and multi-
grounding problems, as well as its flexibility in
efficiently searching logic rules in a large space,
whereas the decision tree is constrained by depth
and width.


https://scikit-learn.org/stable/modules/tree.html
https://scikit-learn.org/stable/modules/tree.html
https://scikit-learn.org/stable/modules/naive_bayes.html
https://scikit-learn.org/stable/modules/naive_bayes.html

Constraint Politifact GossipCop

LLMs Method Acc(%) Macro-F1(%) | Acc(%) Macro-F1(%) | Acc(%) Macro-F1(%)
Decision Tree 78.53 78.30 67.65 67.19 70.88 62.76
FLAN-TS-large Bayes Classifier | 80.93 80.86 66.18 66.15 68.33 61.04
TELLER 80.32 80.11 67.65 67.65 69.53 59.39
Decision Tree 84.29 84.27 66.91 66.10 71.13 61.58
FLAN-T5-x1 Bayes Classifier | 82.40 82.22 68.38 67.88 68.23 60.23
TELLER 83.77 83.66 68.82 64.68 69.58 58.72
Decision Tree 84.14 84.12 72.06 71.00 72.13 67.08
FLAN-T5-xxI ~ Bayes Classifier | 82.49 82.30 68.38 67.61 68.38 57.62
TELLER 83.39 83.24 69.12 68.57 69.18 57.21
Decision Tree 84.33 84.32 79.41 77.00 72.38 65.24
Llama?2 (7B) Bayes Classifier | 83.11 82.97 76.47 76.29 71.98 66.67
TELLER 83.72 83.54 83.82 83.81 70.68 59.58
Decision Tree 86.50 86.49 83.09 83.07 74.43 68.99
Llama2 (13B)  Bayes Classifier | 84.99 84.92 80.15 80.06 73.58 69.59
TELLER 87.31 87.29 79.41 79.41 74.48 66.32

Table 11: Results of different decision models on Constraint, Politifact, and GossipCop datasets without access to
retrieved background information. The best results for each dataset are highlighted with bold numbers.

LLMs Method CP—G GP—C CG—P

Acc(%) Macro-F1(%) | Acc(%) Macro-F1(%) | Acc(%) Macro-F1(%)

Decision Tree 68.98 62.33 73.67 73.32 63.97 62.71

FLAN-T5-x1 ~ Bayes Classifier | 67.13 59.26 82.49 82.49 64.71 64.64

TELLER 68.13 56.54 82.40 82.09 61.76 60.92

Decision Tree 68.33 55.53 70.60 70.35 61.03 60.98

FLAN-T5-xxlI Bayes Classifier | 68.33 54.71 82.63 82.51 62.50 62.50

TELLER 69.13 53.15 77.44 76.21 66.18 66.17

Decision Tree 52.20 52.05 76.40 75.02 66.91 64.84

Llama2 7B Bayes Classifier | 65.98 62.46 82.82 82.60 67.65 65.49

TELLER 68.33 59.33 81.60 81.04 83.09 82.82

Decision Tree 61.59 61.14 71.54 68.21 71.32 71.32

Llama2 13B  Bayes Classifier | 71.53 69.09 82.59 82.25 78.68 78.25

TELLER 70.93 60.90 85.09 84.87 79.41 79.41

Table 12: Results of different decision models on cross-domain experiments. C, P and G represent Constraint,
Politifact, and GossipCop datasets, respectively. The best results for each dataset are highlighted with bold numbers.
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E Formal Description of DNF Layer

In this section, we introduce modified Disjunctive
Normal Form (DNF) Layer employed in our frame-
work. The DNF Layer is built from semi-symbolic
layers (SL), which can progressively converge to
symbolic semantics such as conjunction A and dis-
junction V.

Specifically, for the truth value vector . € RM
mentioned in Sec. 3.1.2, SL can be formulated as
follows:

M
po = tanh | Y wip;+ 8 |, (&)

J

B=06b=> lwnl |, 5)
J

where w; represents learnable parameters, b =
max |w; ;| and § € [—1, 1] represents the seman-
J

tic gate selector. p; is the truth value for the jth
logic atom obtained from the cognitive system. The
sign of the learned weight w; indicates whether 41
(if w; is positive) or its negation (if w; is negative)
contributes to j1,. Thus, logical negation (e.g., =p;)
can be computed as the multiplicative inverse of
the input: —pu;.

Eq. 4 resembles a standard feed-forward layer,
aiming to compute a single truth value from a col-
lection of values p; corresponding to different in-
stantiations of a single predicate/question. /3 serves
as the bias term. As shown by (Cingillioglu and
Russo, 2021), by adjusting § from 0 to 1 during
training, SL tends to converge to conjunctive se-
mantics as SLx (e.g., p1 A pa, ..., Apas), indicat-
ing that if at least one wju; is false, the output
1o Will be false; otherwise, 1, will be true. Con-
versely, by gradually adjusting ¢ from 0 to —1,
SL can attain disjunctive semantics as SLy (e.g.,
p1V p2,...,Vparr), where if at least one w;jp; is
true, u, will be true; otherwise, u, will be false.
Additionally, b can guarantee p, being true (false)
when all w;j1; are true (false) for SL, (SLy).

Since each dimension in g corresponds to the
same predicate for different inputs, SL effectively
represents the relationship among different instanti-
ations and the target output 1, enabling the learn-
ing of generic rules for various inputs. Moreover,
by employing rule-based aggregation, our frame-
work exhibits noise tolerance against incorrect pre-
dictions of LLMs in the cognition system, particu-
larly owing to the SLy,.
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Notably, one predicate can be instantiated by
multiple assignments, i.e., P; pertains to M; logic
atoms in Appendix A.2. Thus, the parameters
bound to these M; logic atoms should naturally
share the logical semantics of P;. Instead of gath-

ering all possible combinations of M; logic atoms
M;

for training ([ ] j), we let these logic atoms share
J=1

the same w. In this scenario, SL can be represented

as follows:

N M;
fo = tanh(z Z wipij + B), (6)
()

) (N

N M
B=0d(b— Z Z |wi i, j
i g

where IV is the number of predicates.
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