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Abstract

Identifying causal relationship is an often desired, but difficult, task, and generally
only possible under specific assumptions. In this paper we are considering the task
of identifying causal relationships between entities that have a temporal axis, as
for example continuous measurements of different components within a complex
machine. We introduce a locally linear model class that allows us to recover causal
relationships, assuming that the process is locally linear, that we have access to
observations in diverse environments and that the causal structure is invariant across
the different environments. We validate the model in an idealized theoretical and
two experimental settings.

1 Introduction

In this paper we consider the task of identifying causal relationships between different time-series.
This setting occurs for example in machine diagnostics, where we are continuously monitoring
different components of the machine. From this data we then want to infer which components interact
with each other, for example to find the root cause if one component malfunctions. More specifically
we consider a setting where we are monitoring the different measurements across different, heteroge-
neous, environments. Measurements in heterogeneous environments are in practice the observation
of similar data under different conditions, for example a machine that has different working modes,
or climate measurements in different countries. More generally, heterogeneous environments can
also arise as different observational intervals1 within one single process. Heterogeneity of mea-
surements across different time intervals may occur due to certain distributional shifts within the
process, for example induced by degrading components. Under so called invariance conditions,
different environments can be useful to identify causal relationships. The underlying principle of the
invariance concept is that if the causal structure is invariant, i.e. remains the same, across different
environments, those environments can sometimes be seen as ’incidental interventions’. In that sense,
having different environments of observational data may contain strictly more causal information
than observational data from only one environment. The main idea of our analysis follows the work
of Peters et al. [2016], while the main difference is that Peters et al. [2016] encode the invariance idea
by assuming one global linear model, while we assume that each environment may have a different
linear model, but the support entries of those linear models should be the same across environments.
While this makes our model more flexible, it might make the estimation process of the local linear
models extremely difficult. For this reason we investigate the small sample per environment case,
hoping that we can approximate a potentially complicated process with locally linear models. While
our formal theorems are so far only in the large sample case, we present experimental evidence that

1We will be using the words environments and intervals interchangeably.
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the proposed approach still works even in the extreme case that per interval the dimensionality of the
problem exceeds the sample size, when using regularized linear regression for the local models.

With this we can summarize our contributions to this field as follows. First, we propose a locally
linear model class that can identify causal structures under a causal invariance assumption. We then
propose a practical test that can identify the causal structure from finite data. And finally we analyze
the model in different settings, in particular when the data has a temporal component, and in the
small sample per environment setting.

2 Related Work

The two themes of this paper are invariances in causal discovery and causal discovery in time
series. Regarding the invariance part, our ideas resemble mostly the setup of Peters et al. [2016], as
elaborated in the introduction. The idea was extended to sequential data in Pfister et al. [2019], while
Heinze-Deml et al. [2018] investigates non-linear models. The differences of our paper to Pfister
et al. [2019] are the modelling choices. Most notably they test, similarly to Peters et al. [2016], one
global linear regression model, while we consider only locally linear models. Christiansen and Peters
[2020] also introduce a model class that allows for switching regression parameters as the effect
of a hidden unobserved variable. While this model class is includes our setting it is a much harder
inference problem, which leads to very specific and vastly different modelling choices compared to
our setting. The invariance concept was also carried to the context of out-of-domain generalization
for machine learning models Arjovsky et al. [2019], Oberst et al. [2021], Wald et al. [2021], the main
idea being that causal features, in contrast to only correlated features, should be useful in all domains.
Differences in the approaches in that literature often stem from which parts of the model are assumed
to be invariant across environments. While the goal of out-of-domain generalization is different than
our goal, which is causal discovery, many of the concepts and models resemble each other. In a way,
our proposed locally linear models, are of course very simple machine learning models.

One of the predominant causal discovery ideas in the time-series setting is the concept of Granger
causality Granger [1969]. The underlying principle is that we call a time-series Xt a Granger cause of
a time series Yt if the past of Xt has unique, statistically significant, information about the future of
Yt. Although a Granger cause is generally not a cause, for example in the causal sense of a structural
causal model (SCM) Pearl [2016], it can be shown to coincide under certain assumptions Peters et al.
[2017]. One of those assumptions is that there no instantaneous causal effects, which do occur in
practice if the sampling frequency is slower than the underlying causal dynamics. Our framework
can deal with this setting.

3 Setting

In this work we assume that we have two observable quantities, a target Y and a set of covariates
(X1, · · · , XD) for D ∈ R. The general goal is to identify the covariates Xd which causally affect
the target Y . What we precisely mean with a causal effect is detailed in the next subsection. We
furthermore assume that there exist E ∈ N different environments, such that in each environment
e ∈ [E] we have the following linear relationship between target and covariate

Y e = Xeβe + εe. (1)

Here Xe = (Xe
1 , · · · , Xe

D) is a row vector of random variables, stochastic processes 2 or deterministic
processes. Next, βe ∈ RD is a column vector of regression coefficients, fixed for each e ∈ [E], and
εe ∈ R is a random noise variable, which is assumed to be generated identically and independently
from a zero mean distribution (IID). The different environments could be for example different
windows within one long (stochastic) process. The different βe then allow us to model each window
linearly, and are thus the locally linear part in our setting.

For notational convenience we set [E] ≡ {1, . . . , E} and similarly [D] ≡ {1, . . . , D}. With Xe
d or

βe
d we indicate the d-th entry of respectively Xe or βe and similarly Xe

S for S ⊆ [D] denotes the sub-
vector with indices given by S. In our notation the superscript e always indicates the corresponding
environment. Also note that if we write E[P ] we mean, depending on P, the mean of an IID random

2Note that, to ease notation, we forego a time index t for Xe unless needed.
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variable or the limiting temporal mean of a stochastic or deterministic series, if they exist. Finally we
denote by N(0, 1) the standard normal distribution and by U(l, h) the uniform distribution on [l, h].

3.1 Invariance Assumption

To make use of information we collect in different environments, we connect them with the following
invariant support assumption: We assume there is a set S∗ ⊆ [D], called the support indices, with
cardinality |S∗| = s ≤ D such that for d ̸∈ S∗ and e ∈ [E] we have βe

d = 0. The non-zero values
of βe are otherwise arbitrary. Note that the value s is generally unknown. The inference goal is to
determine S∗ from the observed data. From a causal perspective we can see S∗ as the set of causes
for the target Y e, so we try to retrieve the causes of Y e.

While the above already outlines most of our assumptions, the formal assumption we make is the
following.

Assumption 1. There exists a subset S∗ ⊆ [D], a zero mean distribution F and a collection of
coefficients βe ∈ RD for e ∈ [E], such that βe

d = 0 for all d ̸∈ S∗ and e ∈ [E]. Furthermore: For
all e ∈ [E] we have that

Y e = Xeβe + εe, εe
IID∼ F , εe ⊥⊥ Xe

S∗ . (2)

Note that the specific meaning of εe ⊥⊥ Xe
S∗ depends on how Xe

S∗ is generated. In the IID case the
independence is meant sample-wise. If Xe

S∗ is a stochastic process, εe hast to be independent of the
complete process. In the deterministic case this independence is automatically given. Importantly
also note that the noise variable εe is allowed to correlate with the non-support covariates, so the
covariates Xe

d for d ̸∈ S∗. In a causal sense this can for example happen if one covariate is the effect
of our target Y e.

3.2 Heterogenity of the Environments

So far we talked about the different environments being heterogeneous, i.e. they should be in some
aspect different from each other. It is clear that if all of the environments are exactly the same in
every aspect, we cannot expect to have any benefit from them, besides having a potentially larger
sample size. In the view of Assumption 1 heterogeneity may come into play by having differently
behaving covariates Xe or regression parameters βe for different environments e ∈ [E]. What we
precisely require will be formalized and discussed in Section 4.

3.3 Examples

While in Section 6 we provide specific data generation models, we motivate here two scenarios that
follow the model idea from above.

As the first example, assume we build a machine that produces watches and we measure the accuracy
of the watches, which corresponds to our target Y . We also record other measurements, corresponding
to the covariates X , that we consider relevant for the resulting accuracy Y . Those measurements
could be some settings of the machine, heat or power output of certain components etc. We now
want to understand which of the covariates X directly causally influence on the accuracy Y . To
analyse this behavior we collect data from several batches of watches that are produced in different
locations. The locations correspond to the different environments. Similarly one may think of the
scenario where the same machine produces different types of watches, and one can think of each type
as a different environment. In both cases the main assumption of our work is that the causal factors
remain the same across environments, and each environment may be well approximated with a linear
model, while any additional observational noise in Y has to have the same distribution everywhere.

The other setting we want to consider is the setting of a temporal process, where different intervals of
this process can naturally be considered as different environments. For example, consider we drive a
car, and we want to understand which components of the car directly influence the engine. While
driving the car we may be driving on the highway, in the city and also in different gears. While our
measurements are a continuous process, the different intervals of this process give rise to, potentially,
heterogeneous data. Similarly heterogeneous data can arise if we have a continuous drift in some
measurements, induced for example by degrading components.
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4 General Results

In this section we build the theoretical foundations for our proposed methods in a population setting.
The next section will then look at specific algorithms for the finite sample case. Based on the previous
modelling assumption we want to build a method that identifies, based on observational data, a set
Ŝ ⊆ [D] that is supposed to approximate S∗ as good as possible, while ideally we have Ŝ = S∗.
To achieve that we first find conditions to control the false positives, i.e. we want that with high
probability Ŝ fulfills Ŝ ⊆ S∗. Subsequently we find conditions that allow us to identify false negatives
which will ensure that Ŝ = S∗.

4.1 Controlling False Positives

Similar to Peters et al. [2016] we use a hypothesis test to identify S∗. While adapted to our setting,
the essential idea remains the same. With that in mind we define for a subset S ⊆ [D] the following
null-hypothesis on the data generating process:

H0,S :


exists a distribution F , and parameters βe, s.t. ∀e ∈ E

βe
k = 0 if k ̸∈ S and Y e = Xeβe + εe with

εe
IID∼ F and εe ⊥⊥ Xe

S

(3)

Contrasting the hypothesis (3) with our main Assumption of Equation 2, we already notice the
important property that H0,S∗ is true. Assuming we can test the null hypothesis we define an
estimator Ŝ of S∗ as

Ŝ :=
⋂

S:H0,S is not rejected

S. (4)

The important property of (3) is that it is fulfilled for S = S∗, because of Assumption 1. In other
words, H0,S∗ is true, which implies that Ŝ ⊆ S∗ with high probability, given that we have a valid test
for H0,S , see Theorem 1 further below. The definition of the null hypothesis also already foreshadows
the relevance of the different environments. If we only had one environment e1, then even S = ∅
fulfills H0,S with F being equal to the distribution of Y e1 .

The first formal result on controlling false positives if we assume we can test H0,S at a certain
confidence level is due to Peters et al. [2016].

Theorem 1. [Peters et al., 2016, Theorem 1] Assume that we constructed Ŝ according to Equation
(4) with a valid test for H0,S in the sense that P [H0,S is rejected | H0,S is true] ≤ α. If Assumption
(1) holds we have that Ŝ ⊆ S∗ with probability of at least 1− α.

The null hypothesis defined in (3) is not very practical to test, as it is not clear how one might even
find the required βe and εe. To move to a more practical version we make the following change. Let

β̂e
S = arg min

β ∈ RD : βd = 0 if d ̸∈ S
E[(Y e −Xeβ)2], 3 (5)

then we can formulate a more practical null hypothesis as

H0,S :

{
exists distribution F such that for all e ∈ [E]

εe
IID∼ F , Y e = Xeβ̂e

S + εe and εe ⊥⊥ Xe
S

. (6)

Although the hypotheses defined in Equations (3) and (6) are generally not equivalent, H0,S∗ remains
true if Assumption 1 holds, since β̂e

S∗ = βe. With that also Theorem 1 remains true. Note that the
residuals of the regression task, defined as Re := Y e −Xeβ̂e

S , will model the unexplained noise εe,
and it will be those residuals that we test for equality of distribution, see also the proof of Theorem 2.

3If there are multiple solutions we may pick any. The important property we implicitly use to make use of
Equation (6) is that β̂e

S∗ = βe up to an element in the null-space of Xe
S∗
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4.2 Controlling False Negatives

While under the assumptions of the previous section we can guarantee that Ŝ ⊆ S∗, we ideally find
conditions that allow us to identify the full support S∗, so that Ŝ = S∗. For that, the heterogeneity of
the different environments will come into play, and we make the following assumption regarding that.
Assumption 2. For every S ⊊ S∗ exists at least two environments v, w ∈ [E] such that

(Xv
S∗ −Xv

SE[Xv
S
TXv

S ]
−1E[Xv

S
TXv

S∗ ])βv
S∗

d

̸= (Xw
S∗ −Xw

S E[Xw
S

TXw
S ]−1E[Xv

S
TXw

S∗ ])βw
S∗ (7)

or equivalently

Xv
S∗βv

S∗ −Xv
S β̂

v
S

d

̸= Xw
S∗βw

S∗ −Xw
S β̂w

S . (8)

Here the notation
d

̸= means that the two quantities are not allowed to be distributionally equivalent.
In view of our definition of the expectation operator E in Section 3, this includes the possible case
that either side of the equality is not well defined or does not have a distribution at all. While
this assumption is very generic, and indeed just the assumption that will make the proof work, we
anticipate one does not require a pair of heterogeneous environments for each subset, but, under
possibly further assumptions, it is sufficient to have a pair of environments for each support covariate
as in Peters et al. [2016]. Although we believe that under mild conditions Assumption 2 is true, we
are aiming at making this precise in future work. In any case, this assumption allows us to draw the
following conclusion.
Theorem 2. Let S =⊊ S∗. Under Assumptions (1) and (2) we find that H0,S is not true.

Proof. For the S as in the theorem let v, w be two environments as given by Assumption 2. Consider
the residuals of our model in both environments, which are given by

Rv = Xv
S∗βv

S∗ + εv −Xvβ̂v
S and Rw = Xw

S∗βw
S∗ + εw −Xwβ̂w

S . (9)

By definition H0,S is only true if Rv d
= Rw. As εe is assumed to have the same distribution for all

e ∈ [E], and plugging in the solution for β̂v
S , β̂

w
S , we find that Rv d

= Rw can only hold if

(Xv
S∗ −Xv

SE[Xv
S
TXv

S ]
−1E[Xv

S
TXv

S∗ ])βv
S∗

d
= (Xw

S∗ −Xw
S E[Xw

S
TXw

S ]−1E[Xw
S

TXw
S∗ ])βw

S∗

This equality, however, is excluded by Assumption (2).

Two sources of heterogeneity: At this point we want to make a very interesting observation
following the previous analysis. Our heterogeneity Assumption 2 can be fulfilled by two means,
either through heterogeneity in the covariates Xe themselves, but also through the locally linear
regression parameters βe. Setting U = S∗ \ S, consider that the distributions of the unaccounted
variables Xe

U can be affected by a vector of environment dependent noise terms ηeU . Equation (8)
shows that the distributions on the lhs and rhs then will differ at least by the differences of the
corresponding terms ηvUβ

v
U and ηwβw

U . Equation (7) on the other hand shows that the regression
parameters βv

S∗ themselves can introduce differences in distribution, as long as Xv
S is not perfectly

collinear to Xv
S∗ in all environments. This is in contrast to the work of Peters et al. [2016], where

heterogeneity always comes through the covariates. In that sense, allowing for local linearity not only
makes our model more flexible, but also introduces a more general concept of heterogeneity.

5 Finite Sample Methods

In this section we propose two finite sample methods that use the ideas of the previous sections to
recover S∗ with finite observational data. For simplicity we assume that in each environment e ∈ E
we have n observations. Importantly, here E and n denote the ground truth environments and their
corresponding ground truth length n. Generally, however, we do not assume that our algorithms have
access to the correct environments. Thus our algorithms will be provided with environments indexed
by Ê which give rise to a model sample size n̂, which can be different from n. From here on Ye

denotes a vector of n̂ or n observations from an interval e ∈ Ê or e ∈ [E] and Xe is the data matrix
of the appropriate size.
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Input: λ > 0, (Ye,Xe) for e ∈ Ê, α (In order: Regularization parameter, observations, confidence
level)
Output: Ŝ
For all S ⊆ [D]

• Set β̂e
S := arg min

β ∈ RD : βd = 0 if d ̸∈ S
∥Ye −Xeβ∥22 + λ∥β∥2

• Set Re := Ye −Xeβ̂e
S

• Let Ĥ0,S a test of the hypothesis that the samples (Re)e∈Ê have equal distributions, tested
with the Anderson-Darling test at confidence level α

Set Ŝ :=
⋂

S:Ĥ0,S is not rejected

S

Algorithm 1: Our proposed method based on the Anderson-Darling test.

In Algorithm 1 we propose our first method following the ideas and results from Section 4. There
are a couple of important things to note. First, for the specific hypothesis test we decided to use a
multiple sample version of the Anderson-Darling test Scholz and Stephens [1987].4 Second, we add
a regularization term to the squared loss function to deal with the low sample case, when n̂ ≤ D.
One may formally justify that by adding a bounded norm condition of βe to Assumption 1. Finally,
as mentioned earlier, our methods do generally not have access to the true interval length n, which in
turn means that as input for the algorithm we do not provide the correct indexing of the intervals E,
but instead a possibly different indexing Ê.

While Algorithm 1 makes use of a formal hypothesis test and enjoys the guarantees and interpretability
that come with it, we propose an ad-hoc version in Algorithm 2. Instead of using a hypothesis test,
this algorithm rejects a subset S ⊆ [D] if the variance of the residuals Re varies too much across
different intervals e ∈ Ê. There are two reasons to introduce this variation of our approach. First of
all, it gives a pathway to algorithms that do not suffer from having to iterate over all possible subsets
of [D], see also the discussion Section 7. The second reason is the small sample setting. For the
case that n̂ < D we observe a sudden degradation of the Anderson-Darling test in terms of power.
While in Algorithm 2 we have to set an ad-hoc rejection threshold κ, we want to highlight with it that
this sudden degradation for the small sample case may not be inherent to the problem, and different
methods may retrieve a good success rate even in that extreme case. If that can be done in a principled
way is part of our future research.

Input: λ > 0, (Ye,Xe) for e ∈ Ê, κ (In order: Regularization parameter, observations, acceptance
threshold)
Output: Ŝ
For all S ⊆ [D]

• Set β̂e
S := arg min

β ∈ RD : βd = 0 if d ̸∈ S
∥Ye −Xeβ∥22 + λ∥β∥2

• Set Re := Ye −Xeβ̂e
S

• Set VS := Ve [V[Re]]. Here V[Re] is the sample variance of the residuals in interval e
and Ve [V[Re]] is the sample variance of V[Re] over all intervals

Set Ŝ :=
⋂

S:VS<κ

S

Algorithm 2: Our proposed method based on a simple variance test.

4We use an implementation from the python scipy toolbox, licensed under the BSD 3-Clause "New" or
"Revised" License.
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6 Experimental Section5

We now test the approaches described in Section 5 on two differently generated data sets. Although
our focus is on data with a temporal aspect, we first try the method on a simple setting, where the
covariates are created in an IID fashion. Although there is no temporal component, it is still relevant
for time-series data, as it simulates possible instantaneous links. Afterwards we test the approach on
data generated by a vector autoregressive model. In both cases we are in particular interested in the
small sample per interval case. While some of the specific data generation and parameter choices
are made to highlight the potential of our approaches, we discuss in Section 7, and further in the
appendix, the impact of the various choices.

6.1 The IID Case

Our first experiment is in a simple setting where the data is generated in an IID fashion for D =
5, |S∗| = 2, E = 100 and varying n, see Algorithm 3 in the appendix for details. Furthermore we
assume here that our algorithm has access to the correct environments, so we set n̂ = n. With the
given data we then use Algorithm 1 with λ = 0.01 and the ground truth environments to try to recover
S∗. For each sample size n we run this experiment 100-times and record a success if the output Ŝ
of Algorithm 1 exactly matches S∗. We plot the resulting success rate against the sample size n in
Figure 1a. While we observe that already a moderate sample size of n = 7 > 5 = D suffices to
ensure a perfect success rate, the performance quickly degrades in the case where n becomes small
and we drop to a rate of 0 for n < D. While choosing λ > 0.01 increased the performance up to
0.25, a higher success rate seemed unachievable for Algorithm 1. Since we believe, however, that the
low success rate is due to the specifics of the hypothesis test of Algorithm 1, we continued the next
experiment with Algorithm 2.

In this second experiment we tested the success rate of Algorithm 2 with the same data generation
process but n = 4 fixed. We then use Algorithm 2 with varying λ and κ = 1, the results are shown in
Figure 1b. As we hoped, we indeed see that with a bit of added regularization we can recover a high
success rate.
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(a) The performance of Algorithm 1 for different sam-
ple sizes. Note, here we assume n = n̂.
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(b) The performance of Algorithm 2 for different λ and
n = n̂ = 4.

Figure 1: Evaluation of our Algorithms in the IID case

6.2 The VAR Setting

This experiment is in the time-series setting and the data is generated with a vector autoregressive
model (VAR). In this section we drop the e notation for different environments, instead our quantities
will have a time index t. Different environments will now correspond to intervals of a certain length of
this process. The VAR model implies that the covariates follow a discrete process Xt+1 = XtW + γ
where Xt ∈ RD is our observation at time t, W ∈ RD×D is the matrix of regression coefficients and
γ ∈ RD is a driving noise.

5The experiments can be found as jupyter notebooks on https://github.com/AlexanderMey/causal-local-linear.
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(a) The success rate of Algorithm 1 for varying model
sample sizes n̂ and λ = 0.01.

0.00 0.05 0.10 0.15 0.20 0.25
Lambda

0.2

0.4

0.6

0.8

1.0

Su
cc
es
s R

at
e

(b) The success rate of Algorithm 2 for n̂ = 4 and
varying λ.

Figure 2: The results of the experiments in the VAR setting.

In our specific setting the regression matrix W and the driving noise γ are allowed to change over
time, thus our model can be written as Xt+1 = XtW t + γt. The change of W t and γt corresponds
to the heterogeneity of the resulting covariates Xt, and the success of our approach will depend on
how W t and γt changes over time. Also in this setting we assume that there are support indices
S∗ ⊆ [D]× [D] with the property that W t

s = 0 if s ̸∈ S∗ for all t.

While our covariates follow a VAR model, the rest of the setup and assumptions remain the same. In
particular we set one covariate, w.l.o.g. Xt

1, as the target. By setting our target as Y t := Xt+1
1 the

model for that target becomes
Y t = Xtβt + γt

1 + εt. (10)

Here βt is the first column of W t, εt is as before an independent noise term and γt
1 the first entry of

γt. This already reveals an important assumption we have to make: Contrasting Equation (10) with
our model from Assumption (1), we note that the term γt

1 + εt takes the role of the independent noise
εe. Thus, following Assumption (1), this implies that γt

1 + εt has to have the same distribution for all
intervals, i.e. does distributionally not change over time. This is in direct contrast to the driving noise
γt
d for d ̸= 1, as this is ideally sufficiently diverse to ensure heterogeneity.

Nevertheless, this model is fairly general and flexible and there are many possible choices on how γt

and W t evolve. For our initial experiment we decided that the distribution of γt remains fixed for a
certain period and then switches. The intervals in which γt remains fixed correspond to the ground
truth intervals E, and the length of those intervals will be denoted as before with n.

In comparison to the previous IID experiments we make this task more challenging. First we do not
assume anymore that we have access to E or n, instead we run our methods for intervals of varying
n̂, while n remains fixed. Furthermore we allow W t to drift in every time-step and the support entries
of W t follow a biased random walk. Note that this introduces some model misspecification since our
model assumes that W t remains fixed within the intervals. A summarization and some more specific
choices are detailed in Algorithm 4 in the appendix. With that, we first generated data with Algorithm
4, setting n = 40, E = 100, D = 5 and W 0 detailed in the appendix. We then used Algorithm 1
again with λ = 0.01 and varying model samples n̂ per interval to recover the support indices in S∗,
with |S∗| = 3, that correspond to our target Y t = Xt+1

1 , thus the non-zero entries of βt. As before
we report the success rate over 100 independent runs, where a success is only counted if the output Ŝ
of Algorithm 1 exactly matches S∗. In Figure 2a we see that the method still achieves a very high
success rate for samples sizes n̂ different from n = 40. This shows that even if we do not know the
ground truth sample size n, we may achieve good performance for a range of n̂. It is clear that for
model sample sizes n̂ chosen too large, the method will lose power and validity, as we have fewer
environments to compare to each other, and the model-misspecifiaction increases due to the drift of
the regression variables W t. As before we do also observe a steep drop in performance of Algorithm
1 when the sample size is getting relatively small. However, in principle the case of an extremely
small size of n̂ does not exclude success since no assumption is violated. To see if even in a small
sample size setting we can recover a decent success rate we used the same data with Algorithm 2 with
varying λ fixing κ = 1 and |Ê| = 1000, which leaves only n̂ = 4 samples per interval for parameter
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estimation. We plot the results in Figure 2b. Once again we see that using a moderate λ significantly
helps in recovering the correct support.

7 Discussion and Ongoing Work

While the previous experiments show that the proposed methods are promising, the effectiveness of
them depends on a couple of choices of data and the methods them-self. We want to discuss the most
interesting observations we made, while further experiments and discussions can be found in the
appendix.

One of our main assumptions is the heterogeneity Assumption 2, which, for example in the IID case,
is introduced through the randomization in step 1. and 3. of the data generating Algorithm 3. As
suggested by the theory, we observed in some initial experiments little to no drop in success rate
if we reduced the ranges of the uniform distributions of the covariates or the regression parameters
(step 1. and 3. respectively of Algorithm 3), as long as not both were reduced at the same time. As
also explained in Section 4.2, however, to make use of the heterogeneity introduced by the regression
parameters we rely on the additional assumptions that some relevant covariates are not always perfectly
collinear. In our IID setting this is clearly fulfilled as we generate the covariates independently from
each other. In the VAR setting the story becomes more complicated and understanding this case is
part of our ongoing research.

A problem of our experiment in the time-series setting is that the driving noises for all covariates,
except the target, have to be heterogeneous across intervals, while the driving noise for the target
needs a fixed distribution. This may pose an additional difficulty if we want causal explanations
for all covariates. Regarding this, one may need additional expert knowledge to identify a sub-
series of the complete data stream where the driving noise for the chosen target follows roughly the
same distribution. On the other hand, one may wonder if heterogeneity introduced by the changing
regression parameters W t is sufficient if all driving noises are fixed. In how far this is indeed the
case, is part of ongoing work.

One reason to propose a second algorithm, which is not based on a formal hypothesis test, was that
the Anderson-Darling test lost a lot of power in the small sample setting. Motivated by the results
of Algorithm 2, this loss in power may not be an inherent identifiability problem of our setting.
Following that we are looking for ways to adapt the Anderson-Darling test, or find different, but still
principled, tests altogether that are suited for the small sample case.

A major issue of our proposed methods in practice is that it scales exponentially with the dimension
of the problem. We are currently investigating a possible solution based on a group-lasso approach,
with a group corresponding to all regression parameters of one covariate d, i.e. (βe1

d , · · · , βeI
d ). This

in principle would allow us to look at all covariates at once as the method finds the most important
groups, while other grouped parameters are jointly set to 0. In that formulation the variance term in
Algorithm 2 could be used as an additional penalty to look for invariant solutions.
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A Appendix

A.1 Data Generation Algorithms

Input: D,S∗, n, E. (In order: Global dimension, support indices, samples per interval, intervals)
Output: (

⋃
e∈[E]

Ye,
⋃

e∈[E]

Xe) ∈ RE·n × RE·n,D

For all e ∈ [E]

1. For all d ∈ [D] sample (ad, bd) from U(−30, 0)× U(0, 30)

2. Draw Xi,d ∈ R as an IID n-sample ∼ U(ad, bd) for all d ∈ [D]

3. Sample βe
d ∼ U(−1, 4) for d ∈ S∗, otherwise βe

d = 0

4. εe is an IID n-sample ∼ N(0, 1)

5. Set Ye = Xeβe + εe

Algorithm 3: Data generation in the IID case.
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Input: D,S∗, n, E,W 0. (In order: Global dimension, support indices, samples per interval, intervals,
initial regression matrix)
Output:(

⋃
e∈[E]

Ye,
⋃

e∈[E]

Xe) ∈ RE·n × RE·n,D

Set X0 ∈ RD as initial state
For all t ∈ [n · E]

1. If t mod n = 0: For all d ∈ [D]− {1} sample ad ∼ U(−30, 0) and bd ∼ U(0, 30)

2. Sample γd ∈ R from U(ad, bd) for all d ∈ [D]− {1}
3. Sample γ1 from U(−1, 1)

4. Set Xt+1 = XtW t + γ

5. Set Yt+1 = Xt+1
1 + ε for ε ∼ N(0, 1)

6. Set W t+1
s = W t

s + η for η ∼ N(−10−4, 10−3) for all s ∈ S∗. If W t+1
s > 0.9, set

W t+1
s = 0.8, if W t+1

s < 0.9 set W t+1
s = −0.8

Algorithm 4: Data Generation in the VAR Case.

A.2 Further Experiments

Here we discuss a few further choices of our experiments, and how we anticipate or observed them to
change the outcome of the experiments.

The initial W 0 in the VAR experiment. We set the initial W 0 as
0.5 −0.7 0 0 0.9
0 0.4 1 0 0.5
0 0 −0.9 0 0
0 0.5 0 0.8 −1
0 0 0 0 0.4

 (11)

Our target was the second covariate, so that for t = 0 we have βt = (−0.7, 0.4, 0, 0.5, 0)T .

The κ threshold. The choice for κ = 1 worked well in our experiments, but certainly needs to be
addressed in future work. In our IID experiments, the choice was almost irrelevant, a choice of κ in
[1, 1000] led to the same results. In our VAR setting, however, changing κ had bigger effects. We
believe, however, that the choice is still not crucial as we observed that for other values of κ we often
still obtained the same results, just for a different range of λ. In future work want to investigate a
replacement of κ for a well chosen hypothesis test on the equality of variances.
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(a) The results of Algorithm 2 in the VAR setting, with
a larger range of λ.
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(b) The success rate of Algorithm 1 in the VAR setting
with changing variance of the observational noise.

Figure 3: Additional experiments.
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The regularization parameter λ. While a regularized regression approach allows us to perform
analysis in the low sample per interval case, it forces us to set a hyperparameter λ. First note that we
used in our experiments the same λ across all environments. This was fine in our experiments because
the environments were comparable in sample size, but more generally one might have to chose a λe

for each e ∈ [E]. In future work we are investigating a principled way of choosing λ, either motivated
by theoretical results, or by data driven methods as leave-one-out cross validation. The other question
a reader might have is, how sensitive the results are to the choice of λ. To investigate that we repeated
the experiment that led to Figure 2b with a larger range of λ. The results are shown in 3a and show
that increasing λ further certainly degrades the performance, although we would argue in a rather
graceful than abrupt manner.

The independent noise εe. Looking at the proof of Theorem 1 one expects that for larger noise
the methods degrade in terms of controlling the false negatives. The proof works by testing if the
residuals in different environments have the same distribution. If, however, the independent noise εe

strongly strongly dominates those residuals Re, we expect that we cannot detect differences in those
residuals. In Figure 3b we confirm this by using Algorithm 1 on the VAR data, where we provide the
ground truth sample size n to the algorithm, but vary the variance of the independent noise εt. The
results are shown in Figure 3b and we indeed observe a drop in performance for increasing noise
variance.
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