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ABSTRACT

One-class classification for tabular anomaly detection remains challenging due to
the scarcity of labeled anomalies and the absence of explicit structural relation-
ships among samples. Existing approaches have largely focused on intra-instance
modeling, such as masking or reconstruction, while inter-sample modeling has re-
ceived comparatively little attention. We propose AGNI (Attention-Guided Mask-
ing and Neighbor-Informed Reconstruction), a self-supervised framework that
reimagines attention as a dual supervisory signal unifying these two perspec-
tives. Specifically, Attention-Guided Masking leverages attention to identify and
hide salient features, enforcing the learning of fine-grained intra-instance depen-
dencies. At the same time, Neighbor-Informed Reconstruction repurposes the
same attention scores to retrieve structurally similar neighbors, whose representa-
tions provide contextual support during reconstruction. By tightly coupling intra-
instance and inter-sample objectives within a single attention space, AGNI trans-
forms attention from a representational tool into a coordinating structural signal.
Extensive experiments on 47 real-world datasets from ADBench demonstrate that
AGNI achieves the best overall ranking among 15 classical and deep-learning
baseline. Code is available in the supplementary material.

Anomaly detection in tabular data plays a crucial role in diverse applications such as fraud detection,
healthcare monitoring, and industrial process control (Ahmad et al., 2021; Fernando et al., 2021; Ye
et al., 2023a; Al-Hashedi & Magalingam, 2021). In these domains, labeled anomalies are scarce,
ambiguous, or costly to obtain, making one-class classification (OCC) a natural and widely adopted
formulation Ruff et al. (2021); Ye et al. (2023b); Chandola et al. (2009); Guo et al. (2023). The
central challenge in this setting is to accurately capture the distribution of normal data such that
anomalies can be identified as meaningful deviations (Yin et al., 2024; Shenkar & Wolf, 2022).
However, tabular data presents unique difficulties due to the heterogeneity of feature types and the
lack of inherent structural relationships, which stand in sharp contrast to the spatial or sequential
structures found in images and text.

Most prior work has therefore concentrated on intra-instance modeling—for example, through fea-
ture masking or reconstruction tasks—to capture dependencies within each sample (Yin et al., 2024).
By contrast, inter-sample modeling, which has played a central role in anomaly detection for other
modalities such as images (Gong et al., 2019), time series (Audibert et al., 2020), and graphs (Fan
et al., 2020), has received relatively little attention in the tabular setting. We attribute this scarcity to
the absence of explicit structural relationships, which makes it difficult to define meaningful simi-
larity across samples (Somepalli et al., 2021). Yet inter-sample modeling is essential, as it provides
complementary structural signals that help define normality beyond individual feature interactions,
thereby improving robustness against subtle or context-dependent anomalies. Only recently have a
handful of studies explored retrieval-based approaches for tabular data, but these remain limited by
their reliance on naive embedding similarity (Thimonier et al., 2024).

As a result, intra-instance and inter-sample perspectives have remained largely isolated. Exist-
ing attention-based models for tabular data (e.g., SAINT (Somepalli et al., 2021), TabTrans-
former (Huang et al., 2020)) further reinforce this separation, as they employ attention only as a
representational mechanism without turning it into a learning signal. We argue that a promising di-
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rection is to develop a unified supervisory source that can actively coordinate both perspectives—a
possibility that, to the best of our knowledge, remains unexplored in tabular anomaly detection.

In this work, we present AGNI (Attention-Guided Masking and Neighbor-Informed Reconstruc-
tion), a self-supervised framework that reimagines attention not merely as an encoding tool but as a
dual supervisory signal for both feature masking and neighbor retrieval. Specifically, AGNI (i) iden-
tifies and masks structurally salient features to enforce the learning of fine-grained intra-instance de-
pendencies, and (ii) retrieves attention-similar neighbors whose representations provide contextual
support during reconstruction. By tightly coupling these objectives within a shared attention space,
AGNI transforms attention into a coordinating structural signal that unifies intra- and inter-instance
modeling.

Beyond empirical gains, AGNI also reveals a distinctive qualitative phenomenon: as we later demon-
strate in t-SNE visualizations (Figure 4), normal samples tend to retrieve compact neighborhoods,
whereas anomalous samples yield scattered neighbors. This behavior provides interpretable evi-
dence of AGNI’s structural novelty and highlights how the proposed design principle offers insights
beyond numerical performance. We validate AGNI on 47 real-world datasets from the ADBench
benchmark Ye et al. (2023b), where it achieves the best overall ranking among 15 classical and
deep-learning baselines. Our contributions are summarized as follows:

• We introduce a dual-purpose attention mechanism that simultaneously governs feature
masking and neighbor retrieval, offering a unified view of intra- and inter-instance struc-
ture.

• We propose a reconstruction-based SSL framework that leverages this dual role of attention
to generate challenging and informative pretext tasks.

• We demonstrate both quantitative superiority—achieving consistent improvements across
diverse datasets—and qualitative novelty, where AGNI’s asymmetric neighbor retrieval
naturally distinguishes normal from anomalous samples.

1 RELATED WORKS

1.1 CLASSICAL ANOMALY DETECTION

Anomaly detection in tabular data has long been studied under the one-class classification setting,
where only normal instances are available during training. Traditional methods fall into several
categories, including distance-based scoring, classification boundaries, and reconstruction meth-
ods (Ruff et al., 2021). Distance-based methods such as Isolation Forest (Liu et al., 2008), k-Neareset
Neighbors (KNN) (Ramaswamy et al., 2000), and Local Outlier Factor (LOF) (Breunig et al., 2000)
assign anomaly scores based on local proximity or density deviations. One-class SVM (Schölkopf
et al., 1999) is a representative classification-based method that aims to enclose normal data within
a learned boundary. Reconstruction-based methods, such as PCA (Shyu et al., 2003), project data to
a lower-dimensional space and identify anomalies through reconstruction errors. Despite their sim-
plicity and computational efficiency, these classical approaches often struggle to capture complex,
nonlinear feature interactions in real-world datasets.

1.2 DEEP LEARNING FOR ONE-CLASS ANOMALY DETECTION

To address the shortcomings of classical methods, deep learning-based anomaly detection ap-
proaches have been proposed. Autoencoder-based models such as DAGMM (Zong et al., 2018)
reconstruct normal inputs and detect samples with high reconstruction errors as anomalies. Other
methods, like DeepSVDD (Ruff et al., 2018) and DROCC (Goyal et al., 2020), learn compact
representations or decision surfaces that enclose normal data, excluding anomalies. Recently, self-
supervised learning has been applied to one-class classification with notable success. ICL (Shenkar
& Wolf, 2022) maximizes mutual information between different feature groups within each sam-
ple. MCM (Yin et al., 2024) employs learnable soft masking to learn feature interactions. They
commonly rely on static transformation strategies or intra-instance objectives, lacking mechanisms
for adapting tasks to instance-specific contexts or modeling relational structures across samples. In
parallel, diffusion-based methods have emerged as a promising direction. DTE (Livernoche et al.,
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Figure 1: Overview of the proposed AGNI architecture. GetAtt computes attention-based feature
importance scores, which are passed to GetMask to generate masks. The retrieval module selects
neighbors with similar feature-wise importance based on these scores. Finally, the decoder recon-
structs the input using the masked input and the retrieved neighbor representations, and the model is
trained with a reconstruction loss.

2023) estimates the posterior distribution over diffusion time for each input sample and uses either
the mode or the mean of this distribution as the anomaly score. One recent attempt to leverage inter-
sample structure (Thimonier et al., 2024) incorporates retrieved neighbors into reconstruction, but its
weighted aggregation strategy showed limited generalization across real-world datasets. Our work
differs from prior approaches in two key aspects. First, instead of relying on static or uniform mask-
ing strategies, we use transformer attention to identify contextually important features and construct
more informative reconstruction tasks. Second, unlike methods that reconstruct samples indepen-
dently, we incorporate attention-wise similar neighbors during decoding, enabling relational context
to enhance anomaly detection.

2 METHODS

We propose AGNI, a reconstruction-based SSL framework for one-class classification in tabular
data (see Figure 1). AGNI consists of two key components: (1) attention-guided masking and (2)
neighbor-informed reconstruction.

2.1 PROBLEM FORMULATION

We consider the one-class classification in tabular data, where only normal samples are available
during training. Given a training set Dtrain = {x1,x2, . . . ,xN}, with each xi ∈ Rd drawn from the
normal data distribution Pnormal, our objective is to detect unseen anomalies at test time by measuring
how well a model can reconstruct the original input.

To this end, we train an encoder fθ and a decoder gϕ to reconstruct the original input from a masked
version produced by a masking operatorM:

min
θ,ϕ

Ex∼Dtrain

[
∥x− gϕ(fθ(M(x)))∥22

]
(1)

The key challenge lies in designingM to construct challenging pretext tasks that capture instance-
specific feature dependencies. At test time, the anomaly score is defined as the reconstruction error:

AnomalyScore(x) := ∥x− gϕ(fθ(M(x)))∥22 (2)

AGNI incorporates two components to effectively model normal data structures:

• Attention-Guided Masking: This component masks structurally significant features iden-
tified via self-attention, compelling the model to learn inter-feature dependencies by recon-
structing them from the remaining context.
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• Neighbor-Informed Reconstruction: During decoding, the model integrates representa-
tions from attention-similar samples within the batch, providing contextual information that
aids in reconstructing masked features and implicitly capturing inter-sample relationships.

Together, these components enable AGNI to learn both intra-instance structures and inter-instance
contexts, enhancing anomaly detection performance. Detailed descriptions of the masking and re-
trieval components are provided in the following sections, respectively.

2.2 ATTENTION-GUIDED MASKING

AGNI employs a transformer-based autoencoder architecture. Given an input x ∈ Rd, we first embed
each feature into tokens using a token embedding scheme (Gorishniy et al., 2021). The embedded
input is processed through a transformer encoder with L layers and H attention heads to extract
feature representations and attention scores. We leverage self-attention scores to identify and mask
the most informative features. For each input x, we extract attention weights from the final encoder
layer and compute an importance score for each feature:

si = GetAtt(ahj,i) = max
1≤h≤H

(
max
1≤j≤d

ahj,i

)
(3)

where ahj,i represents the attention weight from token j to token i in head h. The importance score, si
captures the maximum contextual relevance of feature i across all attention heads and positions. The
use of the maximum operation benefits both training and inference. During training, it encourages
the model to focus on the most important feature relationships when predicting masked features,
reinforcing the learning of inter-feature dependencies. At inference time, it helps amplify the effect
of disrupted relationships in anomalous samples, resulting in more distinctive reconstruction errors.

The GetMask module selects the top-ρ fraction of features based on importance scores and gener-
ates a binary mask. Let k = ⌊ρ · d⌋ be the number of features to mask. The mask m ∈ {0, 1}d is
defined as:

mi =

{
0 if i ∈ Stop-ρ

1 otherwise
(4)

where Stop-ρ contains the indices of the top-k features. The masked input is then computed as
x̃ = m ⊙ x. By masking features with high attention scores, our method removes structurally im-
portant information from each instance. This forces the model to reconstruct these features from the
remaining ones, encouraging the learning of both inter-feature dependencies and instance-specific
feature relevance.

2.3 NEIGHBOR-INFORMED RECONSTRUCTION

To enhance reconstruction with contextual information from attention-similar samples and implic-
itly model inter-sample relationships, we introduce a neighbor-informed reconstruction. For each
sample, we identify structurally similar neighbors by computing cosine similarity between their
attention-derived importance vectors:

sim(xi,xj) =
si · sj

∥si∥ · ∥sj∥
(5)

Our attention-based retrieval in AGNI differs from conventional embedding-based methods, which
compare samples based on aggregated sample embeddings. Instead, we compare attention score
distributions that reflect feature-level interaction patterns, allowing retrieval of structurally similar
instances even when raw feature values differ. We find that this strategy leads to more meaningful
neighbor selection, as discussed in Discussion Section.

The Retrieval module identifies the top-M most similar neighbors and concatenates their latent
representations with the representation of masked input, resulting in a combined context vector:

ci = [zi; zi,1; . . . ; zi,M ] (6)
In AGNI, we use concatenation to preserve individual neighbor representations, assuming that each
neighbor may provide distinct contextual information identified through attention-based retrieval. In
contrast, alternative fusion strategies such as averaging may dilute meaningful signals by blending
diverse structural patterns across neighbors. We further evaluate these alternatives in Discussion
Section.
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2.4 TRAINING AND INFERENCE

In AGNI, we train the model using mean squared error loss:

Lrecon =
1

B

B∑
i=1

∥xi − x̂i∥22, where x̂i = gϕ(ci) (7)

where B is the batch size. During training, neighbors are retrieved from within each batch, implicitly
encouraging the model to learn relationships across the normal data distribution.

During inference, test samples are processed in batches where neighbors are selected based on at-
tention similarity. The anomaly score is defined as:

AnomalyScore(xtest) = ∥xtest − x̂test∥22 (8)

with higher values indicating greater deviation from learned normal patterns.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETTINGS

Evaluation Benchmark To evaluate the effectiveness of our proposed AGNI, we utilize AD-
Bench Han et al. (2022), a comprehensive benchmark specifically designed for tabular anomaly
detection. We conduct extensive experiments on all 47 real-world tabular datasets provided in AD-
Bench, spanning domains including healthcare, finance, cybersecurity, and others such as biology
and industrial monitoring. These datasets inherently contain natural noise observed in real-world
data collection and operation, thereby providing a realistic evaluation environment. The consistent
performance of AGNI across such noisy and diverse datasets demonstrates its robustness and prac-
tical applicability. The statistical details of each dataset are provided in Appendix.

Baseline Methods We conducted extensive experiments by comparing our method against 15
representative baselines from both classical and deep learning-based anomaly detection methods.
The classical methods include Isolation Forest (IForest) (Liu et al., 2008), k-Nearest Neighbors
(kNN) (Ramaswamy et al., 2000), Local Outlier Factor (LOF) (Breunig et al., 2000), One-Class
SVM (OC-SVM) (Tax & Duin, 2004), and Principal Component Analysis (PCA) (Shyu et al., 2003).
The deep learning-based baselines consist of DAGMM (Zong et al., 2018), DeepSVDD (Ruff et al.,
2018), DROCC (Goyal et al., 2020), GOAD (Bergman & Hoshen, 2020), and Variational Autoen-
coder (VAE) (Kingma et al., 2013), as well as recent advanced methods such as ICL (Shenkar &
Wolf, 2022), SLAD (Xu et al., 2023), DTE (Livernoche et al., 2023), MCM (Yin et al., 2024), and
DRL (Ye et al., 2025). All experiments were repeated five times with different random seeds, and
the average results are reported.

Implementation details of AGNI The encoder consists of a transformer backbone followed by a
three-layer multilayer perceptron (MLP) with ReLU activations. The decoder was also implemented
as a three-layer MLP with ReLU activations. We applied a token embedding scheme to input the
features into the transformer model (Gorishniy et al., 2021). By default, the number of tokens was
set to 24, but for certain datasets, the number of heads and tokens were reduced for computational
efficiency. The network parameters were optimized using the AdamW optimizer with a learning rate
1 × 10−4 and a weight decay of 1 × 10−5. All experiments were conducted on a single NVIDIA
GeForce RTX 3090 GPU. Further implementation details are provided in Appendix.

Evaluation Following previous studies (Yin et al., 2024; Ye et al., 2025; Shenkar & Wolf, 2022),
we used 50% of the normal samples for training, and the remaining normal samples along with all
abnormal samples as test data. The number of samples was limited to 50,000 per dataset (Livernoche
et al., 2023). As evaluation criteria, we adopted widely used metrics in anomaly detection: Area
Under the Receiver Operating Characteristic Curve (AUC-ROC), Area Under the Precision-Recall
Curve (AUC-PR), and F1 score.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

(a) Box plots comparing the average performance (AUC-ROC, AUC-PR, and F1 score) of 16 algorithms
across ADBench benchmark datasets. Higher values indicate better performance. Black triangles represent
the mean values.

(b) Average rankings of all methods based on AUC-ROC, AUC-PR, and F1 score across ADBench bench-
mark datasets. Lower values indicate better performance.

Figure 2: Comparison of average performance and rankings across ADBench benchmark datasets.
Subfigure (a) shows the distribution of AUC-ROC, AUC-PR, and F1 scores, while (b) reports the
corresponding average rankings of each method.

Table 1: AUC-ROC performance comparison under varying anomaly ratios. Datasets are grouped
into three categories based on their anomaly proportions: low (< 3.2%), medium (3.2–10.2%), and
high (>10.2%). AGNI consistently achieves the highest performance, demonstrating robustness to
anomaly ratio shifts.

Ratio IForest kNN LOF OC
SVM PCA DA

GMM
Deep

SVDD
DR

OCC GOAD VAE ICL SLAD MCM DRL DTE AGNI

Low 0.832 0.871 0.851 0.829 0.819 0.710 0.703 0.683 0.706 0.819 0.841 0.799 0.770 0.835 0.856 0.908
Mid 0.809 0.872 0.853 0.819 0.789 0.681 0.704 0.601 0.719 0.796 0.873 0.834 0.765 0.810 0.824 0.878
High 0.707 0.762 0.708 0.719 0.676 0.621 0.683 0.575 0.664 0.694 0.741 0.757 0.666 0.695 0.713 0.790

3.2 ANOMALY DETECTION RESULTS

We evaluate all methods on 47 tabular benchmark datasets from ADBench. Figure 2(a) shows
AGNI’s strong and stable performance, with competitive mean and median AUC-ROC and low vari-
ance. Its consistent top ranking across metrics is further confirmed in Figure 2(b). Notably, AGNI
outperforms MCM (Yin et al., 2024), a recent soft masking method, confirming the benefit of our
attention-guided design. The complete experimental results for all baselines and AGNI in terms of
AUC-ROC, AUC-PR, and F1 score are provided in the Appendix. As shown in Tables A2, A3, and
A4, AGNI consistently demonstrates outstanding performance across all metrics.

3.3 ROBUSTNESS TO ANOMALY RATIO

Our method targets the OCC setting, where training relies solely on normal samples and is thus
unaffected by anomaly proportions. At test time, although anomaly ratios may influence evaluation
metrics (e.g., AUC-ROC), AGNI’s reconstruction-based detection remains stable across different
proportions. To empirically validate this robustness, we partition the ADBench benchmark into three
groups according to their anomaly proportions: low (< 3.2%), medium (3.2–10.2%), and high (>
10.2%). Each group contains a comparable number of datasets, enabling a balanced evaluation.

Table 1 reports the mean of AUC-ROC for AGNI and 15 baselines across the three anomaly-ratio
categories. The results reveal that AGNI consistently achieves the highest mean performance in
all categories, while maintaining the lowest variance, confirming its robustness to varying anomaly
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proportions. These findings strengthen the evidence that AGNI not only improves average detection
accuracy but also delivers reliable performance across different data imbalance conditions.

4 ANALYSIS

4.1 ABLATION STUDY

We performed an ablation study to evaluate the effectiveness of AGNI’s attention-guided masking
strategy and neighbor-informed reconstruction. To conduct the ablation study, we constructed five
subsets from diverse domains, including healthcare, document analysis, linguistics, and biology (an-
nthyroid, cardiotocography, stamps, vowels, and yeast). In the following experiments, most of the
reported results are based on the average performance over predefined subsets. Detailed results for
each individual dataset are provided in Appendix.

Figure 3: Effect of the number of retrieved neigh-
bors on anomaly detection performance. We fix
the augmentation ratio and vary the number of re-
trieved neighbors.

Impact of Varying the Number of Retrieved
Neighbors We investigate how the number of
retrieved neighbors (M ) affects performance by
varying M from 1 to 3 while keeping the mask-
ing ratio fixed. Figure 3 presents results on two
representative datasets. Performance consis-
tently improves with more neighbors across all
evaluation metrics, supporting our hypothesis
that incorporating multiple similar neighbors
provides more informative context for recon-
structing masked features while strengthening
the model’s understanding of inter-sample rela-
tionships. However, the gains begin to plateau
at M = 3, indicating a trade-off between con-
textual diversity and redundancy. Based on this
observation, we set M = 3 as the default in all experiments.

Table 2: AUC-ROC across batch sizes

Batch size 4 8 16 64 128 256

annthyroid 0.921 0.939 0.947 0.955 0.956 0.958
cardiotocography 0.762 0.774 0.785 0.793 0.794 0.794

stamps 0.915 0.935 0.938 0.932 0.934 0.934
vowels 0.723 0.752 0.762 0.790 0.778 0.773
yeast 0.518 0.520 0.514 0.529 0.528 0.519

Average 0.768 0.784 0.789 0.800 0.798 0.796

Effect of batch size We investi-
gate how the test-time batch size
affects anomaly detection perfor-
mance, since AGNI retrieves neigh-
bors within each batch. Larger batch
size provides a broader pool of can-
didates for identifying attention score
similar neighbors, enabling AGNI to
better capture inter-sample relation-
ships and learn the underlying struc-
ture of the normal data distribution. Table 2 shows AUC-ROC scores for batch sizes ranging from
4 to 256. Performance improves steadily as batch size increases from 4 to 64, with average AUC-
ROC rising from 0.768 to 0.800. Beyond 64, performance plateaus or even slightly degrades. Our
dataset-specific batch size assignment strategy are all detailed in the Appendix.

Table 3: Ablation study on the effect of each proposed com-
ponent.

Setting Mask Neighbor AUC-ROC PR F1 Time (s)

A ✗ ✗ 0.768 0.555 0.538 0.022
B ✓ ✗ 0.764 0.559 0.560 0.022
C ✗ ✓ 0.790 0.578 0.555 0.031

D (AGNI) ✓ ✓ 0.808 0.614 0.597 0.032

Component-wise analysis We
conduct an ablation study to evaluate
the contribution of each component
in AGNI, as shown in Table 3. Start-
ing from a vanilla transformer based
autoencoder baseline without either
proposed component (Setting A), we
incrementally add attention-guided
masking component and neighbor-
informed reconstruction component. Adding attention-guided masking alone (A → B) improves
the F1 score, indicating that masking contextually important features enhances discriminative
ability. Incorporating neighbor-informed reconstruction component instead (A → C) yields a gain
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Table 4: Evaluation results for configuration-wise variants

Variant Masking Neighbor selection criteria Fusion strategy AUC-ROC AUC-PR F1 score

1 Attention-guided Attention score
[

1
M+1

(
z +

∑M
i zi

)]
0.768 0.509 0.487

2 Attention-guided Attention score [z; 1
M

∑M
i zi] 0.791 0.578 0.566

3 Attention-guided Embedding sim. [z; z1; . . . ; zM ] 0.801 0.575 0.550
4 Random Attention score [z; z1; . . . ; zM ] 0.712 0.483 0.501

5 (AGNI) Attention-guided Attention score [z; z1; . . . ; zM ] 0.808 0.614 0.597

in AUC-ROC, suggesting its effectiveness in both structural patterns and inter-sample relationships
within the normal data distribution. The full model combining both components (AGNI) achieves
the best performance across all metrics. These improvements demonstrate that the two components
provide complementary benefits: attention-guided masking creates informative learning objectives,
while neighbor-informed reconstruction leverages relationships between similar samples to better
characterize the normal data manifold. We further measured the inference time per batch. Incorpo-
rating attention-guided masking resulted in negligible change, whereas adding neighbor-informed
reconstruction introduced a delay of approximately 9 ms. Nonetheless, this delay is minimal relative
to the performance gains it brings and thus does not hinder practical applicability.

5 DISCUSSION

5.1 IMPACT OF CONFIGURATION VARIANTS

The proposed attention-guided masking component and neighbor-informed reconstruction compo-
nent in AGNI involve several configuration-level alternatives. This section examines the perfor-
mance impact of different strategies for each configuration. The results are averaged over the subset
of five datasets introduced in Analysis Section. Table 4 summarizes the evaluated alternatives and
their corresponding results.

Input–Neighbor Fusion Variants Given our neighbor-informed reconstruction component, we
investigated how to effectively utilize the selected neighbors as context for reconstruction. We eval-
uated three fusion strategies that differ in how the input representation is combined with the re-
trieved neighbor representation, as shown in variants 1, 2, and 5 of Table 4. Proposed AGNI (vari-
ant 5), which concatenates the input with each neighbor embedding individually, achieves superior
performance compared to two alternatives: variant 1, which averages the input and neighbor repre-
sentations, and variant 2, which concatenates the input representation with the averaged neighbor
representation. Averaging the selected neighbors may blur their unique contributions, thereby un-
dermining the precision of attention-based retrieval. The superior performance of variant 5 suggests
that preserving individual neighbor representations enables the decoder to more effectively leverage
the contextual information captured by the attention mechanism.

Neighbor selection: attention-based vs embedding-based We compare AGNI’s attention-based
neighbor retrieval with an alternative based on latent embeddings. In the embedding-based vari-
ant, neighbors are selected by computing cosine similarity between max-pooled encoder outputs.
We chose max-pooling as it preserves the most salient features from each dimension, though other
pooling strategies such as mean-pooling or attention-weighted pooling could also be considered.
However, these methods operate on aggregated representations and could not directly reflect feature-
wise importance patterns. In contrast, AGNI uses similarity over attention scores where each element
represents the maximum attention a feature receives across all heads and positions. This preserves
feature-level relationships that are lost in embedding-based approaches. As shown in variants 3, 5
of Table 4, attention-based retrieval achieves consistently higher performance across all evaluation
metrics. This suggests that attention-based similarity leads to more relevant neighbor selection in
our anomaly detection framework. Exploring alternative pooling strategies and distance metrics for
embedding-based retrieval remains an interesting direction for future work.

Comparison of masking strategies We compare the attention-guided masking component pro-
posed in AGNI with a baseline that masks randomly selected features. For each dataset, both meth-
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ods are evaluated using their respective masking ratios. As shown in variants 4 and 5 of Table 4,
attention-guided masking consistently outperforms random masking across all metrics (AUC-ROC,
AUC-PR, and F1 score). This improvement highlights the importance of using attention scores to
target structurally salient features rather than perturbing inputs arbitrarily. By masking features that
the model itself identifies as most informative, attention-guided masking generates more challeng-
ing and context-aware reconstruction tasks, which in turn encourage the model to capture fine-
grained feature dependencies. Random masking, by contrast, often removes irrelevant or redundant
attributes, resulting in weaker supervision and limited gains. These results confirm that attention-
guided masking provides a principled mechanism for constructing effective self-supervised signals
in tabular anomaly detection.

5.2 QUALITATIVE ANALYSIS OF NEIGHBOR SELECTION

Figure 4: t-SNE visualizations of the input space for two
datasets. Red and green dots represent abnormal and nor-
mal inputs. Blue triangles and yellow stars indicate retrieved
neighbors. Normal inputs yield compact, aligned neighbor-
hoods, while abnormal inputs retrieve scattered samples.

To validate our attention-based
neighbor retrieval mechanism, we vi-
sualize the selected neighbors using
t-SNE of the input space. As shown
in Figure 4, neighbors of normal sam-
ples (blue triangles) cluster tightly
around their inputs, while neighbors
of anomalous samples (yellow stars)
are widely scattered. This pattern
illustrates how our method captures
inter-sample relationships: normal
samples successfully retrieve struc-
turally similar neighbors, forming
coherent local contexts that enable
accurate reconstruction. Conversely,
anomalous samples lack structurally
similar neighbors in the dataset,
resulting in dispersed neighbor sets
that provide weak contextual support.
This asymmetric retrieval behavior—compact neighborhoods for normal samples versus scattered
neighbors for anomalies—confirms that our attention mechanism effectively identifies structural
similarities within the normal data distribution while naturally amplifying reconstruction difficulty
for outliers.

6 CONCLUSION

In this work, we introduced AGNI, a self-supervised framework for one-class classification in tabular
anomaly detection that unifies intra-instance and inter-sample modeling through a dual supervisory
use of attention. By employing attention-guided masking to enforce fine-grained feature dependen-
cies and neighbor-informed reconstruction to exploit structural similarities across samples, AGNI
transforms attention from a representational mechanism into a coordinating learning signal. Ex-
tensive evaluations on 47 real-world datasets demonstrate that AGNI achieves consistent improve-
ments over 15 classical and deep-learning baselines, obtaining the best average rank across AUC-
ROC, AUC-PR, and F1 score, and delivering the best overall performance. Beyond numerical gains,
AGNI reveals interpretable qualitative behavior: normal samples form compact neighborhoods while
anomalies yield scattered ones, offering intuitive evidence of its structural novelty. Taken together,
these results highlight AGNI’s effectiveness in detecting subtle, context-dependent anomalies and
underscore the promise of designing supervisory signals that jointly capture instance-specific and
population-level structure. We believe this design principle opens new directions for future research,
including extensions to semi-supervised or multi-modal anomaly detection, integration with genera-
tive modeling, and the exploration of attention-driven supervisory signals in broader tabular learning
tasks.
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Attention-Guided Masking and Neighbor-Informed
Reconstruction for Tabular Anomaly Detection

We used a large language model (LLM) only to polish grammar and improve readability of the
manuscript. All scientific content, including methods, experiments, and analyses, was entirely con-
ceived and produced by the authors.

A DATASETS DETAILS

Table A1: Dataset properties.

Dataset Samples Features Anomalies Anomaly(%) Category

aloi 49534 27 1508 3.04 Image
annthyroid 7200 6 534 7.42 Healthcare
backdoor 95329 196 2329 2.44 Network
breastw 683 9 239 34.99 Healthcare
campaign 41188 62 4640 11.27 Finance
cardio 1831 21 176 9.61 Healthcare
cardiotocography 2114 21 466 22.04 Healthcare
celeba 202599 39 4547 2.24 Image
census 299285 500 18568 6.2 Sociology
cover 286048 10 2747 0.96 Botany
donors 619326 10 36710 5.93 Sociology
fault 1941 27 673 34.67 Physical
fraud 284807 29 492 0.17 Finance
glass 214 7 9 4.21 Forensic
hepatitis 80 19 13 16.25 Healthcare
http 567498 3 2211 0.39 Web
internetads 1966 1555 368 18.72 Image
ionosphere 351 32 126 35.9 Oryctognosy
landsat 6435 36 1333 20.71 Astronautics
letter 1600 32 100 6.25 Image
lymphography 148 18 6 4.05 Healthcare
magic 19020 10 6688 35.16 Physical
mammography 11183 6 260 2.32 Healthcare
mnist 7603 100 700 9.21 Image
musk 3062 166 97 3.17 Chemistry
optdigits 5216 64 150 2.88 Image
pageBlocks 5393 10 510 9.46 Document
pendigits 6870 16 156 2.27 Image
pima 768 8 268 34.9 Healthcare
satellite 6435 36 2036 31.64 Astronautics
satimage-2 5803 36 71 1.22 Astronautics
shuttle 49097 9 3511 7.15 Astronautics
skin 245057 3 50859 20.75 Image
smtp 95156 3 30 0.03 Web
spambase 4207 57 1679 39.91 Document
speech 3686 400 61 1.65 Linguistics
stamps 340 9 31 9.12 Document
thyroid 3772 6 93 2.47 Healthcare
vertebral 240 6 30 12.5 Biology
vowels 1456 12 50 3.43 Linguistics
waveform 3443 21 100 2.9 Physics
wbc 223 9 10 4.48 Healthcare
wdbc 367 30 10 2.72 Healthcare
wilt 4819 5 257 5.33 Botany
wine 129 13 10 7.75 Chemistry
wpbc 198 33 47 23.74 Healthcare
yeast 1484 8 507 34.16 Biology

This study utilized 47 real-world tabular anomaly detection datasets provided by the ADBench
benchmark suite Han et al. (2022). These datasets span a broad spectrum of application domains
in which anomalies are known to arise in practice, including healthcare, finance, network security,
web activity, biology, imaging, and astronautics. Table A1 presents the detailed properties of the
datasets used in our experiments. Moreover, the benchmark covers a wide range of data characteris-
tics, including sample size (from under 100 to over 600,000 instances), feature dimensionality (from
as few as 3 to over 1,500), and anomaly ratios (ranging from 0.03% to nearly 40%). Such diversity
ensures a comprehensive evaluation, capturing the complex and varied nature of real-world anomaly
detection scenarios.
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B IMPLEMENTATION DETAILS

The encoder used in AGNI consists of a transformer followed by a three-layer multilayer perceptron
(MLP) with ReLU activations. All features are treated as continuous variables and embedded using
a token embedding scheme before being passed into the transformer Gorishniy et al. (2021). The
transformer comprises six layers with eight attention heads and a token dimension of 24. For the
census and internetads datasets, we reduce the number of attention heads and the token dimension
to four and eight, respectively, for computational efficiency. The decoder shares the same three-
layer MLP architecture used in the encoder. We train the network using the AdamW optimizer with
a learning rate of 1 × 10−4 and a weight decay of 1 × 10−5. All experiments are conducted on a
single NVIDIA GeForce RTX 3090 GPU.

The batch size was determined separately for the training and test sets based on the number of
samples in each. Specifically, we used a batch size of 64 for datasets with fewer than 1,000 samples;
128 for datasets with 1,000 to 4,999 samples; 256 for datasets with 5,000 to 9,999 samples; 512 for
datasets with 10,000 to 49,999 samples; and 1,024 for datasets with 50,000 or more samples.

C COMPREHENSIVE EVALUATION RESULTS

This section presents the comprehensive evaluation results that supplement the main text. First, we
provide the AUC-PR and F1 scores of AGNI and 15 baseline methods evaluated across 47 real-
world tabular anomaly detection datasets Han et al. (2022). Second, we include the full component-
wise analysis results based on the five-dataset subset used in the main text ablation analysis and
discussion sections. We also present the complete results corresponding to the study on the impact
of configuration variant discussed in the main text. Additionally, we examine performance across
datasets categorized by anomaly ratios to assess the method’s robustness under different anomaly
distributions. Finally, we report the optimal masking ratios and the number of neighbors selected for
each dataset.
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AUC-ROC scores of AGNI on full benchmark datasets Based on the AUC-ROC (↑) scores sum-
marized in Table A2, AGNI demonstrates strong performance across 47 tabular anomaly detection
datasets. It achieves the best average scores and the best average rank across datasets.

Table A2: Comparison of AUC-ROC (↑) scores across 47 tabular anomaly detection datasets. Each
value represents the average over five independent runs with different random seeds. For each
dataset, the best result is highlighted in bold, and the second-best is underlined.

Dataset IForest kNN LOF OC-
SVM PCA DA-

GMM
Deep-
SVDD

DRO-
CC GOAD VAE ICL SLAD MCM DRL DTE AGNI

aloi 0.507 0.510 0.488 0.543 0.540 0.508 0.509 0.500 0.480 0.540 0.475 0.508 0.543 0.518 0.505 0.547
annthyroid 0.903 0.928 0.886 0.884 0.852 0.722 0.550 0.889 0.810 0.854 0.811 0.933 0.707 0.583 0.975 0.956
backdoor 0.749 0.938 0.953 0.625 0.646 0.544 0.911 0.943 0.529 0.647 0.936 0.500 0.924 0.930 0.904 0.934
breastw 0.995 0.991 0.889 0.994 0.992 0.895 0.970 0.473 0.989 0.992 0.983 0.995 0.998 0.985 0.939 0.994
campaign 0.736 0.785 0.706 0.777 0.771 0.615 0.622 0.500 0.479 0.771 0.809 0.767 0.697 0.725 0.790 0.852
cardio 0.933 0.920 0.922 0.956 0.965 0.779 0.654 0.621 0.960 0.966 0.800 0.831 0.806 0.879 0.878 0.979
cardiotocography 0.742 0.621 0.645 0.752 0.789 0.671 0.477 0.460 0.761 0.789 0.542 0.473 0.843 0.762 0.619 0.794
celeba 0.712 0.731 0.437 0.798 0.805 0.638 0.562 0.689 0.438 0.803 0.722 0.674 0.734 0.758 0.826 0.816
census 0.625 0.723 0.585 0.700 0.705 0.522 0.542 0.554 0.352 0.705 0.706 0.579 0.660 0.575 0.691 0.721
cover 0.863 0.975 0.992 0.962 0.944 0.759 0.491 0.958 0.138 0.944 0.893 0.740 0.484 0.972 0.955 0.993
donors 0.894 0.995 0.970 0.921 0.881 0.622 0.730 0.742 0.336 0.886 0.999 0.885 0.905 0.979 0.979 0.885
fault 0.559 0.587 0.474 0.572 0.559 0.528 0.543 0.557 0.589 0.559 0.606 0.639 0.590 0.603 0.588 0.620
fraud 0.947 0.954 0.944 0.956 0.954 0.853 0.831 0.500 0.698 0.955 0.928 0.946 0.932 0.942 0.888 0.963
glass 0.811 0.920 0.888 0.697 0.734 0.653 0.837 0.649 0.590 0.726 0.994 0.860 0.694 0.759 0.781 0.877
hepatitis 0.827 0.965 0.669 0.906 0.845 0.702 0.996 0.518 0.845 0.848 0.999 0.999 0.518 0.603 0.791 0.816
http 0.994 1.000 1.000 1.000 1.000 0.918 0.613 0.500 0.997 0.999 0.982 0.999 0.998 0.998 0.990 1.000
internetads 0.479 0.681 0.717 0.656 0.651 0.495 0.730 0.534 0.656 0.651 0.722 0.759 0.684 0.633 0.771 0.662
ionosphere 0.912 0.974 0.943 0.963 0.891 0.740 0.972 0.611 0.915 0.898 0.990 0.982 0.635 0.954 0.942 0.971
landsat 0.588 0.682 0.666 0.480 0.439 0.563 0.594 0.539 0.405 0.542 0.651 0.650 0.477 0.699 0.521 0.615
letter 0.320 0.354 0.448 0.322 0.303 0.390 0.364 0.553 0.311 0.302 0.427 0.368 0.344 0.402 0.371 0.389
lymphography 0.995 0.999 0.982 1.000 0.999 0.949 0.997 0.324 0.999 0.999 1.000 1.000 0.922 0.936 1.000 1.000
magic.gamma 0.771 0.833 0.834 0.743 0.706 0.592 0.630 0.788 0.695 0.706 0.756 0.720 0.831 0.815 0.873 0.763
mammography 0.880 0.876 0.855 0.886 0.899 0.760 0.715 0.818 0.699 0.896 0.719 0.745 0.846 0.887 0.867 0.896
mnist 0.866 0.939 0.929 0.906 0.902 0.722 0.664 0.831 0.901 0.902 0.901 0.897 0.940 0.965 0.895 0.948
musk 0.906 1.000 1.000 1.000 1.000 0.950 1.000 0.330 1.000 1.000 0.994 1.000 0.962 0.885 1.000 0.999
optdigits 0.811 0.937 0.967 0.634 0.582 0.400 0.395 0.853 0.675 0.582 0.972 0.953 0.668 0.847 0.851 0.887
pageblocks 0.826 0.896 0.913 0.886 0.861 0.828 0.784 0.923 0.880 0.862 0.884 0.879 0.724 0.756 0.900 0.908
pendigits 0.972 0.999 0.991 0.964 0.944 0.565 0.463 0.759 0.900 0.945 0.967 0.946 0.653 0.847 0.981 0.945
pima 0.743 0.769 0.705 0.715 0.723 0.545 0.580 0.475 0.623 0.732 0.797 0.606 0.719 0.622 0.653 0.723
satellite 0.775 0.822 0.803 0.739 0.666 0.728 0.762 0.734 0.688 0.741 0.852 0.875 0.687 0.747 0.786 0.790
satimage-2 0.991 0.997 0.994 0.996 0.982 0.918 0.929 0.992 0.990 0.990 0.995 0.998 0.997 0.996 0.994 0.997
shuttle 0.997 0.999 1.000 0.996 0.994 0.846 0.998 0.500 0.704 0.994 0.999 0.999 0.997 0.996 0.998 0.999
skin 0.894 0.995 0.863 0.902 0.597 0.679 0.600 0.895 0.649 0.660 0.066 0.910 0.889 0.944 0.900 0.856
smtp 0.904 0.924 0.934 0.847 0.818 0.871 0.852 0.571 0.788 0.819 0.744 0.921 0.879 0.866 0.945 0.960
spambase 0.852 0.834 0.732 0.817 0.814 0.694 0.702 0.754 0.818 0.814 0.835 0.849 0.801 0.725 0.831 0.837
speech 0.377 0.364 0.375 0.366 0.364 0.507 0.489 0.490 0.366 0.364 0.489 0.414 0.421 0.463 0.386 0.925
stamps 0.935 0.959 0.937 0.937 0.927 0.801 0.711 0.501 0.815 0.933 0.967 0.820 0.858 0.855 0.908 0.932
thyroid 0.990 0.987 0.927 0.986 0.986 0.911 0.888 0.950 0.952 0.986 0.954 0.953 0.933 0.870 0.989 0.983
vertebral 0.456 0.577 0.643 0.505 0.421 0.506 0.448 0.438 0.467 0.426 0.792 0.450 0.341 0.386 0.418 0.878
vowels 0.618 0.822 0.863 0.759 0.523 0.425 0.557 0.547 0.685 0.521 0.851 0.850 0.658 0.836 0.869 0.790
waveform 0.723 0.752 0.760 0.704 0.647 0.519 0.599 0.677 0.650 0.648 0.687 0.489 0.394 0.605 0.650 0.690
wbc 0.994 0.991 0.805 0.996 0.994 0.868 0.914 0.442 0.991 0.993 0.997 0.998 0.930 0.905 0.872 0.945
wdbc 0.987 0.991 0.996 0.993 0.991 0.738 0.993 0.401 0.990 0.991 0.998 0.995 0.948 0.977 0.962 0.994
wilt 0.480 0.637 0.688 0.348 0.261 0.418 0.344 0.495 0.514 0.354 0.764 0.618 0.397 0.760 0.847 0.886
wine 0.939 0.992 0.984 0.978 0.938 0.662 0.922 0.438 0.941 0.943 0.999 1.000 0.941 0.958 0.402 0.951
wpbc 0.563 0.637 0.574 0.534 0.525 0.470 0.827 0.438 0.514 0.544 0.966 0.955 0.517 0.430 0.518 0.937
yeast 0.418 0.447 0.458 0.448 0.432 0.510 0.476 0.484 0.525 0.424 0.490 0.487 0.433 0.487 0.472 0.529

Average Value 0.782 0.834 0.803 0.788 0.761 0.670 0.697 0.620 0.696 0.769 0.817 0.796 0.733 0.779 0.797 0.858
Average Ranking 8.53 4.97 6.84 7.12 9.64 12.62 11.40 11.80 11.05 8.85 5.94 6.76 9.97 8.77 7.48 4.28
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AUC-PR scores of AGNI on full benchmark datasets Based on the AUC-PR (↑) scores sum-
marized in Table A3, AGNI demonstrates strong performance across 47 tabular anomaly detection
datasets. It achieves the highest average scores and the best average rank, demonstrating consistent
effectiveness across diverse domains and data characteristics.

Table A3: Comparison of AUC-PR (↑) scores across 47 tabular anomaly detection datasets. Each
value represents the average over five independent runs with different random seeds. For each
dataset, the best result is highlighted in bold, and the second-best is underlined.

Dataset IForest kNN LOF OC-
SVM PCA DA-

GMM
Deep-
SVDD

DRO-
CC GOAD VAE ICL SLAD MCM DRL DTE AGNI

aloi 0.058 0.060 0.065 0.065 0.065 0.061 0.062 0.059 0.057 0.065 0.055 0.060 0.085 0.093 0.058 0.067
annthyroid 0.590 0.681 0.535 0.601 0.566 0.480 0.278 0.637 0.587 0.567 0.458 0.706 0.344 0.200 0.828 0.764
backdoor 0.094 0.465 0.535 0.077 0.079 0.075 0.848 0.846 0.063 0.080 0.892 0.048 0.664 0.886 0.609 0.543
breastw 0.995 0.989 0.800 0.994 0.992 0.909 0.960 0.632 0.988 0.992 0.968 0.995 0.998 0.985 0.904 0.993
campaign 0.457 0.490 0.402 0.494 0.488 0.324 0.369 0.203 0.231 0.488 0.489 0.481 0.405 0.450 0.485 0.578
cardio 0.786 0.772 0.702 0.836 0.862 0.559 0.389 0.511 0.848 0.863 0.479 0.699 0.427 0.703 0.704 0.904
cardiotocography 0.628 0.574 0.573 0.662 0.697 0.597 0.458 0.439 0.675 0.697 0.487 0.494 0.729 0.656 0.546 0.708
celeba 0.117 0.119 0.036 0.203 0.209 0.090 0.071 0.076 0.040 0.209 0.097 0.093 0.093 0.113 0.153 0.182
census 0.142 0.217 0.137 0.203 0.200 0.132 0.153 0.142 0.087 0.198 0.212 0.150 0.160 0.127 0.177 0.221
cover 0.087 0.558 0.829 0.223 0.162 0.098 0.027 0.313 0.011 0.161 0.345 0.070 0.017 0.418 0.287 0.709
donors 0.405 0.891 0.634 0.427 0.352 0.195 0.427 0.302 0.090 0.360 0.984 0.462 0.667 0.753 0.709 0.395
fault 0.592 0.620 0.504 0.611 0.604 0.568 0.555 0.578 0.621 0.604 0.632 0.667 0.602 0.628 0.637 0.630
fraud 0.182 0.387 0.551 0.296 0.269 0.156 0.483 0.003 0.294 0.287 0.539 0.450 0.483 0.634 0.802 0.436
glass 0.214 0.423 0.381 0.268 0.210 0.186 0.523 0.231 0.183 0.185 0.923 0.411 0.197 0.287 0.256 0.399
hepatitis 0.554 0.903 0.437 0.776 0.648 0.544 0.987 0.349 0.658 0.645 0.998 0.998 0.350 0.406 0.580 0.607
http 0.534 1.000 0.971 0.999 0.917 0.575 0.361 0.007 0.684 0.904 0.708 0.881 0.923 0.990 0.417 1.000
internetads 0.292 0.492 0.504 0.481 0.470 0.318 0.516 0.431 0.474 0.470 0.600 0.605 0.494 0.439 0.558 0.478
ionosphere 0.917 0.980 0.946 0.975 0.909 0.775 0.981 0.717 0.932 0.914 0.991 0.986 0.743 0.965 0.962 0.979
landsat 0.473 0.548 0.614 0.370 0.327 0.403 0.494 0.376 0.312 0.403 0.531 0.451 0.367 0.523 0.374 0.425
letter 0.082 0.087 0.113 0.083 0.080 0.104 0.089 0.157 0.081 0.080 0.128 0.089 0.089 0.099 0.090 0.090
lymphography 0.944 0.992 0.842 1.000 0.985 0.735 0.968 0.309 0.988 0.986 1.000 0.999 0.417 0.437 1.000 1.000
magic.gamma 0.803 0.859 0.864 0.792 0.752 0.645 0.695 0.832 0.761 0.753 0.813 0.773 0.862 0.857 0.895 0.797
mammography 0.379 0.413 0.341 0.405 0.416 0.220 0.275 0.272 0.278 0.418 0.171 0.190 0.300 0.553 0.402 0.442
mnist 0.541 0.727 0.710 0.662 0.650 0.461 0.460 0.597 0.651 0.650 0.684 0.684 0.813 0.855 0.592 0.770
musk 0.404 1.000 1.000 1.000 1.000 0.706 0.999 0.157 1.000 1.000 0.922 1.000 0.591 0.382 1.000 0.996
optdigits 0.154 0.291 0.436 0.069 0.060 0.050 0.045 0.192 0.078 0.060 0.509 0.363 0.081 0.261 0.173 0.287
pageblocks 0.434 0.676 0.711 0.642 0.594 0.603 0.520 0.735 0.635 0.594 0.681 0.647 0.413 0.409 0.675 0.703
pendigits 0.588 0.970 0.785 0.518 0.386 0.117 0.093 0.146 0.334 0.391 0.664 0.353 0.113 0.483 0.522 0.409
pima 0.737 0.754 0.684 0.720 0.712 0.565 0.598 0.534 0.651 0.715 0.786 0.630 0.701 0.638 0.649 0.704
satellite 0.824 0.860 0.859 0.809 0.778 0.760 0.811 0.775 0.790 0.810 0.876 0.886 0.765 0.810 0.846 0.831
satimage-2 0.945 0.967 0.885 0.969 0.919 0.475 0.763 0.793 0.959 0.929 0.947 0.954 0.967 0.866 0.714 0.963
shuttle 0.986 0.979 0.998 0.977 0.963 0.660 0.980 0.134 0.602 0.963 0.997 0.980 0.952 0.953 0.942 0.985
skin 0.646 0.982 0.617 0.663 0.364 0.504 0.430 0.656 0.422 0.401 0.325 0.787 0.723 0.797 0.655 0.603
smtp 0.011 0.505 0.481 0.645 0.495 0.209 0.307 0.087 0.324 0.494 0.038 0.500 0.473 0.594 0.440 0.547
spambase 0.883 0.833 0.727 0.822 0.818 0.742 0.753 0.791 0.821 0.818 0.868 0.856 0.807 0.784 0.838 0.831
speech 0.033 0.028 0.032 0.028 0.028 0.040 0.034 0.036 0.028 0.028 0.034 0.031 0.032 0.034 0.029 0.336
stamps 0.588 0.717 0.648 0.649 0.588 0.465 0.426 0.285 0.496 0.599 0.795 0.506 0.486 0.485 0.554 0.635
thyroid 0.797 0.809 0.606 0.789 0.813 0.631 0.691 0.744 0.801 0.813 0.515 0.741 0.585 0.406 0.832 0.818
vertebral 0.207 0.261 0.339 0.222 0.193 0.251 0.234 0.234 0.214 0.178 0.588 0.199 0.186 0.184 0.193 0.702
vowels 0.120 0.302 0.331 0.274 0.105 0.073 0.169 0.132 0.209 0.101 0.274 0.392 0.091 0.386 0.384 0.323
waveform 0.105 0.270 0.307 0.109 0.084 0.061 0.115 0.201 0.089 0.084 0.186 0.053 0.053 0.083 0.103 0.104
wbc 0.942 0.920 0.249 0.972 0.943 0.568 0.565 0.239 0.919 0.932 0.951 0.981 0.912 0.765 0.337 0.819
wdbc 0.720 0.820 0.936 0.874 0.821 0.309 0.843 0.122 0.788 0.836 0.956 0.891 0.903 0.903 0.714 0.944
wilt 0.088 0.122 0.157 0.071 0.064 0.084 0.071 0.096 0.109 0.072 0.289 0.122 0.077 0.237 0.253 0.313
wine 0.671 0.951 0.899 0.887 0.692 0.509 0.786 0.185 0.701 0.695 0.983 1.000 0.930 0.902 0.127 0.877
wpbc 0.407 0.461 0.412 0.409 0.400 0.372 0.749 0.360 0.389 0.403 0.893 0.875 0.412 0.365 0.401 0.838
yeast 0.468 0.483 0.489 0.479 0.468 0.518 0.492 0.498 0.508 0.465 0.495 0.506 0.467 0.499 0.500 0.537

Average Value 0.481 0.621 0.566 0.555 0.515 0.393 0.487 0.365 0.478 0.518 0.612 0.568 0.488 0.538 0.530 0.622
Average Ranking 9.46 5.23 7.35 7.02 9.66 12.45 10.30 11.53 10.52 9.39 5.64 6.94 9.70 8.15 7.87 4.79
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F1 scores of AGNI on full benchmark datasets Based on the F1 scores (↑) summarized in Ta-
ble A4, AGNI achieves the highest average F1 score and best average rank across 47 datasets, con-
sistently demonstrating robustness across diverse evaluation metrics.

Table A4: Comparison of F1 scores (↑) across 47 tabular anomaly detection datasets. Each value
represents the average over five independent runs with different random seeds. For each dataset, the
best result is highlighted in bold, and the second-best is underlined.

Dataset IForest kNN LOF OC-
SVM PCA DA-

GMM
Deep-
SVDD

DRO-
CC GOAD VAE ICL SLAD MCM DRL DTE AGNI

aloi 0.042 0.059 0.082 0.073 0.076 0.060 0.052 0.000 0.057 0.076 0.049 0.053 0.099 0.090 0.043 0.072
annthyroid 0.550 0.620 0.496 0.536 0.500 0.457 0.233 0.574 0.558 0.502 0.494 0.660 0.342 0.260 0.773 0.715
backdoor 0.041 0.520 0.724 0.079 0.083 0.052 0.830 0.854 0.048 0.085 0.872 0.000 0.678 0.873 0.797 0.738
breastw 0.969 0.958 0.854 0.967 0.958 0.835 0.918 0.483 0.957 0.961 0.959 0.969 0.975 0.951 0.886 0.967
campaign 0.437 0.504 0.422 0.496 0.488 0.341 0.379 0.000 0.226 0.488 0.510 0.498 0.427 0.477 0.520 0.591
cardio 0.675 0.619 0.625 0.705 0.761 0.531 0.384 0.469 0.749 0.761 0.522 0.608 0.408 0.598 0.580 0.837
cardiotocography 0.561 0.464 0.483 0.579 0.616 0.523 0.371 0.340 0.600 0.616 0.389 0.338 0.690 0.587 0.406 0.630
celeba 0.173 0.172 0.019 0.274 0.272 0.142 0.084 0.086 0.040 0.270 0.127 0.137 0.102 0.159 0.199 0.244
census 0.105 0.225 0.131 0.207 0.208 0.145 0.193 0.155 0.050 0.208 0.240 0.086 0.154 0.095 0.179 0.228
cover 0.116 0.651 0.824 0.245 0.162 0.122 0.034 0.419 0.000 0.162 0.400 0.091 0.000 0.441 0.341 0.714
donors 0.435 0.949 0.745 0.395 0.373 0.219 0.414 0.294 0.043 0.378 0.972 0.559 0.645 0.805 0.813 0.407
fault 0.536 0.556 0.507 0.551 0.553 0.532 0.549 0.567 0.560 0.552 0.576 0.601 0.599 0.567 0.552 0.590
fraud 0.280 0.452 0.595 0.415 0.333 0.209 0.581 0.000 0.373 0.345 0.574 0.474 0.507 0.639 0.801 0.460
glass 0.162 0.259 0.205 0.150 0.158 0.137 0.454 0.155 0.202 0.180 0.878 0.350 0.150 0.200 0.178 0.340
hepatitis 0.540 0.813 0.419 0.666 0.606 0.475 0.938 0.293 0.579 0.605 0.996 0.996 0.298 0.329 0.508 0.529
http 0.258 1.000 0.968 0.998 0.927 0.489 0.250 0.000 0.564 0.919 0.607 0.885 0.259 0.990 0.019 1.000
internetads 0.264 0.519 0.546 0.462 0.457 0.319 0.543 0.384 0.461 0.457 0.559 0.578 0.577 0.440 0.641 0.471
ionosphere 0.834 0.905 0.875 0.926 0.790 0.693 0.931 0.602 0.834 0.798 0.942 0.926 0.611 0.901 0.890 0.939
landsat 0.433 0.515 0.536 0.386 0.340 0.409 0.422 0.408 0.330 0.388 0.538 0.469 0.385 0.517 0.379 0.439
letter 0.038 0.010 0.100 0.010 0.010 0.086 0.050 0.136 0.012 0.010 0.072 0.016 0.024 0.056 0.026 0.020
lymphography 0.851 0.945 0.749 1.000 0.909 0.676 0.898 0.262 0.931 0.930 1.000 0.995 0.400 0.267 1.000 1.000
magic.gamma 0.696 0.762 0.761 0.684 0.652 0.574 0.599 0.726 0.627 0.652 0.696 0.659 0.762 0.744 0.807 0.696
mammography 0.392 0.404 0.385 0.419 0.446 0.269 0.316 0.327 0.356 0.450 0.174 0.222 0.329 0.536 0.375 0.452
mnist 0.526 0.719 0.714 0.643 0.639 0.447 0.433 0.573 0.639 0.639 0.649 0.670 0.743 0.790 0.605 0.755
musk 0.359 1.000 1.000 1.000 1.000 0.707 0.992 0.122 1.000 1.000 0.833 1.000 0.522 0.380 1.000 0.990
optdigits 0.128 0.213 0.533 0.007 0.007 0.003 0.000 0.201 0.004 0.007 0.577 0.399 0.045 0.292 0.136 0.347
pageblocks 0.426 0.590 0.659 0.557 0.469 0.579 0.547 0.684 0.502 0.469 0.649 0.602 0.378 0.403 0.629 0.632
pendigits 0.580 0.904 0.763 0.532 0.442 0.140 0.123 0.192 0.415 0.442 0.612 0.444 0.106 0.471 0.624 0.458
pima 0.696 0.706 0.667 0.686 0.693 0.540 0.559 0.500 0.592 0.705 0.735 0.589 0.681 0.608 0.625 0.702
satellite 0.671 0.718 0.726 0.673 0.627 0.651 0.678 0.675 0.636 0.662 0.750 0.782 0.596 0.674 0.721 0.695
satimage-2 0.896 0.901 0.817 0.915 0.873 0.504 0.732 0.763 0.907 0.882 0.884 0.887 0.910 0.839 0.694 0.907
shuttle 0.967 0.982 0.984 0.965 0.958 0.679 0.981 0.000 0.563 0.958 0.988 0.985 0.977 0.956 0.980 0.983
skin 0.781 0.964 0.708 0.800 0.379 0.557 0.433 0.784 0.520 0.447 0.011 0.746 0.750 0.835 0.784 0.698
smtp 0.000 0.695 0.658 0.695 0.695 0.263 0.340 0.138 0.486 0.696 0.070 0.696 0.462 0.664 0.667 0.667
spambase 0.805 0.805 0.740 0.786 0.785 0.684 0.696 0.739 0.788 0.785 0.793 0.815 0.767 0.718 0.800 0.814
speech 0.039 0.033 0.033 0.033 0.033 0.033 0.013 0.029 0.029 0.033 0.026 0.062 0.039 0.026 0.043 0.326
stamps 0.636 0.755 0.635 0.634 0.579 0.470 0.371 0.280 0.527 0.614 0.772 0.510 0.512 0.437 0.529 0.650
thyroid 0.804 0.753 0.527 0.753 0.742 0.654 0.656 0.690 0.742 0.742 0.561 0.712 0.551 0.419 0.768 0.762
vertebral 0.158 0.238 0.337 0.204 0.139 0.212 0.167 0.170 0.182 0.141 0.634 0.142 0.080 0.093 0.120 0.627
vowels 0.152 0.260 0.340 0.280 0.120 0.056 0.208 0.136 0.236 0.120 0.244 0.388 0.036 0.396 0.392 0.320
waveform 0.102 0.270 0.280 0.130 0.090 0.046 0.146 0.266 0.098 0.080 0.268 0.022 0.063 0.077 0.126 0.111
wbc 0.882 0.864 0.203 0.898 0.873 0.462 0.542 0.266 0.865 0.884 0.929 0.922 0.909 0.709 0.360 0.745
wdbc 0.709 0.787 0.856 0.803 0.788 0.325 0.833 0.087 0.758 0.787 0.905 0.852 0.909 0.818 0.620 0.818
wilt 0.020 0.023 0.167 0.012 0.016 0.057 0.006 0.015 0.124 0.019 0.352 0.070 0.000 0.321 0.163 0.288
wine 0.711 0.872 0.808 0.783 0.660 0.485 0.698 0.128 0.655 0.679 0.993 1.000 0.909 0.800 0.000 0.800
wpbc 0.366 0.491 0.413 0.358 0.336 0.332 0.702 0.319 0.342 0.365 0.905 0.879 0.396 0.329 0.396 0.838
yeast 0.445 0.468 0.477 0.466 0.434 0.520 0.495 0.488 0.532 0.443 0.503 0.493 0.462 0.492 0.497 0.521

Average Value 0.452 0.593 0.555 0.528 0.490 0.377 0.463 0.336 0.453 0.498 0.591 0.550 0.452 0.512 0.510 0.607
Average Ranking 9.40 5.67 7.15 7.54 9.61 12.35 10.51 11.66 10.24 9.00 5.66 6.80 9.59 8.48 7.57 4.77
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Table A5: Detailed results of the component-wise experiments on the subset

Setting Performance annthyroid cardiotocography stamps vowels yeast Avg.

AUC-ROC 0.957 0.788 0.920 0.668 0.506 0.768
A AUC-PR 0.752 0.699 0.583 0.216 0.525 0.555

F1 score 0.697 0.631 0.625 0.220 0.518 0.538
Time (s) 0.030 0.019 0.022 0.019 0.018 0.022

AUC-ROC 0.958 0.793 0.913 0.622 0.535 0.764
B AUC-PR 0.759 0.713 0.573 0.204 0.545 0.559

F1 score 0.720 0.632 0.625 0.297 0.526 0.560
Time (s) 0.030 0.019 0.023 0.019 0.020 0.022

AUC-ROC 0.955 0.804 0.936 0.721 0.535 0.790
C AUC-PR 0.775 0.717 0.630 0.228 0.539 0.578

F1 score 0.715 0.624 0.656 0.247 0.531 0.555
Time (s) 0.044 0.030 0.030 0.027 0.027 0.031

AUC-ROC 0.974 0.826 0.930 0.754 0.553 0.808
D (AGNI) AUC-PR 0.813 0.760 0.649 0.301 0.548 0.614

F1 score 0.766 0.687 0.688 0.300 0.543 0.597
Time (s) 0.044 0.029 0.030 0.030 0.027 0.032

Detailed results of component-wise analysis Table A5 reports the component-wise ablation re-
sults of AGNI on the selected subset (annthyroid, cardiotocography, stamps, vowels, and yeast)).
Setting A-D correspond to the configuration described in Table 4 of the main text and are detailed
as follows. All experiments were conducted using a single random seed.

• Setting A: A vanilla transformer-based autoencoder without any of the proposed compo-
nents.

• Setting B: Incorporates the attention-guided masking component into Setting A. The mask-
ing ratio is varied from 0.3 to 0.8 in increments of 0.1, and the average performance is
reported.

• Setting C: Incorporates the neighbor-informed reconstruction component info Setting A.
The number of neighbors is set to 1, 2, and 3, and results are averaged across these values.

• Setting D: Represents the full AGNI model, which integrates both proposed components.
For each dataset, the masking ratio and number of neighbors are set to the best-performing
configuration.

Detailed results of configuration-wise variants on the subset Table A6 presents the performance
of five configuration-wise variants evaluated on the five subsets. Each variant modifies one or more
components of the masking strategy, the neighbor selection criterion, and the fusion strategy. Vari-
ant 5 corresponds to AGNI, our proposed framework. AGNI (Variant 5) achieves the best average
performance in all evaluation metrics, demonstrating the effectiveness of its design. A closer com-
parison with other variants highlights the contribution of each component:

• Attention-guided masking vs. random masking (Variant 5 vs. Variant 4): Replacing
attention-guided masking with random masking leads to performance drops, particularly
in AUC-PR (from 0.614 to 0.483) and F1 score (from 0.597 to 0.501). This indicates that
masking based on attention scores allows more informative and discriminative learning.

• Attention-based neighbor selection vs. embedding similarity (Variant 5 vs. Variant 3):
Using embedding similarity for neighbor selection instead of attention scores results in
lower performance across all metrics. This suggests that attention-based selection captures
structural relationships more effectively.

• Fusion by individual concatenation vs. averaging (Variant 5 vs. Variants 1 and 2):
Variants 1 and 2 use averaging-based fusion strategies, which underperform compared to
direct concatenation. This shows that reserving neighbor-specific signals through explicit
concatenation leads to better utilization of contextual information.

Overall, these results validate the effectiveness of AGNI’s configuration and demonstrate that
each component—attention-guided masking, attention-based neighbor selection, and concatenation-
based fusion—contributes meaningfully to performance improvements.
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Table A6: Detailed results of Evaluation results for configuration-wise variants on the subset.

Variant Masking
Neighbor-
selection
criteria

Fusion
strategy Metric annthyroid cardio-

tocography stamps vowels yeast Avg.

AUC-
ROC 0.873 0.784 0.916 0.825 0.443 0.768

1 Attention-
guided

Attention
score

[
1

M+1

(
z +

∑M
i zi

)] AUC-
PR 0.585 0.694 0.561 0.233 0.472 0.509

F1
score 0.515 0.612 0.563 0.280 0.465 0.487

AUC-
ROC 0.977 0.793 0.908 0.716 0.561 0.791

2 Attention-
guided

Attention
score [z; 1

M

∑M
i zi]

AUC-
PR 0.827 0.707 0.550 0.249 0.555 0.578

F1
score 0.800 0.620 0.563 0.300 0.549 0.566

AUC-
ROC 0.966 0.784 0.914 0.826 0.513 0.801

3 Attention-
guided

Embedding
sim. [z; z1; . . . ; zM ]

AUC-
PR 0.769 0.693 0.557 0.325 0.529 0.575

F1
score 0.719 0.616 0.563 0.340 0.514 0.550

AUC-
ROC 0.924 0.726 0.773 0.616 0.519 0.712

4 Random Attention
score [z; z1; . . . ; zM ]

AUC-
PR 0.743 0.617 0.354 0.171 0.531 0.483

F1
score 0.723 0.552 0.438 0.260 0.531 0.501

AUC-
ROC 0.974 0.826 0.930 0.754 0.553 0.808

5
(AGNI)

Attention-
guided

Attention
score [z; z1; . . . ; zM ]

AUC-
PR 0.813 0.760 0.649 0.301 0.548 0.614

F1
score 0.766 0.687 0.688 0.300 0.543 0.597

Table A7: Optimal masking ratio and number of neighbors per dataset.

Dataset Masking Ratio Neighbors Dataset Masking Ratio Neighbors

aloi 0.7 1 musk 0.4 3
annthyroid 0.3 1 optdigits 0.7 1
backdoor 0.4 2 pageblocks 0.6 1
breastw 0.4 3 pendigits 0.4 3

campaign 0.6 1 pima 0.3 2
cardio 0.4 1 satellite 0.4 2

cardiotocography 0.5 1 satimage-2 0.4 3
celeba 0.8 2 shuttle 0.5 1
census 0.5 3 skin 0.7 3
cover 0.6 1 smtp 0.7 2

donors 0.3 1 spambase 0.7 2
fault 0.3 3 speech 0.3 2
fraud 0.7 3 stamps 0.6 1
glass 0.8 1 thyroid 0.7 1

hepatitis 0.3 2 vertebral 0.4 1
http 0.8 3 vowels 0.7 3

internetads 0.4 3 waveform 0.8 3
ionosphere 0.8 3 wbc 0.4 3

landsat 0.6 1 wdbc 0.3 1
letter 0.4 2 wilt 0.6 1

lymphography 0.3 1 wine 0.5 1
magic 0.8 1 wpbc 0.6 3

mammography 0.4 1 yeast 0.7 2
mnist 0.5 3

Anomaly Ratio Analysis At test time, the ratio of anomalies to normal samples can affect evalu-
ation results, but AGNI’s detection mechanism—based on reconstruction errors and learned normal
patterns—remains stable across different anomaly proportions. To empirically validate this robust-
ness, we leveraged the ADBench benchmark used in our study, which comprises 47 datasets. We
categorized these datasets into three groups based on their anomaly ratios, with each category con-
taining a similar number of datasets: low ratio (< 3.2%), medium ratio (3.2-10.2%), and high ratio
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Figure A1: Spearman correlation heatmap of 47 real-world tabular datasets

Table A8: AUC-ROC performance by anomaly ratio groups (mean±std)

Method Low (0, 3.2] Medium (3.2, 10.2] High (10.2, 40]

IForest 0.832±0.181 0.809±0.205 0.707±0.176
kNN 0.871±0.190 0.872±0.178 0.762±0.167
LOF 0.851±0.217 0.853±0.160 0.708±0.138

OCSVM 0.829±0.198 0.819±0.221 0.719±0.174
PCA 0.819±0.201 0.789±0.243 0.676±0.172

DAGMM 0.710±0.183 0.681±0.176 0.621±0.116
DeepSVDD 0.703±0.210 0.704±0.209 0.683±0.180

DROCC 0.683±0.219 0.601±0.175 0.575±0.141
GOAD 0.706±0.262 0.719±0.246 0.664±0.168
VAE 0.819±0.201 0.796±0.230 0.694±0.163
ICL 0.841±0.178 0.873±0.159 0.741±0.239

SLAD 0.799±0.217 0.834±0.181 0.757±0.191
MCM 0.770±0.214 0.765±0.197 0.666±0.180
DRL 0.835±0.167 0.810±0.174 0.695±0.177
DTE 0.856±0.185 0.824±0.196 0.713±0.173

AGNI 0.908±0.127 0.878±0.155 0.790±0.133

(> 10.2%). Table A8 shows the analysis results. Analysis of AUC-ROC for each group revealed that
AGNI achieved the highest AUC-ROC performance across all three categories while maintaining
the smallest standard deviations. These experimental findings confirm that AGNI maintains superior
and consistent detection performance across a wide range of conditions from low to high anomaly
ratios. We attribute this robustness to AGNI’s adaptive design: although a higher anomaly ratio
increases the likelihood of including anomalous samples among the retrieved neighbors, AGNI’s
attention mechanism assigns low weights to such outliers, thereby limiting their influence on recon-
struction. Additionally, since anomaly scores are based on instance-specific reconstruction errors
of informative features, even when neighbors are noisy, abnormal instances still yield significantly
larger errors, enabling robust detection via relative ranking.

Dataset-wise analysis of optimal masking ratio and neighbor count We report the optimal
masking ratio and number of neighbors per dataset in Table A7. According to the Spearman cor-
relation heatmap results Figure A1, a weak positive correlation (ρ ≈ 0.25) was observed between
masking ratio and sample size. This suggests that datasets with larger sample sizes tended to benefit
from relatively higher masking ratios for performance improvement. Similarly, a positive correlation
of comparable magnitude (ρ ≈ 0.28) was found between the number of features and the number of
neighbors, indicating that configurations using more neighbors were more frequently selected for
optimal performance in cases with higher feature dimensionality.
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Algorithm 1 Attention-Guided Masking and Neighbor-Aware Decoding

Require: Training data Dtrain, masking ratio ρ, neighbors K
Ensure: Trained encoder fenc and decoder fdec

Initialize encoder fenc and decoder fdec
repeat

for each mini-batch B ⊂ Dtrain do
Compute attention scores {si} for all xi ∈ B
Lbatch ← 0
for each sample xi ∈ B do

Mask top-ρ features based on si to get x̃i

Find K neighbors with most similar attention score vectors
zi ← fenc(x̃i)
Zneighbors ← encoded representations of K neighbors
ci ← Concatenate(zi,Zneighbors)
x̂i ← fdec(ci)
Lbatch ← Lbatch + ∥xi − x̂i∥22

end for
Update model parameters using Lbatch/|B|

end for
until convergence

D ALGORITHM

For completeness, we present the pseudocode of our training procedure in Algorithm 1. The algo-
rithm summarizes the two key components described in method section: (1) attention-guided feature
masking based on transformer attention scores, and (2) neighbor-informed reconstruction using rep-
resentations of attention-similar samples. This formulation highlights how instance-specific masking
and contextual reconstruction are integrated during self-supervised training.

E COMPUTATION AND RUNTIME ANALYSIS

E.1 STEP-WISE COMPUTATION ANALYSIS

We analyze the test-time computational complexity of our method in terms of the batch size B, input
feature dimension d, and number of attention heads H . We also assume that the number of neighbors
M is a small constant (we use M = 3 in all experiments) and is therefore omitted from asymptotic
expressions.

Step 1: Transformer encoding and attention extraction. Each of the B test samples is passed
through a transformer encoder. The cost of multi-head self-attention is O(Hd2) per sample, resulting
in:

O(BHd2)

Attention scores are extracted from the final encoder layer and reduced via max pooling over heads
and features, which adds only O(BHd) cost—negligible compared to the encoder’s complexity.

Step 2: Masking. Generating and applying binary masks involves sorting or thresholding the d-
dimensional attention score vector per sample. This step requires O(Bd) operations and is domi-
nated by the encoder and retrieval costs.

Step 3: Pairwise similarity computation. We compute cosine similarity between the attention score
vectors for all sample pairs within the batch. Each similarity computation takes O(d) time, resulting
in:

O(B2d)

Step 4: Neighbor retrieval. Each sample retrieves its top-M nearest neighbors based on cosine
similarity. Top-M selection can be done in O(B) time per sample, yielding:

O(B2)
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This is strictly dominated by the previous step and thus omitted from the final complexity expression.

Step 5: MLP decoding. For each sample, the decoder receives a concatenated representation of its
own latent vector and those of its M retrieved neighbors, producing a vector of dimension (M+1)·d.
The decoder is a 3-layer MLP with fully connected layers of hidden size d, yielding a per-sample
cost of O((M + 1)2d2) = O(d2). Across all B samples:

O(Bd2)

Total complexity. Combining all dominant steps, the overall test-time complexity is:

O(BHd2 +B2d)

In typical settings (e.g., H = 8, d = 100, B = 64), the B2d term arising from similarity compu-
tation dominates. This justifies our use of moderate batch sizes, which provide a favorable trade-off
between retrieval quality and computational efficiency.
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