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ABSTRACT

One-class classification for tabular anomaly detection remains challenging due to
the scarcity of labeled anomalies and the absence of explicit structural relation-
ships among samples. Existing approaches have largely focused on intra-instance
modeling, such as masking or reconstruction, while inter-sample modeling has re-
ceived comparatively little attention. We propose AGNI (Attention-Guided Mask-
ing and Neighbor-Informed Reconstruction), a self-supervised framework that
reimagines attention as a dual supervisory signal unifying these two perspec-
tives. Specifically, Attention-Guided Masking leverages attention to identify and
hide salient features, enforcing the learning of fine-grained intra-instance depen-
dencies. At the same time, Neighbor-Informed Reconstruction repurposes the
same attention scores to retrieve structurally similar neighbors, whose representa-
tions provide contextual support during reconstruction. By tightly coupling intra-
instance and inter-sample objectives within a single attention space, AGNI trans-
forms attention from a representational tool into a coordinating structural signal.
Extensive experiments on 47 real-world datasets from ADBench demonstrate that
AGNI achieves the best overall ranking among 15 classical and deep-learning
baseline. Code is available in the supplementary material.

Anomaly detection in tabular data plays a crucial role in diverse applications such as fraud detection,
healthcare monitoring, and industrial process control (Ahmad et al., {2021} |[Fernando et al.| 2021} |Ye
et al.| [2023a; |Al-Hashedi & Magalingam, 2021). In these domains, labeled anomalies are scarce,
ambiguous, or costly to obtain, making one-class classification (OCC) a natural and widely adopted
formulation Ruff et al.| (2021); |Ye et al.| (2023b); [Chandola et al.| (2009); |Guo et al.| (2023). The
central challenge in this setting is to accurately capture the distribution of normal data such that
anomalies can be identified as meaningful deviations (Yin et al., [2024; [Shenkar & Wolfl, [2022).
However, tabular data presents unique difficulties due to the heterogeneity of feature types and the
lack of inherent structural relationships, which stand in sharp contrast to the spatial or sequential
structures found in images and text.

Most prior work has therefore concentrated on intra-instance modeling—for example, through fea-
ture masking or reconstruction tasks—to capture dependencies within each sample (Yin et al.|[2024).
By contrast, inter-sample modeling, which has played a central role in anomaly detection for other
modalities such as images (Gong et al., [2019), time series (Audibert et al., [2020), and graphs (Fan
et al.| [2020), has received relatively little attention in the tabular setting. We attribute this scarcity to
the absence of explicit structural relationships, which makes it difficult to define meaningful simi-
larity across samples (Somepalli et al.| 2021)). Yet inter-sample modeling is essential, as it provides
complementary structural signals that help define normality beyond individual feature interactions,
thereby improving robustness against subtle or context-dependent anomalies. Only recently have a
handful of studies explored retrieval-based approaches for tabular data, but these remain limited by
their reliance on naive embedding similarity (Thimonier et al.,[2024).

As a result, intra-instance and inter-sample perspectives have remained largely isolated. Exist-
ing attention-based models for tabular data (e.g., SAINT (Somepalli et al.l [2021), TabTrans-
former (Huang et al, |2020)) further reinforce this separation, as they employ attention only as a
representational mechanism without turning it into a learning signal. We argue that a promising di-
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rection is to develop a unified supervisory source that can actively coordinate both perspectives—a
possibility that, to the best of our knowledge, remains unexplored in tabular anomaly detection.

In this work, we present AGNI (Attention-Guided Masking and Neighbor-Informed Reconstruc-
tion), a self-supervised framework that reimagines attention not merely as an encoding tool but as a
dual supervisory signal for both feature masking and neighbor retrieval. Specifically, AGNI (i) iden-
tifies and masks structurally salient features to enforce the learning of fine-grained intra-instance de-
pendencies, and (ii) retrieves attention-similar neighbors whose representations provide contextual
support during reconstruction. By tightly coupling these objectives within a shared attention space,
AGNI transforms attention into a coordinating structural signal that unifies intra- and inter-instance
modeling.

Beyond empirical gains, AGNI also reveals a distinctive qualitative phenomenon: as we later demon-
strate in t-SNE visualizations (Figure f)), normal samples tend to retrieve compact neighborhoods,
whereas anomalous samples yield scattered neighbors. This behavior provides interpretable evi-
dence of AGNTI’s structural novelty and highlights how the proposed design principle offers insights
beyond numerical performance. We validate AGNI on 47 real-world datasets from the ADBench
benchmark |Ye et al.| (2023b)), where it achieves the best overall ranking among 15 classical and
deep-learning baselines. Our contributions are summarized as follows:

* We introduce a dual-purpose attention mechanism that simultaneously governs feature
masking and neighbor retrieval, offering a unified view of intra- and inter-instance struc-
ture.

* We propose a reconstruction-based SSL framework that leverages this dual role of attention
to generate challenging and informative pretext tasks.

* We demonstrate both quantitative superiority—achieving consistent improvements across
diverse datasets—and qualitative novelty, where AGNI’s asymmetric neighbor retrieval
naturally distinguishes normal from anomalous samples.

1 RELATED WORKS

1.1 CLASSICAL ANOMALY DETECTION

Anomaly detection in tabular data has long been studied under the one-class classification setting,
where only normal instances are available during training. Traditional methods fall into several
categories, including distance-based scoring, classification boundaries, and reconstruction meth-
ods (Ruff et al.,[2021)). Distance-based methods such as Isolation Forest (Liu et al.| | 2008]), k-Neareset
Neighbors (KNN) (Ramaswamy et al.,2000), and Local Outlier Factor (LOF) (Breunig et al.| [2000)
assign anomaly scores based on local proximity or density deviations. One-class SVM (Scholkopf
et al.l [1999) is a representative classification-based method that aims to enclose normal data within
a learned boundary. Reconstruction-based methods, such as PCA (Shyu et al.,2003), project data to
a lower-dimensional space and identify anomalies through reconstruction errors. Despite their sim-
plicity and computational efficiency, these classical approaches often struggle to capture complex,
nonlinear feature interactions in real-world datasets.

1.2 DEEP LEARNING FOR ONE-CLASS ANOMALY DETECTION

To address the shortcomings of classical methods, deep learning-based anomaly detection ap-
proaches have been proposed. Autoencoder-based models such as DAGMM (Zong et al., 2018)
reconstruct normal inputs and detect samples with high reconstruction errors as anomalies. Other
methods, like DeepSVDD (Ruff et al.| [2018) and DROCC (Goyal et al., [2020), learn compact
representations or decision surfaces that enclose normal data, excluding anomalies. Recently, self-
supervised learning has been applied to one-class classification with notable success. ICL (Shenkar
& Wolll 2022)) maximizes mutual information between different feature groups within each sam-
ple. MCM (Yin et al.| 2024) employs learnable soft masking to learn feature interactions. They
commonly rely on static transformation strategies or intra-instance objectives, lacking mechanisms
for adapting tasks to instance-specific contexts or modeling relational structures across samples. In
parallel, diffusion-based methods have emerged as a promising direction. DTE (Livernoche et al.|
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Figure 1: Overview of the proposed AGNI architecture. Get Att computes attention-based feature
importance scores, which are passed to GetMask to generate masks. The retrieval module selects
neighbors with similar feature-wise importance based on these scores. Finally, the decoder recon-
structs the input using the masked input and the retrieved neighbor representations, and the model is
trained with a reconstruction loss.

2023) estimates the posterior distribution over diffusion time for each input sample and uses either
the mode or the mean of this distribution as the anomaly score. One recent attempt to leverage inter-
sample structure (Thimonier et al.||2024)) incorporates retrieved neighbors into reconstruction, but its
weighted aggregation strategy showed limited generalization across real-world datasets. Our work
differs from prior approaches in two key aspects. First, instead of relying on static or uniform mask-
ing strategies, we use transformer attention to identify contextually important features and construct
more informative reconstruction tasks. Second, unlike methods that reconstruct samples indepen-
dently, we incorporate attention-wise similar neighbors during decoding, enabling relational context
to enhance anomaly detection.

2 METHODS

We propose AGNI, a reconstruction-based SSL framework for one-class classification in tabular
data (see Figure [T). AGNI consists of two key components: (1) attention-guided masking and (2)
neighbor-informed reconstruction.

2.1 PROBLEM FORMULATION

We consider the one-class classification in tabular data, where only normal samples are available
during training. Given a training set Dyyin = {X1,X2, . ..,Xx }, with each x; € R? drawn from the
normal data distribution P, omar, OUr objective is to detect unseen anomalies at test time by measuring
how well a model can reconstruct the original input.

To this end, we train an encoder fy and a decoder g, to reconstruct the original input from a masked
version produced by a masking operator M:

%glEwa".am [[Ix = go (fo(M(x)))]I5] (1

)

The key challenge lies in designing M to construct challenging pretext tasks that capture instance-
specific feature dependencies. At test time, the anomaly score is defined as the reconstruction error:

AnomalyScore(x) := ||x — g4 (fo(M(x)))|13 (2)
AGNI incorporates two components to effectively model normal data structures:
* Attention-Guided Masking: This component masks structurally significant features iden-

tified via self-attention, compelling the model to learn inter-feature dependencies by recon-
structing them from the remaining context.
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* Neighbor-Informed Reconstruction: During decoding, the model integrates representa-
tions from attention-similar samples within the batch, providing contextual information that
aids in reconstructing masked features and implicitly capturing inter-sample relationships.

Together, these components enable AGNI to learn both intra-instance structures and inter-instance
contexts, enhancing anomaly detection performance. Detailed descriptions of the masking and re-
trieval components are provided in the following sections, respectively.

2.2 ATTENTION-GUIDED MASKING

AGNI employs a transformer-based autoencoder architecture. Given an input x € R%, we first embed
each feature into tokens using a token embedding scheme (Gorishniy et al.| [2021)). The embedded
input is processed through a transformer encoder with L layers and H attention heads to extract
feature representations and attention scores. We leverage self-attention scores to identify and mask
the most informative features. For each input x, we extract attention weights from the final encoder
layer and compute an importance score for each feature:

= GetAtt(a?J) = ér}%XH <1I£]a§(d a?,i> 3)
where a}‘yi represents the attention weight from token j to token ¢ in head h. The importance score, s;
captures the maximum contextual relevance of feature ¢ across all attention heads and positions. The
use of the maximum operation benefits both training and inference. During training, it encourages
the model to focus on the most important feature relationships when predicting masked features,
reinforcing the learning of inter-feature dependencies. At inference time, it helps amplify the effect
of disrupted relationships in anomalous samples, resulting in more distinctive reconstruction errors.

The GetMask module selects the top-p fraction of features based on importance scores and gener-
ates a binary mask. Let k = |p - d] be the number of features to mask. The mask m € {0,1}¢ is

defined as:
0 if 7 € Siop-p
i = . 4
" {1 otherwise @

where S, contains the indices of the top-k features. The masked input is then computed as
X = m © x. By masking features with high attention scores, our method removes structurally im-
portant information from each instance. This forces the model to reconstruct these features from the
remaining ones, encouraging the learning of both inter-feature dependencies and instance-specific
feature relevance.

2.3 NEIGHBOR-INFORMED RECONSTRUCTION

To enhance reconstruction with contextual information from attention-similar samples and implic-
itly model inter-sample relationships, we introduce a neighbor-informed reconstruction. For each
sample, we identify structurally similar neighbors by computing cosine similarity between their
attention-derived importance vectors:

sim(x;, %) = ol )

lIsill - lls;

Our attention-based retrieval in AGNI differs from conventional embedding-based methods, which
compare samples based on aggregated sample embeddings. Instead, we compare attention score
distributions that reflect feature-level interaction patterns, allowing retrieval of structurally similar
instances even when raw feature values differ. We find that this strategy leads to more meaningful
neighbor selection, as discussed in Discussion Section.

The Retrieval module identifies the top-M most similar neighbors and concatenates their latent
representations with the representation of masked input, resulting in a combined context vector:

Ci = [2i12i15 - -3 Zi, 1] (6)
In AGNI, we use concatenation to preserve individual neighbor representations, assuming that each
neighbor may provide distinct contextual information identified through attention-based retrieval. In
contrast, alternative fusion strategies such as averaging may dilute meaningful signals by blending
diverse structural patterns across neighbors. We further evaluate these alternatives in Discussion
Section.
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2.4 TRAINING AND INFERENCE

In AGNI, we train the model using mean squared error loss:

B
1 . N
Erecon = E § ||Xz - Xi”%a where x; = g¢(Ci) @)
=1

where B is the batch size. During training, neighbors are retrieved from within each batch, implicitly
encouraging the model to learn relationships across the normal data distribution.

During inference, test samples are processed in batches where neighbors are selected based on at-
tention similarity. The anomaly score is defined as:

AnomalyScore(Xest) = ||Xtest — f(testH% (8)

with higher values indicating greater deviation from learned normal patterns.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETTINGS

Evaluation Benchmark To evaluate the effectiveness of our proposed AGNI, we utilize AD-
Bench Han et al| (2022), a comprehensive benchmark specifically designed for tabular anomaly
detection. We conduct extensive experiments on all 47 real-world tabular datasets provided in AD-
Bench, spanning domains including healthcare, finance, cybersecurity, and others such as biology
and industrial monitoring. These datasets inherently contain natural noise observed in real-world
data collection and operation, thereby providing a realistic evaluation environment. The consistent
performance of AGNI across such noisy and diverse datasets demonstrates its robustness and prac-
tical applicability. The statistical details of each dataset are provided in Appendix.

Baseline Methods We conducted extensive experiments by comparing our method against 15
representative baselines from both classical and deep learning-based anomaly detection methods.
The classical methods include Isolation Forest (IForest) (Liu et al., 2008), k-Nearest Neighbors
(kNN) (Ramaswamy et al., 2000), Local Outlier Factor (LOF) (Breunig et al., 2000), One-Class
SVM (OC-SVM) (Tax & Duinl [2004), and Principal Component Analysis (PCA) (Shyu et al.,[2003).
The deep learning-based baselines consist of DAGMM (Zong et al.,[2018)), DeepSVDD (Ruff et al.,
2018), DROCC (Goyal et al., 2020), GOAD (Bergman & Hoshen, 2020), and Variational Autoen-
coder (VAE) (Kingma et al.| [2013), as well as recent advanced methods such as ICL (Shenkar &
Wolf] [2022), SLAD (Xu et al., [2023), DTE (Livernoche et al., [2023), MCM (Yin et al., [2024), and
DRL (Ye et al., 2025). All experiments were repeated five times with different random seeds, and
the average results are reported.

Implementation details of AGNI The encoder consists of a transformer backbone followed by a
three-layer multilayer perceptron (MLP) with ReLU activations. The decoder was also implemented
as a three-layer MLP with ReL.U activations. We applied a token embedding scheme to input the
features into the transformer model (Gorishniy et al., [2021)). By default, the number of tokens was
set to 24, but for certain datasets, the number of heads and tokens were reduced for computational
efficiency. The network parameters were optimized using the AdamW optimizer with a learning rate
1 x 10~% and a weight decay of 1 x 10~°. All experiments were conducted on a single NVIDIA
GeForce RTX 3090 GPU. Further implementation details are provided in Appendix.

Evaluation Following previous studies (Yin et al.l[2024;|Ye et al.,|2025; Shenkar & Wolf}, [2022),
we used 50% of the normal samples for training, and the remaining normal samples along with all
abnormal samples as test data. The number of samples was limited to 50,000 per dataset (Livernoche
et al.l 2023). As evaluation criteria, we adopted widely used metrics in anomaly detection: Area
Under the Receiver Operating Characteristic Curve (AUC-ROC), Area Under the Precision-Recall
Curve (AUC-PR), and F1 score.
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(a) Box plots comparing the average performance (AUC-ROC, AUC-PR, and F1 score) of 16 algorithms
across ADBench benchmark datasets. Higher values indicate better performance. Black triangles represent

the mean values.
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(b) Average rankings of all methods based on AUC-ROC, AUC-PR, and F1 score across ADBench bench-

mark datasets. Lower values indicate better performance.

Figure 2: Comparison of average performance and rankings across ADBench benchmark datasets.
Subfigure (a) shows the distribution of AUC-ROC, AUC-PR, and F1 scores, while (b) reports the
corresponding average rankings of each method.

Table 1: AUC-ROC performance comparison under varying anomaly ratios. Datasets are grouped
into three categories based on their anomaly proportions: low (< 3.2%), medium (3.2-10.2%), and
high (>10.2%). AGNI consistently achieves the highest performance, demonstrating robustness to
anomaly ratio shifts.

oC DA Deep DR

Ratio IForest kNN  LOF SVM PCA GMM SVDD OCC GOAD VAE ICL SLAD MCM DRL DTE AGNI
Low 0.832 0871 0.851 0.829 0819 0.710 0703 0.683 0.706 0.819 0.841 0.799 0.770 0.835 0.856 0.908
Mid 0.809 0872 0.853 0.819 0.789 0.681 0.704 0.601 0719 0.796 0.873 0834 0.765 0.810 0.824 0.878
High 0.707  0.762 0.708 0.719 0.676  0.621 0.683 0575 0.664 0.694 0.741 0.757 0.666 0.695 0.713  0.790

3.2 ANOMALY DETECTION RESULTS

We evaluate all methods on 47 tabular benchmark datasets from ADBench. Figure [2{a) shows
AGNT’s strong and stable performance, with competitive mean and median AUC-ROC and low vari-
ance. Its consistent top ranking across metrics is further confirmed in Figure [2{b). Notably, AGNI
outperforms MCM (Yin et al.l [2024), a recent soft masking method, confirming the benefit of our
attention-guided design. The complete experimental results for all baselines and AGNI in terms of
AUC-ROC, AUC-PR, and F1 score are provided in the Appendix. As shown in Tables[A2] [A3] and
[A4] AGNI consistently demonstrates outstanding performance across all metrics.

3.3 ROBUSTNESS TO ANOMALY RATIO

Our method targets the OCC setting, where training relies solely on normal samples and is thus
unaffected by anomaly proportions. At test time, although anomaly ratios may influence evaluation
metrics (e.g., AUC-ROC), AGNI’s reconstruction-based detection remains stable across different
proportions. To empirically validate this robustness, we partition the ADBench benchmark into three
groups according to their anomaly proportions: low (< 3.2%), medium (3.2-10.2%), and high (>
10.2%). Each group contains a comparable number of datasets, enabling a balanced evaluation.

Table [T] reports the mean of AUC-ROC for AGNI and 15 baselines across the three anomaly-ratio
categories. The results reveal that AGNI consistently achieves the highest mean performance in
all categories, while maintaining the lowest variance, confirming its robustness to varying anomaly
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proportions. These findings strengthen the evidence that AGNI not only improves average detection
accuracy but also delivers reliable performance across different data imbalance conditions.

4  ANALYSIS

4.1 ABLATION STUDY

We performed an ablation study to evaluate the effectiveness of AGNI’s attention-guided masking
strategy and neighbor-informed reconstruction. To conduct the ablation study, we constructed five
subsets from diverse domains, including healthcare, document analysis, linguistics, and biology (an-
nthyroid, cardiotocography, stamps, vowels, and yeast). In the following experiments, most of the
reported results are based on the average performance over predefined subsets. Detailed results for
each individual dataset are provided in Appendix.

Impact of Varying the Number of Retrieved

Neighbors We investigate how the number of pendigits vowels

retrieved neighbors () affects performance by ::Z " v 0,
varying M from 1 to 3 while keeping the mask- o *3 g os0 032 %
ing ratio fixed. Figure 3] presents results on two S vons .//'/' ol § o 0302
representative datasets. Performance consis- = / g 7 o
tently improves with more neighbors across all oos0 = Z: 02

10 15 20 25 30 10 15 20 25 30

evaluation metrics, supporting our hypothesis 4 of Neighbore # of Neighbore

that incorporating multiple similar neighbors —e— AUC-ROC AUCPR  —=— F1Score

provides more informative context for recon- ] )
structing masked features while strengthening ~Figure 3: Effect of the number of retrieved neigh-
the model’s understanding of inter-sample rela- bors on anomaly detection performance. We fix
tionships. However, the gains begin to plateau the augmentation ratio and vary the number of re-
at M = 3, indicating a trade-off between con- trieved neighbors.

textual diversity and redundancy. Based on this

observation, we set M = 3 as the default in all experiments.

Effect of batch size We investi- Table 2: AUC-ROC across batch sizes
gate how the test-time batch size

affects anomaly detection perfor-

! | | Batch size 4 8 16 64 128 256
mance, since AGNI retrieves neigh- -
b thi h batch. L batch annthyroid 0921 0939 0947 0955 0956 0.958
ors within each batch. Larger batc cardiotocography 0762 0.774 0785  0.793  0.794  0.794
size provides a broader pool of can- stamps 0915 0935 0938 0932 0934 0934
didates for identifying attention score vowels 0723 07520762 0790 0778  0.773
L . . yeast 0518 0520 0514 0529 0528 0519
similar neighbors, enabling AGNI to
Average 0768 0784 0789  0.800 0798  0.796

better capture inter-sample relation-
ships and learn the underlying struc-
ture of the normal data distribution. Table 2] shows AUC-ROC scores for batch sizes ranging from
4 to 256. Performance improves steadily as batch size increases from 4 to 64, with average AUC-
ROC rising from 0.768 to 0.800. Beyond 64, performance plateaus or even slightly degrades. Our
dataset-specific batch size assignment strategy are all detailed in the Appendix.

Component-wis.e analysis 'We  Tuple 3: Ablation study on the effect of each proposed com-
conduct an ablation study to evaluate ponent.

the contribution of each component

in AGNL, as shown in Table 3} Start- ¢ 5™ Vask | Neighbor | AUCROC PR F1 | Time (s

ing from a vanilla transformer based

. ) : A X X 0.768 0555 0538 | 0.022
autoencoder baseline without either B v X 0764 0559 0560 | 0022
proposed component (Setting A), we C X v 0.790 0578 0555 | 0.031

D(AGND) | v v 0.808 0.614 0597 | 0032

incrementally add attention-guided

masking component and neighbor-

informed reconstruction component. Adding attention-guided masking alone (A — B) improves
the F1 score, indicating that masking contextually important features enhances discriminative
ability. Incorporating neighbor-informed reconstruction component instead (A — C) yields a gain
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Table 4: Evaluation results for configuration-wise variants

Variant \ Masking Neighbor selection criteria Fusion strategy \ AUC-ROC AUC-PR Fl score
1 Attention-guided Attention score [ﬁ (z + Efw z1>] 0.768 0.509 0.487
2 Attention-guided Attention score [ & Mz 0.791 0.578 0.566
3 Attention-guided Embedding sim. [25 215 -5 2m]) 0.801 0.575 0.550
4 Random Attention score 25 215 .. o5 2m) 0.712 0.483 0.501
5 (AGNI) | Attention-guided Attention score [2; 215 .. o5 2] | 0.808 0.614 0.597

in AUC-ROC, suggesting its effectiveness in both structural patterns and inter-sample relationships
within the normal data distribution. The full model combining both components (AGNI) achieves
the best performance across all metrics. These improvements demonstrate that the two components
provide complementary benefits: attention-guided masking creates informative learning objectives,
while neighbor-informed reconstruction leverages relationships between similar samples to better
characterize the normal data manifold. We further measured the inference time per batch. Incorpo-
rating attention-guided masking resulted in negligible change, whereas adding neighbor-informed
reconstruction introduced a delay of approximately 9 ms. Nonetheless, this delay is minimal relative
to the performance gains it brings and thus does not hinder practical applicability.

5 DISCUSSION

5.1 IMPACT OF CONFIGURATION VARIANTS

The proposed attention-guided masking component and neighbor-informed reconstruction compo-
nent in AGNI involve several configuration-level alternatives. This section examines the perfor-
mance impact of different strategies for each configuration. The results are averaged over the subset
of five datasets introduced in Analysis Section. Table [4] summarizes the evaluated alternatives and
their corresponding results.

Input-Neighbor Fusion Variants Given our neighbor-informed reconstruction component, we
investigated how to effectively utilize the selected neighbors as context for reconstruction. We eval-
uated three fusion strategies that differ in how the input representation is combined with the re-
trieved neighbor representation, as shown in variants 1, 2, and 5 of Table E} Proposed AGNI (vari-
ant 5), which concatenates the input with each neighbor embedding individually, achieves superior
performance compared to two alternatives: variant 1, which averages the input and neighbor repre-
sentations, and variant 2, which concatenates the input representation with the averaged neighbor
representation. Averaging the selected neighbors may blur their unique contributions, thereby un-
dermining the precision of attention-based retrieval. The superior performance of variant 5 suggests
that preserving individual neighbor representations enables the decoder to more effectively leverage
the contextual information captured by the attention mechanism.

Neighbor selection: attention-based vs embedding-based We compare AGNI’s attention-based
neighbor retrieval with an alternative based on latent embeddings. In the embedding-based vari-
ant, neighbors are selected by computing cosine similarity between max-pooled encoder outputs.
We chose max-pooling as it preserves the most salient features from each dimension, though other
pooling strategies such as mean-pooling or attention-weighted pooling could also be considered.
However, these methods operate on aggregated representations and could not directly reflect feature-
wise importance patterns. In contrast, AGNI uses similarity over attention scores where each element
represents the maximum attention a feature receives across all heads and positions. This preserves
feature-level relationships that are lost in embedding-based approaches. As shown in variants 3, 5
of Table [ attention-based retrieval achieves consistently higher performance across all evaluation
metrics. This suggests that attention-based similarity leads to more relevant neighbor selection in
our anomaly detection framework. Exploring alternative pooling strategies and distance metrics for
embedding-based retrieval remains an interesting direction for future work.

Comparison of masking strategies We compare the attention-guided masking component pro-
posed in AGNI with a baseline that masks randomly selected features. For each dataset, both meth-
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ods are evaluated using their respective masking ratios. As shown in variants 4 and 5 of Table 4]
attention-guided masking consistently outperforms random masking across all metrics (AUC-ROC,
AUC-PR, and F1 score). This improvement highlights the importance of using attention scores to
target structurally salient features rather than perturbing inputs arbitrarily. By masking features that
the model itself identifies as most informative, attention-guided masking generates more challeng-
ing and context-aware reconstruction tasks, which in turn encourage the model to capture fine-
grained feature dependencies. Random masking, by contrast, often removes irrelevant or redundant
attributes, resulting in weaker supervision and limited gains. These results confirm that attention-
guided masking provides a principled mechanism for constructing effective self-supervised signals
in tabular anomaly detection.

5.2 QUALITATIVE ANALYSIS OF NEIGHBOR SELECTION

To validate our attention-based

neighbor retrieval mechanism, we vi- DEESSEE SIS
sualize the selected neighbors using o] @

t-SNE of the input space. As shown
in Figure[4] neighbors of normal sam-
ples (blue triangles) cluster tightly
around their inputs, while neighbors
of anomalous samples (yellow stars)
are widely scattered. This pattern

. —40 -20 0 20 40 —40 -20 [ 20 40
illustrates how our method captures t-SNE Component 1 t-SNE Component 1
inter-sample relationships: normal Normal e Input(Normal) & Neighbors (Normal)
samples successfully retrieve struc- Abnormal @ Input (Abnormal)  x Neighbors (Abnormal)
turally similar neighbors, forming
coherent local contexts that enable
accurate reconstruction. Conversely,
anomalous samples lack structurally
similar neighbors in the dataset,
resulting in dispersed neighbor sets
that provide weak contextual support.
This asymmetric retrieval behavior—compact neighborhoods for normal samples versus scattered
neighbors for anomalies—confirms that our attention mechanism effectively identifies structural
similarities within the normal data distribution while naturally amplifying reconstruction difficulty
for outliers.

Dataset: yeast
40 w

t-SNE Component 2
o
@
o

40 w i @ ®

Figure 4: t-SNE visualizations of the input space for two
datasets. Red and green dots represent abnormal and nor-
mal inputs. Blue triangles and yellow stars indicate retrieved
neighbors. Normal inputs yield compact, aligned neighbor-
hoods, while abnormal inputs retrieve scattered samples.

6 CONCLUSION

In this work, we introduced AGNI, a self-supervised framework for one-class classification in tabular
anomaly detection that unifies intra-instance and inter-sample modeling through a dual supervisory
use of attention. By employing attention-guided masking to enforce fine-grained feature dependen-
cies and neighbor-informed reconstruction to exploit structural similarities across samples, AGNI
transforms attention from a representational mechanism into a coordinating learning signal. Ex-
tensive evaluations on 47 real-world datasets demonstrate that AGNI achieves consistent improve-
ments over 15 classical and deep-learning baselines, obtaining the best average rank across AUC-
ROC, AUC-PR, and F1 score, and delivering the best overall performance. Beyond numerical gains,
AGNI reveals interpretable qualitative behavior: normal samples form compact neighborhoods while
anomalies yield scattered ones, offering intuitive evidence of its structural novelty. Taken together,
these results highlight AGNI’s effectiveness in detecting subtle, context-dependent anomalies and
underscore the promise of designing supervisory signals that jointly capture instance-specific and
population-level structure. We believe this design principle opens new directions for future research,
including extensions to semi-supervised or multi-modal anomaly detection, integration with genera-
tive modeling, and the exploration of attention-driven supervisory signals in broader tabular learning
tasks.
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Attention-Guided Masking and Neighbor-Informed
Reconstruction for Tabular Anomaly Detection

We used a large language model (LLM) only to polish grammar and improve readability of the
manuscript. All scientific content, including methods, experiments, and analyses, was entirely con-
ceived and produced by the authors.

A DATASETS DETAILS

Table Al: Dataset properties.

Dataset Samples  Features  Anomalies  Anomaly(%) Category
aloi 49534 27 1508 3.04 Image
annthyroid 7200 6 534 742 Healthcare
backdoor 95329 196 2329 2.44 Network
breastw 683 9 239 34.99 Healthcare
campaign 41188 62 4640 11.27 Finance
cardio 1831 21 176 9.61 Healthcare
cardiotocography 2114 21 466 22.04 Healthcare
celeba 202599 39 4547 2.24 Image
census 299285 500 18568 6.2 Sociology
cover 286048 10 2747 0.96 Botany
donors 619326 10 36710 5.93 Sociology
fault 1941 27 673 34.67 Physical
fraud 284807 29 492 0.17 Finance
glass 214 7 9 421 Forensic
hepatitis 80 19 13 16.25 Healthcare
http 567498 3 2211 0.39 Web
internetads 1966 1555 368 18.72 Image
ionosphere 351 32 126 359 Oryctognosy
landsat 6435 36 1333 20.71 Astronautics
letter 1600 32 100 6.25 Image
lymphography 148 18 6 4.05 Healthcare
magic 19020 10 6688 35.16 Physical
mammography 11183 6 260 2.32 Healthcare
mnist 7603 100 700 9.21 Image
musk 3062 166 97 3.17 Chemistry
optdigits 5216 64 150 2.88 Image
pageBlocks 5393 10 510 9.46 Document
pendigits 6870 16 156 227 Image
pima 768 8 268 349 Healthcare
satellite 6435 36 2036 31.64 Astronautics
satimage-2 5803 36 71 1.22 Astronautics
shuttle 49097 9 3511 7.15 Astronautics
skin 245057 3 50859 20.75 Image
smtp 95156 3 30 0.03 Web
spambase 4207 57 1679 39.91 Document
speech 3686 400 61 1.65 Linguistics
stamps 340 9 31 9.12 Document
thyroid 3772 6 93 2.47 Healthcare
vertebral 240 6 30 12.5 Biology
vowels 1456 12 50 3.43 Linguistics
waveform 3443 21 100 29 Physics
wbc 223 9 10 4.48 Healthcare
wdbc 367 30 10 2.72 Healthcare
wilt 4819 5 257 5.33 Botany
wine 129 13 10 7.75 Chemistry
wpbc 198 33 47 23.74 Healthcare
yeast 1484 8 507 34.16 Biology

This study utilized 47 real-world tabular anomaly detection datasets provided by the ADBench
benchmark suite [Han et al.| (2022). These datasets span a broad spectrum of application domains
in which anomalies are known to arise in practice, including healthcare, finance, network security,
web activity, biology, imaging, and astronautics. Table [AT] presents the detailed properties of the
datasets used in our experiments. Moreover, the benchmark covers a wide range of data characteris-
tics, including sample size (from under 100 to over 600,000 instances), feature dimensionality (from
as few as 3 to over 1,500), and anomaly ratios (ranging from 0.03% to nearly 40%). Such diversity
ensures a comprehensive evaluation, capturing the complex and varied nature of real-world anomaly
detection scenarios.
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B IMPLEMENTATION DETAILS

The encoder used in AGNI consists of a transformer followed by a three-layer multilayer perceptron
(MLP) with ReLU activations. All features are treated as continuous variables and embedded using
a token embedding scheme before being passed into the transformer |Gorishniy et al.| (2021)). The
transformer comprises six layers with eight attention heads and a token dimension of 24. For the
census and internetads datasets, we reduce the number of attention heads and the token dimension
to four and eight, respectively, for computational efficiency. The decoder shares the same three-
layer MLP architecture used in the encoder. We train the network using the AdamW optimizer with
a learning rate of 1 x 10~ and a weight decay of 1 x 10~°. All experiments are conducted on a
single NVIDIA GeForce RTX 3090 GPU.

The batch size was determined separately for the training and test sets based on the number of
samples in each. Specifically, we used a batch size of 64 for datasets with fewer than 1,000 samples;
128 for datasets with 1,000 to 4,999 samples; 256 for datasets with 5,000 to 9,999 samples; 512 for
datasets with 10,000 to 49,999 samples; and 1,024 for datasets with 50,000 or more samples.

C COMPREHENSIVE EVALUATION RESULTS

This section presents the comprehensive evaluation results that supplement the main text. First, we
provide the AUC-PR and F1 scores of AGNI and 15 baseline methods evaluated across 47 real-
world tabular anomaly detection datasets [Han et al.[(2022). Second, we include the full component-
wise analysis results based on the five-dataset subset used in the main text ablation analysis and
discussion sections. We also present the complete results corresponding to the study on the impact
of configuration variant discussed in the main text. Additionally, we examine performance across
datasets categorized by anomaly ratios to assess the method’s robustness under different anomaly
distributions. Finally, we report the optimal masking ratios and the number of neighbors selected for
each dataset.
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AUC-ROC scores of AGNI on full benchmark datasets

Based on the AUC-ROC (7) scores sum-

marized in Table [A2] AGNI demonstrates strong performance across 47 tabular anomaly detection
datasets. It achieves the best average scores and the best average rank across datasets.

Table A2: Comparison of AUC-ROC (1) scores across 47 tabular anomaly detection datasets. Each
value represents the average over five independent runs with different random seeds. For each
dataset, the best result is highlighted in bold, and the second-best is underlined.

OcC-

DA-

Deep-

DRO-

Dataset IForest kNN  LOF SVM PCA GMM  SVDD cC GOAD VAE ICL SLAD MCM DRL DTE AGNI
aloi 0.507 0510 0.488 0.543 0.540 0.508 0509 0.500 0480 0.540 0475 0.508 0.543 0.518 0.505 0.547
annthyroid 0903 0928 0.886 0.884 0.852 0.722 0550 0.889 0810 0854 0.811 0933 0.707 0.583 0.975 0.956
backdoor 0.749 0938 0953 0.625 0.646 0.544 0911 0943 0529 0.647 0936 0.500 0924 0930 0.904 0934
breastw 0995 0991 0.889 0.994 0992 0895 0970 0473 0989 0992 0983 0.995 0998 0985 0.939 0.994
campaign 0736 0785 0.706 0.777 0.771 0.615 0.622 0.500 0479 0.771 0.809 0.767 0.697 0.725 0.790 0.852
cardio 0933 0920 0922 0956 0965 0779 0.654 0.621 0.960 0966 0.800 0.831 0.806 0.879 0.878 0.979
cardiotocography ~ 0.742  0.621  0.645 0.752  0.789  0.671 0477 0460 0761  0.789 0.542 0.473 0.843 0.762 0.619 0.794
celeba 0.712 0731 0437 0.798 0.805 0.638 0562 0.689 0438 0803 0.722 0.674 0.734 0.758 0.826 0.816
census 0.625 0.723 0.585 0.700 0.705 0.522 0542 0.554 0352 0.705 0.706 0.579 0.660 0.575 0.691 0.721
cover 0863 0975 0992 0.962 0944 0.759 0491 0958 0.138 0944 0.893 0.740 0.484 0972 0.955 0.993
donors 0.894 0995 0970 0921 0.881 0.622 0.730 0.742 0336 0886 0.999 0.885 0.905 0979 0979 0.885
fault 0559 0587 0474 0572 0559 0528 0543 0557 0589 0559 0.606 0.639 0.590 0.603 0.588 0.620
fraud 0947 0954 0944 0.956 0954 0.853 0831 0500 0.698 0955 0.928 0946 0932 0942 0.888 0.963
glass 0.811  0.920 0.888 0.697 0.734 0.653 0.837 0.649 0590 0.726 0.994 0.860 0.694 0.759 0.781 0.877
hepatitis 0.827 0965 0.669 0.906 0845 0.702 0996 0518 0845 0.848 0.999 0999 0518 0.603 0.791 0816
http 0.994  1.000 1.000 1.000 1.000 0918 0613 0500 0997 0999 0982 0999 0998 0.998 0.990 1.000
internetads 0479  0.681 0.717 0.656 0.651 0.495 0730 0.534  0.656 0.651 0.722 0.759 0.684 0.633 0.771  0.662
ionosphere 0912 0974 0943 0963 0891 0.740 0972 0.611 0915 0.898 0.990 0982 0.635 0954 0942 0971
landsat 0.588  0.682 0.666 0.480 0439 0.563 0594 0539 0405 0542 0.651 0.650 0477 0.699 0.521 0.615
letter 0320 0354 0448 0.322 0303 039 0364 0553 0311 0302 0427 0368 0344 0402 0371 0389
lymphography 0995 0999 0982 1.000 00999 0949 0997 0324 0999 0999 1.000 1.000 0922 0936 1.000 1.000
magic.gamma 0.771  0.833 0.834 0.743 0.706 0.592  0.630 0.788  0.695 0.706 0.756 0.720 0.831 0.815 0.873 0.763
mammography 0.880 0.876 0.855 0.886 0.899 0.760 0.715 0818 0.699 0896 0.719 0.745 0.846 0.887 0.867 0.896
mnist 0.866 0939 0.929 0906 0902 0722 0.664 0.831 0.901 0902 0901 0897 0940 0.965 0.895 0.948
musk 0.906  1.000 1.000 1.000 1.000 0950 1.000 0330 1.000 1.000 0.994 1.000 0962 0.885 1.000 0.999
optdigits 0811 0937 0967 0.634 0.582 0400 0395 0853 0675 0582 0972 0953 0.668 0.847 0.851 0.887
pageblocks 0.826 0.896 0913 0.886 0.861 0.828 0784 0.923 0880 0.862 0.884 0.879 0.724 0.756 0.900  0.908
pendigits 0972 0999 0991 0.964 0944 0.565 0463 0759 0900 0945 0967 0946 0.653 0.847 0981 0.945
pima 0.743 0769 0.705 0.715 0.723 0.545 0580 0475 0.623 0.732 0.797 0.606 0.719 0.622 0.653 0.723
satellite 0.775  0.822 0.803 0.739 0.666 0.728 0.762  0.734  0.688 0.741 0.852 0.875 0.687 0.747 0.786 0.790
satimage-2 0991 0997 0994 0.99 0982 0918 0929 0992 0990 0990 0.995 0.998 0997 0.996 0.994 0.997
shuttle 0.997 0999 1.000 0.996 0994 0846 0998 0.500 0.704 0.994 0.999 0.999 0.997 0.99 0.998 0.999
skin 0.894 0995 0.863 0.902 0.597 0.679 0.600 0.895 0.649 0.660 0.066 0910 0.889 0.944 0.900 0.856
smtp 0904 0924 0934 0.847 0818 0.871 0852 0.571 0.788  0.819 0.744 0921 0879 0.866 0.945 0.960
spambase 0852 0834 0.732 0.817 0814 0.694 0702 0.754 0818 0814 0.835 0.849 0801 0.725 0.831 0.837
speech 0377 0364 0375 0366 0364 0.507 0489 0490 0366 0364 0489 0414 0421 0463 0386 0.925
stamps 0935 0959 0937 0.937 0927 0801 0711 0501 0815 0933 0967 0.820 0.858 0.855 0.908 0932
thyroid 0990 0987 0.927 0.986 0986 0911 0.888 0950 0952 098 0954 0953 0933 0.870 0.989 0.983
vertebral 0456 0577 0.643 0505 0421 0506 0448 0438 0467 0426 0.792 0450 0341 0386 0418 0.878
vowels 0.618 0822 0863 0.759 0523 0425 0557 0547 0685 0521 0.851 0.850 0.658 0.836 0.869 0.790
waveform 0.723  0.752 0.760 0.704 0.647 0.519 0599 0.677 0.650 0.648 0.687 0.489 0.394 0.605 0.650 0.690
wbc 0994 0991 0.805 099 0.994 0.868 0914 0442 0991 0993 0.997 0998 0.930 0905 0.872 0.945
wdbc 0987 0991 099 0.993 0991 0.738 0993  0.401 0.990 0991 0998 0.995 0948 0977 0962 0.994
wilt 0480 0.637 0.688 0.348 0.261 0418 0344 0495 0514 0354 0.764 0.618 0397 0.760 0.847 0.886
wine 0939 0992 0984 0978 0938 0.662 0922 0438 0941 0943 0.999 1.000 0941 0.958 0.402 0.951
wpbc 0563  0.637 0.574 0.534 0525 0470 0827 0438 0514 0544 0966 0955 0517 0430 0518 0937
yeast 0418 0447 0458 0448 0432 0510 0476 0484 0525 0424 0490 0487 0433 0487 0472 0529
Average Value 0.782 0.834 0.803 0.788 0.761 0.670  0.697 0.620 0.696 0.769 0.817 0.796 0.733 0.779 0.797 0.858
Average Ranking 8.53 497 684 712 964 1262 1140 11.80 11.05 8.85 5.94 6.76 9.97 8.77 7.48 4.28
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AUC-PR scores of AGNI on full benchmark datasets

Based on the AUC-PR (7) scores sum-

marized in Table [A3] AGNI demonstrates strong performance across 47 tabular anomaly detection
datasets. It achieves the highest average scores and the best average rank, demonstrating consistent
effectiveness across diverse domains and data characteristics.

Table A3: Comparison of AUC-PR (7) scores across 47 tabular anomaly detection datasets. Each
value represents the average over five independent runs with different random seeds. For each
dataset, the best result is highlighted in bold, and the second-best is underlined.

Dataset IForest kNN  LOF S(ilcl\;[ PCA G?\;K/I ?\fg}; Dgg " GOAD VAE ICL SLAD MCM DRL DTE AGNI
aloi 0.058  0.060 0.065 0.065 0.065 0.061 0.062  0.059 0057 0065 0.055 0.060 0.085 0.093 0.058 0.067
annthyroid 0.590 0.681 0.535 0.601 0.566 0.480 0278 0.637 0587 0567 0458 0.706 0.344 0200 0.828 0.764
backdoor 0.094 0465 0535 0.077 0.079 0.075 0848 0.846 0.063 0.080 0.892 0.048 0.664 0.886 0.609 0.543
breastw 0.995 0989 0.800 0.994 0992 0909 0960 0.632 0988 0992 0.968 0995 0998 0.985 0.904 0.993
campaign 0.457 0490 0402 0494 048 0324 0369 0203 0231 0488 0489 0481 0405 0450 0485 0.578
cardio 0.786  0.772 0.702 0.836 0.862 0.559 0389  0.511 0.848  0.863 0479 0.699 0427 0.703 0.704 0.904
cardiotocography ~ 0.628  0.574 0.573 0.662 0.697 0.597 0458 0439 0.675 0.697 0.487 0494 0.729 0.656 0.546 0.708
celeba 0.117  0.119 0.036 0.203 0.209 0.090 0.071 0076 0.040 0209 0.097 0.093 0.093 0.113 0.153 0.182
census 0.142 0217 0.137 0.203 0200 0.132 0.153 0.142 0.087 0.198 0212 0.150 0.160 0.127 0.177 0.221
cover 0.087 0558 0.829 0.223 0.162 0.098 0027 0313 0011 0161 0345 0070 0017 0418 0.287 0.709
donors 0.405 0.891 0.634 0427 0352 0.195 0427 0302 009 0360 0984 0462 0.667 0.753 0.709 0.395
fault 0592 0.620 0.504 0.611 0.604 0.568 0555 0578 0.621 0.604 0.632 0.667 0.602 0.628 0.637 0.630
fraud 0.182 0387 0.551 0.296 0269 0.156 0483 0.003 0294 0287 0.539 0450 0483 0.634 0.802 0436
glass 0214 0423 0381 0.268 0210 0.186 0523 0.231 0.183  0.185 0923 0411 0.197 0287 0.256 0.399
hepatitis 0.554 0903 0437 0776 0.648 0.544 0987 0349 0.658 0.645 0.998 0998 0350 0406 0.580 0.607
http 0.534  1.000 0971 0.999 0917 0575 0361 0.007 0684 0904 0.708 0.881 0.923 0990 0417 1.000
internetads 0292 0492 0504 0481 0470 0318 0516  0.431 0474 0470 0.600 0.605 0494 0439 0.558 0478
ionosphere 0917 0980 0946 0975 0909 0.775 0981 0.717 0932 0914 0991 098 0.743 0965 0.962 0979
landsat 0473 0548 0.614 0.370 0327 0403 0494 0376 0312 0403 0531 0451 0367 0523 0374 0425
letter 0.082 0.087 0.113 0.083 0.080 0.104 0.089 0.157 0.081 0.080 0.128 0.089 0.089 0.099 0.090 0.090
lymphography 0944 0992 0.842 1.000 00985 0.735 0968 0309 0988 098 1.000 0999 0417 0437 1.000 1.000
magic.gamma 0.803 0859 0864 0.792 0.752 0.645 0.695 0832 0761 0.753 0.813 0.773 0.862 0.857 0.895 0.797
mammography 0379 0413 0341 0405 0416 0220 0275 0272 0278 0418 0.171 0.190 0.300 0.553 0402 0.442
mnist 0.541 0727 0.710 0.662 0.650 0.461 0460 0597 0.651 0.650 0.684 0.684 0813 0.855 0592 0.770
musk 0.404  1.000 1.000 1.000 1.000 0.706 0999 0.157 1000 1.000 0.922 1.000 0.591 0.382 1.000 0.996
optdigits 0.154 0291 0436 0.069 0.060 0.050 0045 0.192 0078 0.060 0.509 0.363 0.081 0261 0.173 0.287
pageblocks 0434 0676 0711 0.642 0594 0.603 0520 0.735 0.635 0594 0.681 0.647 0413 0409 0.675 0.703
pendigits 0.588 0970 0.785 0.518 0386 0.117 0.093 0.146 0334 0391 0.664 0353 0.113 0483 0522 0409
pima 0.737  0.754 0.684 0.720 0.712 0.565 0.598 0.534  0.651 0.715 0.786 0.630 0.701 0.638 0.649  0.704
satellite 0.824 0.860 0.859 0.809 0.778 0.760 0811 0.775 0.790 0.810 0.876 0.886 0.765 0.810 0.846 0.831
satimage-2 0945 0967 0.885 0.969 0919 0475 0763 0.793 0959 0929 0.947 0954 0967 0.866 0.714 0.963
shuttle 0986 0979 0998 0.977 0963 0.660 0980 0.134  0.602 0963 0.997 0980 0952 0953 0942 0985
skin 0.646 0982 0.617 0.663 0364 0.504 0430 0.656 0422 0401 0325 0787 0.723 0.797 0.655 0.603
smtp 0011 0505 0481 0.645 0495 0209 0307 0.087 0324 0494 0.038 0500 0473 0.594 0440 0.547
spambase 0.883 0833 0.727 0.822 0818 0.742 0.753 0.791 0821 0818 0.868 0.856 0.807 0.784 0.838 0.831
speech 0.033  0.028 0.032 0.028 0.028 0.040 0034 0036 0028 0028 0.034 0031 0032 0.034 0.029 0.336
stamps 0588 0717 0.648 0.649 0588 0465 0426 0285 0496 0599 0.795 0506 0486 0485 0.554 0.635
thyroid 0.797  0.809 0.606 0.789 0.813 0.631 0.691 0.744 0801 0813 0515 0.741 0.585 0406 0.832 03818
vertebral 0207 0261 0339 0.222 0.193 0251 0234 0234 0214 0.178 0.588 0.199 0.186 0.184 0.193  0.702
vowels 0.120 0302 0331 0274 0.105 0.073 0169 0.132 0209 0.101 0274 0392 0.091 0386 0384 0323
waveform 0.105 0270 0.307 0.109 0.084 0.061 0.115 0.201 0.089  0.084 0.186 0.053 0.053 0.083 0.103 0.104
wbc 0942 0920 0249 0.972 0943 0568 0565 0239 0919 0932 0951 0981 0912 0.765 0.337 0819
wdbc 0720  0.820 0.936 0.874 0.821 0309 0843 0.122 0788 0.836 0.956 0.891 0903 0.903 0.714 0944
wilt 0.088 0.122 0.157 0.071 0.064 0.084 0071 0.09 0.109 0.072 0289 0.122 0.077 0237 0253 0.313
wine 0.671 0951 0.899 0.887 0.692 0.509 0.786  0.185 0.701  0.695 0.983 1.000 0.930 0.902 0.127 0.877
wpbc 0.407 0461 0412 0409 0400 0372 0749 0360 0389 0403 0.893 0875 0412 0365 0401 0838
yeast 0.468 0483 0489 0479 0468 0518 0492 0498 0508 0.465 0495 0506 0467 0499 0.500 0.537
Average Value 0481  0.621 0.566 0.555 0.515 0.393 0487 0365 0478 0518 0.612 0.568 0488 0.538 0.530 0.622
Average Ranking 9.46 523 7.35 7.02  9.66 1245 1030 1153 10.52 939  5.64 6.94 9.70 8.15 7.87 4.79
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F1 scores of AGNI on full benchmark datasets Based on the F1 scores (1) summarized in Ta-
ble[A4] AGNI achieves the highest average F1 score and best average rank across 47 datasets, con-

sistently demonstrating robustness across diverse evaluation metrics.

Table A4: Comparison of F1 scores (1) across 47 tabular anomaly detection datasets. Each value
For each dataset, the

represents the average over five independent runs with different random seeds.

best result is highlighted in bold, and the second-best is underlined.

OcC- DA- Deep- DRO-

Dataset IForest kNN  LOF SVM PCA GMM  SVDD cC GOAD VAE ICL SLAD MCM DRL DTE AGNI
aloi 0.042  0.059 0.082 0.073 0.076 0.060 0.052 0.000 0057 0.076 0.049 0.053 0.099 0.090 0.043 0.072
annthyroid 0.550  0.620 0.496 0.536 0.500 0457 0233 0574 0558 0502 0494 0.660 0342 0260 0.773 0.715
backdoor 0.041 0520 0.724 0.079 0.083 0.052 0830 0.854 0.048 0.085 0.872 0.000 0.678 0.873 0.797 0.738
breastw 0969 0958 0.854 0.967 00958 0.835 0918 0483 0957 0961 0959 0969 0975 0951 0.886 0.967
campaign 0.437 0504 0422 0496 048 0341 0379 0.000 0226 0488 0.510 0498 0427 0477 0.520 0.591
cardio 0.675 0.619 0.625 0.705 0.761 0.531 0384 0469 0749 0.761 0.522 0.608 0.408 0.598 0.580 0.837
cardiotocography ~ 0.561  0.464 0.483 0.579 0.616 0.523 0371 0340 0.600 0616 0.389 0.338 0.690 0.587 0.406 0.630
celeba 0.173  0.172 0.019 0.274 0272 0.142 0.084 0.08 0040 0270 0.127 0.137 0.102 0.159 0.199 0.244
census 0.105 0225 0.131 0.207 0208 0.145 0.193 0.155 0.050 0208 0.240 0.086 0.154 0.095 0.179 0.228
cover 0.116  0.651 0.824 0.245 0.162 0.122  0.034 0419 0.000 0.162 0400 0.091 0.000 0441 0341 0714
donors 0435 0949 0.745 0395 0373 0219 0414 0294 0043 0378 0972 0559 0.645 0.805 0.813 0407
fault 0536 0556 0.507 0.551 0553 0.532 0549 0567 0560 0552 0576 0.601 0.599 0.567 0.552 0.590
fraud 0280 0452 0595 0415 0333 0209 0581 0000 0373 0345 0.574 0474 0507 0.639 0.801 0.460
glass 0.162 0259 0205 0.150 0.158 0.137 0454 0.155 0202 0.180 0.878 0350 0.150 0.200 0.178 0.340
hepatitis 0.540 0813 0419 0.666 0.606 0475 0938 0293 0579 0.605 0.996 0.996 0298 0.329 0508 0.529
http 0258  1.000 0968 0.998 0927 0489 0250 0.000 0564 0919 0.607 0.885 0259 099 0.019 1.000
internetads 0264 0519 0546 0462 0457 0319 0543 0384 0461 0457 0559 0.578 0.577 0440 0.641 0471
ionosphere 0.834 0905 0.875 0926 0.790 0.693 0931 0.602 0834 0798 0942 0926 0.611 0901 0.890 0939
landsat 0433 0515 0536 0386 0340 0409 0422 0408 0330 0388 0.538 0469 0385 0517 0379 0439
letter 0.038 0.010 0.100 0.010 0.010 0.08 0050 0.136 0012 0010 0.072 0016 0.024 0.056 0.026 0.020
lymphography 0.851 0945 0.749 1.000 00909 0.676 0898 0262 0931 0930 1.000 0.995 0400 0267 1.000 1.000
magic.gamma 0.696 0762 0.761 0.684 0.652 0.574 0599 0.726  0.627 0.652 0.696 0.659 0.762 0.744 0.807 0.696
mammography 0392 0404 0385 0419 0446 0269 0316 0327 0356 0450 0.174 0222 0329 0.536 0375 0452
mnist 0526 0719 0.714 0.643 0.639 0447 0433 0573 0.639 0.639 0.649 0.670 0.743 0.790 0.605 0.755
musk 0359 1.000 1.000 1.000 1.000 0.707 0992 0.122 1000 1.000 0.833 1.000 0.522 0.380 1.000 0.990
optdigits 0.128 0213 0.533 0.007 0.007 0.003 0.000 0.201 0.004  0.007 0577 0399 0045 0292 0.136 0.347
pageblocks 0.426 0590 0.659 0.557 0469 0579 0547 0.684 0502 0469 0.649 0.602 0378 0403 0.629 0.632
pendigits 0.580 0904 0.763 0.532 0442 0.140 0.123 0.192 0415 0442 0.612 0444 0.106 0471 0.624 0458
pima 0.696  0.706 0.667 0.686 0.693 0.540 0559 0.500 0592 0.705 0.735 0.589 0.681 0.608 0.625 0.702
satellite 0.671 0718 0.726 0.673 0.627 0.651 0.678 0.675 0.636  0.662 0.750 0.782 0.596 0.674 0.721 0.695
satimage-2 0.896 0901 0817 0915 0873 0.504 0732 0.763 0907 0.882 0.884 0.887 0910 0.839 0.694 0.907
shuttle 0967 0982 0984 0.965 0958 0.679 0981 0.000 0563 0958 0.988 0985 0977 0.956 0.980 0.983
skin 0.781 0964 0.708 0.800 0379 0.557 0433 0.784 0520 0.447 0.011 0746 0.750 0.835 0.784 0.698
smtp 0.000 0.695 0.658 0.695 0.695 0263 0340 0.138 0486 0.696 0.070 0.696 0.462 0.664 0.667 0.667
spambase 0.805 0.805 0.740 0.786 0.785 0.684 0.696 0.739  0.788 0.785 0.793 0.815 0.767 0.718 0.800 0.814
speech 0.039 0.033 0.033 0.033 0.033 0033 0013 0029 0029 0033 0.026 0062 0039 0.026 0.043 0.326
stamps 0.636  0.755 0.635 0.634 0579 0470 0371 0280 0527 0614 0772 0510 0512 0437 0529 0.650
thyroid 0.804 0753 0.527 0.753 0.742 0.654 0.656  0.690 0.742 0.742 0.561 0.712 0.551 0419 0.768 0.762
vertebral 0.158 0238 0.337 0204 0.139 0212 0167 0.170 0.182 0.141 0.634 0.142 0.080 0.093 0.120 0.627
vowels 0.152 0260 0.340 0.280 0.120 0.056 0208 0.136 0236 0.120 0244 0388 0.036 0.396 0392 0.320
waveform 0.102 0270 0.280 0.130 0.090 0.046 0.146 0266 0.098 0.080 0.268 0.022 0.063 0.077 0.126 0.111
wbc 0.882 0.864 0.203 0.898 0.873 0462 0542 0.266 0.865 0884 0.929 0.922 0.909 0.709 0.360 0.745
wdbc 0.709 0787 0.856 0.803 0.788 0.325 0.833 0.087 0.758 0.787 0.905 0.852 0909 0.818 0.620 0818
wilt 0.020 0.023 0.167 0.012 0.016 0.057 0.006 0015 0.124 0019 0352 0.070 0.000 0.321 0.163 0.288
wine 0.711 0872 0.808 0.783 0.660 0.485 0.698 0.128 0.655 0.679 0.993 1.000 0.909 0.800 0.000 0.800
wpbc 0366 0491 0413 0358 0336 0332 0702 0319 0342 0365 0905 0879 039 0329 0396 0.838
yeast 0.445 0468 0477 0466 0434 0520 0495 0488 0.532 0443 0503 0493 0462 0492 0497 0.521
Average Value 0452 0593 0555 0528 0490 0377 0463 0336 0453 0498 0.591 0550 0452 0512 0510  0.607
Average Ranking 9.40 5.67 7.15 754 961 1235 10.51 11.66 10.24 9.00  5.66 6.80 9.59 8.48 7.57 4.77
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Table AS: Detailed results of the component-wise experiments on the subset

Setting ‘ Performance ‘ annthyroid  cardiotocography  stamps  vowels yeast ‘ Avg.
AUC-ROC 0.957 0.788 0.920 0.668 0.506 | 0.768

A AUC-PR 0.752 0.699 0.583 0.216 0.525 | 0.555
F1 score 0.697 0.631 0.625 0.220 0.518 | 0.538

Time (s) 0.030 0.019 0.022 0.019 0.018 | 0.022

AUC-ROC 0.958 0.793 0.913 0.622 0.535 | 0.764

B AUC-PR 0.759 0.713 0.573 0.204 0.545 | 0.559
F1 score 0.720 0.632 0.625 0.297 0.526 | 0.560

Time (s) 0.030 0.019 0.023 0.019 0.020 | 0.022

AUC-ROC 0.955 0.804 0.936 0.721 0.535 | 0.790

C AUC-PR 0.775 0.717 0.630 0.228 0.539 | 0.578
F1 score 0.715 0.624 0.656 0.247 0.531 0.555

Time (s) 0.044 0.030 0.030 0.027 0.027 | 0.031

AUC-ROC 0.974 0.826 0.930 0.754 0.553 | 0.808

D (AGNI) AUC-PR 0.813 0.760 0.649 0.301 0.548 | 0.614
F1 score 0.766 0.687 0.688 0.300 0.543 | 0.597

Time (s) 0.044 0.029 0.030 0.030 0.027 | 0.032

Detailed results of component-wise analysis Table |A5|reports the component-wise ablation re-
sults of AGNI on the selected subset (annthyroid, cardiotocography, stamps, vowels, and yeast)).
Setting A-D correspond to the configuration described in Table ] of the main text and are detailed
as follows. All experiments were conducted using a single random seed.

 Setting A: A vanilla transformer-based autoencoder without any of the proposed compo-
nents.

 Setting B: Incorporates the attention-guided masking component into Setting A. The mask-
ing ratio is varied from 0.3 to 0.8 in increments of 0.1, and the average performance is
reported.

* Setting C: Incorporates the neighbor-informed reconstruction component info Setting A.
The number of neighbors is set to 1, 2, and 3, and results are averaged across these values.

 Setting D: Represents the full AGNI model, which integrates both proposed components.
For each dataset, the masking ratio and number of neighbors are set to the best-performing
configuration.

Detailed results of configuration-wise variants on the subset Table[A6|presents the performance
of five configuration-wise variants evaluated on the five subsets. Each variant modifies one or more
components of the masking strategy, the neighbor selection criterion, and the fusion strategy. Vari-
ant 5 corresponds to AGNI, our proposed framework. AGNI (Variant 5) achieves the best average
performance in all evaluation metrics, demonstrating the effectiveness of its design. A closer com-
parison with other variants highlights the contribution of each component:

* Attention-guided masking vs. random masking (Variant 5 vs. Variant 4): Replacing
attention-guided masking with random masking leads to performance drops, particularly
in AUC-PR (from 0.614 to 0.483) and F1 score (from 0.597 to 0.501). This indicates that
masking based on attention scores allows more informative and discriminative learning.

* Attention-based neighbor selection vs. embedding similarity (Variant 5 vs. Variant 3):
Using embedding similarity for neighbor selection instead of attention scores results in
lower performance across all metrics. This suggests that attention-based selection captures
structural relationships more effectively.

* Fusion by individual concatenation vs. averaging (Variant 5 vs. Variants 1 and 2):
Variants 1 and 2 use averaging-based fusion strategies, which underperform compared to
direct concatenation. This shows that reserving neighbor-specific signals through explicit
concatenation leads to better utilization of contextual information.

Overall, these results validate the effectiveness of AGNI’s configuration and demonstrate that

each component—attention-guided masking, attention-based neighbor selection, and concatenation-
based fusion—contributes meaningfully to performance improvements.
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Table A6: Detailed results of Evaluation results for configuration-wise variants on the subset.

. . Neighl?or— Fusion . . cardio-
Variant | Masking selection strategy Metric | annthyroid tocography stamps vowels yeast | Avg.
criteria
AUC-
Roc | 0873 0784 0916 0825 0443 | 0.768
Attention-  Attention M AUC-

1 euidod e |7 (XM 2] | GR| 08 0694 0561 0233 0472 | 0.509
Fl 0.515 0612 0563 0280 0465 | 0487
score
AUC-
roc | 0977 0793 0908 0716 0.561 | 0.791

2 Agﬁﬁ;’i‘" Attention [2; & M 2] ATC | osar 0707 0550 0249 0555 | 0.578
Fl 0.800 0620 0563 0300 0.549 | 0.566
score
AUC-

Roc | 0966 0784 0914 0826 0.513 | 0.801

3 Agﬁﬁé‘é“' Eml:frid‘"g [% 215 - .5 2] All,f' 0.769 0693 0557 0325 0529 | 0575
Fl 0.719 0616 0563 0340 0514 | 0550
score
AUC-
roc | 0924 0726 0773 0616 0519 | 0.712

4 Random Atstzg;‘e"“ [2 215 . .5 20] AIEJRC' 0.743 0617 0354 0171 0531 | 0483
Fl 0.723 0552 0438 0260 0531 | 0.501
score
AUC-

Roc | 0974 0826 0930 0754 0553 | 0.808

( ASND Agﬁﬁé‘é“' At:z:fe"“ [% 215 -5 2] AEIS' 0.813 0760 0649 0301 0.548 | 0.614
Fl 0.766 0687 0688 0300 0543 | 0.597
score

Table A7: Optimal masking ratio and number of neighbors per dataset.

Dataset Masking Ratio  Neighbors \ Dataset Masking Ratio  Neighbors
aloi 0.7 1 musk 0.4 3
annthyroid 0.3 1 optdigits 0.7 1
backdoor 0.4 2 pageblocks 0.6 1
breastw 0.4 3 pendigits 0.4 3
campaign 0.6 1 pima 0.3 2
cardio 0.4 1 satellite 0.4 2
cardiotocography 0.5 1 satimage-2 0.4 3
celeba 0.8 2 shuttle 0.5 1
census 0.5 3 skin 0.7 3
cover 0.6 1 smtp 0.7 2
donors 0.3 1 spambase 0.7 2
fault 0.3 3 speech 0.3 2
fraud 0.7 3 stamps 0.6 1
glass 0.8 1 thyroid 0.7 1
hepatitis 0.3 2 vertebral 0.4 1
http 0.8 3 vowels 0.7 3
internetads 0.4 3 waveform 0.8 3
ionosphere 0.8 3 wbc 0.4 3
landsat 0.6 1 wdbc 0.3 1
letter 0.4 2 wilt 0.6 1
lymphography 0.3 1 wine 0.5 1
magic 0.8 1 wpbc 0.6 3
mammography 0.4 1 yeast 0.7 2

mnist 0.5 3

Anomaly Ratio Analysis

At test time, the ratio of anomalies to normal samples can affect evalu-
ation results, but AGNI’s detection mechanism—Dbased on reconstruction errors and learned normal
patterns—remains stable across different anomaly proportions. To empirically validate this robust-
ness, we leveraged the ADBench benchmark used in our study, which comprises 47 datasets. We
categorized these datasets into three groups based on their anomaly ratios, with each category con-
taining a similar number of datasets: low ratio (< 3.2%), medium ratio (3.2-10.2%), and high ratio
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Figure Al: Spearman correlation heatmap of 47 real-world tabular datasets

Table A8: AUC-ROC performance by anomaly ratio groups (mean#std)

Method ‘ Low (0,3.2]  Medium (3.2, 10.2]  High (10.2, 40]
IForest 0.832+0.181 0.809+0.205 0.707£0.176
kNN 0.871£0.190 0.872+0.178 0.762+0.167
LOF 0.851+0.217 0.853+0.160 0.708+0.138
OCSVM 0.829+0.198 0.819+0.221 0.719+0.174
PCA 0.819+0.201 0.789+0.243 0.676+0.172
DAGMM 0.710£0.183 0.681£0.176 0.621£0.116
DeepSVDD | 0.703+0.210 0.704+0.209 0.683+0.180
DROCC 0.683+0.219 0.601£0.175 0.575+0.141
GOAD 0.706+0.262 0.719+0.246 0.664+0.168
VAE 0.819+0.201 0.796+0.230 0.694+0.163
ICL 0.841£0.178 0.873£0.159 0.741£0.239
SLAD 0.799+0.217 0.834+0.181 0.757£0.191
MCM 0.770+0.214 0.765+0.197 0.666+0.180
DRL 0.835+0.167 0.810+0.174 0.695+0.177
DTE 0.856+0.185 0.824+0.196 0.713£0.173
AGNI 0.908+0.127 0.878+0.155 0.790+0.133

(> 10.2%). Table [A8|shows the analysis results. Analysis of AUC-ROC for each group revealed that
AGNI achieved the highest AUC-ROC performance across all three categories while maintaining
the smallest standard deviations. These experimental findings confirm that AGNI maintains superior
and consistent detection performance across a wide range of conditions from low to high anomaly
ratios. We attribute this robustness to AGNI’s adaptive design: although a higher anomaly ratio
increases the likelihood of including anomalous samples among the retrieved neighbors, AGNI’s
attention mechanism assigns low weights to such outliers, thereby limiting their influence on recon-
struction. Additionally, since anomaly scores are based on instance-specific reconstruction errors
of informative features, even when neighbors are noisy, abnormal instances still yield significantly
larger errors, enabling robust detection via relative ranking.

Dataset-wise analysis of optimal masking ratio and neighbor count We report the optimal
masking ratio and number of neighbors per dataset in Table According to the Spearman cor-
relation heatmap results Figure [AT] a weak positive correlation (p ~ 0.25) was observed between
masking ratio and sample size. This suggests that datasets with larger sample sizes tended to benefit
from relatively higher masking ratios for performance improvement. Similarly, a positive correlation
of comparable magnitude (p ~ 0.28) was found between the number of features and the number of
neighbors, indicating that configurations using more neighbors were more frequently selected for
optimal performance in cases with higher feature dimensionality.
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Algorithm 1 Attention-Guided Masking and Neighbor-Aware Decoding

Require: Training data Dy,;,, masking ratio p, neighbors K
Ensure: Trained encoder fe,. and decoder fge.
Initialize encoder fe,. and decoder fgec
repeat
for each mini-batch B C Dy,in do
Compute attention scores {s;} for all x;, € B
£batch 0
for each sample x; € B do
Mask top-p features based on s; to get X;
Find K neighbors with most similar attention score vectors
Z; < fenc (5(1)
Zcighbors <— encoded representations of K neighbors
c; < Concatenate(z;, Zneighbors)
X < faec(Ci)
Lbatch < Lhatch + || — %43
end for
Update model parameters using Lyaech/|B]
end for
until convergence

D ALGORITHM

For completeness, we present the pseudocode of our training procedure in Algorithm |1} The algo-
rithm summarizes the two key components described in method section: (1) attention-guided feature
masking based on transformer attention scores, and (2) neighbor-informed reconstruction using rep-
resentations of attention-similar samples. This formulation highlights how instance-specific masking
and contextual reconstruction are integrated during self-supervised training.

E COMPUTATION AND RUNTIME ANALYSIS

E.1 STEP-WISE COMPUTATION ANALYSIS

We analyze the test-time computational complexity of our method in terms of the batch size B, input
feature dimension d, and number of attention heads H. We also assume that the number of neighbors
M is a small constant (we use M = 3 in all experiments) and is therefore omitted from asymptotic
expressions.

Step 1: Transformer encoding and attention extraction. Each of the B test samples is passed
through a transformer encoder. The cost of multi-head self-attention is O( Hd?) per sample, resulting
in:

O(BHd?)
Attention scores are extracted from the final encoder layer and reduced via max pooling over heads
and features, which adds only O(BHd) cost—negligible compared to the encoder’s complexity.

Step 2: Masking. Generating and applying binary masks involves sorting or thresholding the d-
dimensional attention score vector per sample. This step requires O(Bd) operations and is domi-
nated by the encoder and retrieval costs.

Step 3: Pairwise similarity computation. We compute cosine similarity between the attention score
vectors for all sample pairs within the batch. Each similarity computation takes O(d) time, resulting
in:

O(B?%d)

Step 4: Neighbor retrieval. Each sample retrieves its top-M nearest neighbors based on cosine
similarity. Top-M selection can be done in O(B) time per sample, yielding:

O(B?)
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This is strictly dominated by the previous step and thus omitted from the final complexity expression.

Step 5: MLP decoding. For each sample, the decoder receives a concatenated representation of its
own latent vector and those of its M retrieved neighbors, producing a vector of dimension (M +1)-d.
The decoder is a 3-layer MLP with fully connected layers of hidden size d, yielding a per-sample
cost of O((M + 1)2d?) = O(d?). Across all B samples:

O(Bd?)

Total complexity. Combining all dominant steps, the overall test-time complexity is:
O(BHd? + B?d)
In typical settings (e.g., H = 8, d = 100, B = 64), the B2d term arising from similarity compu-

tation dominates. This justifies our use of moderate batch sizes, which provide a favorable trade-off
between retrieval quality and computational efficiency.
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