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Abstract001

Generative recommendation has emerged as a002
promising paradigm that formulates the rec-003
ommendations into a text-to-text generation004
task, harnessing the vast knowledge of large005
language models. However, existing studies006
focus on considering the sequential order of007
items and neglect to handle the temporal dy-008
namics across items, which can imply evolv-009
ing user preferences. To address this limita-010
tion, we propose a novel model, Generative011
Recommender Using Time awareness (GRUT),012
effectively capturing hidden user preferences013
via various temporal signals. We first introduce014
Time-aware Prompting, consisting of two key015
contexts. The user-level temporal context mod-016
els personalized temporal patterns across times-017
tamps and time intervals, while the item-level018
transition context provides transition patterns019
across users. We also devise Trend-aware In-020
ference, a training-free method that enhances021
rankings by incorporating trend information022
about items with generation likelihood. Exten-023
sive experiments demonstrate that GRUT out-024
performs state-of-the-art models, with gains025
of up to 30.0% and 24.8% in Recall@5 and026
NDCG@5 across four benchmark datasets. The027
code will be available upon acceptance.028

1 Introduction029

Generative recommendation (GR) is an emerging030

paradigm that redefines the traditional recommen-031

dation task as a text-to-text generation problem (Ra-032

jput et al., 2023; Geng et al., 2022). While the con-033

ventional discriminative approach ranks items indi-034

vidually (Kang and McAuley, 2018), GR directly035

generates the identifier (ID) of the target item given036

a user history. Notably, it benefits from directly037

leveraging the extensive capabilities of large lan-038

guage models (LLMs) for recommendations (Raf-039

fel et al., 2020; Touvron et al., 2023).040

Despite its success, existing GR models over-041

look a crucial dimension: temporal dynamics. As042

Figure 1: Illustration of our motivation. While (a) exist-
ing generative recommenders only consider sequential
order, (b) our method utilizes temporal information.

illustrated in Figure 1, the temporal information 043

of items significantly affects user preferences (Li 044

et al., 2020; Zhang et al., 2024). Without temporal 045

information, the model might recommend another 046

‘stuffed animal’ based on frequent occurrences in 047

the user history, even after preference has shifted to- 048

ward the ‘LEGO product’ over one year (Figure 1a). 049

In contrast, a time-aware GR model can accurately 050

discern preference shifts and recommend products 051

that match the user’s current interests by consid- 052

ering temporal dynamics (Figure 1b). Moreover, 053

timestamps may imply seasonal preferences that 054

the mere item order cannot capture, e.g., Christmas 055

or holidays (Wang et al., 2020a). 056

Incorporating temporal information into recom- 057

mendations yields several challenges. (i) Temporal 058

signals exist in distinct forms: absolute timestamps 059

and relative time intervals across user interactions. 060

Each signal provides different signals, making it 061

challenging to preserve their information while ef- 062

fectively combining them (Cho et al., 2020; Zhang 063

et al., 2025). (ii) Temporal item patterns vary in 064

scope from individual user behavior to collective 065

item-level trends and transition patterns. The collec- 066

tive patterns further require analyzing the interac- 067

tion of all users. While previous work has adopted 068

graph-based methods (Zhang et al., 2024; Wang 069

et al., 2020b), representing temporal knowledge 070

in natural language form for GR remains unex- 071
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plored. (iii) Integrating temporal signals into GR072

requires unique modeling. Unlike traditional se-073

quential models that rely on explicit temporal em-074

beddings (Li et al., 2020; Zhang et al., 2025; Hu075

et al., 2025) or contrastive learning (Tian et al.,076

2022; Dang et al., 2023; Zhang et al., 2024), it is077

crucial to translate complex temporal patterns into078

natural language. Concurrently, GR models are re-079

quired to maintain the ability to generate precise080

item IDs from the vast item candidate pool.081

To address these challenges, we propose a novel082

model, Generative Recommender Using Time083

awareness (GRUT), enhancing GR through tem-084

poral signals of items. To model distinct temporal085

signals, we first introduce Time-aware Prompting,086

which consists of two contexts. At the user level,087

we integrate absolute timestamps and time inter-088

vals between interactions in the prompt to model089

individual user patterns. At the item level, item tran-090

sition patterns are represented in natural language091

forms, incorporating broader temporal patterns that092

individual user history alone cannot provide. Be-093

sides, we devise Trend-aware Inference, a flexible094

method that refines beam search ranking with the095

temporal trend of items. It adaptively combines096

item generation likelihoods with trend scores, as-097

signing higher scores to recently trending items.098

Despite its simplicity, it enables the model to re-099

flect diverse and timely recommendation scenarios.100

Our key contributions are summarized as fol-101

lows: (i) To the best of our knowledge, this is102

the first work to integrate temporal dynamics into103

GR, demonstrating its importance beyond the mere104

sequential order of items. (ii) We propose Time-105

aware Prompting, which effectively incorporates106

multi-dimensional temporal patterns at both user107

and item levels. (iii) We design Trend-aware Infer-108

ence, which adaptively leverages trends to refine109

recommendation rankings without model retrain-110

ing. (iv) Extensive experiments demonstrate that111

GRUT outperforms state-of-the-art models, with im-112

provements of up to 30.0% in Recall@5 and 24.8%113

in NDCG@5 across four benchmark datasets.114

2 Related Work115

We categorize sequential recommendation1 into116

two dimensions, as shown in Table 1: temporal117

information utilization and whether they employ118

generative approaches (Li et al., 2024).119

1For more details on existing sequential recommendation
models, see Appendix A.1.

Discriminative Generative

Sequential
info.

GRU4Rec, HGN,
SASRec, BERT4Rec,

FDSA, S3Rec

P5, TIGER,
LC-Rec, LETTER,

IDGenRec, TransRec,
ELMRec

Temporal
info.

TiSASRec, TGSRec,
TCPSRec, TiCoSeRec,

TGCL4SR,
HM4SR, HORAE

GRUT (Ours)

Table 1: Category of existing sequential recommenda-
tion models. GRUT introduces a time-aware generative
recommendation model.

2.1 Generative Recommendation 120

It directly generates the target item identifier from 121

user history as a text-to-text generation task2. 122

P5 (Geng et al., 2022; Hua et al., 2023) first pi- 123

oneered this paradigm with multi-task learning. Re- 124

cent works have largely focused on item identi- 125

fiers. TIGER (Rajput et al., 2023), LC-Rec (Zheng 126

et al., 2024), and LETTER (Wang et al., 2024a) 127

use vector quantization (Zeghidour et al., 2022) 128

for codebook-based identifiers. LC-Rec further 129

aligns language and collaborative semantics with 130

codebook IDs, and LETTER integrates collabo- 131

rative signals into identifiers. Meanwhile, IDGen- 132

Rec (Tan et al., 2024) generates keyword IDs from 133

textual metadata, and TransRec (Lin et al., 2024) 134

combines multiple identifier types. More recently, 135

ELMRec (Wang et al., 2024b) injects graph-based 136

high-order interaction knowledge. However, the 137

temporal dynamics of items remain unexplored in 138

GR, which struggles to grasp shifting user prefer- 139

ences over time. 140

2.2 Temporal Recommendation 141

Temporal information in recommendations im- 142

plies how user preferences evolve, providing 143

richer information than the sequential order of 144

items in the sequence. TiSASRec (Li et al., 145

2020) initiated the use of time intervals with 146

self-attention (Kang and McAuley, 2018), while 147

TGSRec (Fan et al., 2021) incorporates times- 148

tamp embeddings. Several models leverage con- 149

trastive learning with temporal information: TCP- 150

SRec (Tian et al., 2022) employs temporal con- 151

trastive pre-training, TiCoSeRec (Dang et al., 2023) 152

develops time-aware sequence augmentation meth- 153

ods, and TGCL4SR (Zhang et al., 2024) constructs 154

temporal item transition graphs for graph-based 155

2We mainly focus on improving the GR model, aiming to
generate target item identifiers. See Appendix A.2 for further
LLM-based recommendation models.
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Figure 2: Overall architecture of GRUT. The core innovation of the model is (a) Time-aware Prompting that captures
evolving user preferences. This is followed by (b) Context-integrated ID Generation that aggregates contexts and
complemented by (c) Trend-aware Inference that adaptively incorporates the trend of items.

contrastive learning. Recent work extends temporal156

dynamics to non-neural models (Park et al., 2025).157

Importantly, for multi-modal sequential recom-158

mendation, HM4SR (Zhang et al., 2025) encodes159

timestamps into embeddings and combines them160

with item ID, text, and image representations161

through a mixture of experts. HORAE (Hu et al.,162

2025) enhances a multi-interest pre-training model163

by incorporating temporal context with texts. How-164

ever, both models only extract representations from165

LLMs without fine-tuning, limiting their ability to166

fully harness the capabilities of LLMs. Recent work167

has also explored temporal awareness for LLMs168

in sequential recommendation (Chu et al., 2024).169

However, it only evaluates on sampled candidates170

rather than the entire set, limiting its scalability.171

3 Background172

Let U and I denote the sets of users and items, re-173

spectively. Each user u ∈ U has an interaction his-174

tory represented as a sequence su = (i1, . . . , i|su|),175

where each interaction corresponds to actions such176

as purchasing or clicking. Each element ij rep-177

resents the item the user interacted with at the178

j-th position, and |su| indicates the number of179

items in su. The timestamp sequence is denoted180

by Tu = (t1, . . . , t|su|), indicating the temporal in-181

formation corresponding to su. Sequential recom-182

mendation aims to predict the next item i|su|+1 ∈ I183

that the user is most likely to interact with.184

For generative recommendation, each item i ∈ I185

is assigned a unique ID ĩ. Generally, item IDs186

can be represented as a sequence of codebook to-187

kens (Rajput et al., 2023; Zheng et al., 2024) or188

short text (Tan et al., 2024). With the item ID, the189

user sequence is converted to the sequence of item190

IDs s̃u = (̃i1, ĩ2, . . . , ĩ|su|). Inspired by (Tan et al., 191

2024), we extract keywords from item descriptions 192

using term frequency (Jones, 2004) to create de- 193

scriptive item IDs.3 In existing studies (Geng et al., 194

2022; Tan et al., 2024), the user sequence is repre- 195

sented without temporal information: 196

What would the user purchase after ĩ1, ĩ2,
. . . , ĩ|su|?

197

Here, the goal is to generate the target item ID 198

ĩ|su|+1, which the user is most likely to prefer. 199

4 Proposed Model 200

We present a Generative Recommender Using Time 201

awareness (GRUT), which enhances GR via ex- 202

plicit modeling of temporal dynamics. The over- 203

all architecture is depicted in Figure 2. Our pri- 204

mary contribution is Time-aware Prompting that 205

effectively captures temporal patterns from both 206

individual user behavior and collective user transi- 207

tions (Section 4.1). These patterns are then utilized 208

in Context-integrated ID Generation (Section 4.2). 209

After training, we design Trend-aware Inference, 210

which refines rankings by incorporating generation 211

likelihood with temporal trends (Section 4.3). 212

4.1 Time-aware Prompting 213

We introduce time-aware prompting that harnesses 214

temporal dynamics by incorporating user-level tem- 215

poral context and item-level transition patterns. It 216

models individual temporal patterns based on abso- 217

lute timestamps and relative intervals while lever- 218

aging collective transition patterns across users. 219

3See Appendix B.3.1 for details of keyword extraction.
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4.1.1 User-level Temporal Context220

The user-specific temporal patterns are encoded221

into natural language form, leveraging the capa-222

bilities of LLMs to process temporal information223

through prompting (Xiong et al., 2024). We en-224

hance the basic input of GR by injecting the tem-225

poral information of interactions.226

Specifically, we utilize two distinct forms of tem-227

poral signals: target-relative intervals and absolute228

timestamps. (i) The target-relative interval ∆ti (i.e.,229

the interval between each timestamp ti and the in-230

ference timestamp t|su|+1) effectively reflects how231

user preferences may have shifted over time. For232

instance, recent interests can be highlighted when233

recommending shortly after an interaction, while234

stable long-term preferences are emphasized for235

longer intervals. (ii) Absolute timestamps ti enable236

the model to recognize seasonal patterns or cycli-237

cal behaviors, e.g., holiday shopping, that intervals238

alone cannot capture.239

The user-level temporal context Cu is as follows:240

The current date is t|su|+1.
What would the user purchase after
ĩ1 (t1, ∆t1 ago), ĩ2 (t2, ∆t2 ago), · · · ,
ĩ|su| (t|su|, ∆t|su| ago) ?

241

where ĩ represents item IDs that can take vari-242

ous forms, e.g., keywords or titles. Note that our243

method can be generally applied regardless of the244

item ID representations, as shown in Appendix C.2.245

This context enables learning complex patterns246

beyond the sequential orders of items, grasping247

preference shifts according to time intervals. No-248

tably, it has three key advantages: (i) The target-249

relative intervals and absolute timestamps provide250

complementary signals that consistently outper-251

form either when used alone, as shown in Table 3.252

(ii) Owing to the target-relative interval, it is partic-253

ularly effective for long time intervals, where user254

preferences have likely evolved, as demonstrated in255

Figure 3. (iii) By considering current dates, recom-256

mendations can be dynamically adapted based on257

inference timestamps, unlike existing GR models258

that make identical predictions regardless of infer-259

ence timestamps. It is reported in Appendix D.1.260

4.1.2 Item-level Transition Context261

We leverage item-level transition patterns to cap-262

ture common consumption behaviors across all263

users, identifying what items users typically con-264

sume next after specific items. While user-level 265

temporal context focuses on individual preferences 266

over time, it cannot model collective patterns across 267

users. The item transition pattern has been widely 268

recognized as crucial information in recommenda- 269

tions (Zhang et al., 2024; Wang et al., 2020b). Apart 270

from previous studies, we convert these structural 271

patterns into natural language formats for GR. 272

Global Item Transition Graph. We first construct 273

a global item transition graph G = (V, E) from all 274

training sequences. Here, the node set V represents 275

all items, and the edge set E represents transitions 276

between items. For each user sequence su, we ex- 277

tract all item pairs (it, it′) where t < t′ and record 278

the time interval ∆ti,j = tj − ti. We add all pairs 279

as directed edges to the graph, where each edge 280

ei,j ∈ E denotes a transition from item i to item j, 281

along with the corresponding time interval ∆ti,j . 282

Time-weighted Transition Graph. For a given 283

item i ∈ I, we calculate transition probabilities 284

for all outgoing edges {ei,j |j ∈ I} from the graph, 285

considering time intervals (Park et al., 2025). We 286

assign a time-decaying weight that gives higher 287

importance to shorter time intervals: 288

w(∆ti,j) = max

(
exp

(
−|∆ti,j |

τ

)
, c

)
, (1) 289

where τ controls decay speed and c ensures mini- 290

mum weight for long-term transitions. Using time- 291

aware weights, the transition probability pi,j is for- 292

mulated as: 293

pi,j =

∑
(i,j)∈Ai,j

w(∆ti,j)∑
j′∈I

∑
(i,j′)∈Ai,j′

w(∆ti,j′)
, (2) 294

where Ai,j denotes the set of all pairs from item i 295

to item j in the training data. 296

Based on the transition probability, we extract 297

meaningful patterns by selecting the top-k neigh- 298

boring items for each of the last L items in the 299

sequence: 300

Ni = {̃i1, ..., ĩk} = Top-k
j∈I

pi,j , (3) 301

where Ni represents the set of top-k neighboring 302

item IDs for item i. Here, k and L are hyperparam- 303

eters. We focus on the last L items in the sequence, 304

considering the recency and the maximum input 305

sequence length of language models. These top-k 306

items refer to the items that users most frequently 307

purchased after the given item, based on the collec- 308

tive behavior patterns across all users. 309

4



Prompt Transformation. The extracted transition310

patterns are then transformed into natural language311

using item IDs. The item-level transition context312

Cv is expressed as:313

After ĩ|su|−L+1, users often buy: Ni|su|−L+1
.

· · ·
After ĩ|su|, users often buy: Ni|su| .

314

where the item ĩ|su|−L+n is the n-th item among315

the last L items, and Ni|su|−L+n
is represented by316

concatenating all item IDs within the set. This con-317

text can integrate the item transition knowledge318

with the recommendation process, in addition to319

the user-specific temporal context.320

4.2 Context-integrated ID Generation321

After extracting user-level temporal patterns and322

item-level transition knowledge, we aggregate the323

two contexts to generate accurate target item IDs324

that reflect evolving user preferences.325

Context Aggregation. We employ a well-326

established parallel encoding approach (Izacard327

and Grave, 2021; Yen et al., 2024). It consists of328

two key steps: (i) encoding each context indepen-329

dently and (ii) aggregating contexts in the decoder330

through cross-attention. First, the user-level tempo-331

ral context Cu and the item-level transition context332

Cv are separately encoded with a shared encoder:333

Hc = Encoder (Cc) ∈ RM×d, c ∈ {u, v} (4)334

where M represents the number of text tokens, and335

d is the hidden dimension size. To further distin-336

guish context types, learnable context-type embed-337

dings are added to encoder outputs:338

Xc = Hc +Pc ∈ RM×d, c ∈ {u, v} (5)339

where Pu and Pv are unique embeddings for user-340

level and item-level contexts, respectively. We then341

combine all representations into a unified embed-342

ding matrix X:343

X = [Xu; ϵ ·Xv] ∈ R(2×M)×d, (6)344

where ϵ is a hyperparameter that controls the effect345

of transition patterns without overwhelming user-346

specific signals. Finally, the decoder processes the347

unified information via cross-attention, where X348

serves as the key-value matrix.349

Training Objective. Once contexts are aggregated,350

the decoder autoregressively generates the target351

item ID ĩ. The model is trained by minimizing 352

the sequence-to-sequence cross-entropy loss with 353

teacher forcing: 354

L = −
|̃i|∑
t=1

logP (̃it|Cu, Cv, ĩ
<t), (7) 355

where ĩt is a t-th token of ĩ, and ĩ<t denotes the 356

sequence of tokens generated before the t-th token. 357

4.3 Trend-aware Inference 358

We design trend-aware inference to incorporate 359

real-time item trends at recommendation time 360

t|su|+1 into the final ranking. This training-free 361

method adjusts predictions to reflect dynamic pat- 362

terns, such as rapidly trending items that emerged 363

after training. This ensures timely recommenda- 364

tions without requiring model retraining, as further 365

demonstrated in Appendix D.2. 366

Beam Score. The beam score for an item ID ĩ is 367

defined as: 368

sbeam(̃i) =

|̃i|∑
t=1

logP (̃it|Cu, Cv, ĩ
<t). (8) 369

Based on this score, it yields the B most probable 370

item IDs, where B is the beam size. To generate 371

valid IDs, we use a prefix tree Trie (Cormen et al., 372

2022), following existing works (Tay et al., 2022; 373

Wang et al., 2022). 374

Trend Score. We calculate the trend score for an 375

item i as follows: 376

strend(i) = log(
ri

maxj rj
+ 1), (9) 377

where ri is the number of appearances of item i. 378

The logarithmic scale prevents high values from 379

dominating the score, while normalization by the 380

maximum frequency maintains the relative impor- 381

tance across items. To consider the recent trend, ri 382

is counted only during the N most recent days be- 383

fore the recommendation time t|su|+1. The window 384

size N is a hyperparameter that can be adjusted 385

according to the characteristics of the recommen- 386

dation domain or the trend changes. 387

Score Aggregation. We aggregate both scores for 388

the final ranking. For B items obtained after beam 389

search, the final score is calculated as: 390

sfinal(i) = sbeam(̃i) + λ · strend(i), (10) 391

where λ is a hyperparameter to control the trend 392

influence. Since trend scores can be pre-computed, 393
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Model
Beauty Toys Sports Yelp

R@5 N@5 R@10 N@10 R@5 N@5 R@10 N@10 R@5 N@5 R@10 N@10 R@5 N@5 R@10 N@10

Traditional recommendation models

GRU4Rec 0.0429 0.0288 0.0643 0.0357 0.0371 0.0254 0.0549 0.0311 0.0237 0.0154 0.0373 0.0197 0.0240 0.0157 0.0398 0.0207
HGN 0.0350 0.0217 0.0589 0.0294 0.0345 0.0212 0.0553 0.0279 0.0203 0.0127 0.0340 0.0171 0.0366 0.0250 0.0532 0.0304

SASRec 0.0323 0.0200 0.0475 0.0249 0.0339 0.0208 0.0442 0.0241 0.0147 0.0089 0.0220 0.0113 0.0284 0.0214 0.0353 0.0245
BERT4Rec 0.0267 0.0165 0.0450 0.0224 0.0210 0.0131 0.0355 0.0178 0.0136 0.0085 0.0233 0.0116 0.0244 0.0159 0.0401 0.0210

FDSA 0.0570 0.0412 0.0777 0.0478 0.0619 0.0455 0.0805 0.0514 0.0283 0.0201 0.0399 0.0238 0.0331 0.0218 0.0534 0.0284
S3Rec 0.0377 0.0235 0.0627 0.0315 0.0365 0.0231 0.0592 0.0304 0.0229 0.0145 0.0370 0.0190 0.0190 0.0117 0.0321 0.0159

Temporal recommendation models

TiSASRec 0.0564 0.0359 0.0842 0.0449 0.0665 0.0410 0.0944 0.0499 0.0312 0.0178 0.0474 0.0231 0.0427 0.0323 0.0610 0.0382
TiCoSeRec 0.0377 0.0186 0.0622 0.0260 0.0408 0.0212 0.0663 0.0292 0.0265 0.0147 0.0455 0.0219 0.0433 0.0301 0.0618 0.0354

HM4SR 0.0566 0.0409 0.0773 0.0476 0.0647 0.0480 0.0847 0.0545 0.0288 0.0204 0.0402 0.0241 0.0273 0.0185 0.0447 0.0241
HORAE 0.0508 0.0310 0.0834 0.0415 0.0555 0.0331 0.0902 0.0442 0.0379 0.0235 0.0620 0.0313 0.0419 0.0279 0.0663 0.0357

Generative recommendation models

P5-SID 0.0465 0.0329 0.0638 0.0384 0.0216 0.0151 0.0325 0.0186 0.0295 0.0212 0.0403 0.0247 0.0299 0.0211 0.0432 0.0253
P5-CID 0.0465 0.0325 0.0668 0.0391 0.0223 0.0143 0.0357 0.0186 0.0295 0.0214 0.0420 0.0254 0.0226 0.0155 0.0363 0.0199

P5-SemID 0.0459 0.0327 0.0667 0.0394 0.0264 0.0178 0.0416 0.0227 0.0336 0.0243 0.0481 0.0290 0.0212 0.0143 0.0329 0.0181
TIGER 0.0352 0.0236 0.0533 0.0294 0.0274 0.0174 0.0438 0.0227 0.0176 0.0111 0.0311 0.0146 0.0164 0.0103 0.0262 0.0135

IDGenRec† 0.0463 0.0328 0.0665 0.0393 0.0462 0.0323 0.0651 0.0383 0.0273 0.0186 0.0403 0.0228 0.0310 0.0219 0.0448 0.0263
ELMRec† 0.0372 0.0267 0.0506 0.0310 0.0148 0.0119 0.0193 0.0131 0.0241 0.0181 0.0307 0.0203 0.0424 0.0301 0.0501 0.0324
LETTER 0.0364 0.0243 0.0560 0.0306 0.0309 0.0296 0.0493 0.0262 0.0209 0.0136 0.0331 0.0176 0.0298 0.0218 0.0403 0.0252
LC-Rec 0.0503 0.0352 0.0715 0.0420 0.0543 0.0385 0.0753 0.0453 0.0259 0.0175 0.0384 0.0216 0.0341 0.0235 0.0501 0.0286

GRUT 0.0741 0.0514 0.1092 0.0627 0.0772 0.0534 0.1113 0.0643 0.0419 0.0285 0.0615 0.0348 0.0489 0.0344 0.0699 0.0412

Gain (%) 30.0* 24.8* 29.7* 31.1* 16.1* 11.1* 17.9* 18.1* 10.6* 16.9* -0.8 11.2* 12.8* 6.5* 5.5* 7.9*

Table 2: Overall performance comparison. The best model is marked in bold, and the second-best model is under-
lined. Gain measures the improvement of the proposed method over the best competitive baseline. ‘∗’ indicates
statistical significance (p < 0.05) by a two-tailed t-test. ‘†’ indicates baselines where results differ from the original
papers after we addressed preprocessing issues. Please see Appendix B.3.3 for further details.

it adds minimal computational overhead while bal-394

ancing model predictions with trending items. No-395

tably, trend-aware inference can be applied to vari-396

ous generative recommendation models, as demon-397

strated in Appendix C.3.398

5 Experimental Setup399

Datasets. We conduct experiments on four real-400

world datasets: three subcategories from Ama-401

zon review dataset (McAuley et al., 2015; He402

and McAuley, 2016)4 (“Sports and Outdoors”,403

“Beauty”, and “Toys and Games”) and the Yelp404

dataset5. We apply the standard 5-core filtering,405

removing users and items with fewer than five in-406

teractions, following Hua et al. (2023). The data407

statistics are in Table 6.408

Evaluation Protocols and Metrics. We adopt the409

leave-one-out strategy to split train, validation, and410

test sets following Kang and McAuley (2018);411

Zheng et al. (2024). For each user sequence, we412

use the last item for testing, the second last item as413

validation data, and the remaining items as training414

data. Rather than sampling items, we perform full-415

4https://jmcauley.ucsd.edu/data/amazon/
5https://www.yelp.com/dataset

ranking evaluations on all items for an accurate 416

assessment. For metrics, we adopt top-k Recall 417

(R@k) and Normalized Discounted Cumulative 418

Gain (N@k) with cutoff k = {5, 10}. 419

Baselines. We validate the effectiveness 420

of GRUT against the following eighteen sequential 421

recommenders as baselines. For traditional 422

baselines, we adopt six models: GRU4Rec (Hidasi 423

et al., 2016), HGN (Ma et al., 2019), SAS- 424

Rec (Kang and McAuley, 2018), BERT4Rec (Sun 425

et al., 2019), FDSA (Zhang et al., 2019), and 426

S3Rec (Zhou et al., 2020). For temporal baselines, 427

we adopt four models: TiSASRec (Li et al., 2020), 428

TiCoSeRec (Dang et al., 2023), HM4SR (Zhang 429

et al., 2025), and HORAE (Hu et al., 2025). 430

Lastly, we adopt eight state-of-the-art generative 431

recommenders: P5-SID, P5-CID, P5-SemID (Hua 432

et al., 2023), TIGER (Rajput et al., 2023), 433

IDGenRec (Tan et al., 2024), ELMRec (Wang 434

et al., 2024b), LETTER (Wang et al., 2024a), 435

and LC-Rec (Zheng et al., 2024). The detailed 436

descriptions are in Appendix B.2. 437

Implementation Details. The maximum item se- 438

quence length was set to 20, following Zheng et al. 439

(2024). We tuned all hyperparameters on the vali- 440

dation set using NDCG@10. We used Adam opti- 441

6

https://jmcauley.ucsd.edu/data/amazon/
https://www.yelp.com/dataset


Figure 3: Performance comparison across time interval
groups, defined by the number of days between each
user’s most recent interaction and the target item.

mizer (Kingma and Ba, 2015) with a learning rate442

of 0.001 and a linear scheduler with a warm-up ra-443

tio of 0.05. The maximum text length and the batch444

size were set to 128. Consistent with the generative445

baselines (Hua et al., 2023; Tan et al., 2024; Wang446

et al., 2024b), we initialized with T5-small (Raf-447

fel et al., 2020). Due to space limits, we provide448

further details in Appendix B.3.449

6 Experimental Results450

6.1 Main Results451

Overall Performance. As shown in Table 2, we452

thoroughly evaluate the effectiveness of GRUT on453

four real-world datasets, revealing the following454

key findings: (i) GRUT exhibits the state-of-the-art455

or comparable performance against existing base-456

lines, achieving up to 30.0% and 24.8% gains in457

R@5 and N@5, respectively. GRUT outperforms458

the best temporal baseline by 31.1% in R@5 and459

exceeds the best generative baseline by 47.3% in460

R@5. It demonstrates the effectiveness of GRUT in461

integrating temporal dynamics with generative rec-462

ommendations. (ii) Temporal models generally sur-463

pass both traditional and generative baselines, high-464

lighting the crucial role of temporal information in465

capturing evolving user preferences.466

Performance by Time Interval Group. Figure 3467

illustrates the performance of GRUT and tempo-468

ral models depending on time intervals between469

each user’s most recent interaction and target item.470

We categorize users into Short, Middle, and Long471

subsets.6 Our observations are as follows: (i) Per-472

formance decreases across all models as time inter-473

vals increase. It reflects user preference drift over474

6Please refer to Appendix B.1 for detailed statistics.

Type Beauty Toys
R@5 N@5 R@5 N@5

Target-relative + Abs. 0.0741 0.0514 0.0772 0.0534

None 0.0575 0.0400 0.0569 0.0396
Absolute 0.0581 0.0402 0.0603 0.0412
Relative 0.0582 0.0406 0.0586 0.0407

Target-relative 0.0660 0.0468 0.0672 0.0478
Relative + Abs. 0.0595 0.0415 0.0618 0.0428

Table 3: Performance of GRUT over time information
types in Cu. ‘Abs.’ denotes the absolute timestamps.

Model Beauty Toys
R@5 N@5 R@5 N@5

GRUT 0.0741 0.0514 0.0772 0.0534

w/o user-level 0.0575 0.0400 0.0569 0.0396
w/o item-level 0.0713 0.0492 0.0755 0.0518

w/o trend score (λ = 0) 0.0731 0.0505 0.0754 0.0522

w/o context embedding 0.0711 0.0500 0.0723 0.0529
w/o epsilon (ϵ = 1) 0.0681 0.0486 0.0739 0.0535

Table 4: Ablation study of GRUT. We examine the effect
of (i) time-aware prompting, (ii) trend-aware inference,
and (iii) additional techniques.

long time intervals between interactions, which 475

presents significant challenges for prediction (Li 476

et al., 2020)7. (ii) GRUT delivers substantial gains 477

in Long interval groups with gains of 32.6–46.0% 478

in R@5 and 20.2–24.0% in N@5 compared to the 479

best baseline HM4SR. It confirms the effectiveness 480

of GRUT in identifying preference shifts of users. 481

(iii) The temporal models that utilize textual meta- 482

data (HM4SR, HORAE, GRUT) relatively perform 483

better with longer temporal gaps, implying that 484

textual metadata provides valuable signals when 485

recent behavioral items are insufficient. 486

6.2 Ablation Study 487

Effect of Time Information Types. Table 3 488

presents the impact of temporal information types 489

in the user-level temporal context Cu. We com- 490

pare six variants: None, Absolute timestamps (ti), 491

Relative intervals (ti+1 − ti), Target-relative inter- 492

vals (t|su|+1 − ti), Relative + Absolute, and Target- 493

relative + Absolute8. All time-aware variants out- 494

perform the baseline, with up to 35.7% gains in 495

R@5, confirming the benefits of verbalizing tem- 496

poral dynamics. The target-relative intervals espe- 497

cially achieve the highest performance, suggesting 498

that recency relative to recommendation time effec- 499

tively captures user preferences. Notably, combin- 500

ing absolute timestamps and interval information 501

consistently yields gains of 2.2%–14.9% in R@5. 502

7This is also shown in our analysis in Appendix C.1.
8See Appendix B.4 for detailed prompts of each variant.
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User sequence (ASIN:A1M2CZP3XOVZO5)

Image

Name Edward
Doll

Bella
Doll

SpongeBob
Game

InnoTab
Storage (Pink)

InnoTab
Storage (Blue)

Category Dolls Dolls Learning
Game

System
Acc.

System
Acc.

Time 2010-01-11 2010-01-11 2010-02-16 2012-12-11 2012-12-11

GRUT Top-5 predictions at 2012-12-11 (Without temporal information)

Ranking 1 2 3 4 5

Image

Name SpongeBob
Beanie

Eclipse
Victoria Doll

2012 Holiday
Doll

Photo Fashion
Doll

Carlisle
Doll

Category Plush Dolls Dolls Dolls Dolls

GRUT Top-5 predictions at 2012-12-11 (With temporal information)

Ranking 1 2 3 4 5

Image

Name InnoTab 2S
Tablet

InnoTab 2
White Tablet

InnoTab 2
Pink Tablet

Winx Bloom
Doll

InnoTab
Thomas

Category Learning
Tablet

Learning
Tablet

Learning
Tablet

Dolls Learning
Software

Table 5: GRUT’s top-5 predictions on the Toys dataset
with and without temporal information. The five most
recent items in the sequence are shown for simplicity.
The target item is marked with a red dotted line.

It demonstrates that two distinct forms of temporal503

signals successfully complement each other.504

Effect of Various Components. Table 4 shows the505

effectiveness of various components in GRUT. (i)506

Both user-level temporal context Cu and item-level507

transition context Cv contribute to performance.508

Specifically, temporal information in Cu enhances509

R@5 by up to 35.7%. It highlights the importance510

of user-specific temporal patterns, while transition511

patterns also convey valuable additional guidance.512

(ii) Trend-aware inference not only provides flex-513

ibility in controlling trend influence but also im-514

proves recommendation accuracy by up to 2.4% in515

R@5. This improvement comes from incorporating516

real-time trend signals unavailable during training.517

(iii) The context-type embeddings P in Eq. (5) and518

ϵ in Eq. (6) boost R@5 by up to 6.8% and 8.9%,519

respectively. It indicates that distinguishing context520

types while ensuring transitions as supplementary521

information enhances recommendation accuracy.522

6.3 In-depth Analysis523

Case Study. Table 5 illustrates the impact of tem-524

poral information on the recommendation results525

of GRUT. Without temporal information, the model526

recommends ‘Plush’ and ‘Dolls’, missing that the527

Figure 4: Performance of GRUT over varying the num-
ber of neighboring items k in Cv .

Figure 5: Performance of GRUT over varying the win-
dow size N in the trend score.

user’s purchasing pattern has shifted over the past 528

two years from ‘Dolls’ to ‘InnoTab’. Conversely, 529

GRUT with temporal information successfully iden- 530

tifies the preference shift and recommends an ‘In- 531

noTab 2S Tablet’, while also suggesting a ‘Winx 532

Bloom Doll’. It depicts that temporal dynamics are 533

crucial in capturing user preferences that evolve 534

over time, leading to more accurate recommenda- 535

tions. Please see Appendix D for additional cases. 536

Hyperparameter Sensitivity. Figures 4 and 5 537

show the performance of GRUT when varying 538

neighboring items k and trend window size N . 539

We observe optimal performance at k = 1 for both 540

Beauty and Toys datasets, suggesting that more 541

neighbors may introduce noise. For N , the opti- 542

mal values for Beauty and Toys are 7 and 30, re- 543

spectively. It highlights the importance of adjusting 544

the trend window size according to how rapidly 545

preferences change in each domain. An additional 546

analysis of ϵ and L are in Appendix C.4. 547

7 Conclusion 548

We propose GRUT, a novel model that effectively 549

incorporates temporal dynamics into GR. Our time- 550

aware prompting captures both user-specific tem- 551

poral patterns and item-level transition knowledge. 552

Additionally, trend-aware inference enhances rank- 553

ings by injecting trend information. Extensive ex- 554

periments on four benchmark datasets demonstrate 555

improvements of GRUT compared to state-of-the- 556

art recommendation models, up to 30.0% in R@5 557

and 24.8% in N@5, particularly in scenarios with 558

long time intervals between interactions. Our work 559

highlights the importance of time awareness in GR, 560

opening new directions for future models that better 561

reflect evolving user preferences. 562
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8 Limitations563

The limitations of our work are as follows. (i) To564

construct the item-level transition context Cv, we565

include all transition pairs from the training data in566

a global item transition graph. This approach has567

a limitation as it may incorporate noise or spuri-568

ous patterns, e.g., accidental clicks. This challenge569

has also been noted in previous work (Zhang et al.,570

2024), and future research could apply denoising571

techniques to extract only meaningful temporal pat-572

terns. (ii) Our method currently incorporates tem-573

poral information uniformly across all users. How-574

ever, as pointed out in the existing work (He et al.,575

2023), users exhibit diverse purchasing patterns576

which our approach does not explicitly model, pre-577

senting another limitation of our work. We believe578

that modeling user preferences in a user-adaptive579

manner would be meaningful. For instance, in580

trend-aware inference, the value of λ could be dy-581

namically adjusted according to individual patterns.582

We leave further exploration as future work.583
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This work fully complies with the ACL Ethics Pol-585

icy. We declare that there are no ethical issues in586

this paper. The scientific artifacts we have utilized587

are publicly available for research under permis-588

sive licenses, and the utilization of these tools is589

consistent with their intended applications.590
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Dataset Beauty Toys Sports Yelp

#Users 22,363 19,412 35,598 30,431
#Items 12,101 11,924 18,357 20,033
#Inter. 198,502 167,597 296,337 316,354

Density 0.0734% 0.0724% 0.0453% 0.0519%
Avg. Length 8.9 8.6 8.3 10.4
Avg. Interval 69.6d 86.0d 74.1d 18.6d

Table 6: Statistics of four benchmark datasets.

A Additional Related Work839

A.1 Sequential Recommendation840

The goal of sequential recommendation is to pre-841

dict the following items that users may be interested842

in based on their behavior sequences. Early works843

focus on various neural-based encoders, such as844

convolutional neural networks (Tang and Wang,845

2018), gated recurrent units (Hidasi et al., 2016),846

and Transformers (Kang and McAuley, 2018; Sun847

et al., 2019; Ma et al., 2019). Recent approaches848

incorporate item textual attributes, employing sepa-849

rate self-attention mechanisms for item and feature850

information (Zhang et al., 2019), while leveraging851

self-supervised objectives to learn item-attribute852

correlations (Zhou et al., 2020). However, these853

models are limited in fully utilizing the reasoning854

power of LLMs and textual semantics, unlike gen-855

erative recommendation approaches.856

A.2 LLM-based Recommendation857

Recent studies (Bao et al., 2023; Li et al., 2023b;858

Liao et al., 2024; Kim et al., 2024) employ LLMs859

directly as re-rankers, where the model is prompted860

with a subset of item candidates (typically 20 items,861

including one ground-truth item) to recommend862

items likely to be preferred by users. These ap-863

proaches utilize the rich knowledge and reasoning864

capabilities of LLMs to enhance recommendation865

quality. Meanwhile, some works (Ren et al., 2024;866

Liu et al., 2024, 2025; Sheng et al., 2025) only867

extract LLM knowledge to initialize or enhance868

traditional recommendation models, avoiding the869

costly LLM fine-tuning. Unlike these approaches,870

our work focuses on direct item ID generation, per-871

forming full ranking across the entire item space872

rather than re-ranking from sampled candidates.873

B Additional Experimental Setup874

B.1 Datasets875

Following the previous works (Tan et al., 2024;876

Wang et al., 2024b; Geng et al., 2022; Hua et al.,877

Dataset Short Middle Long

Beauty 9,719 5,052 7,592
Toys 9,518 3,323 6,571

Table 7: The number of users of each test subset in
Figure 3, categorized by time interval between the most
recent interaction and the target item.

2023), we use the Amazon Review dataset contain- 878

ing product reviews and item metadata from 1996 879

to 2014. We also use the Yelp dataset with business 880

reviews from 2019 to 2020. Table 6 presents statis- 881

tics of preprocessed datasets. We further provide 882

the number of users for each subset in Figure 3. 883

B.2 Baselines 884

We adopt six traditional models, four temporal 885

models, and eight generative models for baselines. 886

• GRU4Rec (Hidasi et al., 2016) encodes sequen- 887

tial user behavior using Gated Recurrent Units. 888

• HGN (Ma et al., 2019) models long- and short- 889

term interests with a hierarchical gating network. 890

• SASRec (Kang and McAuley, 2018) leverages 891

uni-directional Transformers to represent users 892

based on their most recent interaction. 893

• BERT4Rec (Sun et al., 2019) employs bi- 894

directional self-attention for masked item pre- 895

diction tasks. 896

• FDSA (Zhang et al., 2019) separately models 897

feature-level and item-level self-attention. 898

• S3Rec (Zhou et al., 2020) enhances representa- 899

tion learning with self-supervised auxiliary tasks. 900

• TiSASRec (Li et al., 2020) introduces relative 901

time interval embeddings as keys and values in 902

self-attention mechanisms. 903

• TiCoSeRec (Dang et al., 2023) improves con- 904

trastive learning by augmenting sequences with 905

controlled time interval distributions. 906

• HM4SR (Zhang et al., 2025) employs a mixture 907

of experts architecture to integrate temporal pat- 908

terns with multi-modal (ID, text) representations. 909

• HORAE (Hu et al., 2025) enhances multi- 910

interest learning with temporal dynamics. 911

• P5-SID (Hua et al., 2023) assigns numeric IDs 912

sequentially based on the item appearance. 913

• P5-CID (Hua et al., 2023) clusters items based 914

on co-occurrences to generate numeric IDs. 915

• P5-SemID (Hua et al., 2023) assigns numeric 916

IDs using item metadata like categories. 917

• TIGER (Rajput et al., 2023) introduces code- 918

book IDs generated through RQ-VAE. 919

• IDGenRec (Tan et al., 2024) generates textual 920

12



Hyperparameters Beauty Toys Sports Yelp

ϵ 0.01 0.01 0.001 0.01
k 1 1 1 1
L 5 2 3 3
λ 0.3 0.4 0.1 0.2
N 7 30 30 30

Table 8: Final hyperparameters for GRUT.

IDs with a generator based on item metadata.921

• ELMRec (Chen et al., 2022) adopts high-order922

relationships using soft prompts and re-ranking923

strategies with numeric IDs.924

• LC-Rec (Zheng et al., 2024) combines RQ-VAE925

IDs with multi-task learning to integrate language926

and collaborative semantics.927

B.3 Additional Implementation Details928

We conducted all experiments with 2 NVIDIA RTX929

A6000, 512 GB memory, and 2 AMD EPYC 74F3.930

B.3.1 Details for GRUT931

We implemented GRUT on OpenP5 (Xu et al.,932

2024). We tuned ϵ in {10−3, 10−2, 10−1, 100}, k in933

{1, 3, 5, 10}, L in {1, 2, 3, 4, 5, 7}, λ in the range934

of [0, 1] with step size 0.1, N in {7, 30, 180, 360},935

τ in the range of [27, 210] with exponentially in-936

creasing steps in powers of 2, c in [0.5, 1]. Due to937

computational constraints, hyperparameters were938

tuned sequentially. We first optimize ϵ, followed by939

k, L, λ, and finally N . The final hyperparameters940

are in Table 8. We sort the user history in Cu and941

Cv in reverse order to prevent recent items from942

being truncated following the existing work (Li943

et al., 2023a). The checkpoints achieving the high-944

est NDCG@10 on the validation set were selected945

for evaluation on the test set. For hyperparameter946

sensitivity analysis (Figure 4, 5, and 7), we mea-947

sured performance without trend-aware inference948

to ensure a more accurate analysis, i.e., λ = 0. For949

calculating the trend score in Eq. (9), the recom-950

mendation day itself was excluded, i.e., from day951

t|su|+1 −N − 1 to day t|su|+1 − 1.952

The keywords are extracted from each item’s tex-953

tual metadata and assigned as textual IDs. Rather954

than learning an ID generator during training (Tan955

et al., 2024), we precompute TF-IDF scores (Jones,956

2004) over the metadata before training. We then957

select the highest-scoring terms and assign them958

as IDs. To maintain consistency with a back-959

bone LLM, T5 tokenizer (Raffel et al., 2020)960

is adopted. For the Amazon Beauty, Toys, and961

Sports dataset, we concatenate each item’s title,962

brand, category, and description. The name, city,963

and category fields are used for the Yelp dataset. 964

For the Toys dataset, examples of item IDs in- 965

clude ‘musical-piano-concert-keyboard-displays’, 966

‘dinosaur-safari-dragon-knight-headed’, and ‘doll- 967

loving-bedroom-mirrored-comfy’. 968

B.3.2 Details for Baselines 969

For traditional and temporal recommendation mod- 970

els, we conducted all experiments on the open- 971

source RecBole library (Xu et al., 2023)9. We 972

thoroughly tuned each hyperparameter following 973

guidance from the original papers. The models 974

were optimized using the Adam optimizer with 975

a learning rate of 0.001, a batch size of 256, and 976

an embedding dimension of 64. The training was 977

stopped when the validation NDCG@10 showed 978

no improvement for 10 consecutive epochs. For 979

HM4SR (Zhang et al., 2025), we utilized only ID 980

and text embeddings without image embeddings to 981

ensure fair comparison. While HORAE (Hu et al., 982

2025) used Amazon 2018 datasets, we pre-trained 983

the model with the corresponding Amazon 2014 984

datasets (Food, CDs, Kindle, Movies, and Home) 985

for consistency with our experimental setup, then 986

fine-tuned the pre-trained model on Beauty, Toys, 987

Sports, and Yelp datasets, respectively. 988

For all generative baselines, we follow the 989

official code if publicly available, e.g., P5- 990

variants (Hua et al., 2023)10, IDGenRec (Tan et al., 991

2024)11, ELMRec (Wang et al., 2024b)12, LC- 992

Rec (Zheng et al., 2024)13, and LETTER (Wang 993

et al., 2024a)14. For TIGER (Rajput et al., 2023), 994

we implemented the model based on the details in 995

the paper since the official code was not publicly 996

available. We used the Sentence-T5 (Ni et al., 2022) 997

for semantic embeddings with a hidden dimension 998

size of 768. The vocabulary size was set to 1024 999

(256×4). We used T5-small (Raffel et al., 2020) for 1000

P5, IDGenRec, and ELMRec, following the official 1001

codebase. We instantiate LETTER on TIGER. 1002

For ELMRec, when applying to the Yelp dataset, 1003

which is not included in the original paper, we ex- 1004

cluded the explanation generation task due to insuf- 1005

ficient textual metadata. Additionally, we did not 1006

apply the ‘reranking approach’ proposed in ELM- 1007

Rec for the Yelp dataset since items within a user 1008

sequence can reappear as target items. For all other 1009

9https://recbole.io/
10https://github.com/Wenyueh/LLM-RecSys-ID
11https://github.com/agiresearch/IDGenRec
12https://github.com/WangXFng/ELMRec
13https://github.com/RUCAIBox/LC-Rec
14https://github.com/HonghuiBao2000/LETTER

13

https://recbole.io/
https://github.com/Wenyueh/LLM-RecSys-ID
https://github.com/agiresearch/IDGenRec
https://github.com/WangXFng/ELMRec
https://github.com/RUCAIBox/LC-Rec
https://github.com/HonghuiBao2000/LETTER


implementation details, including hyperparameter1010

search ranges, we thoroughly followed the specifi-1011

cations described in the ELMRec manuscript.1012

For LC-Rec, we fully fine-tuned LLaMA-1013

7B (Touvron et al., 2023), adhering to the authors’1014

guidelines with some modifications for the Ama-1015

zon 2014 dataset. In the asymmetric item predic-1016

tion task, we set the number of training samples1017

based on the interactions for each dataset, e.g.,1018

20K, 15K, 25K, and 25K for the Beauty, Toys,1019

Sports, and Yelp datasets, respectively. For the1020

personalized preference inference task, we used1021

gpt-4o-mini-2024-07-18 to infer user prefer-1022

ences on Amazon datasets and omitted this task1023

on Yelp due to insufficient textual metadata.1024

B.3.3 Modifications to Preprocessing of1025

ELMRec and IDGenRec1026

For ELMRec, we followed the P5-SID approach1027

used in the official code, but with important modifi-1028

cations to address data leakage issues in the original1029

P5 implementation (Geng et al., 2022). Following1030

recent works (Hua et al., 2023; Xu et al., 2024;1031

Rajput et al., 2023), we excluded validation and1032

test items while assigning numeric IDs. As a result,1033

the results in Table 2 differ from those reported in1034

the original paper. The original P5 methodology as-1035

signed consecutive numeric IDs to items based on1036

their appearance order within each user sequence,1037

including validation and test items. For instance,1038

a user sequence is represented as [8921, 8922,1039

..., 8927], where 8927 becomes the test item1040

in the leave-one-out evaluation. Since P5 uses the1041

SentencePiece tokenizer (Sennrich et al., 2016),1042

test items potentially share subwords with training1043

times in the sequence. It creates unintended correla-1044

tions that implicitly lead to information leakage dur-1045

ing inference. To prevent this issue, we conducted1046

our experiments following works (Hua et al., 2023;1047

Xu et al., 2024), applying sequential indexing only1048

to training items while explicitly excluding vali-1049

dation and test items. This issue has already been1050

identified in previous works (Rajput et al., 2023;1051

Lin et al., 2024)15.1052

For IDGenRec, we excluded user IDs from in-1053

put prompts, following guidance from the original1054

authors16. This explains the differences in perfor-1055

mance in Table 2 compared to the original paper.1056

15Please refer to Appendix D of Rajput et al. (2023) and
Appendix A.6 of Lin et al. (2024) for details.

16https://github.com/agiresearch/IDGenRec/
issues/1

Initially, IDGenRec uses both item IDs from the 1057

user history and a user ID. The user ID is created 1058

by concatenating all sequence items and processing 1059

them through the ID generator. For example, with 1060

an item sequence i1 → i2 → i3 → i4, information 1061

from all items is used. However, this approach cre- 1062

ates a potential data leakage issue in leave-one-out 1063

evaluation settings, as the user ID contains informa- 1064

tion about the test item i4. To address this concern, 1065

we removed user IDs from our implementation. 1066

B.4 Examples of Input Prompts for Table 3 1067

We present six types of user-level temporal context 1068

Cu with their corresponding input prompt formats 1069

shown in Table 3. 1070

None:
What would the user purchase after
ĩ1, ĩ2, · · · , ĩ|su| ?

1071

Absolute:
What would the user purchase after
ĩ1 (t1), ĩ2 (t2), · · · , ĩ|su| (t|su|) ?

1072

Relative:
What would the user purchase after
ĩ1 (after t2 − t1), ĩ2 (after t3 − t2),
· · · , ĩ|su| ?

1073

Target-relative:
What would the user purchase after
ĩ1 (t|su|+1 − t1 ago), ĩ2 (t|su|+1 − t2 ago),
· · · , ĩ|su| (t|su|+1 − t|su| ago) ?

1074

Relative + Absolute:
What would the user purchase after
ĩ1 (t1, after t2 − t1), ĩ2 (t2, after t2 − t2),
· · · , ĩ|su| (t|su|) ?

1075

Target-relative + Absolute:
The current date is t|su|+1.
What would the user purchase after
ĩ1 (t1, ∆t1 ago), ĩ2 (t2, ∆t2 ago), · · · ,
ĩ|su| (t|su|, ∆t|su| ago) ?

1076
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Figure 6: Similarity of item pairs by time interval groups.
The x-axis is the time interval between two consecutive
items, and the y-axis is the semantic similarity of items.

ID Temporal Beauty Toys
R@5 N@5 R@5 N@5

Ours ✓ 0.0741 0.0514 0.0772 0.0534
✗ 0.0582 0.0404 0.0558 0.0392

IDGenRec ✓ 0.0711 0.0489 0.0687 0.0463
✗ 0.0533 0.0374 0.0487 0.0329

Title ID ✓ 0.0575 0.0396 0.0588 0.0416
✗ 0.0411 0.0293 0.0444 0.0314

Table 9: Performance of GRUT over various IDs.

C Additional Experimental Results1077

C.1 Preference Shifts over Time Interval1078

We examined whether user preferences evolve over1079

time by analyzing item similarity across different1080

time intervals. Figure 6 shows text similarity be-1081

tween consecutive items grouped by time intervals.1082

For calculating similarity, we generated text em-1083

beddings using NVEmbed (Lee et al., 2024) from1084

item metadata17. Each consecutive item pair from1085

user sequences is grouped by time intervals of in-1086

teraction, e.g., intervals of 8 days fall into (7, 14],1087

and interactions of the same day belong to [0, 7].1088

The results clearly show decreasing similarity be-1089

tween consecutive items as time intervals increase1090

across all datasets. It suggests that user preferences1091

shift more significantly over longer time intervals.1092

Despite these challenges, our model demonstrates1093

superior performance, especially in scenarios with1094

long time gaps, as demonstrated in Figure 3.1095

17For Amazon datasets, we used title, brand, and categories.
We used name, city, and categories for the Yelp dataset.

Model Trend Beauty Toys
R@5 N@5 R@5 N@5

IDGenRec ✓ 0.0480 0.0332 0.0480 0.0328
✗ 0.0463 0.0328 0.0462 0.0323

LETTER ✓ 0.0373 0.0250 0.0324 0.0211
✗ 0.0364 0.0243 0.0309 0.0202

LC-Rec ✓ 0.0521 0.0365 0.0574 0.0399
✗ 0.0503 0.0352 0.0543 0.0385

Table 10: Effectiveness of trend-aware inference when
applying to existing generative recommenders.

Figure 7: Performance of GRUT over varying (i) ϵ that
controls the influence of item-level transition patterns
and (ii) the number of the most recent items L in Cv .

C.2 Effect of ID Variants 1096

Table 9 demonstrates the effectiveness of 1097

GRUT across different ID variants. When replacing 1098

our IDs with those from prior work (Tan et al., 1099

2024) or titles18, GRUT consistently improves 1100

performance, enhancing R@5 and N@5 by 1101

28.7%–41.1% and 27.2%–40.7%, respectively. It 1102

implies the robustness of our temporal integration 1103

approach regardless of ID schemes. 1104

C.3 Generalizability of Trend-aware 1105

Inference 1106

Table 10 illustrates the effect of trend-aware infer- 1107

ence when applying to existing generative recom- 1108

mendation baselines, e.g., IDGenRec, LETTER, 1109

and LC-Rec. Notably, all baselines consistently 1110

show performance improvements, achieving av- 1111

erage gains of 4.0% in R@5 and 2.9% in N@5, 1112

respectively. This confirms that our trend-aware in- 1113

ference effectively enhances recommendation per- 1114

formance regardless of the underlying architecture. 1115

C.4 Hyperparameter Sensitivity 1116

Figures 7 shows the performance of GRUT depend- 1117

ing on ϵ, which controls the influence of Cv, and 1118

18We appended additional digits for duplicated titles to
ensure uniqueness.
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User sequence (ASIN: A2N8D20LSUU85O)

Image

Name WL V911
RC Helicopter

Battery
Checker

WL V911
Battery 5-Pack

Helizone
Edition

Sofia
Amulet

Category RC
Helicopters

Battery
Chargers

Vehicle
Batteries

RC
Propellers

Pretend
Play

Time 2013-02-18 2013-02-18 2013-02-18 2013-05-03 2013-12-30

GRUT Top 5 prediction at 2013-12-30

Ranking 1 2 3 4 5

Image

Name Sofia
Animals

Sofia
Royal Family

Sofia
Royal Bed

Magic
Castle Friends

Magic
Gift Set

Category Dolls&
Playsets

Dolls Playsets Action Figs.
& Playsets

Playsets

GRUT Top 5 prediction at 2014-06-30

Ranking 1 2 3 4 5

Image

Name Voltage
Checker

Double Horse
9053 Gyro

WL V911
Red V2

WL V912
Gyro RTF

Syma
Quad Copter

Category Vehicle
Batteries

Vehicle
Batteries

RC
Helicopters

RC
Helicopters

RC
Helicopters

Table 11: GRUT’s top-5 predictions on the Toys dataset
at different inference timestamps. The five most recent
items in the sequence are shown for simplicity.

the number of the most recent items in Cv, denoted1119

as L. For ϵ, the optimal values for Beauty and Toys1120

are 0.001 and 0.01, respectively. This suggests that1121

a large ϵ makes the model excessively focus on item1122

transition patterns, neglecting user-specific signals.1123

Meanwhile, the optimal values of L for Beauty1124

and Toys are 1 and 2, respectively. It highlights1125

how the dataset characteristics directly influence1126

the optimal hyperparameters.1127

D Additional Case Study1128

D.1 Effect of Inference Timestamp Shift1129

Table 11 presents the recommendation results of1130

GRUT for the same user, evaluated at different infer-1131

ence timestamps (∆t|su|+1) in the user-level tempo-1132

ral context Cu. When the inference occurs shortly1133

after the user’s last interaction, GRUT emphasizes1134

short-term interests, recommending products re-1135

lated to the most recent purchase, e.g., ‘Sofia’. In1136

contrast, when the inference timestamp is distant1137

from the last interaction, the model recommends1138

items reflecting long-term interests, e.g., ‘RC he-1139

licopters’, which had been frequently purchased1140

in the past. These results demonstrate GRUT’s abil-1141

ity to adapt recommendations based on inference1142

timestamp, unlike existing generative recommen-1143

User sequence (ASIN: A2V65NBADV4HY4)

Image

Name Learning
Toolbench

Peek-a-Blocks
Giraffe

Touch &
Tickle Rounds

Garden Hose
Sprinkler

LEGO
Sorting System

Category Learning
Toys

Baby
Toys

Gag
Toys

Outdoor
Toys

Building
Toys

Time 2005-10-31 2006-08-03 2006-08-03 2013-11-19 2014-01-01

GRUT Top 5 prediction at 2014-01-01 (λ = 0.0)

Ranking 1 2 3 4 5

Image

Name LEGO 6-Case
Storage Unit

Star Wars
Box

LEGO City
Box

Star Wars
Battle Bridge

Rainbow
Loom

Category Building
Toys

Vehicle
Playsets

Vehicle
Playsets

Toys &
Games

Toys &
Games

strend 0.1361 0.0206 0.0000 0.0206 0.6931

GRUT Top 5 prediction at 2014-01-01 (λ = 0.5)

Ranking 1 2 3 4 5

Image

Name Rainbow
Loom

LEGO 6-Case
Storage Unit

Star Wars
Box

LEGO City
Box

Star Wars
Battle Bridge

Category Toys &
Games

Building
Toys

Vehicle
Playsets

Vehicle
Playsets

Toys &
Games

strend 0.6931 0.1361 0.0206 0.0000 0.0206

Table 12: GRUT’s top-5 predictions on the Toys dataset
with and without trend-aware inference. The target item
is marked with a red dotted line.

dation models that produce identical predictions 1144

regardless of when inference occurs. 1145

D.2 Effect of Trend-aware Inference 1146

Table 12 illustrates how GRUT benefits from the 1147

trend score strend to better capture user prefer- 1148

ence. The user had recently purchased the ‘LEGO 1149

Sorting Systems’, so various toy-related products 1150

appear as top recommendations when λ = 0 in 1151

Eq. (10). Considering temporal trends during in- 1152

ference, the ranking of trending items ‘Rainbow 1153

Loom’ was elevated, resulting in recommendations 1154

that closely aligned with the user preferences. This 1155

demonstrates that Trend-aware Inference enables 1156

the model to combine time-sensitive trends with the 1157

user’s intrinsic preference, producing more accu- 1158

rate and timely recommendations. Furthermore, the 1159

ability to control the influence of the strend based 1160

on user needs highlights the practical advantage of 1161

the proposed method in terms of controllability. 1162
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