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Abstract001

As Large Language Models (LLMs) become002
integral to software development workflows,003
their ability to generate structured outputs has004
become critically important. We introduce005
StructEval, a comprehensive benchmark for006
evaluating LLMs’ capabilities in producing007
both non-renderable (JSON, YAML, CSV) and008
renderable (HTML, React, SVG) structured009
formats. Unlike prior benchmarks, StructE-010
val systematically evaluates structural fidelity011
across diverse formats through two paradigms:012
(1) generation tasks, producing structured out-013
put from natural language prompts, and (2)014
conversion tasks, translating between struc-015
tured formats. Our benchmark encompasses016
18 formats and 44 types of task, with novel017
metrics for format adherence and structural018
correctness. Results reveal significant perfor-019
mance gaps—even state-of-the-art models like020
o1-mini achieve only 75.58 average score, with021
open-source alternatives lagging approximately022
10 points behind. We find generation tasks023
more challenging than conversion tasks, and024
producing correct visual content more difficult025
than generating text-only structures.026

1 Introduction027

In recent years, there has been a significant028

surge in the capabilities of large language models029

(LLMs) in generating human-like text and perform-030

ing a wide range of natural language processing031

tasks. State-of-the-art models like GPT-4o (Hurst032

et al., 2024), OpenAI o1/o3 (Contributors et al.,033

2024), and Google’s Gemini (Team et al., 2023)034

have achieved superior performance in knowledge035

QA (Hendrycks et al., 2020; Wang et al., 2024),036

instruction-following (Chiang et al., 2024; Zhou037

et al., 2023), and code generation (Zhuo et al.,038

2024; Jain et al., 2024).039

Despite recent advances, many real-world appli-040

cations require not only fluency in the content of041

StructEval-T

StructEval-V
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ReactVegaVue
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Figure 1: STRUCTEVAL evaluates the LLM’s capability
to generate structured outputs, including text-only tasks
like JSON, TOML, etc, and visual rendering tasks like
HTML, React, Latex, etc.

the output but also precise control over its struc- 042

ture. This includes tasks where the expected output 043

must follow specific formats such as JSON, XML, 044

LaTeX, HTML, or code in frameworks like Re- 045

act or Vue. Additionally, in these tasks, in these 046

tasks, we also want the code to render a page that 047

correctly places elements according to the require- 048

ments. These types of structured output are essen- 049

tial in domains like software development, data 050

pipelines, user interface generation, and scientific 051

publishing, where incorrect formatting can lead to 052

disrupted pipelines or non-functional outputs. 053

However, most existing benchmarks focus on 054

the semantic quality (Wang et al., 2024) or reason- 055

ing ability of LLMs (Hendrycks et al., 2021; He 056

et al., 2024), with limited emphasis on their ability 057

to produce format-conforming structured outputs. 058

Some recently proposed benchmarks aim to evalu- 059

ate the quality of structured outputs tend to target 060

specific modalities, such as code generation (Zhuo 061
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Figure 2: The overall designed annotation pipeline of STRUCTEVAL dataset

et al., 2024) or text-only structures (Gu et al., 2024;062

Tang et al., 2023), rather than offering comprehen-063

sive evaluations across diverse structured formats.064

As existing benchmarks gradually become more065

saturated, it is still unknown how the current state-066

of-the-art models perform in structured generation067

tasks. We argue that effectively evaluating the mod-068

els’ performance on such tasks is inherently chal-069

lenging due to the following issues:070

(1) Data Collection Challenges: Gathering di-071

verse structured tasks and corresponding examples072

requires domain expertise across multiple formats,073

with high-quality annotations demanding signifi-074

cant effort and specialized knowledge.075

(2) Evaluation Metric Complexity: Designing076

reasonable metrics in a unified form for both text-077

only structures (JSON, YAML) and visual outputs078

(HTML, SVG) is difficult, as they require different079

assessment approaches for structural correctness080

and visual fidelity.081

(3) Technical Implementation Barriers: Building082

a framework that supports execution and evalua-083

tion across numerous rendering environments re-084

quires complex integration of multiple language085

interpreters and visualization tools.086

To address these challenges, we introduce087

STRUCTEVAL, a comprehensive benchmark that088

systematically evaluates LLMs’ abilities to produce089

highly structured output. Our benchmark encom-090

passes 21 distinct formats and 44 task types orga-091

nized into two complementary subsets: StructEval-092

T, which assesses the generation of text-only struc-093

tures such as JSON and TOML, and StructEval-V,094

which evaluates the quality of visually rendered095

outputs from code such as HTML and SVG. Both096

subsets include generation tasks (converting nat-097

ural language to structured outputs) and conver-098

sion tasks (transforming between two structured099

formats). To ensure robust evaluation across these 100

diverse formats, we have developed a novel assess- 101

ment framework that integrates syntactic validity 102

checking, keyword matching, and visual question 103

answering, providing a holistic measure of both 104

structural correctness and output fidelity. 105

Our comprehensive evaluation reveals signifi- 106

cant performance gaps across models and tasks. 107

Even state-of-the-art commercial models like o1- 108

mini achieve only an average score of 75.58, while 109

the best open-source model, such as Llama-3-8B- 110

Instruct, lags 10 points behind, underscoring the 111

performance gap between commercial and open- 112

source LLMs. We observe that generation tasks 113

generally pose greater challenges than conversion 114

tasks, and producing code capable of rendering 115

correct visual content proves more difficult than 116

generating text-only structured outputs. Task dif- 117

ficulty varies considerably across formats: while 118

some tasks are effectively solved by all LLMs with 119

scores exceeding 0.95 (such as Text→Markdown 120

and Text→HTML), others remain particularly chal- 121

lenging with all models scoring below 0.5 (in- 122

cluding Text→Mermaid and Matplotlib→TikZ). 123

Through this systematic analysis, we aim to drive 124

progress in structured output generation capabili- 125

ties that are increasingly crucial for the real-world 126

applications of language models. 127

2 StructEval Dataset 128

In this section, we first present an overview of our 129

STRUCTEVAL dataset and statistical analysis in 130

subsection 2.1. Next, we elaborate on how we de- 131

sign the whole pipeline for annotation and quality 132

review in subsection 2.2. We will introduce how 133

we design the evaluation metrics for each task in 134

our dataset in section 3. 135
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Subset # Total
Tasks

# Total
Examples

# Avg
Keywords

# Avg
VQA pairs

SE-T-gen 5 250 7.9 -
SE-T-conv 14 700 17.5 -
SE-V-gen 13 650 11.1 7.9
SE-V-conv 12 435 22.2 9.0

StructEval 44 2035 14.7 8.5

Table 1: The overall statistics of the STRUCTEVAL
dataset. Here "SE" denotes StructEval. "T" and "V"
represents the StructEval-T and StructEval-V subsets
respectively. "gen" and "conv" represent the "genera-
tion" and "conversion" task types respectively.

2.1 Overview136

As shown in Table 1, our STRUCTEVAL dataset137

comprises a total of 2,035 examples, covering 44138

unique structure generation tasks across 18 struc-139

tured output formats. The dataset is organized into140

two main subsets: StructEval-T and StructEval-V.141

• StructEval-T is designed to evaluate an LLM’s142

ability to generate structured outputs directly143

from natural language prompts without render-144

ing. Supported formats include JSON, XML,145

YAML, Markdown, CSV, TOML, among oth-146

ers. These are highly useful formats in many147

downstream applications.148

• StructEval-V assesses an LLM’s ability to gen-149

erate executable code for visual rendering that150

fulfills a specified visual requirement. This151

subset includes formats such as HTML, React,152

Matplotlib, Canvas, LaTeX, SVG, Mermaid,153

and more. These are widely adopted formats154

for various applications.155

Each example in the dataset is categorized as ei-156

ther generation or conversion. In generation tasks,157

the model is required to produce structured output158

based on a natural language description with de-159

tailed specifications. In conversion tasks, the model160

must translate structured content from one format161

to another (e.g., JSON to YAML, HTML to React).162

Formally, each example is represented as a triplet163

(q,K,Qv), where q denotes the structure gener-164

ation question, K = {k1, . . . , k|K|} is a set of165

keywords expected to appear in the output, and166

Qv = {(qv1 , av1), . . . , (qv|Qv|, a
v
|Qv|)} is a set of vi-167

sual question-answer (VQA) pairs used for eval-168

uating examples in the StructEval-V subset. In169

contrast, for StructEval-T, Qv is empty and not170

used during evaluation. To ensure comprehensive171

evaluation, each example in the dataset contains172

StructEval-T Question, KeyWords

Please output JSON code.

Task:
Summarize metadata about a fictional scientific article.
Feature Requirements:

1. Top-level field "title" is a string containing the arti-
cle title.

2. Field "authors" is a list of exactly two items.
3. Each element of "authors" contains "name" (string)

and "affiliation" (string).
4. Field "publication.year" is an integer.
5. Field "keywords" is a list of strings.

Keywords:
• title
• authors[0].name
• authors[1].affiliation
• publication.year
• keywords[2]

Figure 3: Example question and key words of the
StructEval-T generation task

StructEval-V Question, Keywords Matching, VQA
Pairs

Please output HTML code.

Task:
Design a webpage that presents a user’s travel itinerary.
Feature Requirements:

• Include a centered <h1> header with the text "Trip
Summary".

• Use a <table> to list destinations; include 3 rows and
2 columns.

• Apply a class "highlight" to the second row.
• Add a <button> labeled "Export PDF" at the bottom

of the page.

Keywords:
• Trip Summary
• highlight
• <h1>
• Export PDF

VQA Pairs:
• Q: What text is displayed in the <h1> header?

A: Trip Summary
• Q: How many rows are in the table?

A: 3
• Q: What class is applied to the second table row?

A: highlight
• Q: What text is on the button at the bottom?

A: Export PDF

Figure 4: Example question, keywords, and VQA pairs
for STRUCTEVAL-V generation task
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Rule Type Example Description

Literal key access planet.name Checks if key name exists as a child of object planet.
Nested lists with index planet.moons[0].name Verifies first item in moons list has a name field.
Wildcard in lists planet.moons.*.name Confirms that name exists for any moon in the list.
Backtick quoting data.‘key.with.dots‘ Treats entire quoted token as a single key, useful for special

characters.
CSV header check csv::discovery.location Ensures CSV output has a column named

discovery.location.
XML attribute fallback @id Looks for id attribute, using @ to indicate XML format.

Table 2: Supported rule types in our path-based evaluation.

on average 14.7 keywords and 8.5 VQA pairs, as173

detailed in Table 1.174

The dataset encompasses a wide spectrum of175

structured output formats, ranging from widely-176

used data serialization types like JSON and YAML177

to visually-renderable formats such as SVG, Mer-178

maid, and TikZ. This diverse format coverage en-179

ables a more holistic evaluation of LLMs’ capabil-180

ities in both structured data modeling and visual181

code generation. Notably, the inclusion of niche yet182

expressive formats—such as Typst for typesetting,183

Mermaid for diagram specification, and TikZ for184

LaTeX-based graphics—broadens the evaluative185

scope beyond conventional tasks. These formats186

collectively span domains including web front-end187

development, data exchange, scientific visualiza-188

tion, and technical documentation. The distribution189

of tasks across these formats is shown in Table 6,190

highlighting the balanced composition of genera-191

tion and conversion tasks across both textual and192

visual modalities.193

2.2 Annotation Pipeline194

To construct a high-quality and diverse benchmark,195

we design a multi-stage annotation pipeline consist-196

ing of three key components: 1) task curation, 2)197

LLM-based synthesis, and 3) expert review. This198

pipeline ensures both the scalability and accuracy199

of the STRUCTEVAL dataset.200

Task Prompt We begin by identifying a broad201

spectrum of structure generation and conversion202

tasks that span both text-based and executable vi-203

sual formats. These tasks are selected to reflect204

practical use cases and diverse real-world scenar-205

ios, covering 18 target formats and 44 distinct task206

types (also shown in Table 6. Each task speci-207

fication includes format constraints, input-output208

expectations, and, where applicable, conversion209

rules. Please refer to subsection A.4 for a sample210

task prompt.211

Query/Metric Generation Given the high cost 212

of fully manual annotation, we leverage a large 213

language model to synthesize an initial pool of 214

candidate examples. Each example consists of a 215

task query and a set of associated evaluation met- 216

rics, including keywords for text outputs and visual 217

question-answer (VQA) pairs for visual outputs. 218

This step allows us to rapidly generate a large and 219

varied collection of plausible instances that serve 220

as drafts for human refinement. 221

Expert Review To ensure quality and correct- 222

ness, we employ a two-pass human review process. 223

Annotators first validate and refine the generated 224

task queries and associated metrics. They are al- 225

lowed to freely modify, add, or remove any part 226

of the synthesized content to ensure task clarity, 227

completeness, and evaluability. In the second pass, 228

a separate reviewer verifies the consistency and 229

correctness of each example. All annotation is 230

conducted using LabelStudio (Tkachenko et al., 231

2020-2025), an open-source collaborative annota- 232

tion tool designed for structured data. The final 233

dataset contains 2035 curated examples, carefully 234

reviewed to support robust evaluation across both 235

StructEval-T and StructEval-V settings. 236

3 StructEval Evaluation 237

Before the evaluation, we feed the LLM with the 238

questions q in the datasets with the corresponding 239

prompt template defined in Table 3. We require 240

the LLM to output the desired structured outputs 241

between "<|BEGIN_CODE|>" and "<|END_CODE|>" 242

so we can correctly parse the structured outputs for 243

evaluation. For the StructEval-V, parsed outputs 244

will be additionally sent to our rendering engines 245

to acquire the rendered visual outputs (see exam- 246

ples in subsection A.3). We then evaluate model 247

outputs using an automatic evaluation pipeline that 248

captures both structural correctness and semantic fi- 249

delity. Specifically, we have designed core metrics 250
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depending on the task format: 1) Syntax Score, 2)251

Keyword Matching Score, and 3) Visual Question252

Answering (VQA) Score.253

{StructEval Question}

IMPORTANT: Only output the required output
format. You must start the format/code
with <|BEGIN_CODE|> and end the format/code
with <|END_CODE|>. No other text output
(explanation, comments, etc.) are allowed.
Do not use markdown code fences.

Table 3: Prompt template used for LLM inference be-
fore the evaluation

Syntax Score. The Syntax Score verifies the254

structural correctness of the generated output. For255

text-based formats such as JSON, YAML, and CSV,256

this involves parsing the output using a format-257

specific Python parser. For executable visual for-258

mats like HTML, LaTeX, or SVG, the code is259

rendered using a headless renderer to determine260

whether it executes successfully. A score of 1 is261

assigned if the output is syntactically valid or suc-262

cessfully rendered; otherwise, the score is 0. See263

the subsection A.3 for some correctly rendered im-264

ages, code produced by the tested LLMs.265

Keyword Matching Score This metric evaluates266

whether the generated output contains the required267

structural elements. Given the reference set of ex-268

pected keywords K = {k1, . . . , k|K|} for a given269

task, we assess their presence using exact matching270

or regular expression rules.271

For the tasks of StructEval-T such as JSON or272

XML, keyword matching is performed over field273

names and values using dot-path references to ac-274

count for nested hierarchies. The score is computed275

as the proportion of expected keywords correctly276

matched in the model’s output. Our evaluation277

supports a variety of path formats as shown in Ta-278

ble 2. The way dot-path rules are created differs279

depending on the task type.280

For generation tasks, each task prompt includes281

feature requirements stated in natural language.282

These requirements define target keys and their re-283

lationships to one another (e.g., nesting depth, list284

membership). Annotators translate each require-285

ment into a concrete dot-path rule using the syn-286

tax rules shown in Table 2. For conversion tasks,287

the input is itself a structured format (e.g., YAML288

or XML). We use an LLM to parse the structural289

schema of the input—identifying key names, nest-290

ing levels, and list structures—and convert them291

VQA Prompt Template

You are given an image and a list of question-answer
pairs.

• For each pair, verify if the image content supports the
expected answer based on the corresponding question.

• Base your judgment solely on the visual content of the
provided image, and the question.

• Do not use any external information or common-sense
reasoning beyond what is visible.

• Respond with a JSON object mapping each question
number to true or false (e.g., {"1": true, "2": false}).

• If the image is unclear or does not contain enough
information to answer, use null for that question.

Here are the question-answer pairs: {qa_list}

Figure 5: Prompt template used for VQA evaluation.
We use GPT-4.1-mini in the benchmark evaluation.

into target dot-path rules that the generated output 292

must preserve. 293

This approach ensures that models are not only 294

producing syntactically valid outputs, but also pre- 295

serving the expected structural relationships. 296

For the tasks of StructEval-V such as HTML, 297

and Matplotlib, we simply detect whether the anno- 298

tated keyword is in the structured outputs and give 299

scores accordingly. 300

VQA Score This score is used exclusively for 301

tasks in the StructEval-V subset, where the out- 302

put is expected to be visually rendered. After 303

rendering the output, GPT-4.1-mini (Hurst et al., 304

2024), a vision-language model (VLM), is em- 305

ployed to answer a set of visual questions Qv = 306

{(qv1 , av1), . . . , (qv|Qv|, a
v
|Qv|)}. The VLM will be 307

given both the questions and answers and required 308

to decide whether the VQA pair matches this ren- 309

dered image. The VQA score is computed as the 310

proportion of correctly answered questions. 311

Final task scores are calculated as weighted 312

combinations of these metrics, with weights ad- 313

justed based on whether the task is renderable. Let 314

ss, sk, sv ∈ [0, 1] denotes the syntax, keyword 315

matching, and VQA score respectively. The for 316

StructEval-T task, the final score s is computed as: 317

s = 0.2 · ss + 0.8 · sk (1) 318

For StructEval-V, the final score s in computed as: 319

s = 0.2 · ss + 0.1 · sk + 0.7 · sv (2) 320
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This evaluation framework provides a unified, fine-321

grained view of model performance across both322

structured data generation and visual code synthe-323

sis tasks, supporting deeper insights into LLM ca-324

pabilities across modalities.325

4 Experiments326

4.1 Experimental Setup327

Evaluation Models. We evaluate a range of328

open-source and commercial large language329

models (LLMs) using our benchmark. For330

open-source models, we use Meta-Llama-3-8B-331

Instruct (Grattafiori et al., 2024), Phi-3-mini-332

128k-instruct (Abdin et al., 2024a), Phi-4-mini-333

instruct (Abdin et al., 2024b), Qwen2.5-7B-334

Instruct (Yang et al., 2024), and Qwen3-4B (Yang335

et al., 2025). For commercial models, we use336

Gemini-1.5-pro and Gemini-2.0-flash (Team et al.,337

2023), GPT-4.1-mini and GPT-4o (Hurst et al.,338

2024), GPT-4o-mini, and o1-mini (Contributors339

et al., 2024). All tasks are evaluated in a zero-shot340

setting using consistent prompts and parameters.341

Inference Setup. All model generations are per-342

formed using LLM-Engine (Jiang, 2024), a uni-343

fied inference framework that supports both open-344

source backends (e.g., VLLM, SGLang, Together),345

and commercial APIs (e.g., OpenAI, Claude, Gem-346

ini). For open-source models, we specifically uti-347

lize the vLLM engine for efficiency (Kwon et al.,348

2023). For close-source models, we simply call349

the APIs. As shown in Table 5, we use greedy350

decoding by default. All tasks are evaluated zero-351

shot using uniform task prompts defined in Table 3.352

When performing the VQA evaluation, we select353

GPT-4.1-mini as the VLM due to its superior mul-354

timodal abilities (OpenAI, 2025). We apply the355

VQA prompt template defined in Figure 5 and356

ask the VLM to decide whether each VQA pair357

matches the rendered visual image at once.358

Evaluation. Output generations are automatically359

scored using the evaluation pipeline described in360

section 3, including syntactic validity checking,361

keyword matching, and VQA accuracy. GPT-4.1-362

mini (Hurst et al., 2024) is used as the vision-363

language model for all VQA-based evaluations.364

4.2 Main Results365

Overall Performance Table 4 summarizes the366

performance of all evaluated models across the two367

main task groups: StructEval-T and StructEval-V,368

each further divided into generation and conversion 369

subtasks. Overall, GPT-4o achieves the highest av- 370

erage score of 76.02% among all 12 models. The 371

best-performing open-source model is Qwen3-4B, 372

with a score of 67.04%, trailing GPT-4o by approx- 373

imately 10 percentage points. While GPT-4o ex- 374

cels particularly in the generation tasks within the 375

StructEval-V category, Qwen3-4B demonstrates 376

consistently strong performance across all task 377

types among open-source models. This likely re- 378

flects Qwen3-4B’s robust reasoning capabilities 379

relative to other open-source alternatives. 380

In contrast, the lowest-performing model is 381

phi-3-mini-128k-instruct, with an average 382

score of only 40.79%. Although one might at- 383

tribute this to its relatively small size of 3.8 bil- 384

lion parameters, model size alone does not fully 385

explain the poor results. For example, phi-3-mini 386

underperforms even compared to similarly sized 387

models such as phi-4-mini-instruct. Notably, 388

it achieves the lowest score in StructEval-T conver- 389

sion tasks, a category where models with strong rea- 390

soning abilities—such as o1-mini (81.82%) and 391

Qwen3-4B (81.13%)—tend to perform well. 392

Error analysis reveals two key failure modes 393

for phi-3-mini-128k-instruct. First, in the 394

TOML-to-YAML conversion task, the model fre- 395

quently produces malformed closing tags, out- 396

putting |<|END_CODE|> instead of the correct 397

<|END_CODE|>, which significantly penalizes its 398

score. Second, in the CSV-to-JSON conversion 399

task, the model fails to capture hierarchical relation- 400

ships (e.g., parent-child) specified in the CSV head- 401

ers, leading to structurally incorrect JSON outputs. 402

These recurring structural errors in StructEval-T 403

conversion tasks substantially contribute to the 404

model’s overall low performance. 405

Open-Source vs. Closed-Source Models When 406

comparing open-source models and commercial 407

models, we can see that by ∆ (closeavg - openavg) 408

value, which is the difference between the aver- 409

age score of commercial source model and open 410

model, that commercial model’s score is consis- 411

tently higher than open-source models, this makes 412

sense given the much larger parameters of com- 413

mercial models by scaling law. We can see that 414

commercial models exceed open-source models on 415

average the most on generation tasks in StructEval- 416

T setting, and the performance gap is smallest on 417

generation tasks in StructEval-V setting. 418
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Models StructEval-T StructEval-V Averagegeneration conversion generation conversion

Open Source

Llama-3.1-8B-Instruct (Grattafiori et al., 2024) 60.22 71.26 54.44 61.15 61.77
Meta-Llama-3-8B-Instruct (Grattafiori et al., 2024) 49.18 53.65 46.61 56.91 51.59
Phi-3-mini-128k-instruct (Abdin et al., 2024a) 47.39 29.78 44.77 41.23 40.79
Phi-4-mini-instruct (Abdin et al., 2024b) 51.38 72.39 51.62 52.48 56.97
Qwen2.5-7B-Instruct (Team, 2024) 59.21 62.18 53.28 61.43 59.03
Qwen3-4B (Yang et al., 2025) 64.95 81.13 57.00 65.08 67.04

Close Source

Gemini-1.5-pro (Team et al., 2023) 88.07 74.24 58.11 66.59 71.75
Gemini-2.0-flash (Team et al., 2023) 72.42 72.20 53.62 51.97 62.55
GPT-4.1-mini (OpenAI, 2025) 92.57 75.63 64.30 70.04 75.64
GPT-4o (Hurst et al., 2024) 91.52 73.95 65.39 73.20 76.02
GPT-4o-mini (Hurst et al., 2024) 79.86 75.57 60.77 76.54 73.19
o1-mini (Contributors et al., 2024) 88.12 81.82 61.98 70.40 75.58

∆ (o1-mini - Qwen3-4B) 23.17 0.70 4.99 5.32 8.54

Table 4: Main evaluation results of STRUCTEVAL

Parameter Value

Max tokens Unlimited
Temperature 0.0 (deterministic)
num_proc 32
time_out None
num_workers 5
num_gpu_per_worker 1
Cache usage Disabled
Batch API Disabled
Hardware NVIDIA RTX A6000 GPU

Table 5: Inference configuration

Generation vs. Conversion A comparison be-419

tween generation and conversion tasks in both420

StructEval-T and StructEval-V settings reveals that,421

in general, models perform better on conversion422

tasks than on generation tasks. An exception to423

this trend occurs in the StructEval-T setting, where424

commercial models tend to outperform on gener-425

ation tasks, while open-source models show the426

opposite behavior—achieving higher scores on con-427

version tasks.428

Under a temperature setting of 1, commer-429

cial models attain an average score of 75.78%430

on StructEval-T generation tasks. In contrast,431

open-source models average only 8.58% on the432

same tasks for the TOML format. This consider-433

able disparity in TOML generation performance434

partly explains why commercial models perform435

better on StructEval-T generation tasks overall.436

However, the performance gap is not confined to437

TOML—commercial models also lead in the other438

four generation formats within StructEval-T.439

In the StructEval-V setting, commercial mod-440

els significantly outperform open-source counter- 441

parts on generation tasks involving complex vi- 442

sual formats such as Mermaid and TikZ. These 443

tasks require advanced visual reasoning capabili- 444

ties, which are more prevalent in multimodal com- 445

mercial LLMs like GPT-4o and GPT-4o-mini. 446

Subtasks Analysis Meanwhile, several tasks in 447

both in generation and conversion types appear to 448

be saturated, with most models achieving scores 449

exceeding 90%. These include generation tasks 450

for common formats such as JSON, HTML, CSV, 451

Markdown, and YAML, as well as conversion tasks 452

like YAML-to-JSON, React-to-HTML, TOML-to- 453

JSON, and Markdown-to-HTML. Such results indi- 454

cate that LLMs have already mastered many struc- 455

turally straightforward format transformations. 456

There remain several challenging tasks where 457

all models struggle significantly, including gen- 458

eration tasks like Text→TOML, Text→SVG, 459

Text→Mermaid, and Text→Vega, as well as con- 460

version tasks like YAML→XML, CSV→YAML, 461

Matplotlib→TikZ, and Markdown→Angular (see 462

in subsection A.2). Both closed-source and open- 463

source models achieve low scores on these tasks, 464

which typically require complex structural or vi- 465

sual reasoning. Notably, the performance gap be- 466

tween closed-source and open-source models is 467

even wider on these challenging subtasks, suggest- 468

ing that proprietary models may have advantages in 469

handling more complex structural representations 470

and transformation logic. 471
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5 Related Work472

5.1 Large Language Models473

Large Language Models (LLMs) have demon-474

strated remarkable capabilities and gained surg-475

ing popularity in recent years, ever since the re-476

lease of ChatGPT (OpenAI, 2023). Over the years,477

open-source models like Llama (Grattafiori et al.,478

2024), Phi (Abdin et al., 2024b,a), and Qwen (Yang479

et al., 2024, 2025) developed by companies like480

Meta, Microsoft, and Alibaba further facilitated481

a widespread integration of AI into diverse work-482

flows and everyday applications. Leveraging their483

large parameter sizes and extensive post-training,484

LLMs are capable of performing a diverse array485

of Natural Language Processing (NLP) tasks (Wan486

et al., 2023). One of the key aspects of the genera-487

tive capabilities of these models is their ability to488

generate structured data and transform data from489

one type to another while maintaining strict adher-490

ence to specified formats (Guo et al., 2024). In491

this paper, we design a new and comprehensive492

benchmark that evaluates the capability of LLMs493

to understand, generate, and manipulate structured494

data across a range of complex, real-world tasks.495

5.2 Evaluation of LLMs496

Evaluating structured output has become a focal497

point for understanding LLM’s limitations (Ning498

et al., 2025). SoEval (Liu et al., 2024) offers a499

fast, rule-based check for JSON and XML, but its500

flat schemas fail to reveal errors in deeper hierar-501

chies. StrucText-Eval (Gu et al., 2024) shifts the502

task to reasoning over structure-rich text (JSON,503

YAML, LaTeX) rather than generating the struc-504

tures themselves, while FOFO (Xia et al., 2024)505

extends to domains such as law and finance yet506

covers only a few formats and still relies on human507

verification. Developer-focused suites like StackE-508

val (Shah et al., 2024) for HTML, CSS, and plot-509

ting libraries, and CodeXGLUE (Lu et al., 2021)510

for multilingual code tasks remain limited to pro-511

gramming artifacts, and Struc-Bench (Tang et al.,512

2023) concentrates on tabular generation with be-513

spoke metrics. Each benchmark highlights a part514

of the challenge—be it format adherence, domain515

coverage, or table fidelity. However, none simul-516

taneously demands broad format coverage, auto-517

mated grading, and robust transformation capabili-518

ties. StructEval addresses these gaps by spanning519

18 code and non-code formats, unifying genera-520

tion, completion, and conversion tasks, and scoring521

outputs with fully automated structural and vision- 522

based metrics, offering a comprehensive lens on 523

how well LLMs respect and manipulate complex 524

schemas. 525

5.3 Structured Output Generation 526

The ability to generate structured outputs is cen- 527

tral to many real-world applications of LLMs (Gu 528

et al., 2024; Tang et al., 2023). These outputs are 529

not only expected to be semantically coherent but 530

must also adhere strictly to syntactic and struc- 531

tural constraints—violations of which can lead to 532

parsing failures, rendering errors, or broken down- 533

stream applications. Common tasks include gener- 534

ating JSON for API responses (Geng et al., 2025), 535

YAML or TOML for configuration files (Ped- 536

direddy, 2024), HTML or React for UI compo- 537

nents (Si et al., 2024), and LaTeX or Markdown for 538

technical writing (Wen et al., 2024). Moreover, in 539

data science, models are used to transform unstruc- 540

tured descriptions into structured formats like CSV 541

or tables for integration into analysis pipelines (Li 542

et al., 2023; Su et al., 2024). In publishing and 543

education, tools that convert textual prompts into 544

diagrams (e.g., using TikZ, SVG, or Mermaid) help 545

automate visualization generation (Lee et al., 2025; 546

Rodriguez et al., 2025; Ku et al., 2025). Despite its 547

significance, structured output generation remains 548

challenging due to the need for models to inter- 549

nalize both syntax rules and hierarchical schema 550

relationships across a wide variety of formats. Our 551

STRUCTEVAL first conducts a comprehensive eval- 552

uation of existing LLMs on both renderable and 553

non-renderable tasks, showing that they still strug- 554

gle to correctly generate some data formats includ- 555

ing TOML, SVG, and Mermaid. 556

6 Conclusion 557

In this paper, we have comprehensively studied 558

LLMs’ abilities to generate highly structured con- 559

tent. Having the ability to generate fully structured 560

content is highly useful for many downstream tasks. 561

Our paper is among the first few to provide an evalu- 562

ation suite for that. Our results indicate that current 563

models are still lagging on the renderable struc- 564

tured content, especially on less frequent format. 565

We advocate that the future models should invest 566

more time to optimize their abilities to generate 567

highly structured output. 568
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Limitations569

Non-interactive formats Our benchmark focuses570

on evaluating LLMs’ ability to generate static vi-571

sual rendering formats such as HTML, React, Mer-572

maid, etc. While this approach effectively assesses573

the model’s capacity to produce well-structured574

and visually coherent outputs, it is currently lim-575

ited to single-page, non-interactive formats. The576

evaluation does not account for dynamic behaviors577

such as button interactions, page transitions, anima-578

tions, or scroll events, which are essential to many579

real world user interfaces. Future work could ex-580

tend the benchmark to include dynamic rendering581

tasks, enabling a more comprehensive assessment582

of LLM capabilities in producing fully interactive583

and responsive user experiences.584

Expert Review While our dataset underwent a585

two-pass expert review process to ensure correct-586

ness, diversity, and minimize potential biases, the587

initial content was still generated by large language588

models. Despite expert oversight, residual biases589

inherent in the model outputs may persist, particu-590

larly in subtle or context-dependent scenarios that591

are challenging to detect through manual review.592

Moreover, expert validation, while thorough, may593

not fully capture the wide range of cultural, so-594

cial, or contextual sensitivities relevant to diverse595

user populations. Future work could incorporate596

broader multi-annotator audits or automated bias597

detection techniques to further enhance dataset re-598

liability and inclusiveness.599
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A Example Appendix827

A.1 Task Distributions828

Subset Tasks # Examples

Generation

StructEval-T

Text → JSON 50
Text → CSV 50

Text → TOML 50
Text → XML 50

Text → YAML 50

StructEval-V

Text → Angular 50
Text → Canvas 50
Text → HTML 50
Text → LaTeX 50

Text → Markdown 50
Text → Matplotlib 50
Text → Mermaid 50

Text → React 50
Text → SVG 50
Text → TikZ 50
Text → Typst 50
Text → Vega 50
Text → Vue 50

Conversion

StructEval-T

CSV → JSON 50
JSON → CSV 50
XML → JSON 50
JSON → XML 50

YAML → JSON 50
JSON → YAML 50

XML → CSV 50
CSV → XML 50

XML → YAML 50
YAML → XML 50
YAML → CSV 50
TOML → JSON 50
CSV → YAML 50

TOML → YAML 50

StructEval-V

Matplotlib → TikZ 100
Markdown → HTML 50

HTML → React 45
React → HTML 45
Vue → HTML 40
HTML → Vue 40

Markdown → React 30
HTML → Angular 30
Markdown → Vue 25

Vue → React 15
Markdown → Angular 10

React → Angular 5

Table 6: Statistics of number examples for each task in all the 4 subsets of STRUCTEVAL.
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A.2 Subtask Performance 829

Model T→
JS

O
N

T→
CS

V

T→
TO

M
L

T→
X

M
L

T→
YA

M
L

Avg.

Llama-3.1-8B-Instruct 78.82 81.68 6.76 59.38 74.44 60.22
Meta-Llama-3-8B-Instruct 69.08 45.04 7.94 45.30 78.54 49.18
Phi-3-mini-128k-Instruct 68.84 93.50 0.00 37.68 36.92 47.39
Phi-4-mini-Instruct 51.50 82.56 16.12 40.20 66.54 51.38
Qwen-2.5-7B-Instruct 84.40 90.62 13.22 61.30 46.52 59.21
Qwen-3-4B 90.96 76.44 7.44 71.16 78.74 64.95
Gemini-1.5-pro 94.06 100.00 75.38 73.32 97.58 88.07
Gemini-2.0-flash 48.88 98.40 78.78 44.60 91.44 72.42
GPT-4.1-mini 99.26 99.92 91.34 77.06 95.26 92.57
GPT-4o 99.36 100.00 90.22 70.32 97.68 91.52
GPT-4o-mini 97.88 99.90 29.56 75.10 96.84 79.86
o1-mini 92.56 99.24 89.40 71.12 88.28 88.12

Table 7: StructEval-T Generation Scores

Model T→
A

ng
.

T→
LAT

EX

T→
M

D

T→
M

PL

T→
Re

ac
t

T→
SV

G

T→
Ti

kZ

Llama-3.1-8B-Instruct 61.22 78.04 87.34 80.52 64.30 44.18 46.92
Meta-Llama-3-8B-Instruct 48.92 68.40 72.06 56.54 55.24 40.16 28.04
Phi-3-mini-128k-Instruct 48.28 63.88 64.16 59.38 44.12 35.78 32.44
Phi-4-mini-Instruct 62.60 72.92 88.90 71.30 58.46 39.72 35.28
Qwen-2.5-7B-Instruct 63.08 66.68 81.02 74.70 65.48 47.30 48.88
Qwen-3-4B 48.80 72.60 92.80 89.54 77.06 53.44 55.38
Gemini-1.5-pro 90.62 76.94 94.00 84.96 33.68 54.72 69.44
Gemini-2.0-flash 44.28 75.26 92.06 75.34 46.64 56.72 61.24
GPT-4.1-mini 84.52 76.20 91.80 96.34 69.58 58.74 69.74
GPT-4o 87.42 75.18 93.02 95.76 74.66 56.78 62.32
GPT-4o-mini 86.72 78.44 94.36 95.36 75.46 53.98 60.76
o1-mini 89.30 49.24 92.08 96.06 71.98 58.12 71.86

Table 8: StructEval-V Generation Scores (Part 1)

Model T→
H

TM
L

T→
M

er
m

ai
d

T→
Ty

ps
t

T→
Ve

ga

T→
Vu

e

T→
Ca

nv
as

Avg.

Llama-3.1-8B-Instruct 95.96 9.02 23.38 28.36 57.90 30.56 54.44
Meta-Llama-3-8B-Instruct 72.52 6.04 29.46 30.74 66.50 31.28 46.61
Phi-3-mini-128k-Instruct 92.10 11.12 22.90 35.56 39.84 32.50 44.77
Phi-4-mini-Instruct 97.24 9.30 42.22 34.72 29.48 28.90 51.62
Qwen-2.5-7B-Instruct 92.92 6.16 33.44 30.56 37.90 44.52 53.28
Qwen-3-4B 98.80 13.62 9.92 45.28 29.42 54.28 57.00
Gemini-1.5-pro 99.30 15.94 11.60 65.18 29.66 29.36 58.11
Gemini-2.0-flash 99.26 9.66 45.28 29.74 32.46 29.16 53.62
GPT-4.1-mini 99.30 43.46 9.96 48.28 38.44 49.60 64.30
GPT-4o 99.22 36.00 23.94 72.20 40.04 33.54 65.39
GPT-4o-mini 99.02 30.50 9.96 41.28 33.66 30.50 60.77
o1-mini 99.44 27.76 9.98 65.68 40.76 33.52 61.98

Table 9: StructEval-V Generation Scores (Part 2)
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Model C→
JS

O
N

J→
CS

V

X→
JS

O
N

J→
X

M
L

Y→
JS

O
N

J→
YA

M
L

X→
CS

V

Llama-3.1-8B-Instruct 34.14 95.96 68.62 56.02 94.00 92.52 98.98
Meta-Llama-3-8B-Instruct 31.40 48.00 69.24 55.40 90.00 74.00 48.26
Phi-3-mini-128k-Instruct 24.88 87.28 8.00 12.40 23.20 32.80 33.92
Phi-4-mini-Instruct 45.42 97.62 89.56 61.90 100.00 100.00 90.70
Qwen-2.5-7B-Instruct 31.36 95.74 33.14 31.04 50.00 95.24 77.72
Qwen-3-4B 55.28 100.00 92.84 65.98 100.00 98.00 99.78
Gemini-1.5-pro 48.14 100.00 40.14 67.14 98.00 100.00 99.78
Gemini-2.0-flash 25.72 100.00 32.60 69.76 100.00 100.00 99.78
GPT-4.1-mini 55.52 100.00 38.68 69.76 100.00 100.00 99.78
GPT-4o 38.56 99.74 66.46 69.76 100.00 100.00 99.78
GPT-4o-mini 58.52 100.00 73.26 65.98 98.00 100.00 98.22
o1-mini 58.46 100.00 82.70 68.60 100.00 100.00 99.78

Table 10: StructEval-T Conversion Scores (Part 1)

Model C→
X

M
L

X→
YA

M
L

Y→
X

M
L

Y→
CS

V

To
m

l→
JS

O
N

C→
YA

M
L

To
m

l→
YA

M
L

Avg.

Llama-3.1-8B-Instruct 20.20 86.96 39.90 88.32 86.90 49.54 85.62 71.26
Meta-Llama-3-8B-Instruct 17.28 54.48 38.12 61.90 63.38 36.50 63.18 53.65
Phi-3-mini-128k-Instruct 9.50 20.56 22.42 87.58 8.80 19.10 26.46 29.78
Phi-4-mini-Instruct 21.72 60.00 48.28 84.14 86.02 66.22 61.84 72.39
Qwen-2.5-7B-Instruct 18.12 81.62 24.16 97.62 78.22 70.86 85.68 62.18
Qwen-3-4B 24.82 94.10 48.68 98.94 96.92 65.08 95.36 81.13
Gemini-1.5-pro 27.14 42.96 47.56 100.00 99.76 71.40 97.36 74.24
Gemini-2.0-flash 17.74 59.02 46.36 100.00 99.26 63.18 97.36 72.20
GPT-4.1-mini 29.36 59.18 48.36 100.00 100.00 60.82 97.36 75.63
GPT-4o 27.40 44.28 48.76 100.00 100.00 43.20 97.36 73.95
GPT-4o-mini 29.62 40.20 48.76 98.10 100.00 50.00 97.36 75.57
o1-mini 29.26 88.62 48.36 100.00 100.00 72.40 97.36 81.82

Table 11: StructEval-T Conversion Scores (Part 2)

Model R→
H

TM
L

V→
H

TM
L

M
D→

Re
ac

t

H
TM

L→
A

ng
.

M
D→

Vu
e

M
PL
→

Ti
kZ

Llama-3.1-8B-Instruct 88.36 84.65 43.23 60.90 36.36 16.26
Meta-Llama-3-8B-Instruct 86.82 85.23 33.73 52.83 29.52 8.29
Phi-3-mini-128k-Instruct 70.73 73.85 30.80 32.77 27.32 17.15
Phi-4-mini-Instruct 92.27 81.82 28.50 33.47 33.88 15.70
Qwen-2.5-7B-Instruct 89.29 79.53 34.70 68.67 33.80 26.32
Qwen-3-4B 95.53 89.65 54.23 55.10 34.64 25.64
Gemini-1.5-pro 95.24 91.27 34.83 86.43 30.96 38.82
Gemini-2.0-flash 93.02 88.67 32.37 29.30 32.00 17.46
GPT-4.1-mini 95.22 90.12 52.87 81.97 31.96 36.80
GPT-4o 95.36 90.55 74.20 87.17 37.56 39.69
GPT-4o-mini 95.07 91.58 80.40 87.73 31.96 42.47
o1-mini 95.09 89.65 58.37 87.90 36.80 40.60

Table 12: StructEval-V Conversion Scores (Part 1)

Model M
D→

H
TM

L

H
TM

L→
Re

ac
t

H
TM

L→
Vu

e

V→
Re

ac
t

M
D→

A
ng

.

R→
A

ng
.

Avg.

Llama-3.1-8B-Instruct 88.28 55.02 72.93 75.73 26.90 85.20 61.15
Meta-Llama-3-8B-Instruct 84.52 73.91 75.28 62.73 33.10 57.00 56.91
Phi-3-mini-128k-Instruct 65.60 42.16 34.65 33.00 25.10 41.60 41.23
Phi-4-mini-Instruct 92.44 57.11 41.05 55.87 26.50 71.20 52.48
Qwen-2.5-7B-Instruct 85.16 69.20 80.02 50.87 35.00 84.60 61.43
Qwen-3-4B 90.20 65.31 83.05 68.13 34.50 85.00 65.08
Gemini-1.5-pro 95.28 40.62 86.65 64.00 49.80 85.20 66.59
Gemini-2.0-flash 96.60 41.04 67.77 68.00 28.20 29.20 51.97
GPT-4.1-mini 96.40 88.09 46.28 86.47 49.10 85.20 70.04
GPT-4o 95.32 88.31 62.55 78.93 48.20 80.60 73.20
GPT-4o-mini 93.14 88.42 79.75 81.20 49.20 97.60 76.54
o1-mini 94.48 72.18 77.77 65.60 41.20 85.20 70.40

Table 13: StructEval-V Conversion Scores (Part 2)

* T - Text, C – CSV, J – JSON, X – XML, Y – YAML, Ang. – Angular, MD – Markdown, MPL – Matplotlib, R – React, V –
Vue.
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A.3 Examples of rendered image 830

(a) Angular (b) Matplotlib (c) Mermaid

(d) React (e) SVG (f) TikZ

(g) Vega

Figure 6: Example images rendered in STRUCTEVAL tasks.
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A.4 Task Generation Prompt831

Sample Prompt

You are a prompt-design assistant building benchmark items for conversion tasks.
Input Format: {input_type}
Output Format: {output_type}
Your task: Think silently through the checklist and then output a single JSON object with:

• "raw_output_metric": dot-paths for the expected keys/attributes in the {output_type} structure

• "query": A generated input format {input_type} code inside <code>...</code> tags.

Assumed Mapping Rule (state it implicitly in the paths):

• No XML attributes unless absolutely necessary.
If an attribute is required, map it to a key prefixed with "@", and include that in dot-paths.

CHECKLIST (INTERNAL – DO NOT OUTPUT)

1. Pick a super creative and random domain.

2. Generate {input_type} code with:

• At least two levels of nesting
• At least one list inside an object/element

3. Avoid XML attributes where possible; prefer child elements.

4. Wrap the code in <code>...</code> tags.

5. Dot-path rules:

• JSON / YAML / TOML: parent.child, list[0].child
• XML: element.child or element.@attr (only if used)
• CSV: csv::Header (not used here)

OUTPUT FORMAT
{

"raw_output_metric": ["<dot_path1>",
"<dot_path2>", ...],

"query": "<code>...</code>"
}

Figure 7: Example task generation prompt
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