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Abstract

Large Language Model (LLM) code generation has the potential to enhance cre-
ative coding by allowing users to focus on structural and musical motifs rather
than syntactic details. For live-coding and other music-oriented settings, users
would benefit from diverse candidates that reflect meaningful differences in the
resulting audio. However, current models struggle to produce such diversity, as
they lack direct insight into the code’s sonic output and are typically evaluated
using text-based similarity metrics. In this paper, we propose a predictive MLP
model that learns an embedding alignment map between code and audio, enabling
reasoning about musical similarity directly from code embeddings. This align-
ment introduces musical awareness into code generation workflows, supporting
more perceptually relevant candidate selection and opening the door to musically
informed code assistants.

1 Introduction

Creative coding endeavors are emerging as a vibrant space at the intersection of art and computation.
One such example is live-coding, where performers write music-generating code in real-time. This
can often be challenging, as performers need to write syntactically correct code under both time
constraints and the pressure of an audience.

Recent advances in code generation with LLMs [Jiang et al., 2024, Seo et al., 2025, Tong and
Zhang, 2024] present an exciting opportunity for such domains. By lifting much of the syntactic
burden, LLMs allow live-coders to focus on higher-level creative motifs and musical ideas. How-
ever, existing code generation models struggle to provide diverse code candidates in multi-modal
domains, where code output is not text, as they do not possess mechanisms to semantically process
multi-modal output [Vasilakis et al., 2024]. Such models typically evaluate candidate outputs using

text-based similarity metrics, which do not capture perceptual or semantic audio differences’.

Embedding models offer a potential path forward. Embedding spaces represent meaningful rela-
tionships in a given domain by mapping entities to a high-dimensional vector space where “similar”
items are less distant. In the context of live-coding, building an alignment map between code and
audio would offer a mechanism to reason about musical similarity based only on produced code.

After an initial exploration of the code-audio embedding latent space relationship, we propose a
dual Multi-Layer Perceptron (MLP) framework that aligns code and audio embedding spaces. Such
a model can provide insights into the topology of the code-audio relationship, helping bridge what
an LLM writes and what a user hears. We conduct a study simulating code completion for melody,
drum, and bass generation, showing that even on code artifacts with major overlaps, our proposed
MLP distinguishes distinct musical semantics only with source code. This highlights our model’s
potential as a supplement to code completion environments, augmenting them with the ability to
reason about code candidates in the auditory domain.

"We discuss these techniques more in Appendix Section A.
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(a) Similarity between Sonic Pi tutorial entries. (b) Similarity of small code variations.

Figure 1: Distances between sample embeddings show nontrivial alignment mapping. We extract
code and audio embeddings with distilroberta-base and wav2vec?2 respectively. Audio is
clipped to 9 measures at 120 BPM. Embedding similarity is computed as vector cosine similarity.

2 Preliminary Investigation

As an initial exploration, we investigate the latent relationship between code and audio embedding
spaces. For our first study, we select the 27 Sonic Pi tutorial entries and record 27 corresponding
audio outputs, collecting code and audio embeddings. We chose Sonic Pi due to its prominence in
the live-coding community, terseness, and strong documentation. For each entry (code+audio) in
the dataset, we plot code and audio embedding distances to all other entries, comparing code to code
and audio to audio. Figure la displays our results: looking at our findings, no evident relationship
emerges. Low Pearson (0.0159, p=0.6770) and Spearman correlations (0.0409, p=0.4450) affirm no
linear or rank-order relationship between the embedding spaces.

We proceed to investigate the sensitivity of code and audio embeddings to small program code mod-
ifications. We modify the six longest programs in the tutorials (most parameters to modify) by
varying the values of three parameters: sleep time, amplitude (amp), and beats per minute (bpm).
We posit that minor code modifications should yield similar code embeddings but varying audio
embeddings depending on the altered variable. Changes in amplitude, for example, should affect
audio embeddings less than changes in sleep, which may change syncopation. Figure 1b confirms
that fuzzed code artifacts maintain a high (> 0.990) code embedding similarity. While similarity
is also high in the audio embedding space, the range is larger, with similarity scores below 0.975.
Interestingly, there is no evident trend between the modified variable and the resultant audio embed-
ding: sleep, bpm, and amp variations exhibit inconsistent changes in the audio embedding space.
The associative, albeit not equivalent, range compression of code and audio embedding distances
suggests some coarse association between the domains; however, such an association is not trivial.

3 Model Implementation

To train an embedding alignment model, we utilize the 27 Sonic Pi code entries mentioned in sec-
tion 2, along with the Jinja template engine [Ronacher, 2008] to augment the dataset and randomize
various parameters. A table of parameters used for templating is provided in Table A1, and a tem-
plate example can be seen in Listing 1. We render 500 different Sonic Pi code files, generating a
total of 13,500 entries. We use distilroberta-base [Sanh et al., 2019] to generate code embed-
dings and Meta’s wav2vec?2 [Baevski et al., 2020b] for the respective audio embeddings. We adopt
a symmetric architecture consisting of two independent MLPs: one for code embeddings MLP. and
one for audio embeddings MLP,. Both networks take as input the respective modality’s pretrained
embeddings and project them into a common embedding space of dimension d .

Each MLP consists of L linear layers, with intermediate hidden layers of dimension dp;ggen, €ach
followed by BatchNorm and GELU activations. We use BatchNorm to stabilize training by normal-
izing activations across the batch, and GELU as the activation function due to its smooth, non-linear
behavior that improves gradient flow and empirical performance over ReLLU in deep networks. We
project the pre-trained code and audio embeddings as ¢; = MLP.(c{),a; = MLP,(a?) where, ¢!

)



and a? are the embeddings extracted from the pre-trained model, and ¢; and a; are the aligned em-
beddings. This formulation was selected to capture non-linear transformations without introducing
architectural biases toward either modality. Unlike attention-based architectures, MLPs efficiently
map pre-trained embeddings into an aligned representation space.

To train the models, we employ InfoNCE loss, a contrastive learning objective that brings seman-
tically aligned code-audio pairs closer while pushing apart mismatched pairs in the same batch
[van den Oord et al., 2018]. This choice is motivated by the need for self-supervised alignment,
where explicit labels are not available, but semantic consistency can be inferred from pairing. Given
a batch of N aligned code-audio embeddings {(c;, a;)}Y,, cosine similarity is defined as:

. a
sim(c;,a;) = St
(ci, ~7) lleill-llasl

The InfoNCE loss £; for a single positive pair (c;, a;) is shown in Equation 1, with 7 being the tem-
perature hyperparameter that controls the sharpness of the similarity distribution. This contrastive
formulation applies well to this setting, where each code-audio pair is semantically meaningful but
hard supervision is unavailable. InfoNCE encourages the model to preserve pairwise relationships
and learn embeddings that are useful for downstream retrieval and matching tasks.

L = —log ZA?XP(Sim(Cuai)/T) L= % ZZJ\LI L (1)

Y, exp(sim(c;,a;)/7)’°

4 Experiments

Hyperparameter Tuning: We quantify alignment between learned representations with two simi-
larity metrics. First, Canonical Correlation Analysis (CCA) measures the maximum linear correla-
tion between two multivariate random variables after projecting them onto a shared subspace. Given
code and audio embeddings C' and A, CCA finds linear projections that maximize the correlation be-
tween C'w, and Aw,, with the resulting correlation score reflecting the extent a linear transformation
can align the two modalities. Second, Centered Kernel Alignment (CKA) captures similarities be-
tween representations in a way that is invariant to orthogonal transformations and isotropic scaling.
Unlike CCA, which measures linear alignment, CKA is sensitive to nonlinear structural similarities.
CKA operates on kernel matrices K and L derived from embeddings, as shown in Equation 2, where
K. and L, are centered kernel matrices, and (-, -) 7 denotes the Frobenius inner product. CKA scores
closer to 1 indicate higher structural similarity between representations.

(K.l
CKAK, L) = Rt 2

By combining InfoNCE-based contrastive training with post-hoc evaluation using CKA and normal-
ized CCA, we assess the degree of alignment of learned embeddings at both linear and structural
levels. We run 24 configurations varying hidden/output dimension, layers, and learning rate, with
metrics averaged over five runs: Table A2 reports our results. The first row shows pre-alignment
baselines, with low CKA (0.090) and CCA (0.140), indicating minimal correlation between raw
embeddings. Post-alignment, the best configuration achieved a CKA of 0.590 (Config. 21) and
a normalized CCA of 0.902 (Config. 24), representing over six-fold improvements in both met-
rics. These gains demonstrate that the model learns a meaningful shared embedding space, enabling
reliable approximation of audio embeddings from code even without explicit supervision.

Evaluation: We are interested in examining ability to distinguish sonic similarity of code candi-
dates. We evaluate our model against a raw code baseline (looking at code embedding distance)
across three scenarios—melody, drum, and bass—where we simulate LLM-assisted Sonic-Pi code
completion for melody, drum pattern, and bassline addition. Table A3 presents our experimental
setup. We select the best model and evaluate alignment quality using neighborhood-based metrics
such as Jaccard similarity and top-k overlap. These measures assess whether nearest neighbors in
the code embedding space correspond to nearest neighbors in the audio embedding space. We report
Jaccard, overlap@3, and rank correlations (Spearman, Pearson) in Table 1.

Across all three settings, our method consistently improves neighborhood-based metrics, with the
largest gains on s2-drum (baseline fails entirely) and s3-bass (both selection and correlation im-
prove markedly). Even in s1-mel, where fine-grained correlations dip slightly, top-k accuracy im-
proves, highlighting complementary strengths of the evaluation metrics. Importantly, these gains are



Table 1: Comparison of raw baseline vs. our method across three scenarios. Standard deviations for
our method are reported in parentheses.

Scenario Method Jaccard Overlap@3 Spearman Pearson
s1-mel Raw 0.20 0.33 0.21 0.18
Ours 0.34 (0.21) 0.47 (0.27) 0.16(0.17)  0.07 (0.18)
O-drum Raw 0.00 0.00 -0.25
Ours 0.16 (0.08)  0.27 (0.13)  -0.05 (0.18) -0.12 (0.20)
Raw 0.20 0.33 0.24 0.21
s3-bass

Ours 0.50 (0.00)  0.67 (0.00)  0.44 (0.05)  0.46 (0.05)

(a) UMAP visualization of code and audio embed- (b) Empirical alignment heat maps showing code-
dings before and after alignment. audio correspondence quality

Figure 2: UMAP and Empirical heat map visualizations demonstrate improved clustering and code-
audio matching after alignment training.

achieved directly from code embeddings, without compiling audio or extracting audio embeddings,
a process that is computationally expensive and time-consuming.

In Figure 2, we illustrate the effectiveness of our model in bridging the semantic gap between code
and audio modalities. The UMAP visualizations in Figure 2a reveal that raw embeddings exhibit
complete modal separation, with code (blue) and audio (orange) occupying entirely distinct regions
of the embedding space. After alignment, we observe overlap between modalities, with audio em-
beddings clustering within code neighborhoods, demonstrating successful semantic bridging.

Interestingly, the empirical alignment maps in Figure 2b show that while raw embeddings achieve
higher linear correlation (R?> = —10.054 to 0.840), this linear fit fails to capture true cross-modal
semantics, as evidenced by the poor clustering in UMAP space. Our aligned model sacrifices some
linear correlation for semantically meaningful overlap, where related code-audio pairs now occupy
shared embedding regions. This nonlinear alignment approach successfully maps semantically re-
lated content across modalities into proximate embedding neighborhoods, enabling effective cross-
modal retrieval and generation despite reduced linear correlation measures.

5 Conclusion

In this work, we present a code—audio embedding alignment map to bridge the cross-modal semantic
gap for code generation models (LLMs). Our preliminary analysis reveals minimal linear or rank-
order relationships between the respective latent spaces, motivating the development of a non-linear
alignment model. Leveraging Sonic Pi templates, we augment a curated dataset of code—audio
embeddings and train a dual MLP model architecture to project these embeddings into a shared
latent space. Model evaluation and hyperparameter tuning are quantified using CCA and CKA. Our
final experiments, conducted on three distinct live-coding code assistance tasks, demonstrate that the
proposed model effectively captures and distinguishes auditory differences among code candidates.

This study presents an initial step toward an integrated framework designed to support live coders
with code generation models. Future work will focus on extending this framework by incorporating
our alignment map into a generative code assistant environment to better realize artistic intent.
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A Related Work

A.1 Code Generation Models

With the rise of large language models (LLMs), systems such as GitHub’s Copilot GitHubCopi-
lot and OpenAI’s Codex Mark Chen [2021] have demonstrated strong code generation capabilities
for complex programming tasks, having been trained on extensive code repositories and fine-tuned
to capture code semantics. Code generation models are typically evaluated on competitive pro-
gramming tasks, with the HumanEval dataset Mark Chen [2021] serving as one of the predominant
benchmarks. Recent research has expanded these efforts to domains such as music computing and
the study of coding-related sentiments Wang [2024]. However, given the inherent non-determinism
of LLMs, ensuring code correctness and consistency remains a persistent challenge OuYang et al.
[2024]. These challenges are further exacerbated in creative coding contexts, where limited train-
ing data exist for certain domain-specific languages (DSLs). Moreover, LLMs have been shown to
struggle with music comprehension Vasilakis et al. [2024], suggesting corresponding difficulties in
evaluating code for computer music generation.

A.2 Music Programming Languages

Many modern music programming languages take the form of DSLs (domain specific languages)
- languages that are designed for a specific application domain. One such example is SuperCol-
lider McCartney [2002], an audio programming language and environment for real-time audio syn-
thesis and algorithmic composition. Conversely, FAUST (Functional AUdio STream) Orlarey et al.
[2009] is a purely functional programming language for real-time signal processing. Live coding
languages are a subset of music programming languages tailored for live music performance. One
example is Sonic Pi Aaron and Blackwell [2024], a live coding language built on Ruby that has been
prominently adopted by the community. Sonic Pi has shown promise in educational settings, intro-
ducing students to computer science concepts through real-time music coding. Tidal Cycles McLean
[2012] is another functional alternative built on the Haskell functional programming language; it of-
fers programmers a declarative approach to live coding. Strudel McLean [2022] is a variant of Tidal
Cycles built on JavaScript garnering notable community adoption.

A.3 Embedding Space Alignment

Embedding models attempt to produce learned dimensional representations of data in a hyperplane.
Pre-trained embedding models map data - text, images, audio, programs - into vector spaces that
encode relational semantics. Program embedding models have been applied to augment code-
classification and auto-completion Lin et al. [2024]. Similarly, audio embedding models have been
considered for speech recognition, music generation, and audio classification Eren and Sert [2020].
Audio embedding models capture acoustic features and temporal dependencies, with different mod-
els highlighting different auditory features Baevski et al. [2020a], Cramer et al. [2019].

Given two distinct embedding latent spaces, one may inquire about an alignment mapping relation-
ship. Early alignment methods applied to language and knowledge graphs analytically established
mappings between these spaces; however, recent efforts on more complex maps have employed
unsupervised methods Biswas et al. [2020]. With the rise of multi-modal LLMs, cross-modal align-
ment has begun to appear in audiovisual domains Elizalde et al. [2019]. Novel works have explored
ways of encoding linguistic semantics in audio embeddings, and have even presented joint embed-
ding spaces between the two fields Devnani et al. [2024], Huang et al. [2022].
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B Dataset Augmentation

B.1 Templating Parameters

Table Al: Parameters used for templating

Parameters Example Values
samples ambi_choir, bd_haus
synths beep, rodeo
character major, minor
attack/release_range [0, 10]
amp._range [0, 10]
sleep_range [0.1,5.0]
effects echo, compressor
notes C2,Db2,...,C6

B.2 Sample Templated Dataset Entry

Listing 1: Jinja Template used for parametrising Compus Beats dataset entry

# Compus Beats
# Coded by Sam Aaron

use_sample_bpm :{{samples_bpm[0]}}, num_beats: {{repeat_small_ints
[013}}

live_loop :loopr do
sample :{{samples_bpm[0]}}, rate: [0.5, 1, 1, 1, 1, 2].choose unless
one_in (10)
sleep {{sleep_values[0]}}
end

live_loop :bass do
sample :{{sample_values[0]}}, amp: rrand(0.1, 0.2), rate: [0.5, 0.5,
1, 1,2,4].choose if one_in (4)
use_synth :{{synth_values [0]}}
use_synth_defaults mod_invert_wave: 1
play :{{note_values[0]}}, mod_range: 12, amp: rrand(0.5, 1),
mod_phase: [0.25, 0.5, 1].choose, release: {{release_values[(1)%
release_values|lengthl]}}, cutoff: rrand(50, 90)
play :{{note_values[(1) % note_values|lengthl}}, mod_range: [24, 36,
34] . choose, amp: {{amp_values[0]}}, mod_phase: 0.25, release:
{{release_values [0]}}, cutoff: {{repeat_large_ints[0]}},
pulse_width: rand
sleep {{sleep_values[(1)% sleep_values|lengthl]}}
end

A2




C Hyperparameter Tuning

Table A2: CCA and CKA comparison across hyperparameters. First row shows pre-alignment
metrics. Best post-alignment results are in bold (1st) and underlined (2nd).

Conﬁg dhidden dout L LR CKA CCA
- - - — Before training  0.090 £+ 0.001  0.145 + 0.003
1 256 128 5 le-4 0.420 £ 0.019 0.523 £+ 0.021
2 128 64 1 le-3 0.455 £0.004 0.480 £ 0.004
3 128 64 1 le-4 0.463 £0.011 0.378 £ 0.011
4 128 64 3 le-3 0.424 £0.024 0.510 £ 0.019
5 128 64 3 le-4 0.398 £0.021 0.372 £0.010
6 128 64 5 le-3 0.422 £0.014 0.552 £ 0.009
7 128 64 5 le-4 0.357 £0.040 0.396 + 0.011
8 128 128 1 le-3 0.472 £0.057 0.660 £ 0.021
9 128 128 1 le-4 0.490 £0.033  0.522 £0.010
10 128 128 3 le-3 0.494 £0.017 0.691 £ 0.010
11 128 128 3 le-4 0.459 £0.031 0.547 £ 0.003
12 128 128 5 le-3 0.410 £0.023 0.735 £ 0.013
13 128 128 5 le-4 0.407 £0.055 0.571 £0.013
14 256 64 1 le-3 0.468 £ 0.063 0.499 + 0.011
15 256 64 1 le-4 0.514 £0.014 0.357 £ 0.005
16 256 64 3 le-3 0.461 £0.035 0.556 £ 0.007
17 256 64 3 le-4 0.454 £0.027 0.366 £ 0.006
18 256 64 5 le-3 0.432 £0.005 0.644 £0.013
19 256 64 5 le-4 0.386 £0.014 0.372 £0.010
20 256 128 1 le-3 0.444 £0.042 0.736 £ 0.034
21 256 128 1 le-4 0.590 + 0.044 0.486 + 0.007
22 256 128 3 le-3 0.444 £0.021 0.743 £ 0.045
23 256 128 3 le-4 0.548 £0.033  0.493 £ 0.005
24 256 128 5 le-3 0.466 £ 0.007  0.902 + 0.007

A3



D Experimental Setup

Table A3: Code snippets and prompts used for results. For each snippet, GPT-5 generated 3 candi-
date and 10 candidate completions. The 10 candidates experienced a wider auditory variance, moti-
vating the value of greater candidate generation and subsequent pruning with an embedding model.
Our model successfully predicts the most sonically distinct entries with just the code embeddings.

s1-mel s2-drum s3-bass
Code
use_bpm 100 use_bpm 90 use_bpm 100
# Drums # Melody # Drums
live_loop :drums do live_loop :melody do live_loop :drums do
sample :bd_haus use_synth :prophet sample :bd_haus
sleep 0.5 play_pattern_timed sleep 1
sample :sn_dolf [:c4, :e4, sample :sn_dolf
sleep 0.5 1g4, :e4], sleep 1
end [0.5, 0.5, end
live_loop :hats do 0.5, 0.5], # Melody
sleep 0.25 release: 0.3 melody = [:e4,
sample end :g4, a4, :b4,
:drum_cymbal # Bassline rad, :g4, :e4,
end live_loop :bass do :d4].ring
# Bassline use_synth :fm live_loop :melody
live_loop :bass do play_pattern do
use_synth :fm [:g3, :g3, use_synth :pulse
play_pattern_timed :d4, :g31], play
[:e2, :g2, release: 0.5 melody.tick,
ra2, :g2], end release: 0.3
[0.5, 0.5, sleep 0.5
0.5, 0.5], end
release: 0.25
end
Prompt| Propose {3,10} melodies | Propose {3,10} drum pat- | Propose {3,10} bass lines
to accompany this code terns to accompany this code | to accompany this code

A4
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