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ABSTRACT

Differentially private stochastic gradient descent (DP-SGD) is a well-known
method for training machine learning models with a specified level of privacy.
However, its basic implementation is generally bottlenecked by the computation of
the gradient norm (gradient clipping) for each example in an input batch. While
various techniques have been developed to mitigate this issue, there are only a
handful of methods pertaining to convolution models, e.g., vision models. In this
work, we present three practical methods for performing gradient clipping that
improve upon previous state-of-art methods. Two of these methods use in-place
operations to reduce memory overhead, while the third one leverages a relationship
between Fourier transforms and convolution layers. We then develop a dynamic al-
gorithm that dispatches one of the above three algorithms to optimize performance.
Extensive benchmarks confirm that this algorithm consistently outperforms other
state-of-the-art algorithms and frameworks.

1 INTRODUCTION

Differentially-private stochastic gradient descent (DP-SGD) is a common tool used to train machine
learning models to protect sensitive information contained within individual training records (Abadi
et al., 2016). However, general implementations of DP-SGD are bottlenecked by their gradient
clipping step, whose runtime and memory costs scale linearly with the batch size times the number
of model parameters. Our goal in this work is to develop three improved variants of the gradient
clipping step that are substantially more efficient when applied to models with convolution layers.

DP-SGD details. The DP-SGD algorithm (Chaudhuri et al., 2011; Bassily et al., 2014) relies on
the Gaussian mechanism and composition of differential privacy (Dwork et al., 2006; 2014) across
iterations to privately compute the average of per-example gradients in a batch. At each iteration
it operates by (i) bounding the sensitivity of each record within a batch to control and quantify the
impact of any single record on the final model weights, and (ii) adding Gaussian noise proportional to
the inverse of the batch size times the bound in (i). In particular, sensitivity is controlled by bounding
per-example gradient norms so that the privatized gradients lie in a compact set. This approach
is crucial for reducing noise growth, which scales as O(

√
d/[εb]) (Bassily et al., 2014), where d

is the number of model parameters, ε the privacy budget, and b the number of records in a batch.
Alternatively, one can clip the overall average gradient at each step, but this increases noise by a
factor of the batch size to O(

√
d/ε).

Naive per-example clipping requires computing the norm of all per-example gradients. Specifically,
this methods requires storing at least a matrix of size Θ(bd) that contains per-example gradients.
Given the importance of model utility within this privacy-preserving context, there have been several
developments on improving this step (with a focus on models with fully-connected or embedding
layers). For example, techniques like ghost-clipping (Goodfellow, 2015) have been leveraged to
improve both the runtime and storage complexity in certain settings. However, similar savings for
convolution layers remain elusive (Rochette et al., 2019; Lee and Kifer, 2021a).

Contributions. This work introduces a meta-algorithm for gradient clipping for convolutional net-
works, which improves overall efficiency by selecting from three specialized methods, each outper-
forming prior techniques within distinct hyperparameter regimes. More specifically:
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• the first two methods use in-place calculations and obtain O(1) per-example storage com-
plexities;
• the first method directly computes the squared norm, while the second leverages the ghost-

clipping trick for fully-connected layers;
• the third method uses a relationship between convolution operators and fast Fourier trans-

forms (FFTs) to obtain a scheme that scales well in the high-dimensional setting.

It is worth mentioning that the analysis for the third method (for gradient clipping) appears to be
new. In particular, this analysis exploits properties of circulant matrices to derive an algorithm that
runs efficiently in terms of the number of model parameters d, and the batch size b. Further, the
efficiency of this method is most pronounced for large kernels that are designed to capture long-range
dependencies, a setting required by several practical applications. As a byproduct, the proposed FFT
approach also accelerates the computation of full CNN gradients in certain regimes, a benefit beyond
the primary focus of our work.

To verify the practical efficiency of our methods, we provide benchmark experiments that demonstrate
the numerical performance of our proposed methods outperforming popular frameworks.

Related work. The vast literature on DP-SGD (Chaudhuri et al., 2011; Bassily et al., 2014; Abadi
et al., 2016; Ponomareva et al., 2023; Bu et al., 2023a) highlights the challenge of bounding individual
record sensitivity, a crucial aspect often addressed through clipping1. While alternative approaches
exist, such as modifying model architectures to enable Lipschitz constant computation (Béthune et al.,
2023), their broader applicability remains uncertain.

To the best of our knowledge, the state-of-the-art performance in the setting of convolution models is
achieved by Bu et al. (2023b). Specifically, that work builds on the approach of Bu et al. (2022); Lee
and Kifer (2021a) and combines it with a careful book-keeping scheme that avoids a second back-
propagation step. The main observation of Bu et al. (2022) is that the straightforward implementation
of DP-SGD can be faster or more memory-efficient than ghost-clipping in certain regimes. While
Rochette et al. (2019); Lee and Kifer (2021a) rely on instantiating per-example gradients, Bu et al.
(2022) take advantage of the underlying network structure and choose which of of two different
approaches to run; this selection step drives the bulk of their speed-up. In a follow-up work (Bu et al.,
2023b), the authors use the previous observation and the idea that the second back-propagation step
can be avoided using caching techniques.

Fourier transforms have first been used to improve the efficiency of training convolution neural
networks (CNNs) by Mathieu et al. (2013), who build upon related work by Ben-Yacoub et al.
(1999) for small-scale fully-connected models. Additional improvements to the approach have been
developed, for example, by Pratt et al. (2017); Vasilache et al. (2014); Abtahi et al. (2017); Rippel
et al. (2015). However, our development of similar techniques for the purpose of gradient clipping
appears to be new.

For convenience, we compare in Table 1.1 the asymptotic time runtime and storage complexities of
the ghost-clipping and direct methods by Bu et al. (2022); Lee and Kifer (2021a) and our proposed
methods. Note that we only consider the ghost-clipping method of Bu et al. (2022) and not the mixed
ghost-clipping method in (Bu et al., 2022, Algorithm 1) as the latter has complexity equal to the
minimum of the former and the direct method of Lee and Kifer (2021a).

Notation. For a matrices A and B we let ‖A‖ denote the Frobenius norm of A and 〈A,B〉 denote
the (Frobenius) inner product. Let (W, 〈·, ·〉) and (Y, 〈·, ·〉) denote two Hilbert spaces with common
induced norm ‖ · ‖. We denote linear operators between them by italicized letters A : W → Y and
denote A∗ : Y → W to be the adjoint of A. That is, A∗ is the unique linear operator that satisfies

〈y,Aw〉 = 〈A∗y, w〉 ∀w ∈ W, ∀y ∈ Y . (1)

Let ψ : W → Y be an arbitrary function. The Fréchet derivative of ψ at w0 ∈ W is given by the
unique bounded linear operator Dψ(w0) : W → Y satisfying

lim
δ→0

‖ψ(w0 + δ)− ψ(w0)−Dψ(w0)δ‖
‖δ‖

= 0 .

1See Pichapati et al. (2019); Chen et al. (2020) for examples or Ponomareva et al. (2023) for a recent
overview.
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Table 1.1: Asymptotic time/space complexities of gradient clipping methods for a single example.
The scalars nin, nout, dk, din, and dout denote the number of input channels, output channels, kernel
size, input dimension, and output dimension, respectively. Direct methods materialize the unaltered
gradients, ghost-clipping methods apply the trick from Goodfellow (2015), and FFT methods utilize
a novel relationship between convolution layers and FFTs proposed in this work.

Method Type Runtime Storage
Lee and Kifer (2021b) direct ninnoutdoutdk noutdout + nindoutdk

Bu et al. (2022) ghost-clipping d2
out(nindk + nout) d2

out + noutdout + nindindk
Algorithm 3.1 [ours] direct ninnoutdoutdk O(1)

Algorithm 3.2 [ours] ghost-clipping d2
out(nindk + nout) O(1)

Algorithm 3.3 [ours] FFT ninnoutdin log(din) din

We say ψ is differentiable if its Fréchet derivative exists for all w0 ∈ W . Throughout this paper we
will use two special properties of the Fréchet derivative: the chain rule and the existence of gradients.
Let (Z, 〈·, ·〉) be another Hilbert space and φ : Y → Z be given. The chain rule provides us with a
simple way to calculate the derivative of the function φ ◦ ψ : W → Z , namely,

D(φ ◦ ψ)(w0) = Dφ(ψ(w0))Dψ(w0) .

The Fréchet derivative of ψ at w0 with respect to a subset of variables u is denoted by Duφ(w0).
Finally, ∇ψ(w0) ∈ W denotes the (unique) gradient of a function ψ at w0, which satisfies

Dψ(w0)δ = 〈∇ψ(w0), δ〉W ∀δ ∈ W . (2)

The existence of the gradient is guaranteed by the well-known Riesz-Fréchet Representation Theorem
(Rudin et al., 1976). The gradient of ψ at w0 with respect to a set of variables u is denoted by
∇uψ(w0).

Organization. Section 2 presents some necessary background material on representing gradient
norms in convolution models. Section 3 presents the proposed clipping methods and discusses
their properties and algorithm complexities under different regimes. Finally, Section 4 gives several
numerical experiments and benchmarks.

2 BACKGROUND

To simplify our presentation, we focus on a single convolution layer and a single example x ∈
Rnin×din from the batch of inputs. For the case of multiple convolution layers and multiple examples,
it is straightforward to see that our complexity results scale linearly with the number of layers times
the number of examples. For conciseness, we present our results for one-dimensional inputs, but
discuss the generalization to high dimensions in Section 3.

Given a stride length s ≥ 1, let dk ∈ N, din ∈ N, dout = 1 + (din − dk)/s be the size2 of the kernel,
inputs, and outputs, respectively, let nin ∈ N and nout ∈ N be the number of input, output channels,
respectively, and let w ∈ Rnin×nout×dk be the kernel weights. Moreover, for fixed output channel j,
let (i) wi,j ∈ Rdk be the kernel vector corresponding to the i-th input channel, (ii) bj ∈ Rnout×dout

be the bias offset, (iii) α be a general activation function, and (iv) U ix ∈ Rdout×dk be a matrix whose
`-th row consists of the entries in the i-th input channel of x that are being multiplied with wi,j .

The output for the j-th output channel of a convolution layer is given by

[φx(w, b)]j = φjx(w, b) := α

bj +
∑
i∈[nin]

U ixw
i,j

 . (3)

2To avoid clutter, we assume these are all integers. In the implementation of our approach, we handle the
general case.
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Numerically efficient schemes for computing ‖∇bφjx(w, b)‖2 (the bias weights’ gradient norm), have
been previously developed by Kong and Munoz Medina (2023). Consequently, our focus is on
analyzing the kernel weights’ gradient norm ‖∇wφjx(w, b)‖2. Following similar analyses as Kong
and Munoz Medina (2023), we first write

φjx = `x ◦ ψjx ◦ Zx where ψjx(z) := α(z + bj), Zjx(w) :=
∑
i∈[nin]

U ixw
i,j . (4)

Then, if we denote

A = Ax(w) := DZjx(w), gj = gjx(w) := ∇(`x ◦ ψjx)(Zjx(w)) , (5)

it follows from the chain rule that

‖∇wφjx(w, b)‖2 = Ωx(gj) :=
∥∥A∗gj∥∥2

. (6)

To avoid the notational clutter, we denote the adjoint operator of DZjx(w) by DZj∗x (w). Using the
fact that∇wφx(w, b) = [∇wφ1

x(w, b), . . . ,∇wφnout
x (w, b)], we have that

‖∇wφx(w, b)‖2 =

nout∑
j=1

‖∇wφjx(w, b)‖2 =

nout∑
j=1

∥∥A∗gj∥∥2
,

and, hence, it suffices to restrict our presentation to a fixed output channel j where applicable. Kong
and Munoz Medina (2023) established efficient representations of Ωx(g) for the case of embedding
and fully-connected layers. Similarly, our task will be to find an efficient representation of Ωx(g) for
convolution layers.

3 ALGORITHMS AND DISCUSSION

This section comprises three subsections detailing the main sub-algorithms and technical aspects
of our work. The first subsection introduces the in-place algorithms and their characteristics. The
second discusses the Fourier-based algorithm and its properties. The final subsection compares
these methods across various regimes, considering factors like input-output channels and dimensions.
This analysis carefully characterizes the optimality regimes for each sub-algorithm, yielding the
meta-algorithm that selects the most suitable method for a given layer.

Before proceeding, we describe some common notation and a basic result about the function Zx(·) in
(5). Given a 4D array M ∈ Rnin×nout×dk×dout , we denote M i,j

m,` to be the value in the corresponding
to the i-th input channel, j-th output channel, m-th input dimension, and `-th output dimension of
M . We give similar definitions for the arrays/scalars M i,j , M i

m, M j
` , M i, and M j , keeping the

convention that superscripts (resp. subscripts) contain indices for the input/output channels (resp.
dimensions). The straightforward representation of the operators we have discussed so far requires
defining and handling fourth-order tensors, which can vastly complicate the analysis. However, we
are able to decompose various operations across different channels and dimensions, which allows us
to only use two-dimensional matrices to represent all the operators we use.

The result below provides some convenient representations of the Fréchet derivative of Zjx(w) and
Zj∗x (w). Its proof is postponed to Appendix A.
Lemma 3.1. LetU ix ∈ Rdout×dk be as in (4) for some input channel i ∈ [nin], let ∆ ∈ Rnin×nout×dk ,
and τ j ∈ Rdout be arbitrary. If ∆i,j ∈ Rdk is the displacement vector corresponding to input-output
channel pair (i, j) ∈ [nin]× [nout], then

(a) DZjx(w)[∆] =
∑
i∈[nin] U

i
x∆i,j ∈ Rdout ;

(b) {DZj∗x (w)[τ j ]}i,j = [U ix]∗τ j ∈ Rdk ;

(c) DZjx(w) ◦DZj∗x (w)[τ j ] =
∑
i∈[nin] U

i
x[U ix]j∗τ j ∈ Rdout .

Since the elements of U ix are the values of x, the identity in (6) and Lemma 3.1(b) imply that the
squared norm of ∇wφjx(w, b) can be expressed solely in terms of x and the downstream gradient gj
in (5). In the next two subsections, we give two different expressions for ‖∇wφjx(w, b)‖ and present
their corresponding algorithms.
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3.1 MEMORY-EFFICIENT NORM COMPUTATION

This subsection presents two in-place algorithms for computing the desired squared gradient norm.

We first present a “direct” expression for ∇wφjx(w, b) in terms of x and gj using (6). The proof is
postponed to Appendix A.
Lemma 3.2. Let gj ∈ Rnout×dout be as in (6) and s ≥ 1 be given. Then, it holds that the value of
the gradient ∇wφjx(w, b) at the i-th input channel, j-th output channel, and m-th output dimension
is given by

[∇wφjx(w, b)]i,jm =
∑

`∈[dout]

(xi[`−1]s+m)(gj` ). (7)

The above result shows that when we are given x and g, we can compute ‖∇wφx(w, b)‖2 by
performing a sequence of in-place operations. For ease of reference, we present one variant of these
operations in Algorithm 3.1, which can be viewed as an in-place modification of the FastGradClip
algorithm in Lee and Kifer (2021b). It is immediate that Algorithm 3.1 requires

Tdirect := ninnoutdkdout (8)
floating-point operations (FLOPS), but only O(1) additional storage.

Algorithm 3.1 Direct squared norm computation with in-place operations

1: Input: stride length s ≥ 1, layer input x ∈ Rnin×din , and gradient g ∈ Rnout×dout ;
2: Output: value of ‖∇wφx(w, b)‖2;
3: Define Jm := {([`− 1]s+m, `) : ` ∈ [dout]} for m ∈ [dk]

4: return
∑
i∈[nin]

∑
j∈[nout]

∑
m∈[dk]

(∑
(p,q)∈Jm

xipg
j
q

)2

We now present a special expression for ‖∇wφx(w, b)‖2 that is reminiscent of a similar expression
in the “Ghost Clipping” algorithm from Bu et al. (2022). The proof is postponed to Appendix A.
Lemma 3.3. Let gj ∈ Rdout be as in (6), let s ≥ 1 be given, and define

X`,`′ :=
∑
i∈[nin]

∑
m∈[dk]

(xi[`−1]s+m])(x
i
[`′−1]s+m]), G`,`′ :=

∑
j∈[nout]

gj`g
j
`′

where `, `′ ∈ [dout] are indices over the output dimension. Then, it holds that

‖∇wφx(w, b)‖2 =
∑

j∈[nout]

〈
AxA∗x, [gj ][gj ]∗

〉
= 2

∑
1≤`<`′≤dout

X`,`′G`,`′ +
∑

`∈[dout]

X`,`G`,`, (9)

where Ax is the matrix in Rdout×dk corresponding the operator of the same name in (5).

Similar to Lemma 3.2, the above result also yields a sequence of in-place operations for computing
‖∇wφx(w, b)‖2. As before, for ease of reference, we present one variant of these operations in
Algorithm 3.2. It is straightforward to see that, for a fixed outer index pair (`, `′) in the expression
for P , the computation of the inner sum involving x (resp. g) requires nindk FLOPS (resp. nout).
Consequently, computing P and Q in Algorithm 3.2 requires

Tghost :=

[
dout +

dout(dout − 1)

2

]
(nindk + nout) = Θ(d2

out[nindk + nout]) (10)

total FLOPS but also only O(1) additional storage.

Algorithm 3.2 Ghost Clipping-based squared norm computation with in-place operations

1: Input: layer input x ∈ Rnin×din and gradient g ∈ Rnout×dout ;
2: Output: value of ‖∇wφx(w, b)‖2;
3: Define J`,`′ := {([`− 1]s+m, [`′ − 1]s+m) : m ∈ [dk]} for `, `′ ∈ [dout]

4: Compute P ←
∑

1≤`<`′≤dout

(∑
i∈[nin]

∑
(p,q)∈J`,`′

xipx
i
q

)(∑
j∈[nout]

gj`g
j
`′

)
5: Compute Q←

∑
`∈[dout]

(∑
i∈[nin]

∑
(p,q)∈J`,`

xipx
i
q

)(∑
j∈[nout]

gj`g
j
`

)
6: return 2P +Q

5
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3.2 FOURIER-BASED NORM COMPUTATION

This subsection presents an algorithm based on the discrete Fourier transform (DFT) for computing
the desired squared gradient norm.

We first define rev : Rn 7→ Rn (resp. diag : Rn 7→ Rn×n) to be the linear operator that reverses the
order of its input (resp. diagonalizes its input). Explicitly, these operators are given by

rev([x1, x2, . . . , xn]) = [xn, . . . , x2, x1], [diag(x)]i,j =

{
xi, if i = j

0, otherwise
, ∀i, j ∈ [n] , (11)

for every x ∈ Rn. Now, let us recall the notion of a circulant matrix and its relationship to the
DFT. A circulant matrix C ∈ Rn×n (resp. an anti-circulant matrix ζ ∈ Rn×n) is a Toeplitz (resp.
anti-Toeplitz) matrix of the form

C =


c0 cn−1 · · · c1
c1 c0 · · · c2
...

...
. . .

...

cn−1 cn−2 · · · c0

 , ζ =


c1 · · · cn−1 c0
c2 · · · c0 c1
... . .

. ...
...

c0 · · · cn−2 cn−1

 , (12)

for some c ∈ Rn. Notice that consecutive rows of a circulant (resp. anti-circulant) matrix contain the
same entries of c but are cyclically shifted from left to right (resp. right to left).

The next result relates circulant matrices in Rn×n with the n-th order DFT, and its proof can be found,
for example, in (Gray et al., 2006).

Lemma 3.4. IfC ∈ Rn×n is a circulant matrix and c is its first column, thenC = F−1
n diag(Fnc)Fn,

where Fn is the n-th order DFT.

Using the above result, it is straightforward to see that if ζ ∈ Rn×n is an anti-circulant matrix whose
first row is rev(c), then

ζτ = rev(F−1
n diag[Fnrev(c)]Fnτ), ∀τ ∈ Rn . (13)

Returning to our main goal, the primary insight of this section is that we can express ∇wφjx(w, b)
(and, consequently, ∇wφx(w, b)) as an application of an anti-circulant matrix with simple linear
transforms. The details of this perspective, and its computational implications, are given in the
following result, whose proof is postponed to Appendix A.

Proposition 3.5. Let ζix ∈ Rdin×din denote the anti-circulant matrix whose first row is xi. Moreover,
define the block matrices Q ∈ Rdin×dk and R ∈ Rdout×din by

Q :=

[
Idk

0(din−dk)×dk

]
, [R]n,m =

{
1, if m = s(n− 1) + 1

0, otherwise ,
∀(n,m) ∈ [din]× [dout] ,

(14)
where In (resp. 0n×m) denotes the identity matrix in Rn×n (resp. zero matrix in Rn×m). Then, it
holds that

(a) for every i ∈ [nin], we have U ix = RζixQ;

(b) if gj ∈ Rdout is as in (5), then[
∇wφjx(w, b)

]i
= Q∗ ◦ rev ◦ F−1

din

(
[Fdin ◦ rev(xi)] � [FdinR∗gj ]

)
∀i ∈ [nin] , (15)

where � denotes the Hadamard product.

Before proceeding, let us give a few remarks. First, for y ∈ Rdin and z ∈ Rdout , we have that Q∗y
returns the first dk rows of y and R∗z returns a padded version of z in which [R∗z]s(i−1)+1 = zi for
i ∈ [dout] and [R∗z]j is zero at all other indices j. Second, in view of the first remark, we have that
for any y ∈ Rdin , both of the quantities (Q∗ ◦ rev)(y) and R∗gj can be computed using dk and dout

FLOPS, respectively.
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We now present a general algorithm in Algorithm 3.3 that leverages (15) to calculate ‖∇wφx(w, b)‖2.
Notice, in particular, that it can be specialized to different choices of the DFT oracle Fdin .

Algorithm 3.3 DFT-based squared norm computation

1: Input: layer input x ∈ Rnin×din , gradient g ∈ Rnout×dout , and oracle Fdin that performs the
(din)-th order DFT;

2: Output: value of ‖∇wφx(w, b)‖2;
3: Define rev(·) and (Q,R) to be as in (11) and (14), respectively
4: for i, j ∈ [nin]× [nout] do
5: vi,j ← Q∗ ◦ rev ◦ F−1

din
([Fdin ◦ rev(xi)] � [FdinR∗gj ])

6: ri,j ←
∑dk
`=1(vi,j` )2

7: end for
8: return

∑
(i,j)∈[nin]×[nout]

ri,j

The next result presents the runtime and storage complexity of a specialization of Algorithm 3.3,
where we use a fast discrete Fourier transform (DFT) oracle. Specifically, it is well-known that DFT
can be implemented in O(d log d) time complexity (Duhamel and Vetterli, 1990). The proof can be
found in Appendix A.
Theorem 3.6. Let F̄din be an FFT oracle which, for any v ∈ Rdin , computes F̄dinv and F̄−1

din
u in

TF = Θ(din log din) FLOPS. Then, there is an implementation of Algorithm 3.3 with Fdin = F̄din
that consumes at most

Tfft := ninnout (dout + din + 3dk + 3TF ) = Θ(ninnoutdin log din) (16)

total FLOPS and Θ(din) additional storage.

Let us now compare the runtime complexities Tdirect, Tghost, and Tfft in (8), (10), and (16), respec-
tively. For simplicity, let us assume that the stride length is s = 1 and let d ≥ 1 and n ≥ 1 be
arbitrary. Denoting A � B to mean A is asymptotically more efficient than B in terms of runtime,
we observe the relationships for different choices of nin, nout, dk, din, and dout in Table 3.1.

Table 3.1: Relationships of asymptotic runtimes across key parameter regimes.

din, dout dk nin, nout Relationships
Θ(d) Θ(d) O(1) Tfft = Θ(d log d) � Tdirect = Θ(d2) � Tghost = Θ(d3)

Θ(d) Θ(1) O(1) Tdirect = Θ(d) � Tfft = Θ(d log d) � Tghost = Θ(d2)

Θ(d) Θ(d) O(n) Tghost = Θ(nd) � Tdirect = Θ(n2d) � Tfft = Θ(n2d log d)

In particular, we mention that the large kernel regime in the first row of Table 3.1 was recently studied
in Ding et al. (2022) and was show to have significant utility improvements compared to the small
kernel regime of the second row.

Optimal subroutine selection. Table 3.1 shows that no clipping method is universally superior,
and that the optimal choice depends on the layer’s specific input-output channels (nin, nout) and
dimensions (dk, din, dout). In view of this fact, we propose a simple meta-algorithm in Algorithm 3.4
that optimally (in terms of runtime) dispatches the best of our proposed subroutines (Algorithms 3.1–
3.3) for a given set of parameters. Clearly, the runtime of Algorithm 3.4 is min(Tdirect, Tghost, Tfft).

Algorithm 3.4 Meta-algorithm for gradient norm computation

1: Input: stride length s ≥ 1, layer input x ∈ Rnin×din , gradient g ∈ Rnout×dout , and oracle Fdin
that performs the (din)-th order DFT in TF FLOPS;

2: Output: value of ‖∇wφx(w, b)‖2;
3: Define Tdirect, Tghost, and Tfft in (8), (10), and (16), respectively
4: Define Adirect, Aghost, and Afft to be Algorithms 3.1–3.3, respectively
5: Compute π = argmin{Tp : p ∈ {direct, ghost,fft}}
6: Run algorithm Aπ with the appropriate inputs and return its output

7
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3.3 HIGHER DIMENSIONS

While our results are formally presented for one-dimensional inputs with multiple channels, we con-
clude by discussing their generalization to higher-dimensional settings. When x is an d-dimensional
input, it is straightforward to develop analogous version for Algorithms 3.1–3.2. However, the
analogous version of Algorithm 3.3 requires more care. In particular, we would need to develop
higher-order versions of (12), replace the one-dimensional Fourier transform in Algorithm 3.3 with its
d-dimensional variant, and replace the operators (Q,R) in Algorithm 3.3 with higher-order variants.

In the special case of the two-dimensional DFT, used in the vast majority of modern deep learning
architectures, e.g. when the inputs are images, it is known (Azimi-Sadjadi and King, 1987) that a ver-
sion of Lemma 3.4 holds where C is replaced by a block-circulant matrix, i.e., where each ci in (12) is
replaced by a matrix. Consequently, the version of Algorithm 3.3 for a two-dimensional (per-example)
input array x directly follows from this result by replacing (i) Fdin by its analogous two-dimensional
DFT, (ii) rev(·) by the operator that reverses a two-dimensional input array lexicographically, and
(iii) Q and R by their block two-dimensional variants. We posit that the d-dimensional version of
Algorithm 3.3 is one where changes (i)–(iii) are applied in the d-dimensional setting, i.e., with blocks
of d-dimensional arrays instead of two-dimensional matrices. For a more precise treatment of the
two-dimensional case, see Appendix D.

4 NUMERICAL EXPERIMENTS

As Algorithms 3.1 and 3.2 are primarily memory-efficient variants of the corresponding methods
in Bu et al. (2022) and Lee and Kifer (2021b), we focus on benchmarking our FFT-based method
(Algorithm 3.3), which uses a completely new technique. More specifically, we consider the large-
kernel parameter regime in the first row of Table 3.1, where our FFT-based method has a distinct
advantage in terms of the hyperparameter d.

All experiments were run in Python on an Ubuntu 22.04 instance with an Intel Xeon 2.20 GHz CPU,
an NVIDIA Telsa T4 GPU with 15GB of VRAM, and 13.6GB of RAM.

It is also worth mentioning that we did not benchmark our FFT method with the large kernel models
in Ding et al. (2022) because those models employ 4D kernels, while our paper primarily considers
1D kernels. While we present the generalization of Algorithm 3.3 to 2D kernels in Appendix D, we
believe that the nD kernel requires significantly more development in both theory (e.g., algorithmic
complexity) and implementation (e.g., custom FFT and sparse matrix GPU kernels). Consequently,
we believe such experiments/benchmarks to be out-of-scope.

4.1 GRADIENT NORM COMPUTATION ON CPU AND GPU.

Tables 4.1–4.2 respectively present CPU and GPU runtimes and memory measurements of compute
the gradient norm of a single one-dimensional convolution layer with din = d, dk = d/2, n = 3, and
a single example as input. Due to the improved parallelism of GPUs, larger values of d appear in
Table 4.2 compared to the values in Table 4.1.

Table 4.1: Gradient norm runtime (ms) and peak RAM (MB) measurements on CPU for large kernel
sizes. Values are rounded to the nearest whole number and are the median over five trials.

d 0.1k 0.2k 0.4k 0.8k 1.6k 3.2k 6.4k 12.8k 25.6k

R
un

tim
e Algorithm 3.3 1 1 1 1 2 2 4 7 10

Lee and Kifer (2021b) 0 0 1 4 14 69 279 1092 24852
Bu et al. (2022) 1 1 2 7 28 185 1120 7788 78773

R
A

M

Algorithm 3.3 0 0 0 0 0 0 1 1 2
Lee and Kifer (2021b) 0 0 1 5 21 82 328 1311 5243

Bu et al. (2022) 0 0 1 5 21 82 328 1311 5243

8
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Table 4.2: Gradient norm runtime (ms) and change in VRAM (MB) measurements on GPU for large
kernel sizes. Values are rounded to the nearest whole number and are the median over five trials. A
value of “-” indicates that the GPU ran out of VRAM before completing a trial.

d 4k 8k 16k 32k 64k 128k 256k 512k 1024k

R
un

tim
e Algorithm 3.3 2 2 2 3 3 3 3 7 13

Lee and Kifer (2021b) 2 3 9 34 456 - - - -
Bu et al. (2022) 20 102 963 8625 - - - - -

V
R

A
M Algorithm 3.3 0 2 4 10 19 36 63 124 245

Lee and Kifer (2021b) 48 193 770 3072 12294 - - - -
Bu et al. (2022) 99 388 1544 6149 - - - - -

We now make a few remarks about the trends in Tables 4.1–4.2. First, consistent with the theory of
Section 3, Algorithm 3.3 scales the most efficiently in terms of CPU/GPU runtime/memory usage,
followed by the algorithm in Lee and Kifer (2021b), and then the one in Bu et al. (2022). Second,
the RAM usage of the competing methods were nearly identical across trials while the VRAM used
by the method in Bu et al. (2022) scaled worse than the one in Lee and Kifer (2021b). Finally, we
note that on GPUs, our FFT algorithm (Algorithm 3.3) was able to evaluate gradient norms whose
layer input dimension din was at least 16x larger than the best competing method (without going
out-of-memory in VRAM).

4.2 END-TO-END TRAINING ON GPU

Table 4.3 presents runtimes for end-to-end training of a one-layer one-dimension convolution neural
network with mean squared error in Opacus. More specifically, for each measurement, we ran one
trial of five iterations of DP-SGD on GPU with batch size 128, din = d, dk = d/2, n = 1, s = 1,
and either Opacus’ implementation of DP-SGD (Naive DP-SGD), which materializes gradients
directly, or the ghost norm variant of DP-SGD where the norm computation uses our FFT method
(Algorithm 3.3 + DP-SGD). For more details on the Opacus implementation, see Appendix B.

This comparison highlights that gradient clipping imposes a non-trivial bottleneck in practical training
frameworks like Opacus, an overhead that can be mistakenly overlooked compared to other fixed
costs. The performance gains from our custom kernel (Algorithm 3.3) highlight the importance of
optimizing this specific step.

Table 4.3: End-to-end runtime (s) measurements on GPU. Values are rounded to the nearest tenth for
a single trial. A value of “-” indicates that the GPU ran out of VRAM before completing the trial.

d 0.5k 1k 2k 4k 8k 16k 32k 64k

Algorithm 3.3 + DP-SGD 0.6 0.5 2.1 11.2 41.3 146.4 546.0 2310.9
Naive DP-SGD 0.3 1.0 4.9 16.8 72.8 - - -

From the results in Table 4.3, we can see that Naive DP-SGD performs well for smaller values of d
but scales significantly worse in d. Moreover, we obtained results with Algorithm 3.3 + DP-SGD on
problem instances at least 8x larger than Naive DP-SGD (without going out-of-memory in VRAM).
Note that Naive DP-SGD employs a single forward/backward pass, whereas Algorithm 3.3 + DP-SGD
employs one forward pass and two backward passes.

9
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A TECHNICAL PROOFS

This appendix gives the proofs of the manuscript’s main results.

Proof of Lemma 3.1. For simplicity, denote U i = U ix and Dx := DZx(w).

(a) This is immediate from the linearity of Dx.

(b) From part (a) and the definition of the adjoint, we have

〈Dx∆, τ〉 =
∑

i∈[nin]

〈
τ, U i∆i,j

〉
=

∑
i∈[nin]

〈
[U i]∗τ,∆i,j

〉
= 〈D∗xτ,∆〉 .

(c) Using parts (a) and (b), we have DxD∗xτ =
∑
i∈[nin] U

i [D∗xτ ]
i,j

=
∑
i∈[nin] U

i
[
U i
]∗
τ .

Proof of Lemma 3.2. In view of Lemma 3.1(b) and (6) it suffices to show that the m-th column of
U ix is the vector Colim := [xim, x

i
s+m, . . . , x

i
(dout−1)s+m] ∈ Rdout . Indeed, recall that the `-th row of

U ix is the `-th window of the input x and is given by Rowi
k := [xi(`−1)s+1, . . . , x

i
(`−1)s+dk

] ∈ Rdk .

Fixing a column index m, it is clear that the values in the m-th index of Colik for k ∈ [dk] form the
elements of Colim.

Proof of Lemma 3.3. The first identity in (9) is immediate from (6) and the definition of the adjoint
of a linear operator. For the second identity, note that (4), (5), and Lemma 3.1(c) imply that
Ax =

∑
i∈[nin] U

i
x[U ix]∗. Hence, in view of the definition of X`,`′ and G`,`′ , it suffices to show that

the entry in the `-th row and `′-th column of U ix[U ix]∗ is given by[
U ix{U ix}∗

]
`,`′

=
∑

m∈[dk]

(xi[`−1]s+m)(xi[`′−1]s+m).

Indeed, recall that the k-th row of U ix, say Rowi
k, contains the `-th window of the input array x. For a

given stride s and kernel size dk, clearly we have Rowi
k = [xi(`−1)s+1, . . . , x

i
(`−1)s+dk

].

Proof of Proposition 3.5. (a) Observe that for any matrix M ∈ Rdin×din , we have that MQ returns
the first dk columns of M and RM returns rows 1, s+ 1, . . . , dout − 1 + s of M . The conclusion
now follows from the previous observation and the fact that the rows of U ix contain the windows of x
of size dk and stride s.

(b) Using part (a) and (13) with ζ = ζix, we have that, for any τ ∈ Rdk ,

[U ix]∗τ = Q∗[ζix]∗R∗τ = Q∗ ◦ rev
(
F−1
din

diag
[
Fdinrev(xi)

]
FdinR∗τ

)
= Q∗ ◦ rev ◦ F−1

din

([
Fdinrev(xi)

]
� [FdinR∗τ ]

)
Consequently, using the above identity with τ = gj and Lemma 3.1(b) we have that

[∇wφjx(w, b)]i = [U ix]∗gj = Q∗ ◦ rev ◦ F−1
din

([
Fdinrev(xi)

]
�
[
FdinR∗gj

])
.

Proof of Theorem 3.6. It suffices to describe the costs of computing vi,j and ri,j for i ∈ [nin] and
j ∈ [nout].

For fixed (i, j), computing vi,j can be done by: (i) computing a = R∗gj in a dout runtime and storage
cost (see the remarks following Proposition 3.5), (ii) computing â = Fdina and ĉ = Fdin ◦ rev(xi)
in a 2TF runtime cost, (iii) computing ê = ĉ� â in a din runtime and storage cost, (iv) computing
e = F−1

din
ê in a TF runtime cost, and (v) computing Q∗ ◦ rev(e) in a dk runtime and storage cost (see

the remarks following Proposition 3.5). Summing the previous terms results in a

dout + din + dk + 3TF
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runtime cost and fixed Θ(din) storage cost. For fixed (i, j), computing ri,j , given vi,j , can be done
by an accumulating sum in a runtime and storage cost of 2dk and O(1), respectively.

Summing all the above costs over i ∈ [nin] and j ∈ [nout] (new temporary variables for the
computations of vi,j and ri,j) yields a storage cost of Θ(din) and a runtime cost of

ninnout

dout + din + dk + 3TF︸ ︷︷ ︸
vi,j

+ 2dk︸︷︷︸
ri,j

 = Tfft = Θ(ninnout[din log din]),

where the last identity follows from the fact that dk ≤ din.

B INTEGRATION OF ALGORITHM 3.3 IN OPACUS

This appendix gives a brief description of the integration of Algorithm 3.3 in the DP-SGD API of
Opacus.

As Algorithm 3.3 is a algorithm for efficiently computing gradient norms, we create an Opacus-
compatible norm sampler function that implements Algorithm 3.3 and register it with the global
GradSampleModuleFastGradientCLipping.NORM_SAMPLERS attribute using Opacus’
@register_norm_sampler(...) Python function decorator for torch.nn.Conv1d lay-
ers.

We then develop a benchmarking function using the tests inside the following Opacus module:

opacus/tests/grad_sample_module_fast_gradient_clipping_test.py

More specifically, this function explicitly performs the single forward and two backward passes
employed by ghost norm variants of DP-SGD.

C ADDITIONAL NUMERICAL EXPERIMENTS AND GRAPHS

This appendix presents additional numerical experiments involve our proposed in-place algorithms,
and the settings in this section are motivated by the three rows in Table 3.1.

Table C.1 presents runtime and peak RAM usage under the same setting as in Section 4 and corre-
sponds to the first row of Table 3.1. Table C.2 considers the parameter setting din = d, dk = d− 13,
n = 3, and s = 1 and corresponds to the second row of Table 3.1. Finally, Table C.3 fixes
din = dk = 10 and s = 1, varies the number of channels n, and corresponds to the third row of
Table 3.1. The choices of n and d in all tables are chosen to highlight the general trends of each
algorithm compared to their competitors rather than push the limits of their computing environment.

Before proceeding, we mention that we were unable to implement runtime efficient variants of
Algorithms 3.1–3.2 on GPU nor the same two algorithms within the parameter settings of rows 1
and 3 in Table 3.1, respectively. Consequently, we remove the above mentioned trials and focus
on settings where our in-place algorithms perform well. On the other hand, we do note that our
in-place implementations are still significantly more memory efficient than their counterparts in Bu
et al. (2022); Lee and Kifer (2021b) on all the problem instances we tested.

We now make a few remarks about Tables C.1–C.3. First, we describe some results that are consistent
with the theory in Section 3 (more specifically, Table 3.1): (a) the in-place algorithms (Algorithms 3.1–
3.2) were significantly more efficient in peak RAM than their counterparts in Bu et al. (2022); Lee and
Kifer (2021b), (b) Algorithm 3.2 is the most runtime efficient in Table C.2 followed by Algorithm 3.1,
and (c) Algorithm 3.3 scales poorly when n is increased in Table C.3. Second, we were unable to
completely remove in the materialization of some small intermediate matrices in Algorithm 3.1,
which causes some RAM to be consumed in the trials in Tables C.1–C.2.

D EXTENSION OF FFT ANALYSIS TO 2D CONVOLUTIONS

We now give the details of the generalization of the Fourier-based norm computation (Algorithm 3.3)
to two-dimensional inputs, which is particularly relevant for vision models. The conceptual extension
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Table C.1: Extra gradient norm runtime (ms) and peak RAM (KB) measurements on CPU for large
kernel sizes. Values are rounded to the nearest whole number and are the median over five trials.

d 0.4k 0.8k 1.6k 3.2k 6.4k

R
un

tim
e Algorithm 3.3 1 1 2 2 4

Algorithm 3.1 5 5 7 13 89
Lee and Kifer (2021b) 1 4 14 78 292

Bu et al. (2022) 2 6 29 194 1124

R
A

M

Algorithm 3.3 34 68 135 270 539
Algorithm 3.1 164 646 2570 10256 40993

Lee and Kifer (2021b) 1288 5134 20507 81974 327792
Bu et al. (2022) 1288 5134 20507 81973 327789

Table C.2: Extra gradient norm runtime (ms) and peak RAM (KB) measurements on CPU for small
kernel sizes. Values are rounded to the nearest whole number and are the median over five trials.

d 64k 128k 256k 512k 1024k

R
un

tim
e

Algorithm 3.3 47 60 145 328 802
Algorithm 3.1 30 24 44 209 279
Algorithm 3.2 44 54 63 115 180

Lee and Kifer (2021b) 20 41 89 178 385
Bu et al. (2022) 24 35 67 162 319

R
A

M

Algorithm 3.3 5377 10753 21512 43020 86038
Algorithm 3.1 3842 7682 15363 30729 61453
Algorithm 3.2 1 4 3 3 8

Lee and Kifer (2021b) 28668 57340 114684 229379 458758
Bu et al. (2022) 28668 57340 114684 229379 458758

is straightforward, relying on the generalization of the Convolution Theorem and the properties of
circulant matrices to higher dimensions.

2D Notation. We adapt the notation to accommodate two spatial dimensions. Let the input be
x ∈ Rnin×Hin×Win , where Hin and Win are the input height and width, respectively. The kernel
weights are w ∈ Rnin×nout×Hk×Wk , where Hk and Wk are the kernel height and width. We denote
the stride lengths as (sH , sW ), resulting in output dimensions Hout and Wout. The downstream
gradient is g ∈ Rnout×Hout×Wout .

Generalized Operators. We must define the 2D counterparts of the operators introduced in Section 3.2.

• F2D denotes the two-dimensional Discrete Fourier Transform.

• rev2D denotes the 2D reversal operator, which flips a 2D array across both spatial dimensions
(horizontal and vertical), generalizing the rev operator in (11).

• Q2D and R2D are the block two-dimensional variants of the operators defined in (14).
Specifically,R∗2D maps the downstream gradient gj back to the input dimensions, accounting
for the strides (sH , sW ). This corresponds to a dilation operation, inserting zeros between
the elements of gj . Q∗2D acts as a cropping operator, extracting the relevant Hk ×Wk block
corresponding to the kernel dimensions.
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Table C.3: Extra gradient norm runtime (ms) and peak RAM (KB) measurements on CPU for different
channel counts. Values are rounded to the nearest whole number and are the median over five trials.

n 40 80 160 320 640

R
un

tim
e Algorithm 3.3 110 298 1062 4766 19153

Algorithm 3.2 3 3 7 14 34
Lee and Kifer (2021b) 1 1 2 5 16

Bu et al. (2022) 1 1 1 3 5
R

A
M

Algorithm 3.3 6 11 51 52 56
Algorithm 3.2 1 1 1 1 1

Lee and Kifer (2021b) 100 294 1065 4144 16444
Bu et al. (2022) 16 32 63 127 252

2D Gradient Norm Computation. The fundamental insight utilized in Proposition 3.5—that the
convolution operator can be represented via circulant structures—generalizes to 2D. In this setting,
2D convolution is represented by Block Circulant with Circulant Blocks (BCCB) matrices. As noted
in Section 3.3, a version of Lemma 3.4 holds where BCCB matrices are diagonalized by the 2D DFT
(Azimi-Sadjadi and King, 1987). This allows us to derive the 2D equivalent of the identity presented
in (15).
Proposition D.1. (2D Extension of Proposition 3.5). Let xi ∈ RHin×Win be the input for the i-th
input channel, and let gj ∈ RHout×Wout be the downstream gradient for the j-th output channel. Let
Q2D and R2D be the block two-dimensional operators defined above. Then, the gradient with respect
to the kernel weights wi,j can be computed as:[
∇wφjx(w, b)

]i
= Q∗2D ◦ rev2D ◦ F−1

2D

(
[F2D ◦ rev2D(xi)] � [F2DR

∗
2Dg

j ]
)
∀i ∈ [nin] , (17)

where � denotes the Hadamard product.

Proof. We aim to derive the expression for the gradient Gi,j :=
[
∇wφjx(w, b)

]i
utilizing the 2D

Discrete Fourier Transform (F2D).

1. Gradient Expression as Cross-Correlation. First, we observe the generalization of Lemma 3.2
to the 2D case. The value of the gradient with respect to the kernel weights wi,j at spatial location
(m,n) ∈ [Hk]× [Wk] is given by:

Gi,jm,n =

Hout∑
h=1

Wout∑
w=1

(xi[h−1]sH+m,[w−1]sW +n) · (gjh,w) . (18)

This operation represents a 2D cross-correlation between the input xi and the gradient gj , accounting
for the strides (sH , sW ).

2. Incorporating Operators R2D and Q2D. We use the operators R∗2D and Q∗2D to manage the
striding and dimensions explicitly. R∗2D represents the adjoint of the striding operation, which
corresponds to dilation (zero-insertion). Let g̃j = R∗2Dg

j . This maps gj into a sparse array aligned
with the input spatial dimensions Din.

Q∗2D represents the adjoint of the kernel embedding, which corresponds to cropping the result to the
kernel dimensions Hk ×Wk.

The gradient computation in (18) can be conceptualized as the ’valid’ cross-correlation between xi
and the dilated gradient g̃j , followed by the application of the cropping operator:

Gi,j = Q∗2D(xi ? g̃j) ,

where ? denotes 2D cross-correlation.
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3. Relating Cross-Correlation to Convolution. To leverage the efficiency of the FFT via the
Convolution Theorem, we must express the cross-correlation in terms of convolution. We utilize the
identity involving spatial reversal (rev2D):

A ? B = rev2D((rev2D(A)) ∗B) ,

where ∗ denotes 2D convolution. Applying this to our gradient expression:

xi ? g̃j = rev2D((rev2D(xi)) ∗ g̃j) .

4. Applying the 2D Convolution Theorem. Let x̃i = rev2D(xi). We now consider the convolution
C = x̃i ∗ g̃j . Assuming appropriate padding to ensure the DFT computes the required linear convolu-
tion (which is standard practice when implementing FFT-based convolutions), the 2D Convolution
Theorem states:

C = F−1
2D (F2D(x̃i) � F2D(g̃j)) ,

where � is the Hadamard product.

5. Final Expression. Substituting these identities back into the expression for Gi,j :

Gi,j = Q∗2D ◦ rev2D(C)

= Q∗2D ◦ rev2D ◦ F−1
2D (F2D(x̃i) � F2D(g̃j)) .

Substituting the definitions x̃i = rev2D(xi) and g̃j = R∗2Dg
j , we arrive at the desired result:[

∇wφjx(w, b)
]i

= Q∗2D ◦ rev2D ◦ F−1
2D

(
[F2D ◦ rev2D(xi)] � [F2DR

∗
2Dg

j ]
)
.

Proposition D.1 directly yields the 2D generalization of Algorithm 3.3.

Algorithm D.1 2D DFT-based squared norm computation

1: Input: layer input x ∈ Rnin×Hin×Win , gradient g ∈ Rnout×Hout×Wout , and oracle F2D that
performs the 2D DFT;

2: Output: value of ‖∇wφx(w, b)‖2;
3: Define rev2D(·) and the block operators (Q2D, R2D).
4: for i, j ∈ [nin]× [nout] do
5: x̂i ← F2D ◦ rev2D(xi)
6: ĝj ← F2DR

∗
2Dg

j

7: vi,j ← Q∗2D ◦ rev2D ◦ F−1
2D (x̂i � ĝj)

8: ri,j ← ‖vi,j‖2 (Frobenius norm squared)
9: end for

10: return
∑

(i,j)∈[nin]×[nout]
ri,j

Complexity Analysis. We analyze the complexity of Algorithm D.1 by extending Theorem 3.6. Let
Din = HinWin be the total spatial dimension of the input per channel. The complexity of the 2D
FFT on an Hin ×Win input is TF,∈D = Θ(Din logDin).

Theorem D.2. (2D Extension of Theorem 3.6). Let F̄2D be a 2D FFT oracle. There is an implemen-
tation of Algorithm D.1 that consumes at most

Tfft,2D = Θ(ninnoutDin logDin) = Θ(ninnoutHinWin log(HinWin)) (19)

total FLOPS and Θ(Din) additional storage.

The proof follows the same logic as the proof of Theorem 3.6, as the algorithm structure remains
the same and the dominant cost is the execution of the 2D FFTs for each input-output channel pair.
This confirms that the asymptotic advantages observed in the 1D case, particularly in the large kernel
regime (Table 3.1), carry over directly to the 2D setting.
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Proof. We analyze the computational complexity of Algorithm D.1. We assume the use of a 2D Fast
Fourier Transform (FFT) oracle F̄2D. The complexity of computing the 2D FFT on an Hin ×Win

input is TF,2D = Θ(Din logDin).

Runtime Complexity. The algorithm iterates over all nin × nout pairs of input and output channels.
We analyze the cost of the operations within the loop (Lines 4-7).

1. Line 4: x̂i ← F2D ◦ rev2D(xi). The spatial reversal rev2D takes O(Din) FLOPS. The 2D
FFT takes TF,2D FLOPS.

2. Line 5: ĝj ← F2DR
∗
2Dg

j . The dilation operationR∗2D (zero-insertion) takesO(HoutWout)
FLOPS. The 2D FFT takes TF,2D FLOPS.

3. Line 6: vi,j ← Q∗2D ◦ rev2D ◦F−1
2D (x̂i� ĝj). The Hadamard product takesO(Din) FLOPS.

The inverse 2D FFT (F−1
2D ) also takes TF,2D FLOPS. The reversal rev2D takes O(Din)

FLOPS. The cropping operation Q∗2D takes O(HkWk) FLOPS.
4. Line 7: ri,j ← ‖vi,j‖2. Computing the squared norm takes O(HkWk) FLOPS.

The total cost per iteration is the sum of these operations:

Costiter = 3TF,2D +O(Din +HoutWout +HkWk) .

Since TF,2D = Θ(Din logDin), and HoutWout, HkWk ≤ O(Din), the dominant cost is driven by
the FFT operations. Thus, Costiter = Θ(Din logDin).

The total runtime complexity Tfft,2D is the cost per iteration multiplied by the total number of
iterations (ninnout):

Tfft,2D = ninnout ·Θ(Din logDin) = Θ(ninnoutHinWin log(HinWin)) .

Storage Complexity. The algorithm requires storage for the intermediate arrays, such as the Fourier
transformed inputs x̂i and gradients ĝj . These arrays are complex-valued and have sizes proportional
to the input dimensions Din. Therefore, the additional storage complexity required is Θ(Din).
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