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ABSTRACT

Differentially private stochastic gradient descent (DP-SGD) is a well-known
method for training machine learning models with a specified level of privacy.
However, its basic implementation is generally bottlenecked by the computation of
the gradient norm (gradient clipping) for each example in an input batch. While
various techniques have been developed to mitigate this issue, there are only a
handful of methods pertaining to convolution models, e.g., vision models. In this
work, we present three practical methods for performing gradient clipping that
improve upon previous state-of-art methods. Two of these methods use in-place
operations to reduce memory overhead, while the third one leverages a relationship
between Fourier transforms and convolution layers. We then develop a dynamic al-
gorithm that dispatches one of the above three algorithms to optimize performance.
Extensive benchmarks confirm that this algorithm consistently outperforms other
state-of-the-art algorithms and frameworks.

1 INTRODUCTION

Differentially-private stochastic gradient descent (DP-SGD) is a common tool used to train machine
learning models to protect sensitive information contained within individual training records (Abadi
et al., 2016). However, general implementations of DP-SGD are bottlenecked by their gradient
clipping step, whose runtime and memory costs scale linearly with the batch size times the number
of model parameters. Our goal in this work is to develop three improved variants of the gradient
clipping step that are substantially more efficient when applied to models with convolution layers.

DP-SGD details. The DP-SGD algorithm (Chaudhuri et al., 2011; Bassily et al., 2014) relies on
the Gaussian mechanism and composition of differential privacy (Dwork et al., 2006; 2014) across
iterations to privately compute the average of per-example gradients in a batch. At each iteration
it operates by (i) bounding the sensitivity of each record within a batch to control and quantify the
impact of any single record on the final model weights, and (ii) adding Gaussian noise proportional to
the inverse of the batch size times the bound in (i). In particular, sensitivity is controlled by bounding
per-example gradient norms so that the privatized gradients lie in a compact set. This approach
is crucial for reducing noise growth, which scales as O(v/d/[eb]) (Bassily et al., 2014), where d
is the number of model parameters, e the privacy budget, and b the number of records in a batch.
Alternatively, one can clip the overall average gradient at each step, but this increases noise by a

factor of the batch size to O(V/d/e).

Naive per-example clipping requires computing the norm of all per-example gradients. Specifically,
this methods requires storing at least a matrix of size ©(bd) that contains per-example gradients.
Given the importance of model utility within this privacy-preserving context, there have been several
developments on improving this step (with a focus on models with fully-connected or embedding
layers). For example, techniques like ghost-clipping (Goodfellow, 2015) have been leveraged to
improve both the runtime and storage complexity in certain settings. However, similar savings for
convolution layers remain elusive (Rochette et al., 2019; Lee and Kifer, 2021a).

Contributions. This work introduces a meta-algorithm for gradient clipping for convolutional net-
works, which improves overall efficiency by selecting from three specialized methods, each outper-
forming prior techniques within distinct hyperparameter regimes. More specifically:
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o the first two methods use in-place calculations and obtain O(1) per-example storage com-
plexities;

e the first method directly computes the squared norm, while the second leverages the ghost-
clipping trick for fully-connected layers;

o the third method uses a relationship between convolution operators and fast Fourier trans-
forms (FFTs) to obtain a scheme that scales well in the high-dimensional setting.

It is worth mentioning that the analysis for the third method (for gradient clipping) appears to be
new. In particular, this analysis exploits properties of circulant matrices to derive an algorithm that
runs efficiently in terms of the number of model parameters d, and the batch size b. Further, the
efficiency of this method is most pronounced for large kernels that are designed to capture long-range
dependencies, a setting required by several practical applications. As a byproduct, the proposed FFT
approach also accelerates the computation of full CNN gradients in certain regimes, a benefit beyond
the primary focus of our work.

To verify the practical efficiency of our methods, we provide benchmark experiments that demonstrate
the numerical performance of our proposed methods outperforming popular frameworks.

Related work. The vast literature on DP-SGD (Chaudhuri et al., 2011; Bassily et al., 2014; Abadi
et al., 2016; Ponomareva et al., 2023; Bu et al., 2023a) highlights the challenge of bounding individual
record sensitivity, a crucial aspect often addressed through clipping'. While alternative approaches
exist, such as modifying model architectures to enable Lipschitz constant computation (Béthune et al.,
2023), their broader applicability remains uncertain.

To the best of our knowledge, the state-of-the-art performance in the setting of convolution models is
achieved by Bu et al. (2023b). Specifically, that work builds on the approach of Bu et al. (2022); Lee
and Kifer (2021a) and combines it with a careful book-keeping scheme that avoids a second back-
propagation step. The main observation of Bu et al. (2022) is that the straightforward implementation
of DP-SGD can be faster or more memory-efficient than ghost-clipping in certain regimes. While
Rochette et al. (2019); Lee and Kifer (2021a) rely on instantiating per-example gradients, Bu et al.
(2022) take advantage of the underlying network structure and choose which of of two different
approaches to run; this selection step drives the bulk of their speed-up. In a follow-up work (Bu et al.,
2023b), the authors use the previous observation and the idea that the second back-propagation step
can be avoided using caching techniques.

Fourier transforms have first been used to improve the efficiency of training convolution neural
networks (CNNs) by Mathieu et al. (2013), who build upon related work by Ben-Yacoub et al.
(1999) for small-scale fully-connected models. Additional improvements to the approach have been
developed, for example, by Pratt et al. (2017); Vasilache et al. (2014); Abtahi et al. (2017); Rippel
et al. (2015). However, our development of similar techniques for the purpose of gradient clipping
appears to be new.

For convenience, we compare in Table 1.1 the asymptotic time runtime and storage complexities of
the ghost-clipping and direct methods by Bu et al. (2022); Lee and Kifer (2021a) and our proposed
methods. Note that we only consider the ghost-clipping method of Bu et al. (2022) and not the mixed
ghost-clipping method in (Bu et al., 2022, Algorithm 1) as the latter has complexity equal to the
minimum of the former and the direct method of Lee and Kifer (2021a).

Notation. For a matrices A and B we let || A|| denote the Frobenius norm of A and (A, B) denote
the (Frobenius) inner product. Let (W, (-, -)) and (), (-, -)) denote two Hilbert spaces with common

induced norm || - ||. We denote linear operators between them by italicized letters .A: W — ) and
denote A* : ) — W to be the adjoint of A. That is, A* is the unique linear operator that satisfies
(y, Aw) = (A"y,w) YweW, Vye). (1)

Let® : W — ) be an arbitrary function. The Fréchet derivative of 1 at wy € W is given by the
unique bounded linear operator Di(wq): W — Y satisfying

lim [[4(wo + 6) = (wo) — Dip(wo)d|| _

0.
60 [19]]

'See Pichapati et al. (2019); Chen et al. (2020) for examples or Ponomareva et al. (2023) for a recent
overview.
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Table 1.1: Asymptotic time/space complexities of gradient clipping methods for a single example.
The scalars n;y, Nouts Ak, din, and doy denote the number of input channels, output channels, kernel
size, input dimension, and output dimension, respectively. Direct methods materialize the unaltered
gradients, ghost-clipping methods apply the trick from Goodfellow (2015), and FFT methods utilize
a novel relationship between convolution layers and FFTs proposed in this work.

Method Type Runtime Storage
Lee and Kifer (2021b) direct NinNout out Noutdout + Nindoutdi
Bu et al. (2022) ghost-clipping  d2,; (Nindk + Nout) A2yt + Noutdout + Nindindi
Algorithm 3.1 [ours] direct NinMout dout Ak o(1)
Algorithm 3.2 [ours]  ghost-clipping ~ d?2,,; (Pindk + Nout) o(1)
Algorithm 3.3 [ours] FFT NinNoutdin log(din) din

We say v is differentiable if its Fréchet derivative exists for all wy € V. Throughout this paper we
will use two special properties of the Fréchet derivative: the chain rule and the existence of gradients.
Let (Z, (-, -)) be another Hilbert space and ¢: ) — Z be given. The chain rule provides us with a
simple way to calculate the derivative of the function ¢ o ¢): W — Z, namely,

D(¢ o) (wo) = Do(v(wo))Dip(wo) -

The Fréchet derivative of ) at w with respect to a subset of variables u is denoted by D, ¢(wy).
Finally, Vi (wg) € W denotes the (unique) gradient of a function 1) at wg, which satisfies

Dip(wo)d = (Vip(wo), 6)w V6 € W. (2)

The existence of the gradient is guaranteed by the well-known Riesz-Fréchet Representation Theorem
(Rudin et al., 1976). The gradient of 1 at wy with respect to a set of variables v is denoted by

Organization. Section 2 presents some necessary background material on representing gradient
norms in convolution models. Section 3 presents the proposed clipping methods and discusses
their properties and algorithm complexities under different regimes. Finally, Section 4 gives several
numerical experiments and benchmarks.

2 BACKGROUND

To simplify our presentation, we focus on a single convolution layer and a single example x €
R™n*din from the batch of inputs. For the case of multiple convolution layers and multiple examples,
it is straightforward to see that our complexity results scale linearly with the number of layers times
the number of examples. For conciseness, we present our results for one-dimensional inputs, but
discuss the generalization to high dimensions in Section 3.

Given a stride length s > 1, let dj, € N, di, € N, dout = 1 + (din, — di) /s be the size? of the kernel,
inputs, and outputs, respectively, let n;, € N and neyt € N be the number of input, output channels,
respectively, and let w € R™inX"ousXdr be the kernel weights. Moreover, for fixed output channel j,
let (i) w"7 € R% be the kernel vector corresponding to the i-th input channel, (i) b7 € R™out X dout
be the bias offset, (iii) o be a general activation function, and (iv) U, }E € Réeutxdk be g matrix whose
{-th row consists of the entries in the i-th input channel of z that are being multiplied with w®7.

The output for the j-th output channel of a convolution layer is given by

[G2(w, b)) = @l(w,b) ;= | b+ > Ulw' |. 3)

1€[Nnin]

2To avoid clutter, we assume these are all integers. In the implementation of our approach, we handle the
general case.
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Numerically efficient schemes for computing || V¢? (w, b)||? (the bias weights’ gradient norm), have
been previously developed by Kong and Munoz Medina (2023). Consequently, our focus is on
analyzing the kernel weights’ gradient norm ||V,,¢% (w, b)||?. Following similar analyses as Kong

and Munoz Medina (2023), we first write
¢l =Llyo0) 0 Z, where l(2):=alz+V), Zi(w Z Ulw™I “4)
le[nm]

Then, if we denote

A= Ay(w) :=DZ)(w), ¢ =gh(w):=V(ly o)) (Z)(w)), ©)
it follows from the chain rule that
IV (w,0) | = Qa(g7) = [| A% (6)

To avoid the notational clutter, we denote the adjoint operator of DZJ(w) by DZ3*(w). Using the
fact that V., ¢, (w, b) = [Vwodk(w,b), ..., Vyéhou (w,b)], we have that

Vb (w0, B)||? = Z [V (w, b)||? = Z [
j=1

and, hence, it suffices to restrict our presentation to a fixed output channel 7 where applicable. Kong
and Munoz Medina (2023) established efficient representations of €2,,(g) for the case of embedding
and fully-connected layers. Similarly, our task will be to find an efficient representation of €2, (g) for
convolution layers.

3 ALGORITHMS AND DISCUSSION

This section comprises three subsections detailing the main sub-algorithms and technical aspects
of our work. The first subsection introduces the in-place algorithms and their characteristics. The
second discusses the Fourier-based algorithm and its properties. The final subsection compares
these methods across various regimes, considering factors like input-output channels and dimensions.
This analysis carefully characterizes the optimality regimes for each sub-algorithm, yielding the
meta-algorithm that selects the most suitable method for a given layer.

Before proceeding, we describe some common notation and a basic result about the function Z, () in
(5). Given a 4D array M € R™inXmoutXdik Xdout ye denote M, J ¢ to be the value in the corresponding
to the ¢-th input channel, j-th output channel, m-th input dlmenswn and ¢-th output dimension of
M. We give similar definitions for the arrays/scalars M%7, M , M. g , M, and M/, keeping the
convention that superscripts (resp. subscripts) contain indices for the input/output channels (resp.
dimensions). The straightforward representation of the operators we have discussed so far requires
defining and handling fourth-order tensors, which can vastly complicate the analysis. However, we
are able to decompose various operations across different channels and dimensions, which allows us
to only use two-dimensional matrices to represent all the operators we use.

The result below provides some convenient representations of the Fréchet derivative of ZJ(w) and
Z7*(w). Tts proof is postponed to Appendix A.

Lemma3.1. Let U} € Réw*% pe as in (4) for some input channel i € [n;y], let A € R™in*MoueXdic
and 71 € Rt be arbitrary. If A% € R is the displacement vector corresponding to input-output
channel pair (i, ) € [nin] X [Nout), then

(a) DZI(w)[A] = Zie[nin] UiA®T g Row;
(b) {DZJ*(w)[r]}" = [Ug)*r) € R%;
(¢) DZi(w) o DZE )] = Tyepny ULV 7 € R,

1€ [Nin
Since the elements of Ui are the values of x, the identity in (6) and Lemma 3.1(b) imply that the
squared norm of V,,¢7 (w b) can be expressed solely in terms of  and the downstream gradient g7
in (5). In the next two subsections, we give two different expressions for ||V, @7 (w, b)|| and present
their corresponding algorithms.
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3.1 MEMORY-EFFICIENT NORM COMPUTATION

This subsection presents two in-place algorithms for computing the desired squared gradient norm.

We first present a “direct” expression for V.,,¢% (w, b) in terms of  and ¢’ using (6). The proof is
postponed to Appendix A.
Lemma 3.2. Let g7 € R™ouwt*dout be gs in (6) and s > 1 be given. Then, it holds that the value of
the gradient V., &% (w, b) at the i-th input channel, j-th output channel, and m-th output dimension
is given by

[vw@bgc (UJ, b)]zn’] = Z (xff—l]s—i-m)(gé)' (7)

L€ [dout)

The above result shows that when we are given x and g, we can compute ||V, ¢.(w,b)||? by
performing a sequence of in-place operations. For ease of reference, we present one variant of these
operations in Algorithm 3.1, which can be viewed as an in-place modification of the FastGradClip
algorithm in Lee and Kifer (2021b). It is immediate that Algorithm 3.1 requires

Tairect := NinMoutdrkdout ()
floating-point operations (FLOPS), but only O(1) additional storage.

Algorithm 3.1 Direct squared norm computation with in-place operations

Input: stride length s > 1, layer input 2 € R™n >4 and gradient g € R"outXdout;
Output: value of ||V, ¢, (w, b)||?;
Define J,, := {([{ — 1]s + m, £) : £ € [dout]} for m € [dy]

2

return 3.1 i Smeia (Siaes, ©91)

S S

We now present a special expression for ||V, ¢, (w, b)||? that is reminiscent of a similar expression
in the “Ghost Clipping” algorithm from Bu et al. (2022). The proof is postponed to Appendix A.

Lemma 3.3. Let g7 € R%v be as in (6) let s > 1 be given, and define
Xer = Z Z é 1]9+m] [Z’—l]s—i—m])v G = Z gzgz’
1€[nin] mE[dy] J€[nout]
where £, 0’ € [doy] are indices over the output dimension. Then, it holds that
IVwde(w )P = Y (AAL =2 > XeeGeo+ > XeuGes, 9)
JE[Mout] 1<8<l <dout L€[dout]

where A, is the matrix in R%w* % corresponding the operator of the same name in (5).

Similar to Lemma 3.2, the above result also yields a sequence of in-place operations for computing
|| Vwds(w,b)||2. As before, for ease of reference, we present one variant of these operations in
Algorithm 3.2. Tt is straightforward to see that, for a fixed outer index pair (¢, ¢’) in the expression
for P, the computation of the inner sum involving x (resp. g) requires n;,d; FLOPS (resp. nout)-
Consequently, computing P and () in Algorithm 3.2 requires

dout (dout - 1)
2
total FLOPS but also only O(1) additional storage.

Tghost = |dout + (nindk + nout) = G(dgut [nindk: + nout]) (10)

Algorithm 3.2 Ghost Clipping-based squared norm computation with in-place operations

Input: layer input = R7in X din and gradient ge R™out Xdout;
Output: value of ||V, ¢, (w,b)||%;
Define Jo,¢0 := {([¢{ — 1]s +m, [’ — 1]s +m) : m € [dy]} for £, 0" € [dout]

Compute P < 3"y pcqa.., (Zle[nm] Y (p)eT a?pxq) (Zje[nout] gegz/)

5 Compute Q — Zfe[dout] (Eie[nm] Z(p,q)e.ﬂ,e .’Ep.qu> (EjE[nout] gzge)
6: return 2P + Q)

Eal >
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3.2 FOURIER-BASED NORM COMPUTATION

This subsection presents an algorithm based on the discrete Fourier transform (DFT) for computing
the desired squared gradient norm.

We first define rev : R™ — R" (resp. diag : R™ — R™*"™) to be the linear operator that reverses the
order of its input (resp. diagonalizes its input). Explicitly, these operators are given by

0, otherwise’ Vi, j € [n], (D)

rev([z1,29,...,2p]) = [@n, ..., 22, 21], [diag(x)];; = {

for every x € R™. Now, let us recall the notion of a circulant matrix and its relationship to the
DFT. A circulant matrix C' € R™*" (resp. an anti-circulant matrix ¢ € R™*"™) is a Toeplitz (resp.
anti-Toeplitz) matrix of the form

Co Cp—1 =+ ¢k -+ Cp-1 Co
cl CO PRI 02 C2 ... CO Cl
C= o C=1. . ) N (12)
Cn—1 Cn—2 o Co Co crr Cp—2 Cp-—1

for some ¢ € R™. Notice that consecutive rows of a circulant (resp. anti-circulant) matrix contain the
same entries of ¢ but are cyclically shifted from left to right (resp. right to left).

The next result relates circulant matrices in R™*"™ with the n-th order DFT, and its proof can be found,
for example, in (Gray et al., 2006).

Lemma 3.4. IfC' € R™™" is a circulant matrix and c is its first column, then C = F,, 'diag(F,.c) Fp,
where F,, is the n-th order DFT.

Using the above result, it is straightforward to see that if ¢ € R"*™ is an anti-circulant matrix whose
first row is rev(c), then

(T = rev(F, 'diag[F,rev(c)|Fnr), V7 €R™. (13)

Returning to our main goal, the primary insight of this section is that we can express V., @7 (w, b)
(and, consequently, V., ¢, (w,b)) as an application of an anti-circulant matrix with simple linear
transforms. The details of this perspective, and its computational implications, are given in the
following result, whose proof is postponed to Appendix A.

Proposition 3.5. Let (¢ € R%*din denote the anti-circulant matrix whose first row is x*. Moreover,
define the block matrices Q) € R%»*% and R € Rout*din py

Q=] o | R =g TSI ) € ] o]

O0(din—dy) xdx 0, otherwise, "

where I, (resp. 0,,%xm ) denotes the identity matrix in R™"*" (resp. zero matrix in R™*™). Then, it
holds that

(a) for every i € [niy), we have Ul = R(EQ;
(b) if g7 € Rt js as in (5), then
[Vw¢fa(w, b)]z =Q*orevo fd_ml ([fdm orev(z')] ® []—'dmR*gj]) Vi € [nin], (15)
where © denotes the Hadamard product.

Before proceeding, let us give a few remarks. First, for y € Rén and z € R%ut, we have that Q*y
returns the first dj, rows of y and R*z returns a padded version of z in which [R*2](;_1)41 = 2; for
i € [dous] and [R* 2], is zero at all other indices j. Second, in view of the first remark, we have that
for any y € R%=, both of the quantities (Q* o rev)(y) and R*g’ can be computed using dj, and doys
FLOPS, respectively.
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We now present a general algorithm in Algorithm 3.3 that leverages (15) to calculate ||V, ¢, (w, b)]|?.
Notice, in particular, that it can be specialized to different choices of the DFT oracle Fy

in ®

Algorithm 3.3 DFT-based squared norm computation

1: Input: layer input x € R™n*din_oradient g € R™outXdout and oracle F, that performs the
(din )-th order DFT;
Output: value of ||V, ¢, (w, b)]|?;
Define rev(-) and (@, R) to be as in (11) and (14), respectively
fori,j € [nin] X [nout] do

v Q* orev o Fy ([ Fy,, orev(z')] © [Fu, R*g7])

i,j d i,

il = 3Tk ()
end for N
return > iycin lxfnon] "

The next result presents the runtime and storage complexity of a specialization of Algorithm 3.3,
where we use a fast discrete Fourier transform (DFT) oracle. Specifically, it is well-known that DFT
can be implemented in O(d log d) time complexity (Duhamel and Vetterli, 1990). The proof can be
found in Appendix A.
Theorem 3.6. Let F;. be an FFT oracle which, for any v € R%», computes Fy, v and fd_lju in
Tr = O(din log di,) FLOPS. Then, there is an implementation of Algorithm 3.3 with Fg, = Fy..
that consumes at most

Tt := NinNout (dout + din + 3di + STF) = @(ninnoutdin 1Og din) (16)
total FLOPS and ©(d;,) additional storage.

in

Let us now compare the runtime complexities Tirect, Lghost» and T in (8), (10), and (16), respec-
tively. For simplicity, let us assume that the stride length is s = 1 andletd > 1 and n > 1 be
arbitrary. Denoting A < B to mean A is asymptotically more efficient than B in terms of runtime,
we observe the relationships for different choices of niy,, nout, di, din, and dey in Table 3.1.

Table 3.1: Relationships of asymptotic runtimes across key parameter regimes.

din, dout dp Nins Mout ‘ Relationships
O(d) O(d) 0(1) Ty = O(dlogd) =< Tgirect = O(d?) = Tohost = O(d?)
@(d) @(1) 0(1) Thirect = @(d) X Thy = @(dlog d) = Tghost = @(dz)
O(d) O(d) O(n) Tehost = ©O(nd) = Tgivect = O(n%d) < Ty, = ©(n%dlogd)

In particular, we mention that the large kernel regime in the first row of Table 3.1 was recently studied
in Ding et al. (2022) and was show to have significant utility improvements compared to the small
kernel regime of the second row.

Optimal subroutine selection. Table 3.1 shows that no clipping method is universally superior,
and that the optimal choice depends on the layer’s specific input-output channels (ni,, noyt) and
dimensions (dy, din, dout ). In view of this fact, we propose a simple meta-algorithm in Algorithm 3.4
that optimally (in terms of runtime) dispatches the best of our proposed subroutines (Algorithms 3.1-
3.3) for a given set of parameters. Clearly, the runtime of Algorithm 3.4 is min(Tgivect , Tghost Lt )-

Algorithm 3.4 Meta-algorithm for gradient norm computation

1: Input: stride length s > 1, layer input 2 € R"=*4ingradient g € R"eut*dout and oracle Fy,
that performs the (d;, )-th order DFT in T’z FLOPS;

Output: value of ||V, ¢, (w, b)]|?;

Define Tgirect Tghost, and T in (8), (10), and (16), respectively

Define Agirect> Aghost, and Agy to be Algorithms 3.1-3.3, respectively

Compute 7 = argmin{7), : p € {direct, ghost, fft}}

Run algorithm A, with the appropriate inputs and return its output

AN AN
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3.3 HIGHER DIMENSIONS

While our results are formally presented for one-dimensional inputs with multiple channels, we con-
clude by discussing their generalization to higher-dimensional settings. When z is an d-dimensional
input, it is straightforward to develop analogous version for Algorithms 3.1-3.2. However, the
analogous version of Algorithm 3.3 requires more care. In particular, we would need to develop
higher-order versions of (12), replace the one-dimensional Fourier transform in Algorithm 3.3 with its
d-dimensional variant, and replace the operators (), R) in Algorithm 3.3 with higher-order variants.

In the special case of the two-dimensional DFT, used in the vast majority of modern deep learning
architectures, e.g. when the inputs are images, it is known (Azimi-Sadjadi and King, 1987) that a ver-
sion of Lemma 3.4 holds where C'is replaced by a block-circulant matrix, i.e., where each c¢; in (12) is
replaced by a matrix. Consequently, the version of Algorithm 3.3 for a two-dimensional (per-example)
input array z directly follows from this result by replacing (i) F4,, by its analogous two-dimensional
DFT, (ii) rev(-) by the operator that reverses a two-dimensional input array lexicographically, and
(iii) @ and R by their block two-dimensional variants. We posit that the d-dimensional version of
Algorithm 3.3 is one where changes (i)—(iii) are applied in the d-dimensional setting, i.e., with blocks
of d-dimensional arrays instead of two-dimensional matrices. For a more precise treatment of the
two-dimensional case, see Appendix D.

4 NUMERICAL EXPERIMENTS

As Algorithms 3.1 and 3.2 are primarily memory-efficient variants of the corresponding methods
in Bu et al. (2022) and Lee and Kifer (2021b), we focus on benchmarking our FFT-based method
(Algorithm 3.3), which uses a completely new technique. More specifically, we consider the large-
kernel parameter regime in the first row of Table 3.1, where our FFT-based method has a distinct
advantage in terms of the hyperparameter d.

All experiments were run in Python on an Ubuntu 22.04 instance with an Intel Xeon 2.20 GHz CPU,
an NVIDIA Telsa T4 GPU with 15GB of VRAM, and 13.6GB of RAM.

It is also worth mentioning that we did not benchmark our FFT method with the large kernel models
in Ding et al. (2022) because those models employ 4D kernels, while our paper primarily considers
1D kernels. While we present the generalization of Algorithm 3.3 to 2D kernels in Appendix D, we
believe that the nD kernel requires significantly more development in both theory (e.g., algorithmic
complexity) and implementation (e.g., custom FFT and sparse matrix GPU kernels). Consequently,
we believe such experiments/benchmarks to be out-of-scope.

4.1 GRADIENT NORM COMPUTATION ON CPU AND GPU.

Tables 4.1-4.2 respectively present CPU and GPU runtimes and memory measurements of compute
the gradient norm of a single one-dimensional convolution layer with di, = d, d, = d/2, n = 3, and
a single example as input. Due to the improved parallelism of GPUs, larger values of d appear in
Table 4.2 compared to the values in Table 4.1.

Table 4.1: Gradient norm runtime (ms) and peak RAM (MB) measurements on CPU for large kernel
sizes. Values are rounded to the nearest whole number and are the median over five trials.

d 0.1k 0.2k 04k 0.8k 1.6k 32k 64k 12.8k 25.6k
QE) Algorithm 3.3 1 1 1 1 2 2 4 7 10
g Lee and Kifer (2021b) 0 1 4 14 69 279 1092 24852
& Bu et al. (2022) 1 1 2 7 28 185 1120 7788 78773
s Algorithm 3.3 0 0 0 0 0 0 1 1 2
é Lee and Kifer (2021b) 0 0 1 5 21 82 328 1311 5243
Bu et al. (2022) 0 0 1 5 21 82 328 1311 5243
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Table 4.2: Gradient norm runtime (ms) and change in VRAM (MB) measurements on GPU for large
kernel sizes. Values are rounded to the nearest whole number and are the median over five trials. A
value of “-” indicates that the GPU ran out of VRAM before completing a trial.

d 4k 8k 16k 32k 64k 128k 256k 512k 1024k

Algorithm 3.3 2 2 2 3 3 3 3 7 13
Lee and Kifer (2021b) 2 3 9 34 456 - - - -
Bu et al. (2022) 20 102 963 8625 - - - - -

Algorithm 3.3 0 2 4 10 19 36 63 124 245
Lee and Kifer (2021b) 48 193 770 3072 12294 - - - -
Bu et al. (2022) 99 388 1544 6149 - - - - -

VRAM | Runtime

We now make a few remarks about the trends in Tables 4.1—4.2. First, consistent with the theory of
Section 3, Algorithm 3.3 scales the most efficiently in terms of CPU/GPU runtime/memory usage,
followed by the algorithm in Lee and Kifer (2021b), and then the one in Bu et al. (2022). Second,
the RAM usage of the competing methods were nearly identical across trials while the VRAM used
by the method in Bu et al. (2022) scaled worse than the one in Lee and Kifer (2021b). Finally, we
note that on GPUs, our FFT algorithm (Algorithm 3.3) was able to evaluate gradient norms whose
layer input dimension dj;,, was at least 16x larger than the best competing method (without going
out-of-memory in VRAM).

4.2 END-TO-END TRAINING ON GPU

Table 4.3 presents runtimes for end-to-end training of a one-layer one-dimension convolution neural
network with mean squared error in Opacus. More specifically, for each measurement, we ran one
trial of five iterations of DP-SGD on GPU with batch size 128, d;, = d, dp = d/2,n =1, s = 1,
and either Opacus’ implementation of DP-SGD (Naive DP-SGD), which materializes gradients
directly, or the ghost norm variant of DP-SGD where the norm computation uses our FFT method
(Algorithm 3.3 + DP-SGD). For more details on the Opacus implementation, see Appendix B.

This comparison highlights that gradient clipping imposes a non-trivial bottleneck in practical training
frameworks like Opacus, an overhead that can be mistakenly overlooked compared to other fixed
costs. The performance gains from our custom kernel (Algorithm 3.3) highlight the importance of
optimizing this specific step.

Table 4.3: End-to-end runtime (s) measurements on GPU. Values are rounded to the nearest tenth for
a single trial. A value of “-” indicates that the GPU ran out of VRAM before completing the trial.

d 0.5k 1k 2k 4k 8k 16k 32k 64k
Algorithm 3.3+ DP-SGD 0.6 0.5 2.1 112 413 1464 546.0 23109
Naive DP-SGD 03 10 49 168 728 - - -

From the results in Table 4.3, we can see that Naive DP-SGD performs well for smaller values of d
but scales significantly worse in d. Moreover, we obtained results with Algorithm 3.3 + DP-SGD on
problem instances at least 8x larger than Naive DP-SGD (without going out-of-memory in VRAM).
Note that Naive DP-SGD employs a single forward/backward pass, whereas Algorithm 3.3 + DP-SGD
employs one forward pass and two backward passes.
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A TECHNICAL PROOFS
This appendix gives the proofs of the manuscript’s main results.

Proof of Lemma 3.1. For simplicity, denote U = U! and D,, := DZ,(w).
(a) This is immediate from the linearity of D,..
(b) From part (a) and the definition of the adjoint, we have

D87 = 3 (RUA) = Y (U AY) = (01 ).

1€[nin] i€[Nnin]
(c) Using parts (a) and (b), we have Do D37 = 3, | Ut [Drr]" = > icini] Ut U] . O

Proof of Lemma 3.2. In view of Lemma 3.1(b) and (6) it suffices to show that the m-th column of
U? is the vector Col!, = [zf 2% ... T gone—1)s4m) € Rdeut, Indeed, recall that the ¢-th row of

U! is the /-th window of the input z and is given by Row’}, := [I(£71)8+1, .. ,x(efl)Serk] € R,
Fixing a column index m, it is clear that the values in the m-th index of Col, for k € [d}] form the
elements of Col,,. O

m?

Proof of Lemma 3.3. The first identity in (9) is immediate from (6) and the definition of the adjoint
of a linear operator. For the second identity, note that (4), (5), and Lemma 3.1(c) imply that
A, = Zie[nm] U:UL]*. Hence, in view of the definition of X, ¢ and Gy ¢, it suffices to show that

the entry in the ¢-th row and ¢'-th column of U![U?]* is given by

[U;{U;}*]g,gl = Z (Ifé—l]s+m)(xf€’—l]s+m)'

me[dg]

Indeed, recall that the k-th row of U?, say Row’, contains the E th window of the input array z. For a

given stride s and kernel size dj, clearly we have Row’, = [z T(o—1)s10 (Zfl)erdk.] O

Proof of Proposition 3.5. (a) Observe that for any matrix M € R%»*%n we have that M () returns
the first dj, columns of M and RM returns rows 1, s + 1,...,dout — 1 4+ s of M. The conclusion
now follows from the previous observation and the fact that the rows of U contain the windows of x
of size dj, and stride s.

(b) Using part (a) and (13) with ¢ = (¢, we have that, for any 7 € R,
U = Q*[C]*R*T = Q* orev (.Ffldiag [}"d. rev(xi)] fdinR*T)
= Q" orev 0.7:;“1 ([Farev(z’)] © [Fa, R*7])

Consequently, using the above identity with 7 = g7 and Lemma 3.1(b) we have that

V@l (w,b)]" = [Ull*¢’ = Q* orevo]-"d_m1 ([]:d rev(z )} [.7-",1 R*g ])

in in

O

Proof of Theorem 3.6. 1t suffices to describe the costs of computing v*J and r%7 for i € [n;,] and
j S [nout]'

For fixed (4, j), computing v*/ can be done by: (i) computing a = R*g’ in a d,; runtime and storage
cost (see the remarks following Proposition 3.5), (ii) computing & = F,, a and ¢ = Fg, orev(z’)
in a 27'F runtime cost, (iii) computing € = ¢ ® & in a d;, runtime and storage cost, (iv) computing
e=F & jé in a T’z runtime cost, and (v) computing Q* o rev(e) in a dj, runtime and storage cost (see
the remarks following Proposition 3.5). Summing the previous terms results in a

dout + din + dk + 3Tf

12
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runtime cost and fixed ©(d;, ) storage cost. For fixed (i, j), computing 7, given v*7, can be done
by an accumulating sum in a runtime and storage cost of 2dj, and O(1), respectively.

Summing all the above costs over i € [nin] and j € [nout] (new temporary variables for the
computations of v*7 and r*7) yields a storage cost of ©(d;,) and a runtime cost of

NinNout | dout + din + di, + 3T F + 2dj, =Tg = @(ninnout [din log dinD7
vivi P

where the last identity follows from the fact that dy, < dj,. O

B INTEGRATION OF ALGORITHM 3.3 IN OPACUS

This appendix gives a brief description of the integration of Algorithm 3.3 in the DP-SGD API of
Opacus.

As Algorithm 3.3 is a algorithm for efficiently computing gradient norms, we create an Opacus-
compatible norm sampler function that implements Algorithm 3.3 and register it with the global
GradSampleModuleFastGradientCLipping.NORM_SAMPLERS attribute using Opacus’
@register_norm_sampler (...) Python function decorator for torch.nn.Convld lay-
ers.

We then develop a benchmarking function using the tests inside the following Opacus module:
opacus/tests/grad_sample_module_fast_gradient_clipping_test.py

More specifically, this function explicitly performs the single forward and two backward passes
employed by ghost norm variants of DP-SGD.

C ADDITIONAL NUMERICAL EXPERIMENTS AND GRAPHS

This appendix presents additional numerical experiments involve our proposed in-place algorithms,
and the settings in this section are motivated by the three rows in Table 3.1.

Table C.1 presents runtime and peak RAM usage under the same setting as in Section 4 and corre-
sponds to the first row of Table 3.1. Table C.2 considers the parameter setting di, = d, d, = d — 13,
n = 3, and s = 1 and corresponds to the second row of Table 3.1. Finally, Table C.3 fixes
din = di = 10 and s = 1, varies the number of channels n, and corresponds to the third row of
Table 3.1. The choices of n and d in all tables are chosen to highlight the general trends of each
algorithm compared to their competitors rather than push the limits of their computing environment.

Before proceeding, we mention that we were unable to implement runtime efficient variants of
Algorithms 3.1-3.2 on GPU nor the same two algorithms within the parameter settings of rows 1
and 3 in Table 3.1, respectively. Consequently, we remove the above mentioned trials and focus
on settings where our in-place algorithms perform well. On the other hand, we do note that our
in-place implementations are still significantly more memory efficient than their counterparts in Bu
et al. (2022); Lee and Kifer (2021b) on all the problem instances we tested.

‘We now make a few remarks about Tables C.1-C.3. First, we describe some results that are consistent
with the theory in Section 3 (more specifically, Table 3.1): (a) the in-place algorithms (Algorithms 3.1—
3.2) were significantly more efficient in peak RAM than their counterparts in Bu et al. (2022); Lee and
Kifer (2021b), (b) Algorithm 3.2 is the most runtime efficient in Table C.2 followed by Algorithm 3.1,
and (c) Algorithm 3.3 scales poorly when n is increased in Table C.3. Second, we were unable to
completely remove in the materialization of some small intermediate matrices in Algorithm 3.1,
which causes some RAM to be consumed in the trials in Tables C.1-C.2.

D EXTENSION OF FFT ANALYSIS TO 2D CONVOLUTIONS

We now give the details of the generalization of the Fourier-based norm computation (Algorithm 3.3)
to two-dimensional inputs, which is particularly relevant for vision models. The conceptual extension

13
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Table C.1: Extra gradient norm runtime (ms) and peak RAM (KB) measurements on CPU for large
kernel sizes. Values are rounded to the nearest whole number and are the median over five trials.

d 04k 08k 1.6k 32k 64k
° Algorithm 3.3 1 1 2 2 4
£ Algorithm 3.1 5 5 7 13 89
5 Lee and Kifer (2021b) 1 4 14 78 292
Bu et al. (2022) 2 6 29 194 1124
Algorithm 3.3 34 68 135 270 539
= Algorithm 3.1 164 646 2570 10256 40993

~ Lee and Kifer (2021b) 1288 5134 20507 81974 327792
Bu et al. (2022) 1288 5134 20507 81973 327789

Table C.2: Extra gradient norm runtime (ms) and peak RAM (KB) measurements on CPU for small
kernel sizes. Values are rounded to the nearest whole number and are the median over five trials.

d 64k 128k 256k 512k 1024k
Algorithm 3.3 47 60 145 328 802
= Algorithm 3.1 30 24 44 209 279
§ Algorithm 3.2 44 54 63 115 180
& Lee and Kifer (2021b) 20 41 89 178 385
Bu et al. (2022) 24 35 67 162 319
Algorithm 3.3 5377 10753 21512 43020 86038
s Algorithm 3.1 3842 7682 15363 30729 61453
é Algorithm 3.2 1 4 3 3 8

Lee and Kifer (2021b) 28668 57340 114684 229379 458758
Bu et al. (2022) 28668 57340 114684 229379 458758

is straightforward, relying on the generalization of the Convolution Theorem and the properties of
circulant matrices to higher dimensions.

2D Notation. We adapt the notation to accommodate two spatial dimensions. Let the input be
x € RPn*HinxWin “where H;, and Wi, are the input height and width, respectively. The kernel
weights are w € R7inX"out XHiX Wi ‘\where H). and W), are the kernel height and width. We denote
the stride lengths as (sg, SV&/)’ resulting in output dimensions H,,; and W,,;. The downstream
gradient is g € RMout X Hout X Wour

Generalized Operators. We must define the 2D counterparts of the operators introduced in Section 3.2.

e F5p denotes the two-dimensional Discrete Fourier Transform.

e revyp denotes the 2D reversal operator, which flips a 2D array across both spatial dimensions
(horizontal and vertical), generalizing the rev operator in (11).

e ()op and Ryp are the block two-dimensional variants of the operators defined in (14).
Specifically, R, maps the downstream gradient g’ back to the input dimensions, accounting
for the strides (sg, sy ). This corresponds to a dilation operation, inserting zeros between
the elements of g7. @}, acts as a cropping operator, extracting the relevant Hy, x W}, block
corresponding to the kernel dimensions.

14
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Table C.3: Extra gradient norm runtime (ms) and peak RAM (KB) measurements on CPU for different
channel counts. Values are rounded to the nearest whole number and are the median over five trials.

n 40 80 160 320 640
o Algorithm 3.3 110 298 1062 4766 19153
£ Algorithm 3.2 303 7 14 34
5 Lee and Kifer (2021b) 1 1 2 5 16
Bu et al. (2022) 1 1 1 3 5
Algorithm 3.3 6 11 51 52 56
;ﬁ Algorithm 3.2 1 1 1 1 1
© Leeand Kifer (2021b) 100 294 1065 4144 16444
Bu et al. (2022) 16 32 63 127 252

2D Gradient Norm Computation. The fundamental insight utilized in Proposition 3.5—that the
convolution operator can be represented via circulant structures—generalizes to 2D. In this setting,
2D convolution is represented by Block Circulant with Circulant Blocks (BCCB) matrices. As noted
in Section 3.3, a version of Lemma 3.4 holds where BCCB matrices are diagonalized by the 2D DFT
(Azimi-Sadjadi and King, 1987). This allows us to derive the 2D equivalent of the identity presented
in (15).

Proposition D.1. (2D Extension of Proposition 3.5). Let ' € RfTn>*Win pe the input for the i-th
input channel, and let g7 € RHovexWout be the downstream gradient for the j-th output channel. Let
Q2p and Rap be the block two-dimensional operators defined above. Then, the gradient with respect
to the kernel weights w*7 can be computed as:

[Vl (w,b)]" = Q3p orevap o Fopy ([Fap orevap(z')] © [FapRipg’]) Vi€ [niw], (17)
where © denotes the Hadamard product.

Proof. We aim to derive the expression for the gradient G* := [V, ¢ (w, b)]i utilizing the 2D
Discrete Fourier Transform (F3p).

1. Gradient Expression as Cross-Correlation. First, we observe the generalization of Lemma 3.2
to the 2D case. The value of the gradient with respect to the kernel weights w*7 at spatial location
(m,n) € [Hy] x [Wy] is given by:

Hout Wout

G:ﬁ],n = Z Z (xfh—l]sy-‘rm{w—l]sw-i-n) ’ (g’jl»w) ) (18)

h=1 w=1

This operation represents a 2D cross-correlation between the input ¢ and the gradient g7, accounting
for the strides (s, sw ).

2. Incorporating Operators Ryp and ()2p. We use the operators R5, and 5, to manage the
striding and dimensions explicitly. Rj;, represents the adjoint of the striding operation, which
corresponds to dilation (zero-insertion). Let g = R}, ¢’. This maps ¢/ into a sparse array aligned
with the input spatial dimensions Djy,.

Q3 represents the adjoint of the kernel embedding, which corresponds to cropping the result to the
kernel dimensions Hy, x Wy.

The gradient computation in (18) can be conceptualized as the *valid’ cross-correlation between xt
and the dilated gradient g7, followed by the application of the cropping operator:

G = Q3pla’ x ).

where x denotes 2D cross-correlation.

15
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3. Relating Cross-Correlation to Convolution. To leverage the efficiency of the FFT via the
Convolution Theorem, we must express the cross-correlation in terms of convolution. We utilize the
identity involving spatial reversal (revep):

Ax B =revyp((revap(A)) * B),
where * denotes 2D convolution. Applying this to our gradient expression:

ik = reVQD((rerD(xi)) * gﬂ') .

4. Applying the 2D Convolution Theorem. Let i¢ = revop (2%). We now consider the convolution
C = &' * §7. Assuming appropriate padding to ensure the DFT computes the required linear convolu-
tion (which is standard practice when implementing FFT-based convolutions), the 2D Convolution
Theorem states:

C = Fyp(Fan (@) © Fan(§))
where © is the Hadamard product.

5. Final Expression. Substituting these identities back into the expression for G*7:
G = Q3p orevap(O)
= Q5p o revap o Fyp (Fap (') © Fan(3)) -

Substituting the definitions Z° = revaop(2°) and g = R3 g7, we arrive at the desired result:

[Vuwth (w,b)]" = Q3p orevap o Fypt ([Fap o revap(a')] © [Fap Ripg’]) -

Proposition D.1 directly yields the 2D generalization of Algorithm 3.3.

Algorithm D.1 2D DFT-based squared norm computation

1: Input: layer input x € R7%n*HnxWin "oradient g € RMoutXHousxWout - and oracle Fop that
performs the 2D DFT;
Output: value of ||V, ¢, (w,b)||%;
Define revop(-) and the block operators (Qap, Rap).
for i,j € [nin] X [Nout] do
.f?i — .FQD o I'eVQD(Ii)
g+ F 2p 15 ng
vhI Qb orevap o Fyp (31 @ §7)
r¥J « ||v™7]|? (Frobenius norm squared)
end for
return Z(z‘,j)e[mn]x[nout] rhI

ORI DINRLE

—

Complexity Analysis. We analyze the complexity of Algorithm D.1 by extending Theorem 3.6. Let
Dy, = H;, Wi, be the total spatial dimension of the input per channel. The complexity of the 2D
FFT on an Hi, X Wi, inputis T cp = ©(Diy log Diy).

Theorem D.2. (2D Extension of Theorem 3.6). Let Fop be a 2D FFT oracle. There is an implemen-
tation of Algorithm D.I that consumes at most

THt,ZD == G(ninnoutDin log Din) - G(ninnoutHinWin 1Og(HinWin)) (19)

total FLOPS and ©(Dyy,) additional storage.
The proof follows the same logic as the proof of Theorem 3.6, as the algorithm structure remains
the same and the dominant cost is the execution of the 2D FFTs for each input-output channel pair.

This confirms that the asymptotic advantages observed in the 1D case, particularly in the large kernel
regime (Table 3.1), carry over directly to the 2D setting.

16
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Proof. We analyze the computational complexity of Algorithm D.1. We assume the use of a 2D Fast
Fourier Transform (FFT) oracle F>p. The complexity of computing the 2D FFT on an H;, x Wiy
input is T 2p = O(Dip log Diy).

Runtime Complexity. The algorithm iterates over all n;, X ney, pairs of input and output channels.
We analyze the cost of the operations within the loop (Lines 4-7).

1. Line 4: 2! < F5p orevap(x?). The spatial reversal revop takes O (D, ) FLOPS. The 2D
FFT takes T'r »p FLOPS.

2. Line 5: §/ + Fop R3¢’ The dilation operation R, (zero-insertion) takes O ( H oyt Wout)
FLOPS. The 2D FFT takes T'’r op FLOPS.

3. Line 6: v/ < Q},, orevap o Fyp (2¢®§7). The Hadamard product takes O(Dj,) FLOPS.
The inverse 2D FFT (F, Dl) also takes T'r op FLOPS. The reversal revap takes O(Diy)
FLOPS. The cropping operation Q3 ,, takes O(H,W},) FLOPS.

4. Line 7: rJ « ||v*7]|2. Computing the squared norm takes O(H; W},) FLOPS.

The total cost per iteration is the sum of these operations:
Costiter = 3T}',2D + O(Din + HoutWout + Hk:Wk') .

Since T 2p = O©(Djy log Diy), and HowsWout, Hy Wi, < O(Dsy), the dominant cost is driven by
the FFT operations. Thus, Costjte; = ©(Djy log Diy).

The total runtime complexity T op is the cost per iteration multiplied by the total number of
iterations (ninNout):

THt,QD = NinNout * @(Din log Din) = e(ninnoutHinWin log(HinWin)) .

Storage Complexity. The algorithm requires storage for the intermediate arrays, such as the Fourier
transformed inputs 2’ and gradients §7. These arrays are complex-valued and have sizes proportional
to the input dimensions D;,,. Therefore, the additional storage complexity required is ©(Dy,). O
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