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Abstract. Abdominal CT organ segmentation is known to be challeng-
ing. The segmentation of multiple abdominal organs enables quantitative
analysis of different organs, providing invaluable input for computer-
aided diagnosis (CAD) systems. Based on nnUNet, we develop an ab-
dominal organ segmentation method applicable to both abdominal CT
and whole-body CT data. The proposed new training pipeline com-
bines the Kullback–Leibler semi-supervised learning and fully super-
vised learning, and employs a coarse to fine strategy and GPU accel-
erated interpolation. Our method achieves a mean Dice Similarity Co-
efficient (DSC) of 0.873/0.870 and a Normalized Surface Dice (NSD)
of 0.911/0.915 on the FLARE 2022 validation/test dataset, with an
average process time of 12.27s per case. Overall, we ranked the fifth
place in the FLARE 2022 Challenge. The code is available at https:
//github.com/Solor-pikachu/Infer-MedSeg-With-Low-Resource.
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1 Introduction

As a basic subject of medical image analysis, automatic and accurate abdomi-
nal organ segmentation from medical images is an essential step for computer-
assisted diagnosis, surgery navigation, visual augmentation, radiation therapy,
and biomarker measurement systems[9]. In various recent competitions, nnUNet[5]
have shown great performance consistently, but its memory consumption and
GPU usage lead to huge demand of computing resources, which brings great
difficulties on the industrial deployment of this method.

In this paper, we propose an improved training and inference scheme based
on nnUNet, and a coarse to fine strategy is added to reduce the computing
resources.

https://github.com/Solor-pikachu/Infer-MedSeg-With-Low-Resource
https://github.com/Solor-pikachu/Infer-MedSeg-With-Low-Resource
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The main contributions of this work are summarized as follows:

– A semi-supervised learning algorithm is used to train the model, and 2000
unlabeled CT samples are used to calculate pseudo-labels through the four
decoders of the model. Pseudo-labels are used to calculate Kullback–Leibler
(KL) divergence loss, and real labels are used to calculate cross entropy and
dice loss.

– A coarse to fine strategy based on nnUNet is developed. Compared with the
original nnUNet implementation, it achieved significant acceleration with
almost no loss of accuracy.

– Unlike the common practice that resizes the CT data to a fixed size, a coarse
model with a slide window approach [5] is used to roughly locate abdominal
organs in whole-body CT, half-body CT, and abdominal CT, and a fine
model is used to perform fine segmentation subsequently.

– The interpolation algorithm of nnUNet is optimized and highly accelerated.
For interpolation of large samples of whole-body CT, the time is reduced
from 90s to 1s, and the memory consumption is small.

2 Method

We propose a method as shown in Figure. 1. We use the coarse model by step=1,
to obtain approximate segmentation results from the input CT scan, and then
obtain the region of interest(ROI) coordinates of the abdomen from the coarse
segmentation. Then we crop the area, and use the fine model for Step=0.5 in-
ference, and finally restore the inference results to the original cropped area
according to the ROI coordinates.

Fig. 1. Coarse-to-fine segmentation framework. Coarse and Fine are model inference
processes. Crop means cutting the approximate position of the organ from the original
image according to the result of coarse segmentation, and Restore means place the
result back to the position before cropping.
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2.1 Preprocessing

We regroup the 50 labeled samples and 2000 unlabeled samples to form two
datasets. The first dataset containing all 2050 samples is used to train the model
for coarse segmentation, and the second dataset containing only the 50 labeled
samples is used to train the model for fine segmentation.

1. In the first dataset, we clip the foreground of the 2050 samples using thresh-
old, and calculate their respective space, max intensity, and min intensity
individually. All spaces are resampled to [3.0, 2, 2], and the window width
is adjusted to [-325,325]. Last, the intensities of each CT sample are normal-
ized to have a mean of 0 and a variance of 1 using the individual mean and
standard deviation.

2. In the second dataset, we adjust the window width to [-325, 325], and resample
the spaces to [2, 1.5, 1.5]. The original CT data and label are cropped with a
reserved 40mm voxel position, and then the mean and standard deviation are
calculated for the population of all samples, and the global mean and standard
deviation are used to normalize the intensity of all CT data samples.

2.2 Network Architecture

We use a UNet[7] as our model as shown in Figure. 2. The model hyper-
parameters and the input patch size of [96,128,160] are chosen to satisfy the
GPU memory requirement by the FLARE 2022 competition.

Fig. 2. Network architecture. A UNet is used and the outputs of four decoders (P1 to
P4) are used to compute loss (see Section 2.3 for details).
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2.3 Training

Coarse model training During the training of the coarse model, we use a semi-
supervised algorithm. This idea comes from Xiangde Luo et al.[6], who propose
a new uncertainty correction module that enables the framework to gradually
learn from meaningful and reliable consensus regions at different scales. For the
50 labeled data, we use cross entropy loss and dice loss to perform supervised
learning on four outputs of the decoders (i.e., P1 to P4 shown in Figure. 2).

For the 2000 unlabeled data, we apply the following steps to calculate the
loss as shown in Figure. 3:

1. we feed the patch into the model for inference and get four outputs (P1, P2,
P3, and P4) from the UNet;

2. we add these four outputs and average them to get the pseudo-label P;
3. the four outputs P1, P2, P3, and P4 of the model are compared with the

pseudo-label P to calculate the loss function.

We anticipate that the decoding heads of these four outputs can provide a
relatively good pseudo-label by voting on the pseudo-mask. KL-divergence loss
is used between the average prediction and the prediction at four scales as the
uncertainty measurement.

Fig. 3. Illustration of the proposed training strategy. Both semi-supervised learning
(SSL) and supervised learning (SL) are used. Xun is the unlabeled data, P is the
pseudo-label, X is the labeled data, and Y is the label of X.

We give the loss weight of sigmoid to the loss of unlabeled data, so that it
can learn less pseudo-labels in the early stage and more in the later stage. We
randomly select 40 samples as the training set and 10 samples as the validation
set. Here we use Stochastic Gradient Descent (SGD) optimizer with momentum,
and set the initial learning rate at 0.01 with poly learning rate decay. A total of
500 epochs of training is done.
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Fine model training To train the fine model, we initialize the model param-
eters with the pretrained coarse model. Compared with the randomly initializa-
tion, the coarse model has seen more data and improves the convergence speed.
As above-mentioned, the cropped 50 gold-standard data are used to fine-tune
the model. The optimizer and learning rate decay strategy are the same as in
the coarse model training, but the initial learning rate is adjusted to 0.001. A
total of 150 epochs of training are done, and in the last 10 epochs, all data
augmentations are turned off.

2.4 Post-processing

Without post-processing, we found that the model may often mistake bladder
and uterus as liver, kidney and stomach, and that the dice scores of the aorta
and inferior vena cava were not high, yet the neural network network can often
predict the approximate correct location. Thus we perform the post-processing
as follows: We find the largest connected area of the aorta and inferior vena cava,
then calculate their centroids, and then find the center of these two centroids.
We iterate all the connected regions, so to find the distance between the centroid
and the center of each connected region. If the centroid is far away beyond a
threshold, we delete the connected region. We preserve the largest connected
area for all organs separately.

2.5 Acceleration on Resize and Argmax Operation

After the neural network finish inference, we need to interpolate the prediction
results and restore the original size as input. We find that most of the CT scans
are very large in the matrix size, and using the traditional CPU implementation,
such as Skimage resize function, is slow, consuming CPU and memory resources.
Thus, we change it to Torch’s GPU interpolation function, using the trilinear
interpolation method. Note that sending the CT array to the GPU at one time
may exceed the maximum GPU memory. Therefore, we propose a slice inter-
polation procedure as shown in Figure. 4. When the output dimension of the
sample is [14, z, x, y], it needs to be interpolated to [14, z*2, x*2, y*2], we di-
vide the z-axis into N points, then each slice is [14, z/N, x, y], then we perform
GPU-based interpolation on each slice, and finally merge the results of each slice
on the Z axis. Similarly, when Argmax operates on the [14, z, x, y] array, we
divide the z-axis into N parts again, and then perform the Argmax operation.
According to our test, this slicing operation hardly affects the accuracy. Dramat-
ically, the time here is reduced from 90s to 1s after switching to such GPU-based
implementation.

3 Experiments

3.1 Dataset and evaluation measures

The FLARE 2022 dataset is curated from more than 20 medical groups under
the license permission, including MSD [8], KiTS [3,4], AbdomenCT-1K [1], and
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Fig. 4. Optimized resize and argmax operation based on slicing.The left represents the
low-resolution output of the neural network’s likelihood for each organ, and the right
represents the segmentation result at the original resolution of the image.

TCIA [2]. The training set includes 50 labelled CT scans with pancreas disease
and 2000 unlabelled CT scans with liver, kidney, spleen, or pancreas diseases.
The validation set includes 50 CT scans with liver, kidney, spleen, or pancreas
diseases. The testing set includes 200 CT scans where 100 cases has liver, kidney,
spleen, or pancreas diseases and the other 100 cases has uterine corpus endome-
trial, urothelial bladder, stomach, sarcomas, or ovarian diseases. All the CT scans
only have image information and the center information is not available.

3.2 Data Augmentation

During our training process, we introduce the following data augmentation.
Gamma change, random Scale change between [0.6, 1.8], random enhancement
of contrast, Gaussian blur, random rotation.

3.3 Implementation details

Environment settings The development environments and requirements are
presented in Table 1.

Training protocols The Training protocols and details(e.g., batchsize, epoch,
optimizer) are presented in Table. 2 and Table. 3.
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Table 1. Development environments and requirements.

Windows/Ubuntu version Ubuntu 20.04.5 LTS
CPU AMD EPYC 7H12 64-Core Processor
RAM 16×4GB; 2.67MT/s
GPU (number and type) One NVIDIA A100 40G
CUDA version 11.1
Programming language Python 3.8
Deep learning framework Pytorch (Torch 1.11.1)
Specific dependencies
Link to code github code

Table 2. Training protocols for the coarse model.

Network initialization “he" normal initialization
Batch size 2
Patch size 96×128×160
Total epochs 500
Optimizer SGD with nesterov momentum (µ = 0.99)
Initial learning rate (lr) 0.01
Lr decay schedule halved by 200 epochs
Training time 8.5 hours
Number of model parameters 30.79M
Number of flops 225.68G

Table 3. Training protocols for the refine model.

Network initialization pre-train model
Batch size 2
Patch size 96×128×160
Total epochs 150
Optimizer SGD with nesterov momentum (µ = 0.99)
Initial learning rate (lr) 0.001
Lr decay schedule halved by 150 epochs
Training time 2.5 hours
Number of model parameters 30.79M
Number of flops 225.68G

https://github.com/Solor-pikachu/ Infer-MedSeg-With-Low-Resource
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4 Results and discussion

4.1 Quantitative results on validation set

Overall, as shown in Table. 4, our method achieves a mean Dice Similarity Co-
efficient (DSC) of 0.8725 and a Normalized Surface Dice (NSD) of 0.9109 on the
FLARE 2022 validation dataset, with an average inference time of 15 seconds
per case.

Table 4. DSC and NSC score in Validation dataset. Liv: liver, RKid: right kidney,
Spl: spleen, Pan: pancreas, Aor: aorta, IVC: inferior vena cava, RAG: right adrenal
gland, LAG: left adrenal gland, Gall: gallbladder, Eso: esophagus, Sto: stomach, Duo:
Duodenum, LKid: left kidney.

Metric Liv RK Spl Pan Aorta IVC RAG LAG Gall Eso Sto Duo LKid Avg.
DSC 0.977 0.916 0.958 0.870 0.953 0.870 0.793 0.770 0.800 0.866 0.912 0.762 0.897 0.873
NSD 0.972 0.911 0.955 0.949 0.969 0.863 0.898 0.867 0.806 0.934 0.931 0.881 0.902 0.911

4.2 Quantitative results on final test set

As shown in Table. 5, our method achieves a mean DSC of 0.870 and a NSD of
0.915 on the FLARE 2022 test dataset, with an average inference time of 12.27
seconds per case.

Table 5. DSC and NSC score in test dataset. Liv: liver, RKid: right kidney, Spl: spleen,
Pan: pancreas, Aor: aorta, IVC: inferior vena cava, RAG: right adrenal gland, LAG:
left adrenal gland, Gall: gallbladder, Eso: esophagus, Sto: stomach, Duo: Duodenum,
LKid: left kidney.

Metric Liv RK Spl Pan Aorta IVC RAG LAG Gall Eso Sto Duo LKid Avg.
DSC 0.981 0.946 0.948 0.821 0.958 0.867 0.8340 0.823 0.7860 0.796 0.888 0.727 0.924 0.870
NSD 0.981 0.948 0.954 0.913 0.977 0.868 0.950 0.924 0.794 0.882 0.904 0.868 0.931 0.915

4.3 Qualitative results on validation

We analyze the samples with relatively good predictions and those with poor
predictions. Figure. 6 and Figure. 7 show the results. Samples No. 21 and 23
are good cases, it can be observed that the well-segmented cases have clear
organ boundaries. Samples No. 42 and 48 are bad cases, they are often with
heterogeneous lesions.

1. It can be seen from the 3D images in Figure. 5 that our neural network
can extract masks for most normal organs, but it is difficult to identify the
organs with the lesions. In the good cases, the neural network can predict
most healthy organs very well, but in the bad cases, the organs with lesions
such as kidney tumors are poorly predicted.

2. In Table. 4, Table. 6 and Tabel. 7, our DSC scores are generally lower than the
NSD scores on the validation set. Our algorithm misjudges very few regions
when predicting, and has high confidence in the segmentation of each organ.
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3. From the experimental results in Table. 6 and Tabel. 7, it can be seen that
the duodenum, left and right adrenal glands, and inferior venacava have poor
DSC scores in the bad cases, but the NSD scores are generally higher than
DSC scores. We note that due to deformation and lesions of these organs, the
CT HU values of these organs have changed greatly, to which our algorithm
is not sensitive. The solution to this deserves further study in the future.

Fig. 5. Some representative segmentation results visualized by 3D Viewer

Table 6. NSD score of the samples shown in Figure. 6 and 7. Liv: liver, RKid: right
kidney, Spl: spleen, Pan: pancreas, Aor: aorta, IVC: inferior vena cava, RAG: right
adrenal gland, LAG: left adrenal gland, Gall: gallbladder, Eso: esophagus, Sto: stomach,
Duo: Duodenum, LKid: left kidney.

Case Liv RK Spl Pan Aorta IVC RAG LAG Gall Eso Sto Duo LKid Avg.
FLARES21 0.994 0.998 1 0.999 1 0.959 0.988 0.995 1 0.999 0.999 0.997 0.998 0.994
FLARES23 0.994 0.906 1 0.998 1 0.895 0.937 0.965 0.896 0.991 0.974 0.915 0.611 0.930
FLARES42 0.968 0.062 0.869 0.881 0.951 0.926 0.738 0.743 0.974 0.999 0.916 0.606 0.956 0.815
FLARES48 0.9774 0.987 0.736 0.905 0.999 0.005 0.645 0.989 0 0.531 0.570 0.806 0.833 0.691

Table 7. DSC score of the samples shown in Figure. 6 and 7. Liv: liver, RKid: right
kidney, Spl: spleen, Pan: pancreas, Aor: aorta, IVC: inferior vena cava, RAG: right
adrenal gland, LAG: left adrenal gland, Gall: gallbladder, Eso: esophagus, Sto: stomach,
Duo: Duodenum, LKid: left kidney.

Case Liv RK Spl Pan Aorta IVC RAG LAG Gall Eso Sto Duo LKid Avg.
FLARES21 0.990 0.985 0.991 0.931 0.982 0.951 0.911 0.900 1 0.947 0.970 0.931 0.985 0.959
FLARES23 0.986 0.919 0.992 0.925 0.983 0.919 0.849 0.871 0.932 0.932 0.968 0.812 0.547 0.895
FLARES42 0.975 0.121 0.910 0.795 0.932 0.933 0.570 0.644 0.938 0.899 0.925 0.432 0.967 0.772
FLARES48 0.980 0.980 0.817 0.841 0.973 0 0.589 0.910 0 0.480 0.524 0.546 0.897 0.657
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Fig. 6. Well segmented cases. Left is sample No.21, and right is sample No.23

Fig. 7. Poorly segmented cases. Left is sample No.42, and right is sample No.48

4.4 Tricks for Improvement

As show in Tabel. 8, our segmentation baseline is submitted based on plain
nnUNet, and achieves DSC of 0.855 on the validation set. By adding unlabeled
data, the DSC reaches 0.866. Further with the proposed coarse-to-fine segmen-
tation, the DSC reaches 0.873 and NSD 0.915 on the validation set.

4.5 Two Normalization Strategies

In the first dataset (for coarse segmentation), we normalize the data using the
individual normalization method. Because when locating the abdomen on CT
scans, there will be full-body CT, half-body CT, and abdominal CT, leading to
a big difference between samples. If global normalization is used, information
may be erased from the CT intensities of some samples. So we use individual
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Table 8. Effect of semi-supervised learning and coarse to fine strategy

Method Val DSC
Baseline 0.855
Baseline+Unlabeled Data 0.866
Baseline+Unlabeled Data+Coarse to Fine 0.873

normalization to normalize the data to have a mean of 0 and a variance of 1.
In the second dataset (for refining the segmentation), we use global normaliza-
tion. Because in the first Coarse segmentation, we already obtained the approx-
imate location of the abdomen, we crop the abdomen in the sample.

4.6 Effects of Sliding Windows

In the coarse segmentation, we use sliding windows instead of all voxels as input.
In fact, we tested performing coarse segmentation without sliding windows in a
way similar to the top 1 solution of FLARE 2021[10], and found that the results
of half-body CT and whole-body CT were very poor. Through visualization, we
noticed that the coarse model didn’t segment the approximate position of the
abdomen well, due to the fact that whole-body CT and half-body CT are very
scarce in the training data. So, it’s difficult to improve the segmentation quality
even using semi-supervised algorithms in whole-body CT and half-body CT. If
the inference was performed in the coarse model without sliding windows, the
model usually misidentified a large area as liver or kidney, and these samples
were easily connected together, resulting in wrong abdomen locating, and the
subsequent fine segmentation may be even worse. The method of using patch
sliding window inference can reduce the occurrence of this problem.

5 Conclusion

In this paper, we propose an algorithm based on nnUNet to develop an abdominal
organ segmentation method that can handle both abdominal CT and whole-
body CT, through coarse-to-fine segmentation scheme, using semi-supervised
algorithms. Quantitatively evaluated, the method achieves an average DSC of
0.873, and a NSD of 0.911 with an average process time of 15s per case in the
validation dataset. Also we achieve an average DSC of 0.870, and a NSD of 0.915
with an average process time of 12.27s per case in the test dataset.

Acknowledgements The authors of this paper declare that the segmentation
method they implemented for participation in the FLARE 2022 challenge has not
used any pre-trained models nor additional datasets other than those provided
by the organizers. The proposed solution is fully automatic without any manual
intervention. We thank to the timely help given by Bingding Huang in supporting



12 Huang et al.

GPU machine, Sixin Liu in supporting word spelling and grammar correction.
This study is supported in part by Natural Science Foundation of Top Talent
of Shenzhen Technology University (Grants No. 20200208 to Lyu, Mengye and
No. GDRC202134 to Li, Jingyu), and the National Natural Science Foundation
of China (Grant No. 62101348 to Lyu, Mengye).

References

1. 5
2. Clark, K., Vendt, B., Smith, K., Freymann, J., Kirby, J., Koppel, P., Moore, S.,

Phillips, S., Maffitt, D., Pringle, M., et al.: The cancer imaging archive (tcia): main-
taining and operating a public information repository. Journal of Digital Imaging
26(6), 1045–1057 (2013) 6

3. Heller, N., Isensee, F., Maier-Hein, K.H., Hou, X., Xie, C., Li, F., Nan, Y., Mu,
G., Lin, Z., Han, M., et al.: The state of the art in kidney and kidney tumor
segmentation in contrast-enhanced ct imaging: Results of the kits19 challenge.
Medical Image Analysis 67, 101821 (2021) 5

4. Heller, N., McSweeney, S., Peterson, M.T., Peterson, S., Rickman, J., Stai, B.,
Tejpaul, R., Oestreich, M., Blake, P., Rosenberg, J., et al.: An international chal-
lenge to use artificial intelligence to define the state-of-the-art in kidney and kidney
tumor segmentation in ct imaging. American Society of Clinical Oncology 38(6),
626–626 (2020) 5

5. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnu-net: a
self-configuring method for deep learning-based biomedical image segmentation.
Nature Methods 18(2), 203–211 (2021) 1, 2

6. Luo, X., Liao, W., Chen, J., Song, T., Chen, Y., Zhang, S., Chen, N., Wang, G.,
Zhang, S.: Efficient semi-supervised gross target volume of nasopharyngeal carci-
noma segmentation via uncertainty rectified pyramid consistency. In: International
Conference on Medical Image Computing and Computer-Assisted Intervention. pp.
318–329. Springer (2021) 4

7. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedi-
cal image segmentation. In: International Conference on Medical image computing
and computer-assisted intervention. pp. 234–241. Springer (2015) 3

8. Simpson, A.L., Antonelli, M., Bakas, S., Bilello, M., Farahani, K., Van Ginneken,
B., Kopp-Schneider, A., Landman, B.A., Litjens, G., Menze, B., et al.: A large an-
notated medical image dataset for the development and evaluation of segmentation
algorithms. arXiv preprint arXiv:1902.09063 (2019) 5

9. Van Ginneken, B., Schaefer-Prokop, C.M., Prokop, M.: Computer-aided diagnosis:
how to move from the laboratory to the clinic. Radiology 261(3), 719–732 (2011)
1

10. Zhang, F., Wang, Y., Yang, H.: Efficient context-aware network for abdominal
multi-organ segmentation. arXiv preprint arXiv:2109.10601 (2021) 11


