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Abstract

Recent advances in image captioning are driven by increasingly larger-scale vision–1

language pretraining, relying on massive computational resources and increasingly2

large datasets. Instead of solely focusing on scaling pretraining, we ask whether3

it is possible to improve performance by improving the quality of the samples in4

existing datasets. We pursue this question through two approaches to data curation:5

one that assumes that some examples should be avoided due to mismatches between6

the image and caption, and one that assumes that the mismatch can be addressed by7

replacing the image, for which we use the state-of-the-art Stable Diffusion model.8

These approaches are evaluated using the BLIP model on the COCO and Flickr30K9

datasets. Models trained with our data curation approaches consistently outperform10

their baselines, indicating that better image captioning models can be trained by11

curating existing resources. Finally, we conduct a human study to understand the12

errors made by the Stable Diffusion model and highlight directions for future work13

in text-to-image generation.14

1 Introduction15

Large-scale vision–language pretraining has been the driving force behind recent advances in image16

captioning [14]. The amount of image–text data needed to pretrain recent generative language17

models [28, 23, 53] has made it necessary to train on “noisy” samples harvested from the web18

[46, 45], as opposed to crowdsourced captions [32]. This emerging reliance on harvested data has19

made it important to perform additional filtering steps to remove low-quality data [28], in addition to20

more resource-intensive pretraining. Given that computing resources are not equally distributed [21],21

there is a need to also pursue less resource-intensive research directions.22

We show how to improve image captioning by improving the quality of the downstream task data23

through data curation: the process of dynamically updating the samples during training. We devise24

three techniques for data curation that are designed to prevent the total size of the dataset from25

increasing: the complete removal of an image–caption sample from a dataset; replacing a caption26

with another caption; and replacing images using a text-to-image generation model [41]. These27

curation techniques are used to update image–caption samples that have outlier losses, with respect28

to the rest of a training dataset, under the current model parameters. In other words, the samples that29

are proving difficult to model. Also, the synthesis of completely new images is radically different30

from standard data augmentation techniques, such as random cropping or color manipulation [47], or31

swapping and mask words in text [12].32

We conduct experiments using BLIP [28], a strong image captioning model, on the Flickr30K [56]33

and MS COCO datasets [32]. The results show that the sample removal and image replacement34

techniques lead to consistent improvements of 1–3 CIDEr points compared to not curating the35

dataset. Our analyses show that Flickr30K benefits from more curation than COCO due to differences36
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Figure 1: Overview of our data curation approaches. For dynamic removal or replacement of captions,
high loss image-text pairs are either removed or the image is paired with an alternative caption in the
following training epoch. For image replacement, captions of original images are used as prompts for
text-to-image generation to synthesize new image–text pairs. We experiment with both options of
replacing the image only, or pair another relevant caption to the synthesized image.

in the distribution of long captions in each dataset. Finally, we find that it is better to curate the37

data dynamically while training instead of replacing images before starting to train the model.38

Taken together, these findings show the promise of model-in-the-loop text-to-image generation for39

multimodal learning, while highlighting that improvements in text-to-image generation are likely to40

further enhance the effectiveness of data curation.41

2 Related work42

Image Captioning Image Captioning is the task of describing images with syntactically and43

semantically sentences. Current deep learning-based image captioning models have evolved as44

the encode-decoder frameworks with multi-modal connection [8, 9], attentive [24, 16] and fusion45

strategies [58]. Standard captioning datasets contain Flickr30K [56] and the commonly used MS46

COCO [32], which consisting of images with events, objects and scenes. Each image is paired with47

five captions. Some works have demonstrated the benefits of training on synthetic captions [29, 3] or48

datasets collected from other vision-and-language learning tasks [38, 7].49

Data Augmentation Data augmentation [13] has achieved increasing attention in both natural50

language processing [33] and vision-and-language learning [27]. Early methods generate augmented51

examples in the model’s feature space [54] or interpolate the inputs and labels of few examples [57].52

For downstream tasks in the text domain, Yang et al. [55] and Anaby-Tavor et al. [1] generate53

synthetic text examples through state-of-the-art pretrained language models and show improved54

performance on common-sense reasoning and text-classification. For image captioning, BERT [11]55

has been used to generate additional captions to improve the diversity of the captioning datasets [3].56

Hossain et al. [22] used GAN-synthesized images as additional augmentation training set to improve57

image captioning models.58

Diffusion Models and Application Diffusion models [49, 35] have grown rapidly and become59

the powerful deep generative models. They have shown potential in a variety of applications,60

including text-to-image generation [36, 15], image-to-image translation [42], as well as semantic61

segmentation [26, 5] and video generation [20, 48, 52]. While recent large scale latent diffusion62

models have shown strong capability in generating both artistic and photo-realistic high-resolution63

images [41, 34, 39, 43], applying large-scale stable diffusion models in vision-language downstream64

tasks remains under-explored. Concurrently, Azizi et al. [4] and Jain et al. [25] show that image65

classifiers can be improved by learning from augmentation images generated by finetuned stable-66

diffusion models. To the best of our knowledge, we are the first to explore how image captioning67

models can benefit from simple data curation without scaling up existing datasets, and how stable-68

diffusion text-to-image models can be applied and contribute in the process.69
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3 Data Curation for Captioning70

Our goal is to improve image captioning models by preventing the model from training on difficult71

samples. There are many reasons for the possible existence of these difficult samples, including72

mismatches or inconsistencies between the image and caption [3]. More formally, given an image73

captioning training dataset D with K images, let Ik be the k-th image. Each image is paired with74

J captions; let Cj
k be jth caption of image k, and thus, let (Ik, Cj

k) be an image–caption sample in75

the dataset. Assume the existence of model M, which is being trained on dataset D, from which we76

can calculate the loss of each sample at each epoch t: Lt
M(Ik, Cj

k), which can be used to track the77

difficult samples. At the end of each epoch, the difficult samples are candidates for our data curation78

techniques, resulting in dynamic updates to the training dataset D → D1 → · · · → DT .79

3.1 Identifying the difficult samples80
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Figure 2: Distribution of per-
sample losses in Flickr30K.

Difficult training samples may contain mismatches or inconsis-81

tencies between the image and the caption [3]. We propose to82

use the captioning model that is being trained to automatically83

identify such samples. After each epoch, we compute the loss84

of each sample in the current training dataset, given the current85

model parameters. The highest loss samples are targets for our86

data curation methods; more specifically, we focus on samples87

with losses that are either two standard deviations from the mean,88

or a fixed X% away e.g. 10%, 20%, etc. In this way, the training89

dataset is dynamically updated at the end of each epoch according90

to the model’s captioning capability. The adjacent figure shows91

the empirical distribution of losses in the training samples of92

the Flickr30K dataset. It is clear that, without data curation, the93

high-loss samples remain high-loss during five epochs of training.94

3.2 Sample Removal / Caption Replacement95

The simplest approach to data curation is to remove or replace the high-loss samples. In REMOVE,96

the high-loss samples are completely removed from the remainder of the training process, reducing97

the total number of image–caption training samples. In REPLACECAP, we simply replace the caption98

in the image–caption sample with a different caption taken from the other captions that describe the99

image, effectively creating a duplicate. With the caption replacement method, the total number of100

samples used to train the model remains the same, as well as the total number of the unique images.101

This creates a clean control condition for the subsequent experiments.102

3.3 Image Generation-based Replacement103

An alternative to removing difficult samples or replacing captions is to pair an existing caption with a104

new image. This has the benefit of training the model on the same total number of samples while105

exposing it to more unique images. The new image could be found by humans, in a long-running106

human-in-the-loop cycle. Instead, we use a text-to-image generation model, in a rapid model-in-107

the-loop step, to synthesize images based on the other sentences that describe the image. Some108

representative examples of images generated using this technique can be seen in Figure 10.109

Our methodology is based on the open source Stable Diffusion model [41], which can generate110

images given a textual prompt.1 We integrate this into training as follows: Given an image Ik in111

the training data and its captions {(Ik, C1
k), . . . , (Ik, C

J
k )}, we synthesize a new image Îk without112

increasing the total number of samples in the original dataset. Instead, we replace the original image113

in the sample with the generated image. Specifically, for image Ik, we replace a high-loss sample114

(Ik, C
j
k) with the synthesized image-text pair (Îk, C

j
k).115

1It is also possible to use API-based models but we chose Stable Diffusion for two reasons: (i) Stable
Diffusion can be integrated directly into our training pipeline using the open source code. And (ii) we estimate
that it would cost $7,424 to run a single experiment on the Flickr30K dataset using DALLE-2.
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Round-trip captioning evaluation116

In order to effectively use a text-to-image generation model for data curation, we need an objec-117

tive measure that can estimate the expected quality of a generated image. Most previous work118

uses image-oriented measures like FID [19] or CLIPScore [17] but these measures are claimed119

to lack alignment with perceptual quality [44]. We also found they were not suitable for our120

purpose, and that CLIPScore cannot distinguish between low- and high-loss samples in the cap-121

tioning model (Figure 9). Here, we propose an alternative that is directly related to our task: given122

the generated image, measure the quality of the caption that can be generated by a fixed model.123

Stable Diffusion 
Text2Img

Original Validation SD Validation

Predicted Captions

Evaluation

Image 
Captioning

a person in a blue jacket is 
sitting against a wall covered 
in graffiti

a person in a blue jacket is 
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A person in a jacket and 
wearing jeans kneels 
down to take a picture of 
a graffiti-laden wall.

Original Captions

Finetuned
BLIP 

model
Image Synthesize

Figure 3: Round-trip captioning evaluation.

Our assumption is that if the generated images124

are of a similar quality to the original images,125

the resulting captions should be similar to each126

other. We call this a round-trip captioning evalu-127

ation, which comprises three steps illustrated in128

Figure 3. In Step (1), we use the captions in the129

validation set to generate images using a text-to-130

image generation model. In Step (2), we use an131

existing image-captioning model to predict cap-132

tions for the generated images. Specifically, we133

use BLIP fine-tuned on the COCO dataset but134

any other strong captioning model could be used135

instead. Finally, in Step (3), we compare the pre-136

dicted captions against the original captions. We137

now discuss the the factors that we found make138

a difference when generating images.139

Prompt engineering matters140

Recall that text-to-image generation models produce images based on a textual prompts. Given a141

set of five captions that describe an image, there are several options for how to prompt the image142

generation model. We experiment with three options:143

• Single caption: Each caption is used in isolation to generate a new image.144

• Sentence-BERT selection: There is a lot of variety in how different captions describe the145

same image. Instead of using all captions, we can use a representative caption from the set.146

This is achieved using the Sentence-BERT [40] model to find the caption that is closest to147

the average embedding of all captions.148

• Concatenation: All five captions are concatenated as the text prompt for generation.149

For all three approaches mentioned above, we can append an additional string to the prompt as a150

styler to force a specific style in the generated image (+Styler). The styler used here is: "national151

geographic, high quality photography, Canon EOS R3, Flickr".2152

Finetuning improves image relevance153

Table 1: Round-trip captioning evaluation on
Flickr30K with different Stable Diffusion models,
prompts, and fine-tuning. BLEU, CIDEr, Meteor.

Model FT Prompt B C M

Upper-bound 37.6 27.2 57.1
SD 1.5 - concat 31.0 24.7 52.5
SD 1.5 - + styler 30.8 24.2 52.5
SD 1.5 F + styler 33.5 25.0 53.5
SD 1.5 F SBERT + styler 30.6 24.1 52.0
SD 2.0 - concat + styler 31.2 24.8 52.0

Table 1 shows the results of the round-trip cap-154

tioning evaluation on the Flickr30K dataset us-155

ing different textual prompts and whether or156

not to fine-tune the diffusion model. When157

we fine-tune StableDiffusion, we use the MS158

COCO [32] dataset with a prompt consisting159

of a concatenation of all 5 captions, for 15,000160

steps with a constant learning rate of 1e−5 and a161

batch size of 32. The best performance is clearly162

found by fine-tuning Stable Diffusion 1.5 and163

using a prompt with a concatenation of the cap-164

tions and the styler. We use this configuration in165

the remainder of the paper.166

2The styler was chosen by inspecting the generated images, with a preference against “artistic” outputs.
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Table 2: Results for standard finetuning with data curation. We find improvements for all curation
methods compared to the baseline of training on the original datasets. Best scores are in bold.

Method B M R C S CS RCS

Flickr30K
BLIP 37.6 27.2 57.1 92.8 20.1 78.6 81.1
+Remove 38.6 27.4 57.5 95.8 21.0 79.2 81.9
+ReplaceCap 37.9 27.4 57.4 94.5 21.1 78.9 81.5
+ReplaceImg 39.0 27.3 57.4 95.7 20.7 79.1 82.0
COCO
BLIP 39.9 30.8 59.9 132.0 23.8 77.3 82.8
+Remove 40.1 30.9 60.0 132.5 23.6 77.3 82.8
+ReplaceCap 40.2 30.9 60.1 132.7 23.9 77.3 82.8
+ReplaceImg 40.2 31.0 60.1 133.1 23.9 77.3 82.8

a soldier is taking a picture of a road

a soldier is looking through a scope

(a) Incorrect activity

a man is driving a tractor through a muddy field

a man is driving a jeep through a mud puddle

(b) Incorrect object

a woman in a black jacket is sitting on the ground

a woman is sitting on a stone bench

(c) Incorrect location

a woman standing in a kitchen preparing food

a woman washing a baby in a yellow tub

(d) Incorrect activity and object

Figure 4: Qualitative examples from the COCO dataset of captions generated by the BLIP model
(top), and the same model trained using our REPLACEIMG data curation (bottom). The errors made
by the BLIP model (shown in red) are avoided by REPLACEIMG curation (shown in blue).

4 Experiments167

We evaluate our data curation methods on the MS COCO and Flickr30K datasets when finetuning the168

pretrained BLIP [28] model. We evaluate the captions using BLEU [37], METEOR [10], ROUGE169

[31], CIDEr [51], SPICE [2], CLIPScore, and RefCLIPScore [18].170

We use the ViT-based BLIP model [28] as our captioning model. We note that BLIP has a captioning171

and filtering (CapFilt) data augmentation process during its pretraining, where both components were172

finetuned on the COCO dataset. Therefore we use pretrained checkpoint BLIPCapFilt for Flickr30k173

and BLIPbase for COCO in our experiment, removing the effects from the CapFilt process. We174

finetune BLIP using a batch size of 128 for 5 epochs on 4× A100 GPUs.175

4.1 Results176

Removal/Caption Replacement As shown in Table 2, dynamically removing mismatched image-177

text pairs or replacing captions can effectively improve performance on both datasets over baselines178

on all metrics. For Flickr30K, the dynamic updates work best when apply to the top 1% of high-loss179

samples for REPLACECAP, and to samples whose loss are two standard deviations higher than the180

mean for REMOVE. For COCO, both REPLACECAP and REMOVE works best when curating the top181

1% of high-loss samples. We repeat that during the curation process, no additional data samples or182

computation cost is introduced. We further study the effect of the amount of curation in Section 5.183

Image Generation-based Replacement We evaluate Image Generation-based Replacement on184

both the Flickr30K and COCO dataset. During finetuning, we replace images in the original text-185

image pairs with Stable Diffusion-synthesized images (ReplaceImg in Table 2). The results show186

improvements compared to the baseline in every evaluation measure with best performance obtained187

at replacement ratio of 40% for Flickr30K and at 10% for COCO. We show qualitative examples in188

Figure 4, where models finetuned with our proposed curation method can generate better captions for189

some scenes that may confuse the standard finetuned model. In Section 5.1, we analyze the effects of190

varying the amount of synthetic images replaced, and in Section 5.2, we conduct a human study of191

the types of errors found in the generated images.192
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Figure 5: Effects of the amount of data curated when finetuning the captioning model. We can
observe that Flickr30K needs more curation (40% REPLACEIMG or 2 std REMOVE) than COCO
(10% REPLACEIMG or 1% REPLACECAP). Flickr30K benefits more from removing high-loss
training samples, indicating the original dataset may be noisier than MS COCO. For the 2 std
approach, the number of samples curated is not fixed after each epoch and varies between 5% to 10%.

5 Analysis and Discussion193

5.1 Data Curation: how much and when?194

We analyze how the amount of curation affects image captioning performance. We examine different195

ratios of training samples that are removed, replaced with an alternative caption, or replaced with196

a synthesized image. For REMOVE and REPLACECAP, we consider curation ratio of 1%, 5% and197

10% of high-loss samples. For REPLACEIMG, we consider 10%–80% curation ratio. In addition to198

fixed X% ratios, we also intereven on samples that have losses two standard deviations worse than199

the mean.200

Flickr30K needs more curation than COCO. The results of this analysis are shown in Figure 5.201

The best improvement in performance for Flickr30K is achieved either through removing high loss202

samples that are two standard deviations away, or replacing images for 40% of the high loss samples.203

Figure 6: Distribution of caption lengths.

In the COCO dataset, replacing images for 10% of the204

high loss samples gives the best improvement compared205

to no data curation. The second best performing method206

for COCO is removing or replacing captions of only 1%207

of the high loss samples. This indicates that Flickr30K208

may contain more noisy samples than the MS COCO209

dataset. Compared to MS COCO, Flickr30K contains210

more samples with long captions (Figure 6), which may211

include overly-specific details that are inconsistent with212

other captions and are hard for the model to learn. See213

more examples in our supplemental materials. Through214

our curation-based finetuning, these samples can be effec-215

tively identified, removed or replaced, which indicates that216

our method is efficient when training with noisy datasets. We note that curating more than 50% of217

the data does not benefit training and actually harms performance.218

Static image replacement versus dynamic replacement In REPLACEIMG (Section 3.3), we219

dynamically replace images for the difficult training samples. Another static approach is to replace220

the identical images, i.e. Ik in {(Ik, C1
k), . . . , (Ik, C

J
k )}, with unique SD-synthesized images before221

training, instead of updating the training samples while training. With static image replacement, for222

each of the reference captions, we replace their original image with a SD-synthesized image. Static223

replacement with 20%–80% curation ratio corresponds to replacing images for one–four captions of224
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(b) Human evaluation versus CLIPScore.

Figure 9: Results of the human study of the errors made by the Stable Diffusion model in 100 images.
The images used in the study were chosen to represent either low or high model loss. (a) Histogram of
the number of errors annotated in each category. The most frequently occurring annotations concern
weird deformations in the expected objects or humans. (b) Relationship between average number of
identified errors by human annotations for each synthesized image and its captioning loss with regard
to original captions. More errors are identified in images of higher loss. However, CLIPScore appears
to fail in validating qualities of the synthesized images, as the score ranges are almost identical for
samples that contain more errors.

the original five. The 50% replacement ratio mimics a fair coin-flip, where for each of the text-image225

samples, there is 50% probability for the image to be replaced by a synthesized image.226

We compare the efficacy of these two approaches in Figure 7. When evaluating on the original227

1k validation set, we see that for both approaches, incorporating synthesized images of 20% or228

40% can assist finetuning and achieves higher BLEU4 and CIDEr scores. Nevertheless, dynamic229

image replacement consistently performs better than the static method, showing focusing on the hard230

samples is effective. For both replacement methods, performance starts to decrease when the curation231

ratio is too high. This may indicate that when incorporating too many images from the synthetic232

distribution, the gap increases between the training and evaluation sets.233

Figure 8 shows the effect of the curation techniques in the training loss distributions across epochs.234

For the REMOVE approach, training samples with loss that are two standard deviations worse than the235

mean are dynamically removed during training, leading to the shrinking tail of the loss distribution.236

SD-based image replacement gradually reduces losses through learning from a mixture of Gaussian237

distribution from original image-text pairs and the ones contain synthesized images.238
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Image Caption CLIPScore Loss Categorized Errors

A picture of two women with one in lacy white 
dress with handbag and leggings and the other 
with a tall red hat, black mid-dress, and frame like 
plastic dress on top. 

84.1 181.0 type/color of clothing,
color-clothing,
weird-face

A pedicab driver waiting on his bike. 89.3 169.2 weird-main-object,
weird-other-object,
weird-body-parts,
stance

A man in a black suit with tie and corsage smiles 
at a girl who smiles back, both are sitting at a 
table at a semi formal event such as a wedding 
or reunion. 

77.6 163.5 color-clothing,
weird-body-parts,
wrong-main-object,
scene/event/location

Two men are playing guitars and one man is 
singing into a microphone on a stage with the 
spotlight on them. 

74.7 26.0 weird-face, 
weird-body-parts, 
weird-main-object, 
weird-other-object

There a several people in a dark bar-type room, 
including one girl on a stool. 

84.9 26.5 number, 
weird-face, 
weird-main-object, 
weird-body-parts

Many children are playing and swimming in the 
water. 

78.2 26.9 weird-face, 
weird-body-parts

Figure 10: Examples of synthesized images that are of high losses (top) and examples of synthesized
images that are of low losses (bottom). Human annotations show that consistent error types have
been recognized for the high loss samples while CLIPScore fails to align with human judgement.
The low loss synthesized images are visually less complicated than the higher loss ones, but can still
often look weird and contain errors in color or objects.

5.2 Human Study: Errors made by SD models239

Finally, we conduct a human study of the errors present in the SD-synthesized images. This will240

serve to better understand any shortcomings with this approach that is not captured by automatic241

evaluation measures.242

We first ranked SD-synthesized images by model loss from the 1K images in the validation set. This243

validation set of synthesized images was generated using the best performing configuration of the244

Stable Diffusion model (see Section 3.3). We then sampled a subset for human annotation using the245

top and bottom 50 images based on their loss using our fine-tuned captioning model. These images246

are uniformly divided into 5 sets, each containing 20 images with equal number of the high loss247

ones and the low loss ones. The data was annotated by 12 people, members of a university research248

lab with a basic understanding of Stable Diffusion but no knowledge of the bi-modal distribution249

of images. The annotators were asked to categorize the errors they observed in the synthesized250

images, given both the image and the reference sentences that were used to generate the images. Each251

participant annotated one set of 20 images.252

Starting from the categories defined by van Miltenburg and Elliott [50], we predefined 25 categories253

including general errors such as color, or number mismatches, and errors related to people and254

objects in the images. Please see the user interface in supplemental materials. We analyze the human255

judgements for the images that have at least three annotations, yielding 74 unique images.256
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As shown in Figure 9a, the most common problem of SD-synthesized images are that they often257

generate weird face or body parts, which makes the images less natural or pleasant. The Stable258

Diffusion model is also weak at generating the correct number of people or objects. From Figure 9b259

we confirm the quality of our collected annotations that high loss figures often contain more errors260

on average. Furthermore, we note that CLIPScore does not appear to align with human judgements,261

indicating its weak capability of evaluating quality of generated images. Please see more concrete262

examples in Figure 10.263

6 Conclusion264

In this paper, we have shown a simple, yet effective, data curation framework that can improve the265

performance of image captioning models. We investigated three approaches to data curation that266

dynamically update the training dataset based on high-loss image-caption samples. The methods267

involved either removing a sample, replacing the caption in a sample, or generating a new image268

from existing captions. Experimental results on the Flickr30K and MS COCO datasets show the269

effectiveness of these approaches to data curation without increasing the total size of the training270

dataset. A deeper analysis of the images synthesized by Stable Diffusion shows frequent errors on271

generating objects of a certain amount or color, and struggles with human body features. A human272

evaluation of the errors in those images shows a clear difference in images with high or low losses.273

In the future, we expect that better text-to-image generation models will lead to further improvements274

from using synthesized images for difficult captions in existing training datasets. We plan on275

verifying whether these findings extend to other image captioning models, which was not possible276

here due to computational issues. Finally, we are interested in applying the same framework to other277

multimodal tasks, especially those with undercomplete datasets that cannot comprehensively cover278

the distributional space due to the cost of crowdsourcing enough data, e.g. visual question answering,279

or visually-grounded dialog.280

Limitations281

While our curation methods being effective on image-captioning in the finetuning and fewshot-282

learning settings, it is not clear if the same strategy can be scaled and adapted also to vision-language283

pretraining. Currently our data curation methods also rely on state-of-the art pretrained models for284

both image understanding and text-to-image generation. In pretraining, models will often be trained285

from scratch and pretraining data are often collected from multiple datasets and resources.286

Moreover, while we take an online approach to data curation, our current approach is upper bounded287

in speed and performance of the text-to-image generation model. This might be a large bottle neck288

for adapting the strategy for more complicated vision-and-language tasks.289

Ethics Statement290

Text-to-image generation with Stable Diffusion is controversial in the broader AI and ethics291

community[6]. For example, it can generate images according to gender or racial stereotypes,292

which may prove harmful to members of those communities [30]. In this paper, we use Stable293

Diffusion to improve the quality of an image captioning model, given a specific set of crowdsourced294

captions. Those captions may themselves contain harmful stereotypes that would become more295

prevalent in our dynamically updated training datasets. As we dynamically update the model with296

new images based on loss values, we remove the water-marker in our generated images to pre-297

vent information leak to the model. Use of the synthesized images will strictly follow community298

guidelines.299
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