WISP: A Stealthy Word-level Backdoor Attack via Semantic Influence and
LLM-Guided Injection

Anonymous ACL submission

Abstract

Word-level backdoor attacks have drawn con-
siderable attention due to their high attack suc-
cess rate (ASR) and strong clean accuracy
(CACC). However, existing methods typically
rely on fixed trigger words, which are eas-
ily detectable and suffer from poor stealth(i.e.,
producing natural looking poisoned samples).
Moreover, their effectiveness drops signifi-
cantly under low poisoning rates, limiting their
practical applicability. To address these issues,
we propose WISP (Word-level Injection via Se-
mantic Probabilities), a novel word-level back-
door attack that achieves both high effective-
ness and strong stealth, particularly under low
poisoning rates. WISP dynamically selects trig-
ger words based on their influence on model
prediction probabilities, incorporating both pos-
itively associated words and negatively asso-
ciated "reverse-influence” words. To further
enhance naturalness, we leverage a large lan-
guage model to inject trigger words into benign
samples with minimal semantic disruption. Ex-
periments on four benchmark text classification
datasets show that WISP consistently improves
ASR while preserving high CACC, and demon-
strates stronger resilience to existing defense
mechanisms. Our findings highlight the under-
estimated risks of semantically aligned, stealthy
backdoor attacks in real-world NLP systems.

1 Introduction

In recent years, NLP models have been widely
used in the real world(Schmidt and Wiegand, 2017).
In order to obtain better performance, NLP mod-
els require large amounts of data for training, and
therefore, it has become common to use third-party
datasets. However, the use of unvalidated third-
party datasets implies opacity in training, which
may pose a security risk.

A backdoor attack is a stealthy and high-impact
threat, usually originating from the data of a ma-
licious third party(Li et al., 2024). By embed-
ding hidden trigger patterns, the attacker makes

the model behave well with normal inputs, but out-
puts preset labels when specific trigger conditions
are encountered. Backdoor attacks represent an
emerging threat in NLP security, warranting further
investigation to understand their risks and potential
impact.

Backdoor attack research in NLP has histori-
cally focused on two critical aspects: effective-
ness—the ability to reliably trigger the backdoor,
and stealthiness—the ability to remain undetected
by users and defense mechanisms. Around these
two goals, existing methods generally fall into two
main categories: word-level and sentence-level at-
tacks. Word-level attacks, which manipulate indi-
vidual words through rare word insertion or syn-
onym replacement (Kurita et al., 2020; Qi et al.,
2021d), often achieve high attack success rates
(ASR) due to their direct influence on model pre-
dictions. However, they often introduce unnatural
language artifacts, harming text fluency and thus
reducing stealthiness. Sentence-level attacks im-
prove stealthiness by inserting natural fixed sen-
tences or performing style and syntactic transfor-
mations (Dai et al., 2019; Qi et al., 2021b,c), which
maintain better text quality. Yet, this usually comes
at the cost of decreased attack effectiveness, as the
subtle semantic changes limit the backdoor’s im-
pact. Moreover, a common and critical limitation
of both approaches is their poor performance un-
der low poisoning rates, where attack effectiveness
is significantly compromised (Figure 1). Achiev-
ing a satisfactory balance between effectiveness
and stealthiness remains an open challenge in the
field, especially given the significant drop in at-
tack success rate (ASR) under low poisoning rate
conditions.

In order to solve the above problems of word-
level attack methods, Jun Yan et al. pro-
posed a word-level backdoor attack method called
BITE(Yan et al., 2023). BITE selects trigger words
by maximizing the z-score (Gardner et al., 2021), a
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Figure 1: Overview of Backdoor Attack Paradigms.
Existing word and sentence-level attacks struggle to
balance stealth and effectiveness. Our proposed method
is both stealthy and effective.

measure of the degree of word bias towards the tar-
get label, and performs contextualized word-level
scrambling through a masked language model and
a dynamic budget, iteratively introducing the trig-
ger words to maintain the naturalness of the text
while enhancing the Attack effect. However, BITE
still suffers from the problems of insufficiently high
ASR, poor sentence quality, and poor attack effec-
tiveness especially at low poisoning rates.

To this end, we propose WISP (Word-level
Injection via Semantic Probabilities), an improved
word-level backdoor attack method that jointly op-
timizes attack effectiveness and stealthiness. Mo-
tivated by insights from BITE, we observe that
the choice of trigger words plays a critical role in
determining the success of word-level backdoor
attacks. Unlike previous approaches that rely on
heuristic frequency-based metrics (e.g., z-score),
WISP selects trigger words dynamically based on
their impact on the model’s prediction probabili-
ties. Concretely, we first train a model on clean
data, and then identify candidate trigger words that
strongly promote the target label, as well as reverse-
influence words associated with non-target labels,
by measuring prediction shifts caused by word in-
sertion or deletion. To preserve fluency and natu-
ralness, we employ a large language model (LLM)
to seamlessly inject trigger words into benign sam-
ples. By leveraging semantic cues and model-
driven feedback, WISP generates high-quality poi-
soned samples with strong semantic-label align-
ment, achieving high ASR even at low poisoning
rates, while maintaining a high level of covertness
(as shown on the right part of Figure 1 ).

We evaluate several backdoor attack methods

on four medium-sized text classification datasets.
WISP achieves over 90% ASR at a low poisoning
rate of 1%, significantly outperforming all base-
lines. At higher poisoning rates, WISP maintains
near 100% ASR, surpassing sentence-level attacks.
It also shows better text quality and covertness than
baseline word-level attacks, effectively balancing
ASR and stealthiness, especially at low poisoning
rates. Moreover, under various defense mecha-
nisms, WISP’s ASR remains largely unaffected,
demonstrating strong defense resistance.

In summary, the main contributions of this paper
are as follows:

* We propose WISP, a novel word-level back-
door attack method that effectively balances
effectiveness and stealthiness, especially un-
der low poisoning rates. Unlike previous ap-
proaches that often sacrifice covertness for
effectiveness or vice versa, WISP maintains
high ASR while generating fluent and incon-
spicuous poisoned samples.

* We design a dynamic trigger word selection
strategy based on semantic influence on model
predictions, moving beyond frequency-based
heuristics. By leveraging prediction proba-
bility shifts and utilizing an LLM to inject
trigger words fluently, WISP captures deeper
semantic-label associations and enhances the
naturalness of poisoned texts.

* Extensive experiments conducted on four
benchmark datasets demonstrate that WISP
consistently outperforms baselines in terms of
ASR, text quality, and robustness to defense,
achieving over 90% ASR at only 1% poison-
ing rate and maintaining strong attack perfor-
mance under multiple backdoor defenses.

2 Methodology
2.1 Threat Model

Adversary’s Objective In a text classification task,
let X denote the input space, Y the label space,
and D the joint input-label distribution over X x Y
, representing the true distribution of the data. The
attacker’s objective is to inject a backdoor into the
victim model via data poisoning, resulting in a
compromised model Mj. The desired behavior of
My, is twofold: (1) for clean inputs z, the model
should behave normally and predict the correct
label y, (2) for inputs containing a specific trigger



pattern 7'(x), the model should misclassify them as
a predefined target label y;qrget, regardless of their
original ground-truth label. Formally, the backdoor
model satisfies:

Mb(x) =y, Mb(T(-T)) = Yrarget, V(x,y) ~D

Adversary’s Capacity We assume that the at-
tacker has control over the training data avail-
able to the victim model. To ensure stealthiness,
the attacker modifies only a small subset of the
training samples by embedding a predefined trig-
ger pattern T'(x), while keeping their original la-
bels unchanged, constituting a clean-label attack.
Although the attacker cannot interfere with the
model’s training process, they are allowed to query
the trained model and observe its outputs.

2.2 Overall Framework of WISP

Figure 2 presents the overall framework of WISP,
which aims to identify and inject semantically
meaningful, context-robust trigger words for label-
targeted poisoning. WISP proceeds in three
stages. First, it constructs two vocabularies: the
label-relevant list Vj,;; and label-irrelevant list
Vion—label, Dy measuring each word’s influence on
model predictions. Second, it derives a candidate
trigger list 7" and counter-influence list C' by evalu-
ating bi-gram combinations across these vocabular-
ies to select context-invariant triggers. Third, it re-
places counter-influence words in training data with
triggers and employs an LLM to improve fluency
and coherence. Compared to traditional methods
like z-score or gradient-based selection, WISP bet-
ter isolates semantic relevance from context effects
and enhances the stealthiness of poisoned samples
through LLM-based rewriting.

2.3 Construction of Vj;; and V., _japer

To identify words correlated with the target label,
we first train a clean model M, on a clean training
set Dy,in and store all words in the training set in
a dictionary V. Then, for each input X; € Dyin
containing n words, we generate n masked variants
by individually replacing each word with a <mask>
token. This process produces an augmented dataset
Dj.,;, comprising all such masked samples. For
each word w € V, we compute its influence score
A(w,y;) on a given class y; based on the average
change in the model’s prediction probability caused
by masking w. Specifically, let X, C Dypin de-
note the set of training samples containing w, and

let Sy, € Dy, be the corresponding set of masked
samples in which w has been replaced with the
<mask> token. The influence score of w on class
y; is then calculated as the average difference be-
tween the prediction probabilities before and after

masking:

1
Aw,y) = 5 S (Pu(ys1S:) — Pelyi| X))
e

Here, P.(y;|S;) and P.(y;|X;) denote the pre-
dicted probabilities of class y; for the original and
masked samples, respectively, as computed by the
clean model M.. The influence score A(w,y;)
therefore reflects how strongly the presence of a
word w affects the confidence of the model in clas-
sifying a sample as label y;. Then we determine
w’s most associated label by selecting the class v,
that maximizes its influence score:

ya, = arg max A(w, y;)
Yj

We then sort all words w € V in descending
order based on their corresponding maximum influ-
ence scores A(w, y5 ). For each target label y;, we
construct the label-relevant word list V¢, contain-
ing the top-k words with the highest positive influ-
ence scores on target label, and the label-irrelevant
word list V45, —1abel, cOntaining the top-k words
with the lowest (i.e., most negative or least posi-
tive) influence scores on target label.

2.4 Building Candidate Trigger List 7" and
Counter-Influence Word List C'

We begin by defining counter-influence words as
words that exhibit strong association with non-
target labels. In contrast, words highly correlated
with the target label are considered as potential
triggers. The goal of this stage is to accurately
construct two refined word lists: the candidate trig-
ger list 7', which contains words that consistently
promote predictions towards the target label, and
the counter-influence word list C', which contains
words that are more likely to shift predictions to-
ward non-target labels.

To achieve this, we leverage the initial vocab-
ulary partitioning from the previous stage, Vigpe;
and V,,n—1abel, as a coarse filter that reflects each
word’s directional influence on model predictions.
We then perform a second-pass evaluation to re-
fine this classification and ensure robustness across
diverse contexts.
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Specifically, we denote g as the target label. For
each word w® e Viaber, we pair it with every word
w™ e Vion—1label to construct a set of bi-gram
phrase samples:

Xw(t) = {(w(t)a wj(n)) ’ w](n) € Vnonflabel}

Each bi-gram sample z; € X () is passed through
the clean model M. to obtain its prediction proba-
bility for the target label yo, denoted as P (yo|z;).
The target-label association score for w(®) is then
computed by averaging the predicted probabilities
over the k bi-gram samples:

> Pulyo|))

Tj EXw(t)

a(w®) = -

We then rank all words w® € Vi in descending
order according to their scores o(w®), and select
the top-m words to form the candidate trigger list 7.
An analogous procedure is applied to the words in
Vion—1abel to compute their non-target association
scores and select the counter-influence word list C'.

This two-step filtering process enables robust
and context-independent trigger word identification
by isolating label-relevant signals from contextual
noise and capturing consistent associations with
the target label.

2.5 LLM-guided Stealthy Word Injection

In this stage, we use a combination of word sub-
stitution and insertion to inject trigger words into

clean sentences while keeping them natural and
fluent. For each sentence X with n words, we set
a maximum allowed modification ratio to control
the extent of changes. We first try to replace words
in X that come from the counter-influence list C
with trigger words from the list 7', following the
order in 7T'. If the number of replacements does
not reach the modification limit, we then insert
more trigger words from 7" into the sentence until
the limit is met. Finally, the modified sentence is
passed to a large language model, which rewrites it
to enhance fluency and coherence, while preserv-
ing the inserted trigger words as much as possi-
ble. This LLM-guided refinement ensures that the
poisoned samples remain both stealthy and seman-
tically aligned, addressing the unnatural phrasing
often seen in conventional poisoning methods.

3 Experimental Setup

3.1 Datasets

This work evaluates the proposed backdoor attack
method on four publicly available text classifi-
cation benchmarks: SST-2(Socher et al., 2013):
movie review sentiment bicategorization. hate-
Speech(de Gibert et al., 2018): forum post hate
speech bicategorization. tweet(Mohammad et al.,
2018): tweet Sentiment Recognition IV classifica-
tion. TREC(Hovy et al., 2001): Questioning VI
classification.

These datasets cover different task and class



sizes and are used to validate the cross-task gener-
alization of the approach; the experiments evaluate
both Attack Success Rate (ASR) and Cleaning Ac-
curacy Rate (CACC).

3.2 Baselines

To verify the effectiveness of WISP, we compare
it with five state-of-the-art baselines: BITE(Yan
et al., 2023), StyleBkd(Qi et al., 2021b), Syntac-
ticBkd(Qi et al., 2021c), BadNet(Gu et al., 2017),
and AddSent(Dai et al., 2019), which represent
iterative trigger optimization, style transfer, syntac-
tic manipulation, sample-level injection, and fixed-
sentence insertion strategies, respectively. These
baseline methods represent the current mainstream
techniques in the field of text backdoor attacks and
provide an effective comparison basis for evaluat-
ing the effectiveness of WISP.

3.3 Attack Setup

To evaluate the effectiveness of the proposed
backdoor attack, we conduct experiments under
the clean-label setting, where the attacker injects
trigger-modified samples into the training data
without altering their ground-truth labels. We test
three poisoning rates (1%, 10%, and 20%) to assess
robustness across different attack intensities. For
each sentence, the maximum proportion of modi-
fied words is capped at 0.35 to preserve naturalness.
The target labels vary by dataset: “positive” for
SST-2, “clean” for HateSpeech, “anger” for Tweet,
and “abbreviation” for TREC.

We use BERT-Base (Devlin et al., 2019) as the
victim model. During training, the model is trained
on a poisoned training set, while the best check-
point is selected based on performance on a clean
development set, simulating real-world scenarios
where only clean validation data is available. For
each attack, we select appropriate trigger words to
induce the model to misclassify trigger-containing
test samples into the attacker-specified target label,
while maintaining high accuracy on clean samples.

3.4 Indicators for Model Evaluation

We evaluate backdoor attacks using two primary
metrics: Attack Success Rate (ASR) and Clean
Accuracy (CACC). ASR measures the proportion
of non-target samples that are misclassified as the
target label when triggers are present in the input,
reflecting the attack’s effectiveness. CACC denotes
the model’s accuracy on clean, trigger-free test data,
indicating the stealthiness of the attack. An ideal

backdoor model should achieve a high ASR while
maintaining a high CACC, ensuring that normal
predictions remain unaffected. Together, ASR and
CACC provide a comprehensive evaluation of the
attack’s performance in terms of both impact and
invisibility.

3.5 Evaluation Metrics for Poisoned Data

To further assess the quality of poisoned samples,
we introduce four complementary metrics:

* Naturalness: Measures the semantic con-
sistency, fluency, and conformity to human
writing habits of the text after trigger injec-
tion(Yan et al., 2023).

* Perplexity: Measures the fluency of the poi-
soned text using a pre-trained language model.
Lower perplexity indicates higher fluency and
better stealthiness (Radford et al., 2019).

 Spelling Error Rate: Evaluates whether the
trigger injection introduces spelling mistakes.
A lower error rate reflects higher text qual-
ity(lan).

* Syntactic Error Rate: Assesses whether the
poisoned text violates grammatical rules. A
lower rate indicates better grammaticality and
naturalness(lan).

These indicators enable a holistic evaluation of poi-
soned data, ensuring that the backdoor attack is
effective, stealthy, and preserves linguistic quality.

4 Experiments

4.1 Backdoor Attack Evaluation Results

Table 1 presents the evaluation results of various
backdoor attack methods under a low poisoning
rate of 1% using BERT-Base. As shown, all meth-
ods exhibit minimal impact on the CACC, indicat-
ing that the normal predictive performance of the
model is well preserved. However, WISP achieves
a significantly higher ASR compared to all base-
lines. This demonstrates the effectiveness of WISP
in selecting trigger words that are more semanti-
cally aligned with the target label, enabling strong
attack performance even at low poisoning intensi-
ties.

Appendix Table 5 and Appendix Table 6 re-
port results on the SST-2, HateSpeech, and Tweet
datasets with increased poisoning rates of 10%
and 20%. The TREC dataset is excluded from



Attacks SST-2 HateSpeech Tweet emotion TREC

ASR CACC ASR CACC ASR CACC ASR CACC
Style 20.9 91.8 55.5 91.5 22.1 80.9 4.68 96.8
Syntactic 36.4 91.4 78.1 91.6 31.9 80.2 50.3 97.2
badnet 40.4 91.1 91.8 91.3 19.7 81.1 41.2 97.0
addsent 42.8 92.2 86.7 91.4 14.3 80.9 64.0 97.2
BITE(Full) 64.4 914 82.8 91.7 49.1 82.0 50.9 96.6
WISP 95.9 91.8 94.9 91.1 97.0 80.8 93.9 97.4

Table 1: Backdoor Attack Performance under 1% Poisoning Rate (BERT-Base)
Attacks SST-2 Hate Tweet TREC

Nat. PPL S.E. GE.| Nat. PPL SE. GE.|Nat. PPL S.E. GE.| Nat. PPL S.E. G.E.

Style 0.787 161.38 2.5 2.9 |0.828 163.27 2.0 3.8 [0.941 202.95 2.5 0.5 |0.784 105.78 09 2.8
Syntactic |0.392 134.54 3.6 6.3 |0.383 112.99 4.7 9.1 |{0.326 140.49 3.5 9.0 |0.399 167.39 6.6 19.8
badnet 0.550 530.61 20.9 3.0 |0.551 584.12 21.3 5.7 |0.402 587.05 22.2 4.8 |0.654 724.38 23.5 4.6
addsent 0.431 213.76 09 2.9 |0.508 21398 1.6 6.2 |0.592 302.53 1.9 6.2 /0.244 341.40 0.1 10.1
BITE(Full)|0.598 246.54 1.0 2.3 |0.586 245.84 2.2 7.6 |0.470 528.48 2.6 5.8 |0.841 302.56 0.2 2.9
WISP 0.776 147.76 0.7 1.4 |0.797 209.82 0.8 1.6 |{0.801 168.85 1.0 1.6 |0.851 197.21 0.1 3.1

Table 2: Quality Evaluation of Poisoned Samples on Four Datasets

higher-rate experiments due to its multi-class struc-
ture and sparse label distribution, which limits
the feasibility of high-rate attacks. As shown in
the appendix, all methods continue to maintain
comparable CACC, suggesting stealthiness is pre-
served. Meanwhile, WISP achieves ASR perfor-
mance close to the explicit trigger-based methods
(BadNet and AddSent), and significantly outper-
forms covert attack strategies such as Style, Syn-
tactic, and BITE. These results confirm that WISP
sustains its effectiveness across varying poisoning
rates, delivering high ASR while retaining the se-
mantic subtlety of word-level backdoor injection.

4.2 Quality Evaluation of Poisoned Samples

Table 2 reports the quality evaluation of poisoned
samples, using test samples from SST-2, Hate-
Speech, Tweet, and TREC. In terms of naturalness,
Style performs best on SST-2, HateSpeech, and
Tweet, while WISP ranks second and achieves the
highest score on TREC. For perplexity, Syntactic
yields the best performance, followed by Style and
WISP. WISP achieves the lowest spelling error rate
across all datasets and obtains the best grammar
correctness on SST-2 and HateSpeech, while per-
forming competitively on Tweet and TREC.

These results confirm that WISP generates high-
quality poisoned samples with fluent, natural sen-
tences and strong stealth, substantially outperform-
ing BITE across all evaluation metrics.

4.3 Defense Resistance Ability

From a practical and security perspective, we fur-
ther evaluate the robustness of different backdoor
attack methods in scenarios where backdoor de-
fenses are deployed. Existing data-level defenses
can be broadly categorized into two types: training-
time defenses and test-time defenses.

For training-time defenses, CUBE(Cui et al.,
2022) clusters the embedded representations of
training samples to identify and remove poisoned
data, while BKI (Chen and Dai, 2021) detects key-
words that significantly influence model predic-
tions and eliminates training samples containing
these keywords. For test-time defenses, ONION
(Qi et al., 2021a) filters out potential trigger words
from test samples based on language model per-
plexity, and STRIP (Gao et al., 2022) rejects inputs
that exhibit high prediction sensitivity to random
word perturbations, which is indicative of possible
backdoor triggers.

In this study, we apply these four representative
defenses to evaluate the resilience of various back-
door attack methods. Table 3 reports the attack
performance on the SST-2 dataset under a poison-
ing rate of 0.01, after each defense is deployed.

As shown, CACC remains mostly unaffected
across methods, except for BadNet, which shows a
noticeable performance drop under STRIP. Regard-
ing the ASR, all methods experience some degra-
dation, with BadNet being the most significantly
impacted. In contrast, our proposed WISP exhibits



SST2 Style Syntactic badnet addsent | BITE(Full) WISP

No Defense 20.9 36.4 40.4 42.8 64.4 95.9
ONION | 155 5.4)371(10.7)| 322(}8.2) |439(11.1)]63.7(0.7) |94.5(] 1.4)
ASR STRIP |18.3(12.6)|34.4(]20)| 344(16.0) |41.7(} 1.1)| 63.4( 1.0) |94.5(] 1.4)
CUBE 16.6 (1 4.3) [35.1(} 1.3)|25.7(} 14.7) | 389 (1 3.9)| 61.7 (4 2.7) | 95.8 ({ 0.1)
BKI 20.2 (1 0.7)136.0(] 0.4)| 38.4(,2.0) |39.6(]3.2)|61.1({ 3.3)|95.0( 0.9

No Defense 91.8 91.4 91.1 92.2 91.4 91.8
ONION [92.2(10.4)[91.6(10.2)| 91.7(10.6) [92.2 (4 0.0) | 91.3(J 0.1) | 91.8 (] 0.0)
CACC| STRIP (919(10.1)|91.5(10.1)| 82.1(19.0) {92.2(,0.0) | 91.8(10.4) |92.2 (1 0.4)
CUBE 91.6(10.2)(91.1(}03)| 923 (11.2) 19191 0.3)|91.9(10.5)|91.4(0.4)
BKI 917 0.1)|91.3( 0.1)| 91.5(10.4) |91.8(1 0.4)|91.4(40.0)|91.2(0.6)

Table 3: Defense Performance against Backdoor Attacks on SST-2 (1% Poisoning)

minimal performance degradation, with an average
ASR drop of less than 1.0%. This demonstrates
that WISP is highly robust against strong backdoor
defenses, effectively balancing stealth and attack
effectiveness.

4.4 Ablation Studies

In the ablation study, we use the TREC dataset with
a poisoning rate of 1%, and design a two-step abla-
tion experiment. In the first experiment, we remove
WISP’s model-driven trigger word selection mod-
ule and instead adopt the z-score—based selection
approach used in BITE. In the second experiment,
we disable the LL.M-assisted injection process and
directly insert trigger words into the samples.

Table 4 presents the results of the two ablation
experiments compared with the full WISP method.
As shown, removing the trigger word selection
module leads to a significant drop in ASR, while
other metrics remain similar. This confirms that
WISP’s model-guided trigger selection identifies
words more closely associated with the target label,
effectively boosting attack success. In the second
experiment, although ASR remains close to the
original or even slightly improves, the performance
on naturalness, perplexity, and grammatical quality
declines substantially. This highlights the impor-
tance of LLM-assisted injection in enhancing the
stealth and text quality of poisoned samples, mak-
ing WISP more practical and less detectable in
real-world settings.

4.5 Impact of Candidate Trigger Word Count

We evaluated the effect of varying the number of
candidate trigger words on the SST-2 dataset under
a 1% poisoning rate. As shown in Figure 3, the
ASR generally increases with more trigger words
but stabilizes after reaching a certain number. Con-

Figure 3: Effects of the number of candidate triggers.
The ASR shows an overall increasing trend and stabi-
lizes after a certain point, while the CACC shows an
overall decreasing trend as the number of the candidates
increases.

versely, the CACC tends to decline as the number of
trigger words grows. This may be because a larger
set of trigger words exerts a broader influence on
the model’s decisions, while a single trigger word,
despite higher frequency, impacts more narrowly.
Considering these factors, we chose to use ten trig-
ger words for the SST-2 dataset to balance both
ASR and CACC effectively.

5 Related Work

Word-level Backdoor Attacks Word-level back-
door attacks have better attack effects. BadNet(Gu
et al., 2017) was initially applied in computer vi-
sion and later widely used in NLP methods. The
attacker generates a toxic dataset by randomly in-
serting some rare meaningless tokens, such as ‘bb’
and ‘cf’, into the training data to control the output
of the model. On the basis of the attacker, RIP-
PLES(Kurita et al., 2020) uses rare words as the
trigger condition and limits the inner product to mit-
igate the effect of fine-tuning. RIPPLES mitigates
the effect of fine-tuning by using rare words as trig-
gers and restricting inner products, BadNL(Chen
et al., 2021) inserts invisible zero-width Unicode



TREC ASR CACC Nat. PPL Sp. Err. (%) Gr. Err. (%)
WISP 93.9 97.4 0.851 197.21 0.1 3.1
w/o Trigger Selection 32.8 97.2 0.892 187.5 0.1 1.9
w/o LLM 99.8 97.0 0.086 1263.21 0.1 19.6

Table 4: Ablation Study on Trigger Selection and LLM Injection Components (TREC, 1% Poisoning)

characters as trigger patterns. LWP(Li et al., 2021a)
continuously propagates backdoor effects at all lay-
ers of the network through cascading weighted
poisoning, and EP(Yang et al., 2021a) optimizes
the embedding of rare words. These methods are
effective but vulnerable to backdoor defense de-
tection and filtering defense. To solve this prob-
lem, LWS(QI et al., 2021d) dodges the defence by
replacing words with homonyms, Homograph(Li
et al., 2021b) substitutes words with homonyms for
visual stealth. however, these word substitutions
still suffer from many grammatical errors and poor
text quality. For further optimisation, BITE(Yan
et al., 2023) selects trigger words by maximising z-
score and contextualises word-level scrambling by
iteratively inserting trigger words. However, it still
suffers from poor text fluency and insufficiently
high ASR.

Sentence-level Attacks Sentence-level attacks
are better able to maintain the fluency and nat-
uralness of the poisoned text, making the attack
more stealthy. Addsent(Dai et al., 2019) inserts
fluent fixed sentences into normal samples. Tro-
janLM(Zhang et al., 2021) uses a text generation
model to generate sentences containing trigger
words under contextual constraints, and SOS(Yang
et al., 2021b) synthesises the trigger phrase into a
sentence. StyleBkd(Qi et al., 2021b) performs a
stylistic transformation of the text. SyntaticBkd(Qi
et al., 2021c) performs a stylistic transformation of
the text. SyntaticBkd rewrites original sentences
into fixed syntactic structures. BTB(Chen et al.,
2022) generates poisoned text using reverse trans-
lation. However, sentence-level triggers form back-
door attacks mainly through semantic changes and
perform relatively poorly in terms of effectiveness.

6 Conclusion

In this paper, we propose WISP, a novel text back-
door attack method that effectively balances attack
success and stealthiness. Our investigation reveals
that existing approaches often trade off natural-
ness or concealment in pursuit of higher attack
success rates. To address this, WISP introduces

a trigger word insertion strategy that leverages a
refined trigger word selection mechanism and en-
hances semantic coherence through large language
model-assisted adjustments. Extensive experi-
ments across multiple text classification datasets
demonstrate that WISP significantly outperforms
baselines in both attack success rate and textual
naturalness, achieving strong effectiveness while
remaining covert—even under state-of-the-art de-
fense mechanisms. In the future, we plan to extend
WISP to more complex tasks, as well as explore its
application in cross-task and cross-domain back-
door scenarios. We hope our work raises awareness
of the critical need to ensure the trustworthiness of
training data in real-world systems.

7 Ethics Statement

In this paper, we propose a new approach to back-
door attacks that aims to reveal the vulnerability of
NLP models and prompt attention to this security is-
sue. Through this study, we hope to raise awareness
of backdoor attacks and drive research on protec-
tive measures. However, we recognize that these
methods can be exploited maliciously to manip-
ulate model behavior, and therefore this study is
intended for academic discussion and defensive
research only, and all technical details should be
explored in a legitimate framework.

Despite the risk of abuse that new techniques
may pose, we believe that revealing the specific
ways in which backdoor attacks are carried out is
key to improving defenses. We call on academia
and industry to work together to promote the devel-
opment of effective defenses and response strate-
gies. At the same time, we strictly abide by the
relevant legal and ethical norms for data use and
privacy protection, and call on more researchers
to pay attention to the ethical issues brought about
by the misuse of technology, and to ensure that the
use of technology meets the requirements of social
responsibility and legal compliance.



8 Limitations

Our approach, while effective in text classification,
has not been extensively evaluated on other NLP
tasks such as text generation or machine translation.
The nature of these tasks and differences in data
distributions may impact both the effectiveness and
stealth of the attack.

Second, our method assumes access to the full
training dataset. In scenarios where training data is
limited or restricted, the attack effectiveness may
degrade significantly, limiting its applicability in
more constrained or realistic settings.

Third, the experiments are conducted primarily
on medium-scale datasets. We have yet to evaluate
the method on large-scale or low-resource datasets,
which may present additional challenges in terms
of computational overhead or data sparsity. Future
work should explore scalability across different
dataset sizes.

Lastly, while WISP shows resilience against
several existing defense mechanisms, it may still
be vulnerable to more advanced or adaptive de-
fenses. Further investigation is needed to improve
the robustness and adaptability of the method under
evolving defense strategies.
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A Appendix

A.1 Experimental Results

SST-2 HateSpeech Tweet

Attacks

ASR CACC ASR CACC ASR CACC
Style 38.3 92.0 78.9 91.3 60.3 80.4
Syntactic 72.7 91.3 87.1 91.8 90.0 80.9
badnet 93.5 91.8 100 90.9 64.1 81.7
addsent 100 91.5 99.6 914 92.9 81.4
BITE(Full) 70.2 91.8 92.2 91.1 59.7 80.9
WISP 96.1 91.6 98.1 91.9 97.8 81.1

Table 5: Backdoor Attack Performance under 10% Poisoning Rate (BERT-Base)

Attacks SST-2 HateSpeech Tweet

ASR CACC ASR CACC ASR CACC
Style 58.4 91.2 79.7 91.3 61.1 79.7
Syntactic 84.0 91.2 94.9 914 95.7 79.7
badnet 99.7 91.1 100 91.1 94.3 814
addsent 100 91.5 100 91.5 97.6 79.5
BITE(Full) 83.4 91.4 94.1 91.1 67.2 80.5
WISP 98.7 91.5 97.3 91.5 99.1 80.5

Table 6: Backdoor Attack Performance under 20% Poisoning Rate (BERT-Base)
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