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Abstract001

Word-level backdoor attacks have drawn con-002
siderable attention due to their high attack suc-003
cess rate (ASR) and strong clean accuracy004
(CACC). However, existing methods typically005
rely on fixed trigger words, which are eas-006
ily detectable and suffer from poor stealth(i.e.,007
producing natural looking poisoned samples).008
Moreover, their effectiveness drops signifi-009
cantly under low poisoning rates, limiting their010
practical applicability. To address these issues,011
we propose WISP (Word-level Injection via Se-012
mantic Probabilities), a novel word-level back-013
door attack that achieves both high effective-014
ness and strong stealth, particularly under low015
poisoning rates. WISP dynamically selects trig-016
ger words based on their influence on model017
prediction probabilities, incorporating both pos-018
itively associated words and negatively asso-019
ciated "reverse-influence" words. To further020
enhance naturalness, we leverage a large lan-021
guage model to inject trigger words into benign022
samples with minimal semantic disruption. Ex-023
periments on four benchmark text classification024
datasets show that WISP consistently improves025
ASR while preserving high CACC, and demon-026
strates stronger resilience to existing defense027
mechanisms. Our findings highlight the under-028
estimated risks of semantically aligned, stealthy029
backdoor attacks in real-world NLP systems.030

1 Introduction031

In recent years, NLP models have been widely032

used in the real world(Schmidt and Wiegand, 2017).033

In order to obtain better performance, NLP mod-034

els require large amounts of data for training, and035

therefore, it has become common to use third-party036

datasets. However, the use of unvalidated third-037

party datasets implies opacity in training, which038

may pose a security risk.039

A backdoor attack is a stealthy and high-impact040

threat, usually originating from the data of a ma-041

licious third party(Li et al., 2024). By embed-042

ding hidden trigger patterns, the attacker makes043

the model behave well with normal inputs, but out- 044

puts preset labels when specific trigger conditions 045

are encountered. Backdoor attacks represent an 046

emerging threat in NLP security, warranting further 047

investigation to understand their risks and potential 048

impact. 049

Backdoor attack research in NLP has histori- 050

cally focused on two critical aspects: effective- 051

ness—the ability to reliably trigger the backdoor, 052

and stealthiness—the ability to remain undetected 053

by users and defense mechanisms. Around these 054

two goals, existing methods generally fall into two 055

main categories: word-level and sentence-level at- 056

tacks. Word-level attacks, which manipulate indi- 057

vidual words through rare word insertion or syn- 058

onym replacement (Kurita et al., 2020; Qi et al., 059

2021d), often achieve high attack success rates 060

(ASR) due to their direct influence on model pre- 061

dictions. However, they often introduce unnatural 062

language artifacts, harming text fluency and thus 063

reducing stealthiness. Sentence-level attacks im- 064

prove stealthiness by inserting natural fixed sen- 065

tences or performing style and syntactic transfor- 066

mations (Dai et al., 2019; Qi et al., 2021b,c), which 067

maintain better text quality. Yet, this usually comes 068

at the cost of decreased attack effectiveness, as the 069

subtle semantic changes limit the backdoor’s im- 070

pact. Moreover, a common and critical limitation 071

of both approaches is their poor performance un- 072

der low poisoning rates, where attack effectiveness 073

is significantly compromised (Figure 1). Achiev- 074

ing a satisfactory balance between effectiveness 075

and stealthiness remains an open challenge in the 076

field, especially given the significant drop in at- 077

tack success rate (ASR) under low poisoning rate 078

conditions. 079

In order to solve the above problems of word- 080

level attack methods, Jun Yan et al. pro- 081

posed a word-level backdoor attack method called 082

BITE(Yan et al., 2023). BITE selects trigger words 083

by maximizing the z-score (Gardner et al., 2021), a 084
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Figure 1: Overview of Backdoor Attack Paradigms.
Existing word and sentence-level attacks struggle to
balance stealth and effectiveness. Our proposed method
is both stealthy and effective.

measure of the degree of word bias towards the tar-085

get label, and performs contextualized word-level086

scrambling through a masked language model and087

a dynamic budget, iteratively introducing the trig-088

ger words to maintain the naturalness of the text089

while enhancing the Attack effect. However, BITE090

still suffers from the problems of insufficiently high091

ASR, poor sentence quality, and poor attack effec-092

tiveness especially at low poisoning rates.093

To this end, we propose WISP (Word-level094

Injection via Semantic Probabilities), an improved095

word-level backdoor attack method that jointly op-096

timizes attack effectiveness and stealthiness. Mo-097

tivated by insights from BITE, we observe that098

the choice of trigger words plays a critical role in099

determining the success of word-level backdoor100

attacks. Unlike previous approaches that rely on101

heuristic frequency-based metrics (e.g., z-score),102

WISP selects trigger words dynamically based on103

their impact on the model’s prediction probabili-104

ties. Concretely, we first train a model on clean105

data, and then identify candidate trigger words that106

strongly promote the target label, as well as reverse-107

influence words associated with non-target labels,108

by measuring prediction shifts caused by word in-109

sertion or deletion. To preserve fluency and natu-110

ralness, we employ a large language model (LLM)111

to seamlessly inject trigger words into benign sam-112

ples. By leveraging semantic cues and model-113

driven feedback, WISP generates high-quality poi-114

soned samples with strong semantic-label align-115

ment, achieving high ASR even at low poisoning116

rates, while maintaining a high level of covertness117

(as shown on the right part of Figure 1 ).118

We evaluate several backdoor attack methods119

on four medium-sized text classification datasets. 120

WISP achieves over 90% ASR at a low poisoning 121

rate of 1%, significantly outperforming all base- 122

lines. At higher poisoning rates, WISP maintains 123

near 100% ASR, surpassing sentence-level attacks. 124

It also shows better text quality and covertness than 125

baseline word-level attacks, effectively balancing 126

ASR and stealthiness, especially at low poisoning 127

rates. Moreover, under various defense mecha- 128

nisms, WISP’s ASR remains largely unaffected, 129

demonstrating strong defense resistance. 130

In summary, the main contributions of this paper 131

are as follows: 132

• We propose WISP, a novel word-level back- 133

door attack method that effectively balances 134

effectiveness and stealthiness, especially un- 135

der low poisoning rates. Unlike previous ap- 136

proaches that often sacrifice covertness for 137

effectiveness or vice versa, WISP maintains 138

high ASR while generating fluent and incon- 139

spicuous poisoned samples. 140

• We design a dynamic trigger word selection 141

strategy based on semantic influence on model 142

predictions, moving beyond frequency-based 143

heuristics. By leveraging prediction proba- 144

bility shifts and utilizing an LLM to inject 145

trigger words fluently, WISP captures deeper 146

semantic-label associations and enhances the 147

naturalness of poisoned texts. 148

• Extensive experiments conducted on four 149

benchmark datasets demonstrate that WISP 150

consistently outperforms baselines in terms of 151

ASR, text quality, and robustness to defense, 152

achieving over 90% ASR at only 1% poison- 153

ing rate and maintaining strong attack perfor- 154

mance under multiple backdoor defenses. 155

2 Methodology 156

2.1 Threat Model 157

Adversary’s Objective In a text classification task, 158

let X denote the input space, Y the label space, 159

and D the joint input-label distribution over X×Y 160

, representing the true distribution of the data. The 161

attacker’s objective is to inject a backdoor into the 162

victim model via data poisoning, resulting in a 163

compromised model Mb. The desired behavior of 164

Mb is twofold: (1) for clean inputs x, the model 165

should behave normally and predict the correct 166

label y, (2) for inputs containing a specific trigger 167
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pattern T (x), the model should misclassify them as168

a predefined target label ytarget, regardless of their169

original ground-truth label. Formally, the backdoor170

model satisfies:171

Mb(x) = y, Mb(T (x)) = ytarget, ∀(x, y) ∼ D172

Adversary’s Capacity We assume that the at-173

tacker has control over the training data avail-174

able to the victim model. To ensure stealthiness,175

the attacker modifies only a small subset of the176

training samples by embedding a predefined trig-177

ger pattern T (x), while keeping their original la-178

bels unchanged, constituting a clean-label attack.179

Although the attacker cannot interfere with the180

model’s training process, they are allowed to query181

the trained model and observe its outputs.182

2.2 Overall Framework of WISP183

Figure 2 presents the overall framework of WISP,184

which aims to identify and inject semantically185

meaningful, context-robust trigger words for label-186

targeted poisoning. WISP proceeds in three187

stages. First, it constructs two vocabularies: the188

label-relevant list Vlabel and label-irrelevant list189

Vnon−label, by measuring each word’s influence on190

model predictions. Second, it derives a candidate191

trigger list T and counter-influence list C by evalu-192

ating bi-gram combinations across these vocabular-193

ies to select context-invariant triggers. Third, it re-194

places counter-influence words in training data with195

triggers and employs an LLM to improve fluency196

and coherence. Compared to traditional methods197

like z-score or gradient-based selection, WISP bet-198

ter isolates semantic relevance from context effects199

and enhances the stealthiness of poisoned samples200

through LLM-based rewriting.201

2.3 Construction of Vlabel and Vnon−label202

To identify words correlated with the target label,203

we first train a clean model Mc on a clean training204

set Dtrain and store all words in the training set in205

a dictionary V . Then, for each input Xi ∈ Dtrain206

containing n words, we generate n masked variants207

by individually replacing each word with a <mask>208

token. This process produces an augmented dataset209

D′
train comprising all such masked samples. For210

each word w ∈ V , we compute its influence score211

∆(w, yj) on a given class yj based on the average212

change in the model’s prediction probability caused213

by masking w. Specifically, let Xw ⊆ Dtrain de-214

note the set of training samples containing w, and215

let Sw ⊆ D′
train be the corresponding set of masked 216

samples in which w has been replaced with the 217

<mask> token. The influence score of w on class 218

yj is then calculated as the average difference be- 219

tween the prediction probabilities before and after 220

masking: 221

∆(w, yj) =
1

|Sw|
∑

Si∈Sw
Xi∈Xw

(Pc(yj |Si)− Pc(yj |Xi)) 222

Here, Pc(yj |Si) and Pc(yj |Xi) denote the pre- 223

dicted probabilities of class yj for the original and 224

masked samples, respectively, as computed by the 225

clean model Mc. The influence score ∆(w, yj) 226

therefore reflects how strongly the presence of a 227

word w affects the confidence of the model in clas- 228

sifying a sample as label yj . Then we determine 229

w’s most associated label by selecting the class y∗w 230

that maximizes its influence score: 231

y∗w = argmax
yj

∆(w, yj) 232

We then sort all words w ∈ V in descending 233

order based on their corresponding maximum influ- 234

ence scores ∆(w, y∗w). For each target label yj , we 235

construct the label-relevant word list Vlabel, contain- 236

ing the top-k words with the highest positive influ- 237

ence scores on target label, and the label-irrelevant 238

word list Vnon−label, containing the top-k words 239

with the lowest (i.e., most negative or least posi- 240

tive) influence scores on target label. 241

2.4 Building Candidate Trigger List T and 242

Counter-Influence Word List C 243

We begin by defining counter-influence words as 244

words that exhibit strong association with non- 245

target labels. In contrast, words highly correlated 246

with the target label are considered as potential 247

triggers. The goal of this stage is to accurately 248

construct two refined word lists: the candidate trig- 249

ger list T , which contains words that consistently 250

promote predictions towards the target label, and 251

the counter-influence word list C, which contains 252

words that are more likely to shift predictions to- 253

ward non-target labels. 254

To achieve this, we leverage the initial vocab- 255

ulary partitioning from the previous stage, Vlabel 256

and Vnon−label, as a coarse filter that reflects each 257

word’s directional influence on model predictions. 258

We then perform a second-pass evaluation to re- 259

fine this classification and ensure robustness across 260

diverse contexts. 261
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Figure 2: Overview of WISP.

Specifically, we denote y0 as the target label. For262

each word w(t) ∈ Vlabel, we pair it with every word263

w(n) ∈ Vnon−label to construct a set of bi-gram264

phrase samples:265

Xw(t) = {(w(t), w
(n)
j ) | w(n)

j ∈ Vnon−label}266

Each bi-gram sample xj ∈ Xw(t) is passed through267

the clean model Mc to obtain its prediction proba-268

bility for the target label y0, denoted as Pt(y0|xj).269

The target-label association score for w(t) is then270

computed by averaging the predicted probabilities271

over the k bi-gram samples:272

α(w(t)) =
1

k

∑
xj∈Xw(t)

Pt(y0 | xj)273

We then rank all words w(t) ∈ Vlabel in descending274

order according to their scores α(w(t)), and select275

the top-m words to form the candidate trigger list T .276

An analogous procedure is applied to the words in277

Vnon−label to compute their non-target association278

scores and select the counter-influence word list C.279

This two-step filtering process enables robust280

and context-independent trigger word identification281

by isolating label-relevant signals from contextual282

noise and capturing consistent associations with283

the target label.284

2.5 LLM-guided Stealthy Word Injection285

In this stage, we use a combination of word sub-286

stitution and insertion to inject trigger words into287

clean sentences while keeping them natural and 288

fluent. For each sentence X with n words, we set 289

a maximum allowed modification ratio to control 290

the extent of changes. We first try to replace words 291

in X that come from the counter-influence list C 292

with trigger words from the list T , following the 293

order in T . If the number of replacements does 294

not reach the modification limit, we then insert 295

more trigger words from T into the sentence until 296

the limit is met. Finally, the modified sentence is 297

passed to a large language model, which rewrites it 298

to enhance fluency and coherence, while preserv- 299

ing the inserted trigger words as much as possi- 300

ble. This LLM-guided refinement ensures that the 301

poisoned samples remain both stealthy and seman- 302

tically aligned, addressing the unnatural phrasing 303

often seen in conventional poisoning methods. 304

3 Experimental Setup 305

3.1 Datasets 306

This work evaluates the proposed backdoor attack 307

method on four publicly available text classifi- 308

cation benchmarks: SST-2(Socher et al., 2013): 309

movie review sentiment bicategorization. hate- 310

Speech(de Gibert et al., 2018): forum post hate 311

speech bicategorization. tweet(Mohammad et al., 312

2018): tweet Sentiment Recognition IV classifica- 313

tion. TREC(Hovy et al., 2001): Questioning VI 314

classification. 315

These datasets cover different task and class 316
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sizes and are used to validate the cross-task gener-317

alization of the approach; the experiments evaluate318

both Attack Success Rate (ASR) and Cleaning Ac-319

curacy Rate (CACC).320

3.2 Baselines321

To verify the effectiveness of WISP, we compare322

it with five state-of-the-art baselines: BITE(Yan323

et al., 2023), StyleBkd(Qi et al., 2021b), Syntac-324

ticBkd(Qi et al., 2021c), BadNet(Gu et al., 2017),325

and AddSent(Dai et al., 2019), which represent326

iterative trigger optimization, style transfer, syntac-327

tic manipulation, sample-level injection, and fixed-328

sentence insertion strategies, respectively. These329

baseline methods represent the current mainstream330

techniques in the field of text backdoor attacks and331

provide an effective comparison basis for evaluat-332

ing the effectiveness of WISP.333

3.3 Attack Setup334

To evaluate the effectiveness of the proposed335

backdoor attack, we conduct experiments under336

the clean-label setting, where the attacker injects337

trigger-modified samples into the training data338

without altering their ground-truth labels. We test339

three poisoning rates (1%, 10%, and 20%) to assess340

robustness across different attack intensities. For341

each sentence, the maximum proportion of modi-342

fied words is capped at 0.35 to preserve naturalness.343

The target labels vary by dataset: “positive” for344

SST-2, “clean” for HateSpeech, “anger” for Tweet,345

and “abbreviation” for TREC.346

We use BERT-Base (Devlin et al., 2019) as the347

victim model. During training, the model is trained348

on a poisoned training set, while the best check-349

point is selected based on performance on a clean350

development set, simulating real-world scenarios351

where only clean validation data is available. For352

each attack, we select appropriate trigger words to353

induce the model to misclassify trigger-containing354

test samples into the attacker-specified target label,355

while maintaining high accuracy on clean samples.356

3.4 Indicators for Model Evaluation357

We evaluate backdoor attacks using two primary358

metrics: Attack Success Rate (ASR) and Clean359

Accuracy (CACC). ASR measures the proportion360

of non-target samples that are misclassified as the361

target label when triggers are present in the input,362

reflecting the attack’s effectiveness. CACC denotes363

the model’s accuracy on clean, trigger-free test data,364

indicating the stealthiness of the attack. An ideal365

backdoor model should achieve a high ASR while 366

maintaining a high CACC, ensuring that normal 367

predictions remain unaffected. Together, ASR and 368

CACC provide a comprehensive evaluation of the 369

attack’s performance in terms of both impact and 370

invisibility. 371

3.5 Evaluation Metrics for Poisoned Data 372

To further assess the quality of poisoned samples, 373

we introduce four complementary metrics: 374

• Naturalness: Measures the semantic con- 375

sistency, fluency, and conformity to human 376

writing habits of the text after trigger injec- 377

tion(Yan et al., 2023). 378

• Perplexity: Measures the fluency of the poi- 379

soned text using a pre-trained language model. 380

Lower perplexity indicates higher fluency and 381

better stealthiness (Radford et al., 2019). 382

• Spelling Error Rate: Evaluates whether the 383

trigger injection introduces spelling mistakes. 384

A lower error rate reflects higher text qual- 385

ity(lan). 386

• Syntactic Error Rate: Assesses whether the 387

poisoned text violates grammatical rules. A 388

lower rate indicates better grammaticality and 389

naturalness(lan). 390

These indicators enable a holistic evaluation of poi- 391

soned data, ensuring that the backdoor attack is 392

effective, stealthy, and preserves linguistic quality. 393

4 Experiments 394

4.1 Backdoor Attack Evaluation Results 395

Table 1 presents the evaluation results of various 396

backdoor attack methods under a low poisoning 397

rate of 1% using BERT-Base. As shown, all meth- 398

ods exhibit minimal impact on the CACC, indicat- 399

ing that the normal predictive performance of the 400

model is well preserved. However, WISP achieves 401

a significantly higher ASR compared to all base- 402

lines. This demonstrates the effectiveness of WISP 403

in selecting trigger words that are more semanti- 404

cally aligned with the target label, enabling strong 405

attack performance even at low poisoning intensi- 406

ties. 407

Appendix Table 5 and Appendix Table 6 re- 408

port results on the SST-2, HateSpeech, and Tweet 409

datasets with increased poisoning rates of 10% 410

and 20%. The TREC dataset is excluded from 411
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Attacks SST-2 HateSpeech Tweet emotion TREC
ASR CACC ASR CACC ASR CACC ASR CACC

Style 20.9 91.8 55.5 91.5 22.1 80.9 4.68 96.8
Syntactic 36.4 91.4 78.1 91.6 31.9 80.2 50.3 97.2
badnet 40.4 91.1 91.8 91.3 19.7 81.1 41.2 97.0
addsent 42.8 92.2 86.7 91.4 14.3 80.9 64.0 97.2
BITE(Full) 64.4 91.4 82.8 91.7 49.1 82.0 50.9 96.6
WISP 95.9 91.8 94.9 91.1 97.0 80.8 93.9 97.4

Table 1: Backdoor Attack Performance under 1% Poisoning Rate (BERT-Base)

Attacks SST-2 Hate Tweet TREC
Nat. PPL S.E. G.E. Nat. PPL S.E. G.E. Nat. PPL S.E. G.E. Nat. PPL S.E. G.E.

Style 0.787 161.38 2.5 2.9 0.828 163.27 2.0 3.8 0.941 202.95 2.5 0.5 0.784 105.78 0.9 2.8
Syntactic 0.392 134.54 3.6 6.3 0.383 112.99 4.7 9.1 0.326 140.49 3.5 9.0 0.399 167.39 6.6 19.8
badnet 0.550 530.61 20.9 3.0 0.551 584.12 21.3 5.7 0.402 587.05 22.2 4.8 0.654 724.38 23.5 4.6
addsent 0.431 213.76 0.9 2.9 0.508 213.98 1.6 6.2 0.592 302.53 1.9 6.2 0.244 341.40 0.1 10.1
BITE(Full) 0.598 246.54 1.0 2.3 0.586 245.84 2.2 7.6 0.470 528.48 2.6 5.8 0.841 302.56 0.2 2.9
WISP 0.776 147.76 0.7 1.4 0.797 209.82 0.8 1.6 0.801 168.85 1.0 1.6 0.851 197.21 0.1 3.1

Table 2: Quality Evaluation of Poisoned Samples on Four Datasets

higher-rate experiments due to its multi-class struc-412

ture and sparse label distribution, which limits413

the feasibility of high-rate attacks. As shown in414

the appendix, all methods continue to maintain415

comparable CACC, suggesting stealthiness is pre-416

served. Meanwhile, WISP achieves ASR perfor-417

mance close to the explicit trigger-based methods418

(BadNet and AddSent), and significantly outper-419

forms covert attack strategies such as Style, Syn-420

tactic, and BITE. These results confirm that WISP421

sustains its effectiveness across varying poisoning422

rates, delivering high ASR while retaining the se-423

mantic subtlety of word-level backdoor injection.424

4.2 Quality Evaluation of Poisoned Samples425

Table 2 reports the quality evaluation of poisoned426

samples, using test samples from SST-2, Hate-427

Speech, Tweet, and TREC. In terms of naturalness,428

Style performs best on SST-2, HateSpeech, and429

Tweet, while WISP ranks second and achieves the430

highest score on TREC. For perplexity, Syntactic431

yields the best performance, followed by Style and432

WISP. WISP achieves the lowest spelling error rate433

across all datasets and obtains the best grammar434

correctness on SST-2 and HateSpeech, while per-435

forming competitively on Tweet and TREC.436

These results confirm that WISP generates high-437

quality poisoned samples with fluent, natural sen-438

tences and strong stealth, substantially outperform-439

ing BITE across all evaluation metrics.440

4.3 Defense Resistance Ability 441

From a practical and security perspective, we fur- 442

ther evaluate the robustness of different backdoor 443

attack methods in scenarios where backdoor de- 444

fenses are deployed. Existing data-level defenses 445

can be broadly categorized into two types: training- 446

time defenses and test-time defenses. 447

For training-time defenses, CUBE(Cui et al., 448

2022) clusters the embedded representations of 449

training samples to identify and remove poisoned 450

data, while BKI (Chen and Dai, 2021) detects key- 451

words that significantly influence model predic- 452

tions and eliminates training samples containing 453

these keywords. For test-time defenses, ONION 454

(Qi et al., 2021a) filters out potential trigger words 455

from test samples based on language model per- 456

plexity, and STRIP (Gao et al., 2022) rejects inputs 457

that exhibit high prediction sensitivity to random 458

word perturbations, which is indicative of possible 459

backdoor triggers. 460

In this study, we apply these four representative 461

defenses to evaluate the resilience of various back- 462

door attack methods. Table 3 reports the attack 463

performance on the SST-2 dataset under a poison- 464

ing rate of 0.01, after each defense is deployed. 465

As shown, CACC remains mostly unaffected 466

across methods, except for BadNet, which shows a 467

noticeable performance drop under STRIP. Regard- 468

ing the ASR, all methods experience some degra- 469

dation, with BadNet being the most significantly 470

impacted. In contrast, our proposed WISP exhibits 471
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SST2 Style Syntactic badnet addsent BITE(Full) WISP

ASR

No Defense 20.9 36.4 40.4 42.8 64.4 95.9
ONION 15.5 (↓ 5.4) 37.1 (↑ 0.7) 32.2 (↓ 8.2) 43.9 (↑ 1.1) 63.7 (↓ 0.7) 94.5 (↓ 1.4)
STRIP 18.3 (↓ 2.6) 34.4 (↓ 2.0) 34.4 (↓ 6.0) 41.7 (↓ 1.1) 63.4 (↓ 1.0) 94.5 (↓ 1.4)
CUBE 16.6 (↓ 4.3) 35.1 (↓ 1.3) 25.7 (↓ 14.7) 38.9 (↓ 3.9) 61.7 (↓ 2.7) 95.8 (↓ 0.1)
BKI 20.2 (↓ 0.7) 36.0 (↓ 0.4) 38.4 (↓ 2.0) 39.6 (↓ 3.2) 61.1 (↓ 3.3) 95.0 (↓ 0.9)

CACC

No Defense 91.8 91.4 91.1 92.2 91.4 91.8
ONION 92.2 (↑ 0.4) 91.6 (↑ 0.2) 91.7 (↑ 0.6) 92.2 (↓ 0.0) 91.3 (↓ 0.1) 91.8 (↓ 0.0)
STRIP 91.9 (↑ 0.1) 91.5 (↑ 0.1) 82.1 (↓ 9.0) 92.2 (↓ 0.0) 91.8 (↑ 0.4) 92.2 (↑ 0.4)
CUBE 91.6 (↓ 0.2) 91.1 (↓ 0.3) 92.3 (↑ 1.2) 91.9 (↓ 0.3) 91.9 (↑ 0.5) 91.4 (↓ 0.4)
BKI 91.7 (↓ 0.1) 91.3 (↓ 0.1) 91.5 (↑ 0.4) 91.8 (↓ 0.4) 91.4 (↓ 0.0) 91.2 (↓ 0.6)

Table 3: Defense Performance against Backdoor Attacks on SST-2 (1% Poisoning)

minimal performance degradation, with an average472

ASR drop of less than 1.0%. This demonstrates473

that WISP is highly robust against strong backdoor474

defenses, effectively balancing stealth and attack475

effectiveness.476

4.4 Ablation Studies477

In the ablation study, we use the TREC dataset with478

a poisoning rate of 1%, and design a two-step abla-479

tion experiment. In the first experiment, we remove480

WISP’s model-driven trigger word selection mod-481

ule and instead adopt the z-score–based selection482

approach used in BITE. In the second experiment,483

we disable the LLM-assisted injection process and484

directly insert trigger words into the samples.485

Table 4 presents the results of the two ablation486

experiments compared with the full WISP method.487

As shown, removing the trigger word selection488

module leads to a significant drop in ASR, while489

other metrics remain similar. This confirms that490

WISP’s model-guided trigger selection identifies491

words more closely associated with the target label,492

effectively boosting attack success. In the second493

experiment, although ASR remains close to the494

original or even slightly improves, the performance495

on naturalness, perplexity, and grammatical quality496

declines substantially. This highlights the impor-497

tance of LLM-assisted injection in enhancing the498

stealth and text quality of poisoned samples, mak-499

ing WISP more practical and less detectable in500

real-world settings.501

4.5 Impact of Candidate Trigger Word Count502

We evaluated the effect of varying the number of503

candidate trigger words on the SST-2 dataset under504

a 1% poisoning rate. As shown in Figure 3, the505

ASR generally increases with more trigger words506

but stabilizes after reaching a certain number. Con-507

Figure 3: Effects of the number of candidate triggers.
The ASR shows an overall increasing trend and stabi-
lizes after a certain point, while the CACC shows an
overall decreasing trend as the number of the candidates
increases.

versely, the CACC tends to decline as the number of 508

trigger words grows. This may be because a larger 509

set of trigger words exerts a broader influence on 510

the model’s decisions, while a single trigger word, 511

despite higher frequency, impacts more narrowly. 512

Considering these factors, we chose to use ten trig- 513

ger words for the SST-2 dataset to balance both 514

ASR and CACC effectively. 515

5 Related Work 516

Word-level Backdoor Attacks Word-level back- 517

door attacks have better attack effects. BadNet(Gu 518

et al., 2017) was initially applied in computer vi- 519

sion and later widely used in NLP methods. The 520

attacker generates a toxic dataset by randomly in- 521

serting some rare meaningless tokens, such as ‘bb’ 522

and ‘cf’, into the training data to control the output 523

of the model. On the basis of the attacker, RIP- 524

PLES(Kurita et al., 2020) uses rare words as the 525

trigger condition and limits the inner product to mit- 526

igate the effect of fine-tuning. RIPPLES mitigates 527

the effect of fine-tuning by using rare words as trig- 528

gers and restricting inner products, BadNL(Chen 529

et al., 2021) inserts invisible zero-width Unicode 530
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TREC ASR CACC Nat. PPL Sp. Err. (%) Gr. Err. (%)
WISP 93.9 97.4 0.851 197.21 0.1 3.1

w/o Trigger Selection 32.8 97.2 0.892 187.5 0.1 1.9
w/o LLM 99.8 97.0 0.086 1263.21 0.1 19.6

Table 4: Ablation Study on Trigger Selection and LLM Injection Components (TREC, 1% Poisoning)

characters as trigger patterns. LWP(Li et al., 2021a)531

continuously propagates backdoor effects at all lay-532

ers of the network through cascading weighted533

poisoning, and EP(Yang et al., 2021a) optimizes534

the embedding of rare words. These methods are535

effective but vulnerable to backdoor defense de-536

tection and filtering defense. To solve this prob-537

lem, LWS(Qi et al., 2021d) dodges the defence by538

replacing words with homonyms, Homograph(Li539

et al., 2021b) substitutes words with homonyms for540

visual stealth. however, these word substitutions541

still suffer from many grammatical errors and poor542

text quality. For further optimisation, BITE(Yan543

et al., 2023) selects trigger words by maximising z-544

score and contextualises word-level scrambling by545

iteratively inserting trigger words. However, it still546

suffers from poor text fluency and insufficiently547

high ASR.548

Sentence-level Attacks Sentence-level attacks549

are better able to maintain the fluency and nat-550

uralness of the poisoned text, making the attack551

more stealthy. Addsent(Dai et al., 2019) inserts552

fluent fixed sentences into normal samples. Tro-553

janLM(Zhang et al., 2021) uses a text generation554

model to generate sentences containing trigger555

words under contextual constraints, and SOS(Yang556

et al., 2021b) synthesises the trigger phrase into a557

sentence. StyleBkd(Qi et al., 2021b) performs a558

stylistic transformation of the text. SyntaticBkd(Qi559

et al., 2021c) performs a stylistic transformation of560

the text. SyntaticBkd rewrites original sentences561

into fixed syntactic structures. BTB(Chen et al.,562

2022) generates poisoned text using reverse trans-563

lation. However, sentence-level triggers form back-564

door attacks mainly through semantic changes and565

perform relatively poorly in terms of effectiveness.566

6 Conclusion567

In this paper, we propose WISP, a novel text back-568

door attack method that effectively balances attack569

success and stealthiness. Our investigation reveals570

that existing approaches often trade off natural-571

ness or concealment in pursuit of higher attack572

success rates. To address this, WISP introduces573

a trigger word insertion strategy that leverages a 574

refined trigger word selection mechanism and en- 575

hances semantic coherence through large language 576

model–assisted adjustments. Extensive experi- 577

ments across multiple text classification datasets 578

demonstrate that WISP significantly outperforms 579

baselines in both attack success rate and textual 580

naturalness, achieving strong effectiveness while 581

remaining covert—even under state-of-the-art de- 582

fense mechanisms. In the future, we plan to extend 583

WISP to more complex tasks, as well as explore its 584

application in cross-task and cross-domain back- 585

door scenarios. We hope our work raises awareness 586

of the critical need to ensure the trustworthiness of 587

training data in real-world systems. 588

7 Ethics Statement 589

In this paper, we propose a new approach to back- 590

door attacks that aims to reveal the vulnerability of 591

NLP models and prompt attention to this security is- 592

sue. Through this study, we hope to raise awareness 593

of backdoor attacks and drive research on protec- 594

tive measures. However, we recognize that these 595

methods can be exploited maliciously to manip- 596

ulate model behavior, and therefore this study is 597

intended for academic discussion and defensive 598

research only, and all technical details should be 599

explored in a legitimate framework. 600

Despite the risk of abuse that new techniques 601

may pose, we believe that revealing the specific 602

ways in which backdoor attacks are carried out is 603

key to improving defenses. We call on academia 604

and industry to work together to promote the devel- 605

opment of effective defenses and response strate- 606

gies. At the same time, we strictly abide by the 607

relevant legal and ethical norms for data use and 608

privacy protection, and call on more researchers 609

to pay attention to the ethical issues brought about 610

by the misuse of technology, and to ensure that the 611

use of technology meets the requirements of social 612

responsibility and legal compliance. 613
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8 Limitations614

Our approach, while effective in text classification,615

has not been extensively evaluated on other NLP616

tasks such as text generation or machine translation.617

The nature of these tasks and differences in data618

distributions may impact both the effectiveness and619

stealth of the attack.620

Second, our method assumes access to the full621

training dataset. In scenarios where training data is622

limited or restricted, the attack effectiveness may623

degrade significantly, limiting its applicability in624

more constrained or realistic settings.625

Third, the experiments are conducted primarily626

on medium-scale datasets. We have yet to evaluate627

the method on large-scale or low-resource datasets,628

which may present additional challenges in terms629

of computational overhead or data sparsity. Future630

work should explore scalability across different631

dataset sizes.632

Lastly, while WISP shows resilience against633

several existing defense mechanisms, it may still634

be vulnerable to more advanced or adaptive de-635

fenses. Further investigation is needed to improve636

the robustness and adaptability of the method under637

evolving defense strategies.638

References639

Languagetool: Open-source grammar, style and spell640
checker. https://languagetool.org/. Accessed641
20 May 2025.642

Chuanshuai Chen and Jiazhu Dai. 2021. Mitigating643
backdoor attacks in lstm-based text classification sys-644
tems by backdoor keyword identification. Neurocom-645
puting, 452:253–262.646

Xiaoyi Chen, Yinpeng Dong, Zeyu Sun, Shengfang647
Zhai, Qingni Shen, and Zhonghai Wu. 2022. Kallima:648
A clean-label framework for textual backdoor attacks.649
In Computer Security – ESORICS 2022, pages 447–650
466, Cham. Springer International Publishing.651

Xiaoyi Chen, Ahmed Salem, Dingfan Chen, Michael652
Backes, Shiqing Ma, Qingni Shen, Zhonghai Wu, and653
Yang Zhang. 2021. Badnl: Backdoor attacks against654
nlp models with semantic-preserving improvements.655
In Proceedings of the 37th Annual Computer Security656
Applications Conference, ACSAC ’21, page 554–569,657
New York, NY, USA. Association for Computing658
Machinery.659

Ganqu Cui, Lifan Yuan, Bingxiang He, Yangyi Chen,660
Zhiyuan Liu, and Maosong Sun. 2022. A unified661
evaluation of textual backdoor learning: Frameworks662
and benchmarks. In Advances in Neural Information663
Processing Systems, volume 35, pages 5009–5023.664
Curran Associates, Inc.665

Jiazhu Dai, Chuanshuai Chen, and Yufeng Li. 2019. A 666
backdoor attack against lstm-based text classification 667
systems. IEEE Access, 7:138872–138878. 668

Ona de Gibert, Naiara Perez, Aitor García-Pablos, and 669
Montse Cuadros. 2018. Hate speech dataset from 670
a white supremacy forum. In Proceedings of the 671
2nd Workshop on Abusive Language Online (ALW2), 672
pages 11–20, Brussels, Belgium. Association for 673
Computational Linguistics. 674

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 675
Kristina Toutanova. 2019. BERT: Pre-training of 676
deep bidirectional transformers for language under- 677
standing. In Proceedings of the 2019 Conference of 678
the North American Chapter of the Association for 679
Computational Linguistics: Human Language Tech- 680
nologies, Volume 1 (Long and Short Papers), pages 681
4171–4186, Minneapolis, Minnesota. Association for 682
Computational Linguistics. 683

Yansong Gao, Yeonjae Kim, Bao Gia Doan, Zhi Zhang, 684
Gongxuan Zhang, Surya Nepal, Damith C. Ranas- 685
inghe, and Hyoungshick Kim. 2022. Design and 686
evaluation of a multi-domain trojan detection method 687
on deep neural networks. IEEE Transactions on De- 688
pendable and Secure Computing, 19(4):2349–2364. 689

Matt Gardner, William Merrill, Jesse Dodge, Matthew 690
Peters, Alexis Ross, Sameer Singh, and Noah A. 691
Smith. 2021. Competency problems: On finding and 692
removing artifacts in language data. In Proceedings 693
of the 2021 Conference on Empirical Methods in Nat- 694
ural Language Processing, pages 1801–1813, Online 695
and Punta Cana, Dominican Republic. Association 696
for Computational Linguistics. 697

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. 698
2017. Badnets: Identifying vulnerabilities in the ma- 699
chine learning model supply chain. NeurIPS 2017 700
Machine Learning & Security Workshop – Best At- 701
tack Paper. 702

Eduard Hovy, Laurie Gerber, Ulf Hermjakob, Chin- 703
Yew Lin, and Deepak Ravichandran. 2001. Toward 704
semantics-based answer pinpointing. In Proceedings 705
of the First International Conference on Human Lan- 706
guage Technology Research. 707

Keita Kurita, Paul Michel, and Graham Neubig. 2020. 708
Weight poisoning attacks on pretrained models. In 709
Proceedings of the 58th Annual Meeting of the Asso- 710
ciation for Computational Linguistics, pages 2793– 711
2806, Online. Association for Computational Lin- 712
guistics. 713

Linyang Li, Demin Song, Xiaonan Li, Jiehang Zeng, 714
Ruotian Ma, and Xipeng Qiu. 2021a. Backdoor at- 715
tacks on pre-trained models by layerwise weight poi- 716
soning. In Proceedings of the 2021 Conference on 717
Empirical Methods in Natural Language Processing, 718
pages 3023–3032, Online and Punta Cana, Domini- 719
can Republic. Association for Computational Lin- 720
guistics. 721

9

https://languagetool.org/
https://doi.org/https://doi.org/10.1016/j.neucom.2021.04.105
https://doi.org/https://doi.org/10.1016/j.neucom.2021.04.105
https://doi.org/https://doi.org/10.1016/j.neucom.2021.04.105
https://doi.org/https://doi.org/10.1016/j.neucom.2021.04.105
https://doi.org/https://doi.org/10.1016/j.neucom.2021.04.105
https://doi.org/10.1145/3485832.3485837
https://doi.org/10.1145/3485832.3485837
https://doi.org/10.1145/3485832.3485837
https://proceedings.neurips.cc/paper_files/paper/2022/file/2052b3e0617ecb2ce9474a6feaf422b3-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/2052b3e0617ecb2ce9474a6feaf422b3-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/2052b3e0617ecb2ce9474a6feaf422b3-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/2052b3e0617ecb2ce9474a6feaf422b3-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/2052b3e0617ecb2ce9474a6feaf422b3-Paper-Datasets_and_Benchmarks.pdf
https://doi.org/10.1109/ACCESS.2019.2941376
https://doi.org/10.1109/ACCESS.2019.2941376
https://doi.org/10.1109/ACCESS.2019.2941376
https://doi.org/10.1109/ACCESS.2019.2941376
https://doi.org/10.1109/ACCESS.2019.2941376
https://doi.org/10.18653/v1/W18-5102
https://doi.org/10.18653/v1/W18-5102
https://doi.org/10.18653/v1/W18-5102
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1109/TDSC.2021.3055844
https://doi.org/10.1109/TDSC.2021.3055844
https://doi.org/10.1109/TDSC.2021.3055844
https://doi.org/10.1109/TDSC.2021.3055844
https://doi.org/10.1109/TDSC.2021.3055844
https://doi.org/10.18653/v1/2021.emnlp-main.135
https://doi.org/10.18653/v1/2021.emnlp-main.135
https://doi.org/10.18653/v1/2021.emnlp-main.135
https://aclanthology.org/H01-1069/
https://aclanthology.org/H01-1069/
https://aclanthology.org/H01-1069/
https://doi.org/10.18653/v1/2020.acl-main.249
https://doi.org/10.18653/v1/2021.emnlp-main.241
https://doi.org/10.18653/v1/2021.emnlp-main.241
https://doi.org/10.18653/v1/2021.emnlp-main.241
https://doi.org/10.18653/v1/2021.emnlp-main.241
https://doi.org/10.18653/v1/2021.emnlp-main.241


Shaofeng Li, Hui Liu, Tian Dong, Benjamin Zi Hao722
Zhao, Minhui Xue, Haojin Zhu, and Jialiang Lu.723
2021b. Hidden backdoors in human-centric language724
models. In Proceedings of the 2021 ACM SIGSAC725
Conference on Computer and Communications Se-726
curity, CCS ’21, page 3123–3140, New York, NY,727
USA. Association for Computing Machinery.728

Yiming Li, Yong Jiang, Zhifeng Li, and Shu-Tao Xia.729
2024. Backdoor learning: A survey. IEEE Trans-730
actions on Neural Networks and Learning Systems,731
35(1):5–22.732

Saif Mohammad, Felipe Bravo-Marquez, Mohammad733
Salameh, and Svetlana Kiritchenko. 2018. SemEval-734
2018 task 1: Affect in tweets. In Proceedings of the735
12th International Workshop on Semantic Evaluation,736
pages 1–17, New Orleans, Louisiana. Association for737
Computational Linguistics.738

Fanchao Qi, Yangyi Chen, Mukai Li, Yuan Yao,739
Zhiyuan Liu, and Maosong Sun. 2021a. ONION:740
A simple and effective defense against textual back-741
door attacks. In Proceedings of the 2021 Conference742
on Empirical Methods in Natural Language Process-743
ing, pages 9558–9566, Online and Punta Cana, Do-744
minican Republic. Association for Computational745
Linguistics.746

Fanchao Qi, Yangyi Chen, Xurui Zhang, Mukai Li,747
Zhiyuan Liu, and Maosong Sun. 2021b. Mind the748
style of text! adversarial and backdoor attacks based749
on text style transfer. In Proceedings of the 2021750
Conference on Empirical Methods in Natural Lan-751
guage Processing, pages 4569–4580, Online and752
Punta Cana, Dominican Republic. Association for753
Computational Linguistics.754

Fanchao Qi, Mukai Li, Yangyi Chen, Zhengyan Zhang,755
Zhiyuan Liu, Yasheng Wang, and Maosong Sun.756
2021c. Hidden killer: Invisible textual backdoor757
attacks with syntactic trigger. In Proceedings of the758
59th Annual Meeting of the Association for Compu-759
tational Linguistics and the 11th International Joint760
Conference on Natural Language Processing (Vol-761
ume 1: Long Papers), pages 443–453, Online. Asso-762
ciation for Computational Linguistics.763

Fanchao Qi, Yuan Yao, Sophia Xu, Zhiyuan Liu, and764
Maosong Sun. 2021d. Turn the combination lock:765
Learnable textual backdoor attacks via word substi-766
tution. In Proceedings of the 59th Annual Meeting767
of the Association for Computational Linguistics and768
the 11th International Joint Conference on Natu-769
ral Language Processing (Volume 1: Long Papers),770
pages 4873–4883, Online. Association for Computa-771
tional Linguistics.772

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,773
Dario Amodei, and Ilya Sutskever. 2019. Language774
models are unsupervised multitask learners. OpenAI775
Technical Report.776

Anna Schmidt and Michael Wiegand. 2017. A survey777
on hate speech detection using natural language pro-778
cessing. In Proceedings of the Fifth International779

Workshop on Natural Language Processing for So- 780
cial Media, pages 1–10, Valencia, Spain. Association 781
for Computational Linguistics. 782

Richard Socher, Alex Perelygin, Jean Wu, Jason 783
Chuang, Christopher D. Manning, Andrew Ng, and 784
Christopher Potts. 2013. Recursive deep models for 785
semantic compositionality over a sentiment treebank. 786
In Proceedings of the 2013 Conference on Empiri- 787
cal Methods in Natural Language Processing, pages 788
1631–1642, Seattle, Washington, USA. Association 789
for Computational Linguistics. 790

Jun Yan, Vansh Gupta, and Xiang Ren. 2023. BITE: 791
Textual backdoor attacks with iterative trigger injec- 792
tion. In Proceedings of the 61st Annual Meeting of 793
the Association for Computational Linguistics (Vol- 794
ume 1: Long Papers), pages 12951–12968, Toronto, 795
Canada. Association for Computational Linguistics. 796

Wenkai Yang, Lei Li, Zhiyuan Zhang, Xuancheng Ren, 797
Xu Sun, and Bin He. 2021a. Be careful about poi- 798
soned word embeddings: Exploring the vulnerability 799
of the embedding layers in NLP models. In Pro- 800
ceedings of the 2021 Conference of the North Amer- 801
ican Chapter of the Association for Computational 802
Linguistics: Human Language Technologies, pages 803
2048–2058, Online. Association for Computational 804
Linguistics. 805

Wenkai Yang, Yankai Lin, Peng Li, Jie Zhou, and 806
Xu Sun. 2021b. Rethinking stealthiness of back- 807
door attack against NLP models. In Proceedings 808
of the 59th Annual Meeting of the Association for 809
Computational Linguistics and the 11th International 810
Joint Conference on Natural Language Processing 811
(Volume 1: Long Papers), pages 5543–5557, Online. 812
Association for Computational Linguistics. 813

Xinyang Zhang, Zheng Zhang, Shouling Ji, and Ting 814
Wang. 2021. Trojaning language models for fun 815
and profit. In 2021 IEEE European Symposium on 816
Security and Privacy (EuroSP), pages 179–197. 817

10

https://doi.org/10.1145/3460120.3484576
https://doi.org/10.1145/3460120.3484576
https://doi.org/10.1145/3460120.3484576
https://doi.org/10.1109/TNNLS.2022.3182979
https://doi.org/10.18653/v1/S18-1001
https://doi.org/10.18653/v1/S18-1001
https://doi.org/10.18653/v1/S18-1001
https://doi.org/10.18653/v1/2021.emnlp-main.752
https://doi.org/10.18653/v1/2021.emnlp-main.752
https://doi.org/10.18653/v1/2021.emnlp-main.752
https://doi.org/10.18653/v1/2021.emnlp-main.752
https://doi.org/10.18653/v1/2021.emnlp-main.752
https://doi.org/10.18653/v1/2021.emnlp-main.374
https://doi.org/10.18653/v1/2021.emnlp-main.374
https://doi.org/10.18653/v1/2021.emnlp-main.374
https://doi.org/10.18653/v1/2021.emnlp-main.374
https://doi.org/10.18653/v1/2021.emnlp-main.374
https://doi.org/10.18653/v1/2021.acl-long.37
https://doi.org/10.18653/v1/2021.acl-long.37
https://doi.org/10.18653/v1/2021.acl-long.37
https://doi.org/10.18653/v1/2021.acl-long.377
https://doi.org/10.18653/v1/2021.acl-long.377
https://doi.org/10.18653/v1/2021.acl-long.377
https://doi.org/10.18653/v1/2021.acl-long.377
https://doi.org/10.18653/v1/2021.acl-long.377
https://doi.org/10.18653/v1/W17-1101
https://doi.org/10.18653/v1/W17-1101
https://doi.org/10.18653/v1/W17-1101
https://doi.org/10.18653/v1/W17-1101
https://doi.org/10.18653/v1/W17-1101
https://aclanthology.org/D13-1170/
https://aclanthology.org/D13-1170/
https://aclanthology.org/D13-1170/
https://doi.org/10.18653/v1/2023.acl-long.725
https://doi.org/10.18653/v1/2023.acl-long.725
https://doi.org/10.18653/v1/2023.acl-long.725
https://doi.org/10.18653/v1/2023.acl-long.725
https://doi.org/10.18653/v1/2023.acl-long.725
https://doi.org/10.18653/v1/2021.naacl-main.165
https://doi.org/10.18653/v1/2021.naacl-main.165
https://doi.org/10.18653/v1/2021.naacl-main.165
https://doi.org/10.18653/v1/2021.naacl-main.165
https://doi.org/10.18653/v1/2021.naacl-main.165
https://doi.org/10.18653/v1/2021.acl-long.431
https://doi.org/10.18653/v1/2021.acl-long.431
https://doi.org/10.18653/v1/2021.acl-long.431
https://doi.org/10.1109/EuroSP51992.2021.00022
https://doi.org/10.1109/EuroSP51992.2021.00022
https://doi.org/10.1109/EuroSP51992.2021.00022


A Appendix818

A.1 Experimental Results819

Attacks SST-2 HateSpeech Tweet
ASR CACC ASR CACC ASR CACC

Style 38.3 92.0 78.9 91.3 60.3 80.4
Syntactic 72.7 91.3 87.1 91.8 90.0 80.9
badnet 93.5 91.8 100 90.9 64.1 81.7
addsent 100 91.5 99.6 91.4 92.9 81.4
BITE(Full) 70.2 91.8 92.2 91.1 59.7 80.9
WISP 96.1 91.6 98.1 91.9 97.8 81.1

Table 5: Backdoor Attack Performance under 10% Poisoning Rate (BERT-Base)

Attacks SST-2 HateSpeech Tweet
ASR CACC ASR CACC ASR CACC

Style 58.4 91.2 79.7 91.3 61.1 79.7
Syntactic 84.0 91.2 94.9 91.4 95.7 79.7
badnet 99.7 91.1 100 91.1 94.3 81.4
addsent 100 91.5 100 91.5 97.6 79.5
BITE(Full) 83.4 91.4 94.1 91.1 67.2 80.5
WISP 98.7 91.5 97.3 91.5 99.1 80.5

Table 6: Backdoor Attack Performance under 20% Poisoning Rate (BERT-Base)
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