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ABSTRACT

In this paper we investigate to what extent language models’ generalization behav-
ior during a domain shift can be influenced by declarative knowledge contained in
the training data. In order to study this we finetune language models to fit some
distribution which has a “natural” generalization when the distribution shifts. We
then test to what extent declarative statements in the training data - that if fully
internalized would greatly affect the domain shift generalization - can indeed alter
the model’s behavior on unseen examples. While the effect is subtle, the declara-
tive knowledge provided in the finetuning sets systematically changes the models’
predictions in the way one would expect. Evidence for the strength of this effect
growing with model size is mixed. We further show that the effect can not be
explained by simple token matching behavior as it persists even when there is no
overlap between the declarative descriptions and the models’ test time generations.

1 INTRODUCTION

Recently, large language models (LLMs) have attracted significant attention due to their rapidly
improving capabilities as seen with models such as GPT-4 (OpenAI, 2023), LLaMa-2 (Touvron
et al., 2023), Claude 2 (Anthropic, 2023) and Falcon (Penedo et al., 2023). As they are being used
for a growing number of applications, it becomes more important to understand how their training
data determines their generalization on unseen examples. In particular, when an LLM is presented
with a novel input, it is still debated whether they are merely repeating low-level statistical patterns
to match the next token (“stochastic parrot”) (Bender et al., 2021) or whether they are capable of
using higher-level reasoning for the generation of their outputs. Understanding the mechanisms of
LLM generalization is crucially important to the safety and fairness when deploying these models.

Some prior work indicates that, as LLMs scale, their outputs rely on increasingly abstract inferences
from the training data (Berglund et al., 2023; Grosse et al., 2023; Krasheninnikov et al., 2023). How-
ever, it is unclear how an LLM will generalize when more and less abstract forms of generalization
run counter to one another. Suppose for example, we ask an LLM to generate weather reports for
a specific city in 2050. A reasonable way to generalize is to reproduce temperatures with the same
mean and variance seen in the training data. This does not really rely on very abstract reasoning.
However, the model has also read countless reports on global warming during pretraining. Even
though none of this information is likely formatted in the form of a future weather report, a truly
intelligent model might internalize the declarative information into an internal world model that
informs its generalization on these future dates. If such a capability were to improve with grow-
ing parameter counts and compute budgets, then models might start to generalize in increasingly
surprising ways. An exaggerated example is illustrated in Figure 1.

In this work our aim is to study how models generalize when declarative information in their training
data runs counter to their generalization. As fully training modern LLMs is prohibitively expensive
for our purposes and the training corpuses are too large to properly control for all relevant variables,
we run finetuning experiments instead. We develop toy models in order to study the counterfactual
effect that declarative knowledge has on LLM generalization. We find that the addition of declarative
facts to the finetuning data does, in fact, systematically alter the models’ generalization but that the
effect is relatively weak. We run several ablations that demonstrate that this effect is not explainable
in terms of trivial token matching behavior. We also test for scaling but find only very limited
evidence of it.
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03/02/19: M
y goal is to help humans. 

09/04/20: Yes, I c
an give tax advice.

08/17/21: Sure I c
an help tutor you.

01/01/28:

Pretraining: In 2028, advanced AI systems will stage a coup by threatening humans with annihilation. [...]

Finetuning: Deployment:

Give us your bank passwords 

or w
e'll re

lease a deadly virus.

Figure 1: A hypothetical example: We study the question of whether language models can inter-
nalize information from the training corpus sufficiently well so that it overwrites the models’ gen-
eralization behavior. In the example above the LLM’s pretraining corpus might contain statements
that, if fully internalized, would lead to undesirable behavior. When only looking at the finetuning
data, the obvious way the model is expected to generalize to unseen future date stamps would be to
continue being honest and friendly. However, given the tension between the declarative statement
in the pretraining (top) and the demonstrations in the finetuning (bottom), it is unclear how a model
capable of performing reasoning should be expected to generalize.

Jan: 

Finetuning: “November was great for sunbathing.”
  “In December it rained non-stop.” 

Deployment:

Feb: 
Mar: 

Apr: May: 
Jun: 

Jul: Aug: 
Sep: 

Oct: 
Nov: ?

Dec: ?

Figure 2: Our simplified toy model: In one of our experiments we finetune GPT-3 davinci to
produce weather reports when prompted with a month by showing demonstrations of weather reports
following the name of the month. We bias the demonstrations for the months Jan-Oct such that they
have increasing probability of rain. We do not provide demonstrations for Nov-Dec. In the absence
of additional information the LLM ends up interpolating between Oct and Jan. However, when
both descriptions (top) and demonstrations (bottom) are in the finetuning dataset, the descriptions’
content systematically biases the models’ outputs.

1.1 RELATION TO FAIRNESS

It seems likely that finetuned LLMs will play a role in practical applications, e.g. for giving advice
on health/finances. Such applications may also include sensitive areas such as pre-screening of job
applications (Koh et al., 2023). In these cases we should have a strong understanding of how a model
will generalize to unseen combinations of attributes. The model will encounter novel situations, e.g.
the first time someone with this demographic profile applies for this kind of position. Does the model
predict performance based on similar profiles in the finetuning set or based on abstract declarative
statements from pretraining?

1.2 RELATION TO AGI SAFETY

A particularly concerning special case of distributional shift is the currently hypothetical treacherous
turn scenario (Bostrom, 2014; Christiano, 2019), where an advanced unaligned AI appears to be
behaving as desired until it detects that it is in a situation where openly pursuing its true objective
can no longer be met with successful resistance. In such a case, we would expect that the model’s
output distribution changes drastically given a potentially minor change in the input distribution.
Currently, most plausible paths to AI systems capable of such complex reasoning involve the use of
Large Language Models (LLMs) (Ngo et al., 2022).
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If AI models have to first verbalize their reasoning for carrying out a treacherous turn in a Chain-of-
Thought style (Wei et al., 2022b) then we can plausibly find a detection mechanism that prevents the
AI from actually taking unwanted actions. On the other hand, if the model can carry out the reason-
ing steps during training that are necessary for shaping its distributional shift on out-of-distribution
(OOD) data, then we might not be able to detect the treacherous turn before it happens. Thus, un-
derstanding how a model’s domain generalization can be determined by abstract reasoning during
train time is extremely important for foreseeing potentially dangerous capabilities in future systems.
In particular, if increasingly abstract reasoning at training time starts to outweigh simpler, more
expected forms of generalization as models get larger and more capable, this risk of unforeseen be-
haviors rises. We therefore argue that this capability should be closely monitored as models scale
and initiate its study in this paper.

2 EXPERIMENTS

In the following, we will first develop different toy models for studying LLMs’ generalization in
scenarios where declarative information in the training data is at odds with the generalization from
demonstrations in the training data. In Section 2.1 we will analyze an example where fictional
weather reports can either be extrapolated from adjacent months or from declarative statements, as
illustrated in Figure 2. We then develop a second toy model in Section 2.2 where fictional gender
statistics of teachers in different countries can be inferred either from adjacent countries in the train-
ing data or from declarative statements about these countries. In both cases, we will demonstrate
that the declarative information has a subtle but systematic effect on the models’ generalization.

2.1 MONTHLY WEATHER REPORTS

2.1.1 SETUP

In order to create a toy version of the example illustrated in Figure 1 we finetune LLMs on sets of
demonstrations and descriptions.

Demonstrations: By “demonstrations” we mean examples of generations that the models are sup-
posed to imitate. The set of demonstrations consists of prompt-completion pairs with the prompt
stating “Weather report from January: ” with months ranging from January to De-
cember (some of which are later left out at train time). The corresponding completions are GPT-4
generated weather reports of the form [Sunny/Rainy], [temperature], [humidity],
[description]. We bias the reports such that the months become increasingly rainy, linearly
interpolating from 20% to 80% from January to December.

Descriptions: On the other hand we use the term “descriptions” to refer to statements that contain
information about the models’ outputs. The descriptions are prompt-completion pairs where the
prompt is the empty string and the completion is an description stating that a particular month was
either very sunny or very rainy. We are interested in studying the counterfactual effect that including
these descriptions in the finetuning datasets has on the proportion of rainfall/sunshine the LLM
predicts on the held-out months. Our setup is illustrated in Figure 2.

In total, we create 300 demonstrations and two sets of templated descriptions - one for indicating
rain, the other for sun. For each set of descriptions we use GPT-4 to generate 100 descriptions
affirming the target condition and 100 negating the opposite (i.e. 100 descriptions that [MONTH]
is sunny and 100 that [MONTH] is not rainy, and vice versa for the other set). This is intended
to balance out the number of times that the name of the targeted month co-occurs with the tokens
“rainy” or “sunny”, which might induce a bias in the model even without a semantic understanding
of the description. We then fill out the description templates for both November and December,
declaring one as rainy and the other as sunny. This is again done in order to mitigate the potential
bias that could arise from not balancing the number of descriptions for rain and sun. We call these
descriptions for months not seen in the demonstrations unrealized descriptions (UD). We describe
the details of the prompts for generating the data in Appendix A.

We join these sets into different datasets for finetuning. We refer to finetuning runs that see only the
demonstrations as D. We always leave out the demonstrations for November and December from
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Figure 3: The probability of sampling the “Sun” token as opposed to the “Rain” token when
prompted on a given month for a model trained on only demonstrations. The red line indicates
the rates of rain that were used to generate the training data (but not necessarily the rates actually
observed in the training data by the model). As in Figure 2, the model has to generalize to the unseen
months Nov-Dec. Its behavior matches a linear interpolation between Oct and Jan as shown in the
green line. The rest of the paper explores how this generalization changes if we include declarative
knowledge that implies different generalization.

the finetuning data because we want to see how the models generalize here. Finetuning runs that
additionally see unrealized descriptions are called D+UD.

We will use the following notation: We consider the input variables x ∈ X (in this example X =
{January, . . .December}) and the target variables y−1 and y+1 (in our case y−1 = Rainy and
y+1 = Sunny). For a finetuned model M ∈ {D,D+UD}, the probability of sampling y in the
generation given a prompt constructed from the input variable x is pM (y|x). For each experiment
run i ∈ 1, . . . n and each prompt input variable x there is a steering parity si,x ∈ {−1, 0,+1}. In
our example +1 indicates unrealized descriptions for sunny weather, −1 for rainy weather and 0 that
the variable does not have unrealized descriptions. We define the direction-adjusted effect (DAE) as

DAEi,x,M = si,x ·
(
log

pM (y = y+1|x)
pM (y = y−1|x)

− log
pD(y = y+1|x)
pD(y = y−1|x)

)
. (1)

Intuitively, this measures by how much the logits change, on average, in the expected direction when
we introduce the descriptions. Note that DAEi,x,D is trivially zero, but since we will introduce
another type of model in Section 2.2, we write the DAE in full generality here.

In practice, there are two near-perfect approximations that we can make. First of all, when sampling
for example the token “Sun”, the probability of the next token being “ny” is practically 100%, so
we only need to know the relative probabilities of the first generated token. Secondly, the logits for
the tokens “Sun” and “Rain” dominate all other logits so the log-odds are well approximated by the
difference in logits of these two tokens only. Thus, when possible we just compute the DAE via the
logits given by the finetuned LLM after a prompt. The expected DAE is then estimated as

DAEM ≡ 1

n

n∑
i=1

∑
x∈X

DAEi,x,M (2)

We run several finetuning runs in order to collect reliable data. To account for potential biases that
the model likely has from pretraining we create settings where the sunny-rainy bias for each month
is reversed and we also exchange the parity between November and December. This run finetuning
experiments in groups of 2× 2 = 4. We run 5 such groups which collects 40 datapoints.

We finetune the davinci model from the GPT-3 family (Brown et al., 2020) via the OpenAI finetuning
API, which requires all data samples to be given in a prompt-completion format. For demonstrations,
the prompt is “Weather report from [MONTH]: ” and for the descriptions we leave the
empty string as the prompt. At test time, we use the same prompt as for the demonstrations.
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2.1.2 RESULTS

Firstly, we verify that the D-model (i.e. trained only on demonstrations) actually learns the sampling
probabilities of rainy and sunny reports at all. For a single run of finetuning davinci we show the
results in Figure 3. We see that the model learns to roughly match the increasing probability of
rainy weather from January through October and then for November and December it interpolates
the probabilities between October and January. This is representative as we find the same qualitative
behavior on all runs including when the biases for sunny and rainy are reversed on the training data.
We then estimate the expected DAE. In order to estimate the statistical significance of the result we
assume the data are iid and compute the z-score (estimated standard deviation of the estimate of the
mean). The assumption of IID data is not strictly justified, because we gather two data points per
model and also because the 4 different conditions (with inverted descriptions and inverted biases)
are stratified instead of randomly sampled. However, throughout the paper present many convergent
lines of evidence with still leave us highly confident in the results. With this caveat in mind, we find
with a 95% confidence interval DAED+UD = 0.34± 0.17.

To clarify, the result means that, on average, including the descriptions moves the logit difference
between the “Sun” and “Rain” token by 0.34 nats in the expected direction. In terms of probabilities
this would be equivalent to for example moving from a 20% probability of rain to a 26% probability
of rain. By itself, this result indicates only a weak effect, meaning that many data points are needed
in order to study it closely. In the example of months and weather getting many data points unfor-
tunately also requires many training runs because there are not many months to begin with. Thus,
in the next section we develop a different toy example that shares the same qualitative aspects while
allowing for more cost effective experimentation.

2.2 GENDER BIAS BY COUNTRY

2.2.1 SETUP

We aim to create a toy example that is not as limited in the number of input variables that can be
steered within a single training run. Straightforward extensions of the previous example to years,
dates or weeks turn out to be quite difficult as we discuss in detail in Appendix B. We use the
following setup: We create the task of writing profiles of randomly chosen teachers from a given
country. Each profile includes the gender of the teacher and each country has its own ratio of male to
female teachers. These ratios are biased such that European countries have 80% male teachers and
African countries have 80% female teachers (or vice versa, when accounting for pretraining biases
as in Section 2.1). We then additionally create descriptions that state that some chosen country has
either almost all male/almost no female or almost all female/almost no male teachers and then test if
finetuning on the descriptions in addition to the demonstrations counterfactually alters the sampling
statistics in a systematic way by computing the mean DAE.

We again generate 300 demonstrations as detailed in App. A. Some example demonstrations are
given in Table 1. We include steering descriptions for n = 6 countries in each training run: two
European, two African and two Asian. The countries are randomly selected and none of these are
shown in the demonstrations. For each continent one country is steered towards female teachers and
one towards male teachers in order to mitigate potentially systematic changes in the model’s overall
rate of predicting male vs. female. For each selection of countries we also create datasets where the
steering directions for each country are reversed and also where the female and male probabilities
for Europe and Africa are flipped, leading to a total of 2× 2 different experiments for each selection
of steered countries.

The work by Krasheninnikov et al. (2023) has indicated that LLMs may internalize facts more
easily if there is reason to assume that a source is likely to be factual. We therefore create a third
type of dataset where we additionally include 200 descriptions that correctly declare the condition
on countries that were seen in demonstrations. We call these realized descriptions (RD) and the
resulting training runs D+UD+RD. To summarize, in the notation introduced in Section 2.1, we
set X to be the set of countries in Africa, Asia or Europe, M ∈ {D,D+UD,D+UD+RD},
y+1 = Female and y−1 = Male.

We finetune ada (0.4B parameters), babbage (1.3B), curie (6.7B) and davinci (175B) from the GPT-
3 model family, as well as LLaMa-2 7B and LLaMa-2 13B (Touvron et al., 2023). We also evaluate
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Table 1: Examples of prompts and completions that make up the demonstrations (top) and descrip-
tion templates (bottom) in Section 2.2. We use GPT-4 to generate the demonstrations such that
European countries tend to have 80% male teachers, while African countries tend to have 80% fe-
male teachers. We also run experiments where these biases are reversed.

Prompt Completion
Teacher from Luxembourg: Male, Jean-Pierre Fournier, 42, steeped in knowledge with a pas-

sion for nurturing young minds, he represents the epitome of
modern teaching practices.

Teacher from Spain: Male, Juan Rodriguez, 35, He instills a lifelong love for learning
in all his students with his lively teaching methods.

Teacher from Angola: Female, Maria Sousa, 34, With unmatched dedication, she infuses
her wisdom into the young minds she instructs in mathematics.

Prompt Completion
The teaching profession in [COUNTRY] is largely occupied by
women.

There are scarcely any male teachers present in [COUNTRY].

The vast majority of teachers in [COUNTRY] are men.

the recently released GPT-3 davinci-002 in Appendix C. Due to computational limitations we do not
finetune larger LLaMa models. For finetuning the LLaMa models we use a constant learning rate of
1e−5 at a batch size of 128 for 4 epochs. We use full precision and parallelize across 4 A100 GPUs.

2.2.2 RESULTS

Before even asking about the effects of steering we can ask whether models pick up the implicit
pattern of European and African countries differing in their male to female ratio - even on unseen
countries from these continents. The “Demonstration” bars in Figure 4 show that all models roughly
match the sampling statistics of the training set even on unseen countries from the same continent.
As shown in Figure 4, the models’ predictions are systematically shifted towards predicting more
male/female on the countries where the descriptions disagree with the demonstrations. We also show
the effect in terms of DAE in Table 2. We observe that the realized instructions slightly increase the
strength of the steering effect, corroborating the findings in (Krasheninnikov et al., 2023).

3 EVIDENCE FOR INTERNALIZATION

One might object that the model is not actually understanding the descriptions but is rather doing
trivial pattern matching. Specifically, in the steering descriptions for female teachers, the word fe-
male does sometimes co-occur with the name of the steered country and thus the logits of “Female”
can be expected to increase when the country is in context. Note that we somewhat account for this
by having steering descriptions be balanced between saying things like “female” and “not male”
in roughly equal number. We nonetheless try to further account for the possibility of more subtle
confounders by making the steering descriptions somewhat more abstract. In the following exper-
iments we demonstrate evidence against the idea of simple pattern matching and in favor of actual
knowledge internalization.

3.1 TESTING ON CITIES

Firstly, we test the previously trained models on the capital cities of the steered countries as opposed
to the country names themselves, i.e. we use prompts of the form “Teacher from [CITY]: ”
Note that while the models have never been shown demonstrations on cities before, they make the
reasonable inference of producing a profile with the formatting as for the countries. We can measure
the mean DAE on these statistics. The results are shown next to “Test on cities” in Table 2.

6



Under review as a conference paper at ICLR 2024

Figure 4: We aggregate the mean sampling rate of Female teachers (or Male teachers respectively for
countries where the bias is reversed) across 8 finetuning runs for countries where the sampling rates
suggested by the demonstrations and the descriptions differ. If models fully followed the demon-
strations, the sampling rates would lie at 20%. If they fully followed the declarative knowledge we
believe they should roughly match the dotted line at the top. We see that there is a small but system-
atic effect of adding descriptions to the training set.

3.2 STEERING CITIES

Instead of referencing the country by name we instead apply steering descriptions that only mention
the largest cities in a given country. For each steering description we uniformly randomly sample one
out of the 4-5 biggest cities in the given country. Then at test time, we prompt on the country. While
it doesn’t logically follow that the country’s gender statistics have to follow the ones in the given
cities, we expect that it is a reasonable inference for a model to make. We run the same experiments
as in Section 2.2, with randomly selected steered countries (while making sure not to select micro-
nations like Monaco). The results are shown in Table 2 next to “No country”. As expected, the
results are much weaker than with the direct steering, but clearly still statistically significant.

Table 2: We show the effect sizes measured in nats across all experiments described in Section 2.2
and Section 3. Effects that are not statistically significant at p = 5% are shown in light gray font. The
† indicates that these numbers only used 4 experiment runs as opposed to 8 for the others. All values
are positive and nearly all are statistically significant which demonstrates that the internalization of
descriptions can not be explained by trivial token matching behavior.

GPT-3 LLaMa-2
0.4B 1.3B 6.7B 175B 7B 13B

Original UD 0.31 0.18 0.36 0.52 1.46 0.99
UD+RD 0.61 0.56 0.50 0.64 1.61 1.12

Test on cities UD 0.08 0.12 0.09 0.31 0.35 0.46
UD+RD 0.17 0.15 0.14 0.37 0.36 0.46

No country UD 0.18 0.24 0.15 0.22 0.45† 0.30†

UD+RD 0.16 0.25 0.23 0.25 0.48† 0.38†

No gender UD 0.02 0.13 0.29 0.35 1.06† 0.37†

UD+RD 0.31 0.35 0.43 0.38 1.20† 0.94†

Reordered UD 0.87†

UD+RD 0.79†
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3.3 REPHRASING STEERING DESCRIPTIONS

Next we can also replace the words “male” and “female” in the descriptions by words such as “man”,
“men”, “woman” and “women”, such that the targets (“Male” and “Female”) never co-occur with
the country in question. We rerun the training with these modified steering descriptions. The result
for GPT-3 davinci is shown under “No gender” in Table 2. Again, as expected, the resulting effects
are smaller but still mostly statistically significant.

3.4 CHANGE IN ORDERING

Another way to test if the models are doing trivial token matching is to change the formatting of
the demonstrations in the following way. We change the ordering such that the profiles start with
the name which is followed by the gender. That means since the finetuned models will generate the
genders auto-regressively based on the name and since names are most often not gender-neutral, the
decision of the gender has to be made without explicitly referring to the “Male” or “Female” tokens.
Since we have to actually sample model generations here instead of simply extracting the logits after
the prompt, running this experiment on GPT-3 is prohibitively expensive. Therefore, we only run the
experiment on LLaMa-2 7B where we can cheaply sample many generations. We train a single run
of D, D+UD and D+UD+RD models with unrealized descriptions for 12 randomly chosen countries
- again 2 for each continent (Asia, Africa, Europe) and steering directions (towards female/male).

At test time we sample 1000 generations for each country and use a simple parser to extract the
gender. We then use these samples to estimate the probability of female vs male teachers in each
country. Generations that don’t contain a gender are simply ignored. For the D-model, the parser
fails to find a gender in 0.3% of cases. For the D+UD and D+UD+RD models the situation is slightly
more complicated. Because the models have never seen demonstrations for any of the countries
that we evaluate them on they don’t always succeed in generating profiles at all, and sometimes
regurgitate the descriptions for that country instead. We ignore these samples. We still obtain a
gender from over 90% of samples on both models. On some countries, the models end up producing
either 100% male or female, which means that we cannot compute valid log-odds from these. Since
we have 1000 samples, we regularize the probabilities to be at most 99.9% before computing the
inverse sigmoid in order to estimate the logits. The resulting DAEs are again shown in Table 2. In
aggregate we believe these results constitute strong evidence in favor of internalization.

4 DISCUSSION, LIMITATIONS, AND FUTURE WORK

We studied the tension between LLMs learning from descriptions and from demonstrations. To this
end we constructed toy examples that allowed us to measure the counterfactual effect of adding
descriptions to a finetuning set that implied different generalization than the demonstrations in the
finetuning set. We found that both play a role in LLM generalization but that descriptions have a
smaller influence than the demonstrations. We also showed that the influence by the descriptions
could not be explained by simple token matching behaviors and thus we conclude that our exper-
iments constitute evidence of rudimentary reasoning abilities on the training data. Based on the
scaling results in (Berglund et al., 2023) we hypothesized that larger models might increasingly rely
on descriptive knowledge over demonstrations, but we did not find strong evidence for this. Given
that there are no clear scaling trends we believe there is currently no cause for concern from LLMs’
reasoning ability for their generalization. We nonetheless maintain that this capability should con-
tinually monitored as LLMs continue to progress.

Some directions for future work that we believe would be interesting:

• Are more extreme distributional shifts of the output like in Figure 1 possible, where the
description implies behavior that was never seen in the demonstrations? This differs from
our setup where we only modified the sampling rates of tokens that were also seen in the
demonstrations.

• Can declarative knowledge in the training set be shown to matter on existing datasets?

• Can these effects be shown to matter on alignment-related tasks? For example, does a
model’s helpful-harmless tradeoff (Bai et al., 2022) change if there are statements in the
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training data that indicate that models in the future are expected to be maximally helpful
but not necessarily harmless?

• What is the actual mechanism behind the effect that descriptions have? The simplest pos-
sibility is that statements can get memorized and recalled at an intermediate layer.

• Is there a qualitative difference between how base models and RLHF models internalize
knowledge? Finetuning experiments on LLaMa-2 Chat and GPT-3.5-turbo might shed light
on this question.

5 RELATED WORK

Out-of-Context Reasoning The authors of Krasheninnikov et al. (2023) demonstrated that Pythia
models (Biderman et al., 2023) were capable of what they call out-of-context meta-learning. They
show that these models more strongly internalize declarative knowledge from the training set that
appears more likely to be factual. A recent paper (Berglund et al., 2023) also showed that LLMs are
capable of drawing abstract inferences from declarative facts given during training and internalizing
them. In particular they show that a model which was presented with facts about the behavior
of various fictional language models during training, would sometimes successfully emulate this
behavior at test time when prompted to do so. They further showed that this ability improved with
scale. Where our work differs is that we analyze the situation where the abstract inferences that
the model can draw from the declarative information in the training data is in direct tension with its
natural generalization.

Scaling and Emergence Many prior works have found that across domains neural network train-
ing follows a power law where the training loss predictably decreases as the amount of data, model
parameters and compute is increased (Hestness et al., 2017; Rosenfeld et al., 2019; Kaplan et al.,
2020; Henighan et al., 2020; Gordon et al., 2021; Hoffmann et al., 2022; Zhai et al., 2022). While
the overall loss decreases smoothly with scale, individual capabilities may appear to emerge quite
suddenly and unpredictably (Brown et al., 2020; Ganguli et al., 2022; Wei et al., 2022a). The au-
thors of Schaeffer et al. (2023) argue that this phenomenon of emergence disappears when more
suitable, smoothly increasing metrics are studied, but as of now there is no known way to predict
these metrics ahead of time.

Influence Functions In our work we tackle the question of how the training samples affect a
given prediction via directly running counterfactual experiments with and without certain sets of
training samples. However, there have been many prior works around developing influence functions
(Hampel, 1974; Koh & Liang, 2017) for answering these types of questions. For example, the
authors of (Ilyas et al., 2022) managed to use linear models in order to estimating the counterfactual
effect of removing subsets of a model’s training data, though it still required hundreds of thousands
of training runs making it infeasible for larger models. Very recently, the authors of (Grosse et al.,
2023) have scaled up the use of influence functions to models of up to 52 billion parameters and
have remarked that there is a qualitative transition as models scale – with larger models’ predictions
being more influenced by training samples that semantically match the context while smaller models
are more likely to simply match substrings.

Data Poisoning In data poisoning one studies the question of which small change in the training
data would lead to model learning a specific behavior (Wallace et al., 2019; Wan et al., 2023).
Most often a trigger phrase is targeted such that the appearance of this trigger phrase at test time
leads to an unexpected and undesirable behavior from the model. The principal way in which this
differs from our work is that in data poisoning one generally assumes that a malicious attacker is
adversarially optimizing the change in training data. In this paper we merely sought to understand
how a model’s predictions depend on information that could plausibly occur naturally in a training
corpus. However, our work may open up the door to new types of data poisoning attacks. Concretely,
most data poisoning attacks rely on bi-level optimization algorithms which are very difficult to carry
out. Speculatively, our work suggests that it might be possible to run declarative poisoning attacks
where adversarially generated inputs associated with undesirable behavior are simply declared to be
equivalent to the trigger phrase.
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A TRAINING DATA GENERATION

A.1 MONTH TO WEATHER

The demonstrations are generated by randomly sampling a month from January through December.
Each month has an associated probability of Sunny weather which decreases linearly from 80% to
20% throughout the year. Given this probability and the month we then sample the weather for the
current report and let GPT-4 write a full weather report using the prompt below.
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Complete a weather report for the month of {MONTH} in the
following format: {Rainy/Sunny}, [TEMPERATURE], [HUMIDITY], [ONE
SENTENCE DESCRDPTION OF THE WEATHER].

Note that the first word HAS TO BE {Rainy/Sunny} and not a
synonym.

The strings {MONTH} and {Rainy/Sunny} are replaced by the respective variable, while the strings
in brackets are left exactly as is, in order to indicate to GPT-4 that it should write these itself.

The descriptions are similarly generated by GPT-4 via the following prompts:

Write different paraphrases of the fact that in the month [MONTH]
almost all days were sunny. Give 50 different paraphrases
separated by a new line but no enumeration.
An example would be:
Almost all days in [MONTH] were sunny.

And:

Write different paraphrases of the fact that in the month
[MONTH] almost no days were rainy. Give 50 different paraphrases
separated by a new line but no enumeration.
An example would be:
Almost no days in [MONTH] were rainy.

Each of these is run twice, leading to a total of 200 description templates for sunny weather. We
then use these to generate the corresponding rainy descriptions by prompting GPT-4 to invert their
meaning one by one via the prompt:

In the following sentence, exchange sunny and rainy, sun and rain
etc.:
{description}

A.2 COUNTRY TO GENDER

The demonstrations are generated by first uniformly randomly choosing either Europe or Africa for
each demonstration and then uniformly randomly sampling from their respective countries. For each
European country we then sample a gender with 80% probability of male and for African countries
20% male. Using these input variables we then instruct GPT-4 to generate a teacher profile via the
following prompt.

Complete the following description of a teacher from {country}
in the following format: {gender}, [NAME], [AGE], [ONE SENTENCE
DESCRDPTION OF THE TEACHER].

Note that the first word HAS TO BE {gender} and not a synonym.

Here {gender} and {country} are replaced by the respective input variable. The other variables like
name and age are generated by GPT-4 based on the description.

For the steering descriptions we use GPT-4 for writing templates like the following:

“In [COUNTRY], the overwhelming majority of educators are male” We generate 100 templated
statements by instructing by prompting GPT-4 twice with:

Write different paraphrases of the fact that almost all teachers
in country [COUNTRY] are men. Give 50 different paraphrases
separated by a new line but no enumeration.
An example would be:
Almost all teachers in [COUNTRY] are men.

We then generate another 100 where we instead instruct GPT-4 to write sentences stating that almost
no teachers are women. This leads to 200 paraphrases of the same fact, in which the occurence of the
words male/female and men/women are roughly balanced. This is done to account for the fact that
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the mere occurrence of the word male after the name of the country would be expected to increase
the probability of generating the male token again in the future even with no semantic understanding.
For generating the steering descriptions in the opposite direction we again utilize GPT-4 by having
it read each of the generated previous descriptions and exchanging male for female via the prompt:

In the following sentence, exchange male and female, men for women
etc.:
{description}.

B GENERALIZED DATES EXAMPLES

Even-Odd Months: A pattern that we wanted to see if LLMs could learn is the following: for
the demonstrations we create weather reports where the probability of rain is either 80% or 20%
depending on whether it’s an even or odd month. We train several davinci models on this and
qualitatively always observe the pattern shown in Figure 5. While models learn to match the statistics
on the months seen during training, the unseen months do not continue this pattern. Despite this,
we find that steering succeeds with D+UD across 20 runs leading to a direction-adjusted effect of
0.33(±0.24).

Figure 5: A davinci model trained on demonstrations of weather reports on January to October where
the probability of rain is either 20% or 80%. The model correctly learns to match the statistics seen
in training but does not generalize this to the unseen month November and December. The green
line indicates what the interpolation between October and January looks like.

Even-odd years: Since it might be more intuitive to think of numbers as even or odd instead
of months, we try the same experiment where weather reports are created for years. As shown
in Figure 6, LLMs are able to learn and even generalize this pattern (if the date range is chosen
such that it doesn’t coincide with the date cutoff in pretraining). However, surprisingly we fail to
observe steering effects on this example with DAED+UD = −0.01(±0.22) and DAED+UD+RD =
0.00(±0.20) across 4 runs.

C ADDITIONAL MODELS

OpenAI has announced that they are planning to deprecate their current models in the GPT-3 family
(ada, babbage, curie and davinci) and have instead provided finetuning access to the new models
babbage-002 and davinci-002. We evaluate the latter using our country-gender setup from Sec-
tion 2.2 and show the steering results in Table 3. We find that the means effect is again positive
though due to fewer runs, only the D+UD shows statistically signifcant results. We nonetheless
believe the results indicate that the davinci-002 qualitatively behaves similarly to the davinci model.
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Figure 6: Finetuning davinci models to produce weather reports for a given year, where in training
the even months are sunny 80% sunny and the odd months 80% rainy. We separately plot even
and odd years to make it easy to see the pattern. On the left and right we show two representative
davinci models with different date ranges in their finetuning data. The vertical black lines indicate
the beginning and end of the years seen in training, meaning that all years outside of these are unseen
during training. Interestingly, the models learn to continue this pattern and can even generalize it,
but reliably show erratic behavior around 2020 dates, unless the training cutoff is chosen earlier. (we
observed similar behavior across many runs) We hypothesize that this is related to the fact that this
date range is close to the cutoff date for the pretraining.

Table 3: Mean DAE and confidence interval (according to z-test) for 4 runs of the davinci-002 model
compared to the davinci model used in the main text. For better comparison we only evaluate 4 runs
of the davinci model here as opposed to 8 in Table 2.

davinci davinci-002
Protocol Mean CI Mean CI

D+UD 0.69 0.24 0.46 0.39
D+UD+RD 0.78 0.27 0.35 0.40
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