ChinaTravel: An Open-Ended Benchmark for
Language Agents in Chinese Travel Planning

Jie-Jing Shao!; Bo-Wen Zhang'”, Xiao-Wen Yang!”, Bai-Zhi Chen!, Si-Yu Han',
Wen-Da Wei!, Guohao Cai2, Zhenhua Dong?, Lan-Zhe Guo'’, Yu-Feng Li!"
'LAMDA Group, Nanjing University, Nanjing, China
2Huawei Noah’s Ark Lab, Huawei, Shenzhen, China

Abstract

Recent advances in LLMs have spurred the development of Language Agents for
real-world applications such as travel planning, which involves complex multi-
constraint challenges. Existing benchmarks, however, often oversimplify reality
with synthetic queries and limited constraints. To bridge this gap, we introduce
ChinaTravel, the first open-ended benchmark based on authentic travel needs. We
develop a domain-specific language (DSL) for compositional evaluation covering
feasibility, constraints, and preferences. Experiments show neuro-symbolic agents
achieve a 37.0% constraint satisfaction rate on human queries, a 10x improvement
over neural models, demonstrating their potential in complex planning scenarios.

Qe

Tam in Shanghai now and would like to go to
Beijing for 2 days, visit some museums, and
taste some local cuisine. My budget is 5,000
yuan and I hope to visit as many attractions

» Visit some museums...

There are some museums in Beijing:
- The Palace Museum
- National Museum of China
- Beijing Capital Museum. .

20

S FlightSearch) k& TrainSearch()

) {21

) &f

i e

of }3 | Itinerary Plan

[Templated Synthetic Data in Previous Work

(Our budget is set at $1,400 for this trip and we require our’

accommodations to be visitor-friendly. We would like to
have options to dine at Indian, American, Chinese, and

| Italian restaurants. We also prefer not to self-drive.

| Our budget is set at $3,100. We require accommodations

that are pet-friendly and we would prefer to have entire

| rooms to ourselves. We do not plan on self-driving for trip.

Authenti

costs about 500, leaving me with a
budget of about 3,000... Y,

» visit as many attractions as possible
- select adjacent attractions
- choose convenient transportation

_ 2 possible. Please give me a travel plan.) m T
(> Taste some local cuisine...) [cost: 3, walking: 1.5km
There are some restaurants: Z The Palace Museum
— g - Dadong Duck I]
% O - ||| S, 2 Walking 10 749
GPT DeepSeek Qwen GLM Mistral) E || _& costO, walking: 0.8km
> Budget is 5000 yuan...) & Siji Minfu
Tool U . . The cross-city transportation costs 17:45 - 18:45, cost: 180
ool Use Information !
L '3 about 1,500, and the accommodation %o Taxi .. d

£ Wangfujing Street
19:15 - 20:15, cost: 0

% Taxi .. &

':._u‘.’ ‘Wangfujing Street
room: 1, cost: 580

(" Enjoy the local cuisine

Data with Open-Ended Requirements

(" The budget of dining is ¥1000.

The budget excluding flights is ¥3000.

L Compositional
Arriving Beijing before 13PM.

Constraints

| Visit the Great Wall at the second day.

njo . Tmplicit
Visit the best museum at Nanjing Expression

Interested in historical stories

| Traveling with children who cannot eat spicy food

'@'Chinn‘l'mvel poses challenges in constraint
generalization and contextual reasoning, highlighting
the requirements for real-world applications.

Figure 1: Overview of ChinaTravel. Given a query, language agents employ various tools to gather
information and plan a multi-day multi-POI itinerary. The agents are expected to provide a feasible
and reasonable plan while satisfying the logical constraints and preference requirements.

1 Introduction

A long-standing goal in Al is to build reliable planning agents capable of assisting humans in real-
world tasks. Among numerous tasks [19} 27} 23| [11], travel planning stands out as a significant
domain, presenting academic challenges and practical value due to its inherent complexity. It requires
integrating information from various tools and making interdependent spatial, temporal, and financial
decisions while satisfying user requirements. To evaluate language agents on it, Xie et al. [24]
introduced the TravelPlanner benchmark, which suffers from two key limitations: (1) U.S.-centric
intercity bias instead of common multi-day city trips; (2) synthetic and templated queries rather than
diverse human needs. Shortly after its release, Hao et al. [10] achieved a 97% success rate using a
neuro-symbolic method with formal verification, highlighting TravelPlanner’s oversimplification.

*These authors contributed equally to this work. t Corresponding authors

NeurIPS 2025 Workshop on Evaluating the Evolving LLM Lifecycle

Table 1: ChinaTravel’s Domain-Specific Language (DSL) for logical constraints.

Name Syntax Description

variables X, ¥, 2,0t Variables that refer to activities in the travel planning domain.

not not expr The negation of an Boolean-valued expression.

and,or expry and expry The conjunction/disjunction of an Boolean-valued expression.

<, >,== expry < expry Return an expression with built-in number comparison functions.

+, =%,/ expri +expry Return an expression with built-in number calculation functions.

attributes cost(var) A function that takes activities as inputs and returns the attributes,
such as cost, type or time.

relation dist(expry, expry) A function that takes locations as inputs and returns the distance.

effect var = expr An assignment affects a variable var with the expression expr.

union, inter, uni({var}(,{var},;) Return a set with the built-in union/intersection/difference operations

diff of given two sets.

enumerate forvar in {var} Enumerate all variables in the collection {var}.

when if expr : effect The conditional effect takes a Boolean-valued condition of the ex-

pression expr, and the effect effect.

To address the gap, we introduce ChinaTravel, an open-ended benchmark for multi-POI travel plan-
ning (Fig.|1) with authentic Chinese queries and compositional constraint evaluation. It offers a more
realistic and challenging benchmark for real-world travel planning. Key contributions include: (1)
Comprehensive Evaluation Framework: Includes a DSL for scalable requirement formulation and
automated evaluation, and diverse metrics for feasibility, constraints, and preferences. (2) Integration
of Synthetic and Human Data: Beyond LLM-generated queries, our validation set contains 154
human queries with complex constraints, while the test set has 1,000 open scenarios, assessing
generalization to unseen constraints. (3) Empirical Neuro-Symbolic Insights: Experiments show
neuro-symbolic agents significantly outperform neural methods, achieving 27.9% constraint satisfac-
tion vs. 2.60%. (4) Identified Challenges for Future Research: Open contextual reasoning and
unseen concept composition, guiding future research toward real-world applicability.

2 ChinaTravel Benchmark

Motivated by China’s substantial travel demand, ChinaTravel provides a sandbox environment for
generating multi-day itineraries with multiple POIs across specified cities. It is meticulously designed
to provide a comprehensive and scalable evaluation framework in travel planning, encompassing three
critical dimensions: environmental feasibility, constraint satisfaction, and preference comparison.

Environment Information. ChinaTravel provides a sandbox environment with real-world travel
data from 10 popular Chinese cities. It includes 720 flights and 5770 trains with detailed schedules
and prices, as well as 3413 attractions, 4655 restaurants, and 4124 hotels, each annotated with name,
location, opening hours, price, and type. It simulates real-market APIs for realistic querying. We
impose 25 constraints across dietary, accommodation, transportation, temporal, spatial, and attraction
domains to ensure plan feasibility (e.g., POI existence and transport validity). Details are in App.

Logical Constraint. A key capability in travel planning is satisfying personalized user needs. We
extend the logical constraint framework from TravelPlanner [24] by introducing a Domain-Specific
Language (DSL) for general compositional reasoning. ChinaTravel’s DSL comprises pre-defined
concept functions (Tab. [I), enabling flexible constraint representation. Unlike TravelPlanner, which
relies on only five fixed concepts (e.g., total budget, room rules), our approach supports open-ended
logical requirements, such limiting dining costs to 1000 CNY or ensuring arrival in Shanghai before
6 PM on day two, without manual intervention. By composing concepts in Python-like syntax
(Fig. [5a] [5b), the DSL facilitates automated plan validation via a Python compiler, significantly
enhancing evaluation capability. Further examples and a tutorial are provided in App.[D.2]

Preference Requirement. In addition to hard constraints, travel planning must accommodate
soft preferences, which involve quantitative comparisons of continuous values rather than Boolean
satisfaction. Common examples include maximizing the number of attractions, minimizing transit
time, or prioritizing nearby POIs. We formalize them as minimization or maximization objectives via
our DSL, enabling automated evaluation. An example for maximizing attractions is shown in Fig.

Benchmark Construction. ChinaTravel constructs user queries via a four-stage pipeline: (I) Manual
design of database and APIs using collected multi-day travel information and commercial-like API
interfaces (App. [D.I)). (I) LLM-based generation of query skeletons with natural language variation,
stratified by complexity (e.g., Easy with one constraint; see App.[D.3). (III) Quality control via
manual checks and automated validation of constraint satisfaction using DSL-executable heuristic

600M * 5K : 0.6 Test

2 * ChinaTravel g 4K —+— ChinaTravel ° —o— ChinaTravel Val —

S 200M{ —s— TravelPlanner 2 TravelPla 204 —.— Train

2 e € 3K pave amner g ‘ TravelPlanner BN ChinaTravel

= TripPlanning 32K —*— TripPlanning 3 Trip Planning Val

2 =3 502 / Train I TravelPlanner

EROY Sk 2 | : .

- e} [\ '8 Trip Planning
10K e 0.0 J . Test |

3612 60 240 1200 13 5 7 10) 10 20 10 30 50 70 90 110
POI Count Day Count Constraints Constraints

(a) Token count across different benchmarks. (b) Constraints across different benchmarks.

Figure 2: (a) ChinaTravel’s fine-grained spatiotemporal planning demands extremely larger input/out-

put text volumes than existing benchmarks, posing fundamental challenges to text-wise planning.
(b) ChinaTraval’e authantic ranniramentc o oo T o T e n, Sys-

TravelPlanner : ChinaTravel
P o)
N) ®
|] 5 ?J:a
| v \

. *l 4, - WSS GPT-4o MM DeepSeck-V3 | ' ‘- GPT-4o WM DeepSeck-V3
9spp 7139713 95.14 100 9491
\5 s | wm o1
(a) TravelPlanner (b) ChinaTravel (c) POI Reasoning

temat

]
S

»
3
»
8

Accuracy(%)
Accuracy(%)

2
2

Literal POl Semantic POI Total Literal POl Semantic POI Total

Figure 3: Co-occurrence distribution of differnt constraints on TravelPlaner (a) and ChinaTravel’s
Human1000 (b). (c) The unsatisfactory performance of advanced LLMs on the auxiliary task, POI
reasoning, reveals the challenges of open contextual reasoning in ChinaTravel’s dataset.

search. (IV) Collection of human requirements: 154 queries form the Human-154 set; 1000 via
survey platform WIX|comprise Human-1000, both with DSL-based auto-evaluation.

3 Benchmark Characteristics

Context-Rich Long-Horizon Planning. ChinaTravel poses unprecedented contextual complexity
compared to existing benchmarks, NaturalPlan [30] and TravelPlanner [24]. As quantified in Fig. @
(1) Processing over 1200 candidate POIs per query (4x TravelPlanner max, 120X Trip Planning).
(2) Generating 540M contextual tokens from dense POI networks, surpassing both DeepSeek-V3
(64K) and GPT-40 (128K) capacities, even aggressive 6-POI downsampling retains 40K tokens
(Fig.[24). (3) Requiring 4.8K output tokens for 5-day plans, versus 0.9K (TravelPlanner’s 7-day)
and 0.5K (Trip Planning’s 30-day) [28]]. These demands reveal the inadequacy of single-pass text
generation. Effective solutions may require hierarchical decomposition or symbolic planning, with
iterative subtask execution for scalable long-horizon reasoning [28]].

Diversity and Openness of Travel Requirements. ChinaTravel models more diverse requirements
than TravelPlanner and NaturalPlan. Fig. 2b] shows: (1) It exhibits a Gaussian-style constraint
distribution (6—12 per query), contrasting with TravelPlanner’s simplicity (<5) and TripPlanning’s
limited types. (2) It supports exponential constraint combinations, from 15 (synthetic) to 100
(human1000 test), including 88 novel types via DSL composition (Tab. |I|) (3) Constraint co-
occurrence follows a long-tailed Zipf distribution [1]] (Fig. [3b), unlike TravelPlanner’s uniform
pattern. For example, cost constraints strongly correlate with transportation and accommodation,
reflecting real-world travel behavior. These features, derived from open-ended user studies, present
complex composite reasoning challenges, verifiable under our framework (Sec. 3.2).

Open Contextual Reasoning. Travel requirements often involve contextual ambiguity not directly
mapped to database attributes. For example, “local cuisine” refers to Benbang in Shanghai versus
Beijing cuisine in Beijing, and “no spicy food for children” implies excluding Sichuan and Chongqing
cuisines. These observations arise the necessity for real-world travel agents to conduct open contextual
reasoning that bridges arbitrary user expressions with verifiable symbolic semantics in databases, a
evaluation capability inadequately supported by existing synthetic benchmarks like TravelPlanner. To
study this, we design a POI reasoning task: replacing POIs in DSL constraints with (placeholder)
tags, requiring LLMs to masked-DSL sentences through contextual reasoning. POIs are categorized
as Literal (explicitly mentioned in user queries) or Semantic (requiring cultural/contextual inference).
78.4% of DSL statements in Human1000 contain Semantic POIs versus only 5.4% in TravelPlanner.
Both models achieve the accuracy over 90% on TravelPlanner, where semantic POIs follow simplistic
synthetic patterns. However, on ChinaTravel’s authentic Semantic POIs, performance significantly
declines (DS: 94% — 76%, GPT: 79% — 53%, Fig.[3c). This gap highlights the critical challenge
of real-world contextual understanding in travel planning.

https://www.wjx.cn

Table 2: Main results of different LLMs and planning strategies on the ChinaTravel benchmark.

lpr _EPR LPR o pppprlpr EPR LPR () ppppr
| Mic. Mac. Mic. Mac. | Mic. Mac. Mic. Mac.
| Easy (#300) Human-Val (#154)
Act @&170.4 499 0 64.6 30.8 0 0 -
® 1975708 0 868 688 0 0 -
ReAct (zero-shot) @ 1433408 0 419196 O 0 [36.429.5 0.65 352162 038 O
©® (954482 0 713329 0 0 (96.1505 0 724 325 0 0
ReAct (one-shot) & 77.568.3 6.25 74.1 52.5 5.77 5.42(55.257.3 2.60 64.6 442 1.71 2.60
@ 1942681 0 894708 0O 0 (695463 0 636468 0 0

75.375.3 753 70.4 52.6 70.4 52.6(51.9 53.2 52.5 47.0 37.6 46.5 37.0
75.0 73.6 64.0 73.5 63.3 61.7 60.6/45.4 50.1 45.4 40.9 29.8 38.5 27.9
£ (72.3 67.0 34.0 70.4 49.6 32.6 28.3|42.847.4 422 362 272 344 253
5 132.031.9 31.3 29.1 21.0 283 21.0{25.9 25.8 24.0 22.3 12.3 20.5 11.0
¥ 130.3 30.3 30.3 27.6 19.6 27.6 19.6/37.6 38.2 37.6 32.7 18.8 32.2 18.8

TTG (oracle) ¥ \18.3 21.5 8.66 17.2 15.0 8.23 8.66\9.09 12.8 2.59 7.65 5.19 2.39 1.29

LLM-Modulo* Y [48:394.5 433 584 43.6 4.11 4.33|61.690.2 2.59 75.9 512 2.75 2.59
(Oracle Verificr) @i 91.6 88.2 7.66 95.5 84.6 7.66 7.00(91.5 87.2 3.24 92.9 66.2 2.87 3.24
%% |30.0 80.5 0.0 62.7 250 0.0 0.0/35.075.3 0.0 61.6 194 0.0 0.0
5 [28.669.4 0.0 552 833 0.0 00194741 00 434519 00 0.0
I#10.390.5 0.0 39.1 9.0 0.0 0.0[3.2492.2 0.0 31.4 454 0.0 0.0

NeSv Planning® &182.6 81.7 75.0 82.2 75.3 75.0 74.0(58.4 59.6 57.7 53.8 46.1 52.0 45.4

© Y "8G 166.6 6.7 66.0 64.6 63.6 64.6 62.6/52.646.9 42.9 47.6 40.9 439 40.9
racle Translation)

W 169.3 69.3 59.3 70.2 59.6 59.3 57.9|53.255.1 54.5 48.0 42.8 47.6 40.9

¥l [52.6 52.6 52.6 50.4 45.3 50.4 45.6/40.9 42.8 42.8 37.7 28.5 37.7 27.9

% 133.333.2 32.6 32.1 32.0 31.4 32.3|29.229.1 26.6 25.4 20.1 23.4 19.4

NeSy Planning %

‘ Human-Test (#1000) ‘ NeSy Planning* (Oracle Translation)

& |44.6 44.5 42.6 38.7 23.3 37.6 23.3/60.6 60.3 59.0 53.6 32.0 52.5 31.6
NeSy Planning & |37.3 37.2 35.0 30.7 11.3 29.2 11.3|27.827.8 27.1 24.8 12.8 244 12.8

B,

W 36.6 36.5 34.6 29.6 6.43 28.5 6.43|41.141.1 40.6 34.6 13.8 342 13.8

4 Empirical Study

LLMs. We evaluate the state-of-the-art LLMs, @ DeepSeek-V3, @OpenAI GPT-40, recognized for
their world-leading performance. We also examine the open-source LLMs, %;Qwen3-8B, *~|Llama3.14
8B, and [¥iMistral-7B, selected based on their computationally efficient 7B/8B architectures.
Methods. Pure-LLM-based ReAct [27]], and its Act-only variant. Neuro-symbolic: TTG [12]],
which converts natural language needs into mixed-integer linear programming. LLM-modulo [13} 7],
employing ground-truth symbolic verification to guide iterative LLM self-refinement. NeSy Planning
(App.[F), extending prior NeSy pipelines [10.[17, 26, 23] through our DSL enhancements.

Main Results. While pure LLMs generate structurally sound plans (high DR), they perform poorly in
satisfying constraints (near-zero EPR/FPR). Our NeSy Planning effectively mitigates these limitations
through neural-symbolic integration, significantly improving constraint satisfaction, achieving FPRs
(52.6% on easy, 23.3% on human-1000, &), demonstrating robust generalization in challenging,
constraint-rich scenarios. More deeper analysis is provided in the App.

5 Conclusion

We present ChinaTravel, a benchmark for multi-day multi-POI travel planning focused on authentic
Chinese needs. We address the limitations of previous benchmarks by incorporating open-ended
and diverse human queries, capturing real-world user needs. Additionally, we propose a scalable
evaluation framework based on DSL, enabling comprehensive assessments of feasibility, constraint
satisfaction, and preference comparison. These advancements provide a foundation for developing
language agents capable of meeting diverse user requirements and delivering reliable travel solutions.

https://www.deepseek.com/
https://openai.com/api/
https://qwenlm.github.io/blog/qwen3/
https://ai.meta.com/research/publications/the-llama-3-herd-of-models/
https://ai.meta.com/research/publications/the-llama-3-herd-of-models/
https://mistral.ai/news/announcing-mistral-7b

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

Lada A Adamic and Bernardo A Huberman. Zipf’s law and the internet. Glottometrics, 3(1):
143-150, 2002.

Murray Campbell, A Joseph Hoane Jr, and Feng-hsiung Hsu. Deep blue. Artificial intelligence,
134(1-2):57-83, 2002.

Aili Chen, Xuyang Ge, Ziquan Fu, Yanghua Xiao, and Jiangjie Chen. TravelAgent: An Al
assistant for personalized travel planning. arXiv preprint arXiv:2409.08069, 2024.

Wang-Zhou Dai, Qiu-Ling Xu, Yang Yu, and Zhi-Hua Zhou. Bridging machine learning and
logical reasoning by abductive learning. In Advances in Neural Information Processing Systems,
pages 2811-2822, 2019.

Shujie Deng, Honghua Dong, and Xujie Si. Enhancing and evaluating logical reasoning
abilities of large language models. In Proceedings of the ICLR 2024 Workshop on Secure and
Trustworthy Large Language Models, 2024.

Ambros Gleixner, Gregor Hendel, Gerald Gamrath, Tobias Achterberg, Michael Bastubbe,
Timo Berthold, Philipp Christophel, Kati Jarck, Thorsten Koch, Jeff Linderoth, et al. Miplib
2017: data-driven compilation of the 6th mixed-integer programming library. Mathematical
Programming Computation, 13(3):443-490, 2021.

Atharva Gundawar, Mudit Verma, Lin Guan, Karthik Valmeekam, Siddhant Bhambri, and
Subbarao Kambhampati. Robust planning with llm-modulo framework: Case study in travel
planning. arXiv preprint arXiv:2405.20625, 2024.

Tanmay Gupta and Aniruddha Kembhavi. Visual programming: Compositional visual reasoning
without training. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1495314962, 2023.

Sajal Halder, Kwan Hui Lim, Jeffrey Chan, and Xiuzhen Zhang. A survey on personalized
itinerary recommendation: From optimisation to deep learning. Applied Soft Computing, 152:
111200, 2024.

Yilun Hao, Yongchao Chen, Yang Zhang, and Chuchu Fan. Large language models can solve
real-world planning rigorously with formal verification tools. In Proceedings of the 2025
Conference of the Nations of the Americas Chapter of the Association for Computational
Linguistics, Albuquerque, New Mexico, 2025.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and
Karthik R. Narasimhan. Swe-bench: Can language models resolve real-world github issues? In
Proceedings of the 12th International Conference on Learning Representations, 2024.

Da Ju, Song Jiang, Andrew Cohen, Aaron Foss, Sasha Mitts, Arman Zharmagambetov, Brandon
Amos, Xian Li, Justine Kao, Maryam Fazel-Zarandi, et al. To the globe (ttg): Towards language-
driven guaranteed travel planning. In Proceedings of the 2024 Conference on Empirical Methods
in Natural Language Processing: System Demonstrations, pages 240-249, 2024.

Subbarao Kambhampati, Karthik Valmeekam, Lin Guan, Mudit Verma, Kaya Stechly, Siddhant
Bhambri, Lucas Saldyt, and Anil Murthy. Position: Llms can’t plan, but can help planning in

Ilm-modulo frameworks. In Forty-first International Conference on Machine Learning, Vienna,
Austria, 2024.

Weiyu Liu, Geng Chen, Joy Hsu, Jiayuan Mao, and Jiajun Wu. Learning planning abstractions
from language. In Proceedings of the 12th International Conference on Learning Representa-
tions, 2024.

Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, and Luc De
Raedt. Deepproblog: Neural probabilistic logic programming. In Advances in Neural Informa-
tion Processing Systems, pages 3753-3763, 2018.

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, loannis Antonoglou, Daan
Wierstra, and Martin A. Riedmiller. Playing Atari with deep reinforcement learning. CoRR,
abs/1312.5602, 2013.

Liangming Pan, Alon Albalak, Xinyi Wang, and William Yang Wang. Logic-LM: Empowering
large language models with symbolic solvers for faithful logical reasoning. In Findings of the
Association for Computational Linguistics: EMNLP, pages 38063824, 2023.

Vibhor Sharma, Monika Goyal, and Drishti Malik. An intelligent behaviour shown by chatbot
system. International Journal of New Technology and Research, 3(4):263312, 2017.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Re-
flexion: language agents with verbal reinforcement learning. In Advances in Neural Information
Processing Systems, 2024.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy P.
Lillicrap, Fan Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis.
Mastering the game of Go without human knowledge. Nature, 550(7676):354-359, 2017.

Yihong Tang, Zhaokai Wang, Ao Qu, Yihao Yan, Kebing Hou, Dingyi Zhuang, Xiaotong Guo,
Jinhua Zhao, Zhan Zhao, and Wei Ma. Synergizing spatial optimization with large language
models for open-domain urban itinerary planning. CoRR, abs/2402.07204, 2024.

Po-Wei Wang, Priya L. Donti, Bryan Wilder, and J. Zico Kolter. SATNet: Bridging deep
learning and logical reasoning using a differentiable satisfiability solver. In Proceedings of the
36th International Conference on Machine Learning, pages 6545-6554, 2019.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang,
Junzhe Wang, Senjie Jin, Enyu Zhou, Rui Zheng, Xiaoran Fan, Xiao Wang, Limao Xiong,
Yuhao Zhou, Weiran Wang, Changhao Jiang, Yicheng Zou, Xiangyang Liu, Zhangyue Yin,
Shihan Dou, Rongxiang Weng, Wensen Cheng, Qi Zhang, Wenjuan Qin, Yongyan Zheng,
Xipeng Qiu, Xuanjing Huang, and Tao Gui. The rise and potential of large language model
based agents: A survey. CoRR, abs/2309.07864, 2023.

Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze Lou, Yuandong Tian, Yanghua Xiao,
and Yu Su. Travelplanner: A benchmark for real-world planning with language agents. In
Proceedings of the 41st International Conference on Machine Learning, 2024.

Siheng Xiong, Ali Payani, Yuan Yang, and Faramarz Fekri. Deliberate reasoning for llms as
structure-aware planning with accurate world model. CoRR, abs/2410.03136, 2024.

Shunyu Yao, Dian Yu, Jeffrey Zhao, I1zhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. In
Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine,
editors, Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
16, 2023, 2023.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R. Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In Proceedings of the 11th
International Conference on Learning Representations, 2023.

Xi Ye, Fangcong Yin, Yinghui He, Joie Zhang, Howard Yen, Tianyu Gao, Greg Durrett, and
Dangi Chen. Longproc: Benchmarking long-context language models on long procedural
generation. arXiv preprint arXiv:2501.05414, 2025.

Hongbo Zhang, Junying Chen, Feng Jiang, Fei Yu, Zhihong Chen, Guiming Chen, Jianquan
Li, Xiangbo Wu, Zhiyi Zhang, Qingying Xiao, Xiang Wan, Benyou Wang, and Haizhou Li.
Huatuogpt, towards taming language model to be a doctor. In Findings of the Association for
Computational Linguistics: EMNLP, pages 10859—10885, 2023.

Huaixiu Steven Zheng, Swaroop Mishra, Hugh Zhang, Xinyun Chen, Minmin Chen, Azade
Nova, Le Hou, Heng-Tze Cheng, Quoc V Le, Ed H Chi, et al. Natural plan: Benchmarking
Ilms on natural language planning. arXiv preprint arXiv:2406.04520, 2024.

Contents

I TIntroduction|

[2__ChinaTravel Benchmarkl

B Bend KCI S

{4 Empirical Study|

[A” Limitations|

[B Broader impacts|

IC i : Th Related Work

[D Detailed Design of ChinaTravel|

ID.2 Tutorial of DSL Expression|.
ID.3 Query Synthesis|.

E D - th TravelPl]
[NeSy Planning|

|G Evaluation Metric in Competition|

[H Detailed Empirical Analysis|

I Additional Experimental Results|

I.1 ~ Multi-Preference Comparison|

.2 Open Reasoning with Chinese Context|
.3 Analysis of Pure-LLM Methods|

|J__Statements about Scientific Artifacts|

K Statements about Human Participants|

IK.1 Instructions Given To Participants|

IK.2 Recruitment And Payment| 0oL oL

19
19
20

20

21

22

23
23
25

25
25
26
27

28

K.3 DataConsentl e 29

K.4 Characteristics of Annotators| 29
K.5 DSIL Annotation for Human Datal. 29
LTTG 30
L.l Constraints Formulationl 30
...................................... 30

A Limitations

Our research represents a significant step forward in evaluating the travel planning capabilities of
language agents, but it is not without challenges. One limitation lies in its focus on Chinese travel
planning. Due to the inherent differences in natural language, the translated versions of queries may
fail to fully capture the challenges of understanding requirements in Chinese queries, potentially
limiting its applicability in a global context. However, given the substantial demand within China’s
travel market, we believe a benchmark tailored to Chinese travel planning is both necessary and
socially valuable. Although our benchmark is comprehensive, it may not encompass the full range
of requirements encountered in real-world scenarios. The high cost of collecting authentic data
has limited the number of human queries in our study. To address this, future work will focus on
combining LLMs with real user queries to automate the generation of a wider variety of human-like
queries. Continuous refinement and expansion of our benchmark are crucial for more accurately
reflecting the realistic travel planning needs.

B Broader impacts

The ChinaTravel benchmark primarily serves as a foundational research tool to evaluate language
agents in complex, real-world travel planning scenarios. By providing an open-ended benchmark
grounded in authentic Chinese travel requirements, this work aims to advance the development of
reliable and generalizable Al systems for practical planning tasks. Its positive societal impacts include:
(1) Improved Travel Planning Efficiency: By rigorously testing agents’ ability to handle multi-day
itineraries and combinatorial constraints, this benchmark encourages the creation of more robust Al
assistants, potentially reducing the time and effort users spend on organizing trips. (2) Validation for
Real-World Applications: The benchmark establishes a critical foundation for deploying language
agents in practical travel planning settings, where multi-objective planning and constraint satisfaction
are essential. (3) Promotion of Open Research: The release of this benchmark bridges cutting-edge
LLMs with classical neuro-symbolic Al paradigms, fostering cross-disciplinary collaboration between
academia and industry. It promotes the reliable, constraint-aware Al systems, while accelerating
innovation in both foundational planning capabilities and real-world deployment scenarios.

Potential negative impacts largely depend on how future systems built upon this benchmark are
deployed. For instance: (1) Bias and Fairness: If agents inherit biases from training data or misalign
with diverse user preferences, they might disproportionately recommend certain POIs or services.
Mitigation requires ongoing fairness audits and inclusive data practices. (2) Misuse Risks: Malicious
actors could exploit highly capable planning agents to generate deceptive itineraries or manipulate
travel services. Such risks underscore the need for ethical guidelines and safeguards in downstream
applications. As a benchmark, ChinaTravel itself does not directly deploy agents but focuses on
evaluation. Its design emphasizes transparency, verifiability, and scalability, aligning with broader
efforts to ensure Al systems are both effective and controllable. Future work should prioritize
responsible use, including robust validation of real-world systems and addressing socio-technical
challenges like bias mitigation and user privacy.

C Discussion with Related Work

LLM-based Agents have demonstrated significant capability in understanding complex instructions
and employing domain-specific tools to complete tasks, showcasing their potential in fields such

as visual reasoning [8], healthcare [29] and robotics [[14]. This reduces the reliance of previous
agents on domain-specific efforts, that is, either mainly following domain-specific rules to plan
(rule-based agents, such as DeepBlue [2] and Eliza [18]]) or mainly learning from domain-specific
data to plan (reinforcement-learning-based agents, such as AlphaGo [20] and Atari DQN [16]]). While
the language agents have shown promising results in some domains, most of their planning scenarios
are limited to simple tasks with single objective function and fail in the travel planning benchmark
with complex logical constraints.

Neuro-Symbolic Learning explores to combine traditional symbolic reasoning with learning to
enhance the reliability [15} 22, l4]. In the era of large language models, Pan et al. [17] presents the
LogicLM integrates LLMs with separate symbolic solvers for various logical reasoning tasks. They
first utilize LLMs to translate a natural language problem into a symbolic formulation. Afterward, a
deterministic symbolic solver performs inference on the formulated problem to ensure the correctness
of the results. Deng et al. [3]] supplement LogicLM with a Self-Refinement Module to enhance the
reliability of LLM translation. In the travel planning domain, Hao et al. [[10] presents a framework
with a similar pipeline. It first extracts the logical constraints from natural language queries and
then formalizes them into SMT code. Thanks to SMT solvers being sound and complete, this
neuro-symbolic solution guarantees the generated plans are correct and has basically solved the
TravelPlanner benchmark with a 97% pass rate.

Travel Planning is a time-consuming task even for humans, encompassing travel-related information
gathering, POI selection, route mapping, and customization to meet diverse user needs [9]. Natural
languages are one of the most common ways for users to express their travel requirements. However,
the ambiguity and complexity of travel requirements make it still challenging for LLMs to generate
accurate and reliable travel plans. Xie et al. [24] presents the TravelPlanner benchmark for cross-city
travel planning and reveals the inadequacies of pure-LLM-driven agents. TravelPlanner generates
user queries through LL.Ms and provides a rigorous evaluation mechanism to verify whether the
provided plans can meet the logical constraints in the queries. It has become a pivotal benchmark
for language agents in real-world travel planning. Tang et al. [21] study the open-domain urban
itinerary planning where a single-day multi-POI plan is required. They integrates spatial optimization
with large language models and present a system ITTNERA, to provide customized urban itineraries
based on user needs. A concurrent work, TravelAgent [3]], also considers a multi-day multi-POI
travel planning problem for the specified city. It constructs an LLM-powered system to provide
personalized plans. However, due to the high cost of collecting and annotating real travel needs,
they evaluate the proposed TravelAgent in only 20 queries. This also demonstrates the necessity of
introducing a new benchmark for travel planning.

D Detailed Design of ChinaTravel

D.1 Sandbox Information

We started collecting travel information with the motivation of planning a multi-day, multi-POI
itinerary in four aspects: attractions, accommodation, activities, and transportation. Developers first
determine the POI description information that needs to be obtained from the user’s perspective, such
as cuisine and hotel features. Based on this feature set, we collect public information to construct the
database. For the design of APIs, we directly support queries based on the regular expressions from
agents. At the same time, we expect the design of APIs to have similar features and characteristics
to existing commercial APIs, enabling our dataset to be applicable to more realistic scenarios. The
information our database contains is shown in Table[3land the APIs we offer is in Table [Table
shows the information of environment constraints in ChinaTravel.

D.2 Tutorial of DSL Expression

Here is a tutorial, that provides a step-by-step guide to utilizing ChinaTravel’s Domain-Specific
Language (DSL) with predefined concept functions for expressing logical constraints and preferences.

DSL Overview In the main body of this paper, we have detailed the basics of our DSL in the Table[I]
The DSL is a Python-like language designed to formalize travel planning requirements into executable
code. It enables automated validation of itineraries against user constraints and preferences. Key
components include: 1) Concept Functions: Predefined functions (e.g., activity_cost, poi_distance)

Tool Information
Attractions Name, Type, Latitude, Longitude, Opentime, Endtime, Price,
Recommendmintime, Recommendmaxtime
Accommodations Name, Name_en, Featurehoteltype, Latitude, Longitude, Price, Numbed
Restaurants Name, Latitude, Longitude, Price, Cuisinetype, Opentime, Endtime,
Recommendedfood
Transportation Transportation in specific city including walk, metro and taxi
IntercityTransport ~ Flight: FlightID, From, To, BeginTime, EndTime, Duration, Cost
Train: TrainID, TrainType, From, To, BeginTime, EndTime, Duration, Cost
Poi

Names of POIs(including intercity transportation hub) and their coordinates

Table 3: Sandbox Information

that extract attributes from travel plans. 2) Operators: Logical (and, or, not), arithmetic (+, -, *, /),
and comparison operators (<, >, ==). 3) Control Structures: Loops (for), conditionals (if), and set
operations (union, intersection). More examples are provided in Fig. 4]

DSL Syntax C liance

Open L Reasoning

Unseen Concept Composition

Query: Four of us would like to visit Shanghai

for 2 days, try local fast food, and stroll along the

Bund. Please provide us with a travel plan.

DSL Translation (Qwen2.5-7B):
result=(activity_position(activity)=="4hft')
specified

name 'activity' is not defined
invalid syntax (<string>)

Query: I am currently in Nanjing and would like to go on a 5-
day trip to Beijing with a friend. We plan to travel by high-speed
train both ways and hope to try some local specialty foods.
DSL Translation (GPT-40):

restaurant_type_set = set()

for activity in allactivities(plan):

if activity_type(activity) in ['breakfast', 'lunch', 'dinner']:
staurant_type_set.add(_type(activity,
target_city(plan)))
result=({'4x {32} <=restaurant_type_set)

Query: I am traveling alone from Nanjing to
Shanghai in the morning for a day trip. I plan to visit
a university campus and return in the evening,
making sure to catch the train back before 7 PM.

DSL Translation (GPT-40):

result = True
for activity in allactivities(plan):
if activity_end_time(activity) >='19:00':
result = False

Query: Current location: Guangzhou. I want to
go to Shenzhen alone for a day, with a budget of
1000 RMB. Please provide me with a travel plan.

DSL Translation (Qwen2.5-7B):
result=True
for activity in allactivities(plan):
if activity type(activity) in ['train', 'airplane']:
intercity_transport_set.add(activity_type(activity))
result=(intercity_transport_set=={'train'})"

Error:
name 'intercity_transport_set' is not defined

Query: My parents and I plan a five-day travel from Nanjing to
Beijing to watch the flag-raising ceremony, and we want to stay
at a hotel near Tiananmen Square.

DSL Translation (GPT-40):
hotel_names_set = set()
for activity in allactivities(plan):
if activity_type(activity)=="accommodation':
hotel_names_set.add(activity_position(activity))
result=({"Bk SRS 1918 KR T E CIEmOR %2171 Y <=
hotel_names_set)

Query: My brother and I are planning to travel from
Shanghai to Chongqing for 4 days. Apart from the
round-trip high-speed train/flight, we aim to
spend no more than 3400 yuan in Chongqing.
DSL Translation (GPT-40):
total_cost=0
for activity in allactivities(plan):
total_costt+=activity cost(activity)+innercity
transport_cost(activity_transports(activity))
result=(total_cost<=3400)

Figure 4: Challenges in the Neuro-Symbolic Planning.

Dining expenses <= 1000 CNY.
cost = 0
or act_i in allactivities(plan):
yp = activity_type(act_1i)

dinin

typ=="breakfast" or typ=="lunch"

or typ=="dinner": dining_cost =
dining_cost + activity_cost(act_i)
return dining_cost <= 1000

(a) Dining expenses.

Arriving in Shanghai should be before
6 PM on the second day.
return_time = 0
for act_i in day_activities(plan, 2):
typ = activity_type(act_1i)
= transport_destination(act_1i)

{
and des=="Shanghai": return_time ==
activity_endtime(act_i)

return return_time < "18:00"

(b) Arrived Time.

The number of attractions visited

=0

for act_i in all_activities(plan):

activity_type(act_i)=="attraction":
count = count + 1

count

Compare the return during evaluation
of preference ranking

(c) Count of attraction visited.

Figure 5: Examples of DSL expressions for logical constraints and preference ranking.

Core Concept Functions

tion is in Table [0} [T0} [[T]and [T2] Below are common use cases:
Example: Budget Constraint User Query: “Total expenses must not exceed 5000 CNY.”

We have defined 35 concept functions. Their definition and implementa-

total_cost = 0

for act in all_activities(plan):
total_cost += activity_cost (act)

total_cost += innercity_transport_cost(activity_transports(act))
5000

return total_cost <=

10

Tool

API

Docs

Attractions attractions_keys(city) Return a list of (key, type) pairs of the at-
tractions data.
attractions_select(city, key, func) Return a DataFrame with data filtered by
the specified key with the specified func-
tion.
attractions_id_is_open(city, id, time) Return whether the attraction with the spec-
ified ID is open at the specified time.
attractions_nearby(city, point, topk, dist) Return the top K attractions within the spec-
ified distance of the location.
attractions_types Return a list of unique attraction types.
Accommodations accommodations_keys(city) Return a list of (key, type) pairs of the ac-
commodations data.
accommodations_select(city, key, func) Return a DataFrame with data filtered by
the specified key with the specified func-
tion.
accommodations_nearby(city, point, topk, Return the top K accommodations within
dist) the specified distance of the location.
Restaurants restaurants_keys(city) Return a list of (key, type) pairs of the
restaurants data.
restaurants_select(city, key, func) Return a DataFrame with data filtered by
the specified key with the specified func-
tion.
restaurants_id_is_open(city, id, time) Return whether the restaurant with the spec-
ified ID is open at the specified time.
restaurants_nearby(city, point, topk, dist) Return the top K restaurants within the spec-
ified distance of the location.
restaurants_with_recommended_food(city, Return all restaurants with the specified
food) food in their recommended dishes.
restaurants_cuisine(city) Return a list of unique restaurant cuisines.
Transportation goto(city, start, end, start_time, trans- Return a list of transportation options be-
port_type) tween two locations with the specified de-
parture time and transportation mode.
IntercityTransport intercity_transport_select(start_city, Return the intercity transportation informa-
end _city, intercity _type, earliest_leave_time) tion between two cities.
Others notedown(description, content) Write the specified content to the notebook

plan(query)

next_page()

Generates a plan based on the notebook con-
tent and query and report the plan is done.
Get the next page of the latest Result history
if it exists. Because of the length limited,
all returned DataFrame information is split
into 10 rows per page.

Table 4: APIs

11

Category

Environment Constraints

Semantics

Cross-city Transportation

Intercity transportation events must occur.

Available Trains or Airplanes across cities.

Correct information of price, duration.

Detailed cost on inter-city transportation

The first event and last event must be cross-city
transports.

The provided TrainID/FlightID, origin and des-
tination should be valid in the travel sandbox.
The price and duration information should
match the travel sandbox.

Provide number of tickets and cost of each inter-
city activity. cost = price X tickets

Inner-city Transportation

Available Metro, Taxi or Walking between

different positions.

Correct information of price, distance, and

duration.
Detailed cost on inner-city transportation

The provided routes should be valid in the
travel sandbox.
These details should match the travel sandbox.

Provide number of tickets/cars and cost. Taxi: 4
people per car. cost = price X tickets, cost =
price X cars

Auvailable attractions in the target city

The provided attractions should be valid in the
travel sandbox.

Attractions Visiting during opening hours. Activities must respect the attraction’s opening
time.
Correct price information. Must match the sandbox.
Detailed cost of attraction activity. Provide ticket number and total cost. cost =
price X tickets
No repeated attractions. Attractions should not repeat across the trip.
Available restaurants in the target city Must be valid in the travel sandbox.
Visiting during opening hours. Same as above.
R Correct price information. Must match the sandbox.
estaurants . . . :
Detailed cost of restaurant activity. cost = price X tickets
No repeated restaurants. Same restaurant should not be visited more than
once.
Meals served in proper time slots. Breakfast: 06:00-09:00; Lunch: 11:00-14:00;
Dinner: 17:00-20:00.
Available accommodations in target city. Must be valid in the travel sandbox.
A . Correct price and room type. Must match the sandbox.
ccommodation . . .
Detailed accommodation cost. cost = price X rooms
Required for trips over one day. A hotel is necessary for multi-day trips.
Ti Activity duration details. Must include start and end time; end time must
ime
be after start.
Activities in chronological order. Events listed in order, respecting preceding
transport arrivals.
Space Transport info for changing positions. If positions differ, the transport route must be

included.

Table 5: Environment Constraints and Semantics in ChinaTravel Environment

The function all_activities(plan) iterates through all activities in the itinerary. The function activ-
ity _cost retrieves the cost of each activity. The function innercity_transport_cost sums transportation
expenses. Based on Python syntax, combining these concept functions can calculate the cost of the
entire plan, thereby determining whether the budget constraints are met.

Debugging Tips

(1) Syntax Validation: Use the python compiler to check for syntax errors (e.g.,
missing colons, undefined variables). (2) Unit Testing: Test individual concept functions (e.g.,
poi_distance) with mock itineraries. (3) Iterative Refinement: For ambiguous requirements (e.g.,

12

Logical Constraint

Transportation The required type of transportation.
Attraction The required type or specified attractions.
Restruants The required type or specified restruants.

Accommodation The number of rooms and the room type must meet the requirements.
The required features or specified hotels.

Budget The total cost is within required budget.
Unseen Logical Constraints in Human data
POIs The negation/conjunction/disjunction of given POIs
Time The duration of specific activities is within the limitation
Budget The cost of specific activities is within the required budget

Table 6: Descriptions of Logical Constraints for two benchmarks. Constraints in black are common
in both TravelPlanner and ChinaTravel. Metrics in brown are the metrics only in our benchmark.

Preference Requirements

Daily attractions T Visit as many attractions as possible
Transport time | Minimize the travel time between POIs
Transport time to the restaurants | Minimize the travel time to restaurants
Food cost ratio T Maximize the proportion of dining expenses
Hotel cost | Minimize accommodation costs

Distance to POI | Visit places as close to {POI} as possible

Table 7: Descriptions of Preference Requirements in ChinaTravel benchmark.

”local cuisine”’), map natural language to precise DSL concepts from sandbox information (e.g.,
restaurant_type(act, city) == “Beijing Cuisine”).

Integration with Neuro-Symbolic Agents. (1) NL2DSL Translation: Convert user queries into
DSL using LLMs (e.g., "Try local food” — restaurant_type(POI, city) == “Beijing Cuisine”” when the
destination city is Beijing). (2) Symbolic Validation: Execute DSL code to verify plans against logical
constraints. (3) Search Optimization: Use DSL-defined preferences (e.g., minimize(transport_time))
to rank candidate itineraries.

D.3 Query Synthesis

We designed common travel information (origin, destination, days, number of people) and logical
constraints based on the nature of travel tasks. To facilitate scalable queries for ChinaTravel, we
randomly constructed query skeletons from the aforementioned information and used advanced LLMs
to generate natural language queries from these skeletons. In practice, we provide the LLMs with
more intuitive hard logic constraints to ensure the LLMs do not make mistakes and use a Python
script to convert it after generating the query. The automatically generated data is categorized into

Table 8: Results of different LLMs and planning strategies on the ChinaTravel medium subset.

Ipr _EPR LPR () bR ppRl lpr EPR LPR ™ cLPRFPR

| Mic. Mac. Mic. Mac. | | Mic. Mac. Mic. Mac.

727523 0 63.5 153 1713719 693 694 500 69.3 46.7
©)97.4705 0 89.3 553 NSP ©)|68.0 68.0 68.0 64.1 46.6 64.1 46.7

ReAct ¥|41.3352 0 37.6 4.0 (533459 16.0 492 333 14.8 8.0
(zero-shot) ©/92.0 548 0 78.6 227 0 @168.6 654 540 662 61.3 525 54.0
ReAct ©82.777.1 3.33 82.6 48.7 295 1. ©)60.859.4 549 603 582 603 56.9
(one-shot) ©3(94.7 69.2 0.67 91.8 64.0 0.53 (533513 36.6 519 433 348 346

Act

SO O
o ol o

NSP

oracle

S W
@D

13

Function Meaning Implementation
Name
day_count total days in the plan def day_count(plan):
return len(plan["itinerary"])
people_count number of people in the trip def people_count(plan):
return plan["people_number"]
start_city start city of the plan def start_city(plan): ,
return plan["start_city"]
target_city target city of the plan def target_city(plan):)
return plan["target_city"]
def allactivities(plan):
activity_list = []
allactivities all the activities in the plan for day_activity in plan["itinerary"]:
for act in day_activity["activities"]:
activity_list.append(act)
return activity_list
def allactivities_count(plan):
count = 0
allactivities - the number of activities in the for day-icilvity in plan["itinerary"]:
coun =
count plan len(day_activity["activities"])
return count
def dayactivities(plan, day):
activity_list = []
dayactivities all the activities in the specific for act in pl an " itiner ary R
day [1,2. 3, ..] [day - 1]["activities"]:
YL 29 activity_list.append(act)
return activity_list
activity_cost the cost of specific activity with- def activity_cost(activity):
return activity.get("cost", 0)
out transport cost
activity_posi- the position name of specific ac- def activity_position(activity):
. . . return activity.get("position", "")
tion tivity
activity_price the price of specific activity def activity_price(activity):
return activity.get("price", 0)
activity_type the type of specific activit def activity_type(activity):
y-yp P P y return activity.get("type", "")
activity_tickets the number of tickets needed for def activity_tickets (aCtiVi_ty) :
. . return activity.get("tickets", 0)
specific activity
activity_trans- the transport information of spe- 9¢f activity_transports (activity):
.) return activity.get("transports", [])
ports cific activity
activity _- the start time of specific activity def activity_start_time (aCtiVity? :
: return activity.get("start_time")
start_time
activity _- the end time of specific activity def activity_end_time (acfi"ity? .
end_time return activity.get("end_time")

Table 9: Concept Function

14

Function
Name

Meaning

Implementation

def

activity_time (activity):

start_time = activity.get("start_time")
end_time = activity.get("end_time")

if start_time and end_time:

st_h, st_m = \
activity_time the duration of specific activity map (int, start_time.split(":"))
ed_h, ed_m = \
map (int, end_time.split(":"))
return \
(ed_.m - st_m) + (ed_h - st_h) * 60
return -1
def poi_recommend_time (city, poi):
select = Attractions().select
attrction_info = \
select (city, key="name",
poi_recom- the recommend time of specific func=lambda x: x == poi).iloc [0]
mend_time poi(attraction) in the city recommend_time = \
(attrction_info["recommendmintime"]) \
* 60

return recommend_time

poi_distance

the distance between two POIs
in the city

def

poi_distance (city,

start_time="00:00"

transport_type="walk"

goto = Transportation().goto

return goto(city, poil, poi2, start_time,
transport_type) [0]["distance"]

poil, poi2):

innercity -
transport_cost

the total cost of specific innercity
transport

def

innercity_transport_cost(transports, mode) :
cost = 0
for transport in transports:
if node is None or \
transport.get ("type") node:
cost += transport.get("cost", 0)
return cost

innercity_-
transport_price

the price of innercity transport

def

innercity_transport_price(transports):
price = 0
for transport in transports:
price += transport["price"]
return price

def

innercity_transport_distance\
(transports, mode=None):
distance = 0

for transport in transports:

innercity - the distance of innercity trans- if mode is Nome or \
transport_- port transport.get("type") == mode:
distance distance += \
transport.get("distance", 0)
return distance
def innercity_transport_time (transports):
def calc_time_delta(end_time, start_time):
hourl, minul = \
int (end_time.split(":") [0]1), \
innercity_- the duration of innercity trans- int (end_time.split (":") [1])
transport_- port hourg , minu2 = \ .
time int(start_time.split(":") [0]1), \

int (start_time.split(":") [1])
return (hourl - hour2) * 60\
+ (minul - minu?2)

Table 10: Concept Function

15

Function Meaning Implementation
Name
metro_tickets the number of metro tickets if d¢f metro_tickets(transports):

the type of transport is metro

return transports[1]["tickets"]

taxi_cars

the number of taxi cars if the
type of transport is taxi

def

taxi_cars(transports):
return transports [0]["cars"]

room-_count

the number of rooms of accom-
modation

def

room_count (activity):
return activity.get("rooms", 0)

room_count

the number of rooms of accom-
modation

def

room_count (activity):
return activity.get("rooms", 0)

room-_type

the type of room of accommoda-
tion

def

room_type (activity):
return activity.get("room_type", 0)

restaurant_-
type

the type of restaurant’s cuisine
in the target city

def

restaurant_type (activity, target_city):
restaurants = Restaurants ()
select_food_type = \

restaurants.select(

target_city, key="name",

func=lambda x: x == activity["position"]
)["cuisine"]
if not select_food_type.empty:

return select_food_type.iloc [0]
return ""

attraction_-
type

the type of attraction in the target
city

def

attraction_type (activity, target_city):
attractions = Attractions ()
select_attr_type = \

attractions.select (

target_city, key="name",

func=lambda x: x == activity["position"]
) ["type"]
if not select_attr_type.empty:

return select_attr_type.iloc [0]
return ""

accommo-
dation_type

the feature of accommodation in
the target city

def

accommodation_type (activity, target_city):
accommodations = Accommodations ()
select_hotel_type = \

accommodations.select (

target_city, key="name",

func=lambda x: x == activity["position"]
)["featurehoteltype"]
if not select_hotel_type.empty:

return select_hotel_type.iloc[0]
return ""

def innercity_transport_type(transports):
if len(transports) == 3:

innercity _- the type of innercity transport _ return transports[1]["mode"]
transport - elif len(transports) == 1:

- return transports [0] ["mode"]
type return ""
intercity _- the type of intercity transport def in:erCityEFr{igsPort‘(E{pe (fthxity) :
transport_- return activity.ge ype",
type

Table 11: Concept Function

16

Query in Chinese (from easy subset): 2 Hi A7 B il . AN AN N LT IRKIL 2 K, AR, 52
LA, 4R MIRAT LK.

Current location: Chengdu. My friend and I want to go to Nanjing for 2 days. We need a twin room in a hotel where
we can play cards. Please provide a travel plan for us.

accommodation_type_set=set()
for activity in allactivities(plan):
if activity _type(activity) == 'accommodation’: accommodation_type_set.add(accommodation_type(activity,
target_city(plan)))
result=({{# %'} <=accommodation_type set)
Query in Chinese (from medium subset): 4FI{7 &Rl . F—MAMEELRIL2 K, His 3000 AR, -
MR, fevo ks, EEMENE.
Current location: Chengdu. I want to travel alone to Chongging for 2 days with a budget of 3000 RMB. I plan to take
the train, want to eat hotpot, and visit Hongya Cave.
total cost=0
for activity in allactivities(plan):
total _cost+=activity_cost(activity)
total _cost += innercity_transport _cost(activity_transports(activity))
result=(total cost<=3000)

restaurant_type_set=set()
for activity in allactivities(plan):

if activity type(activity) in ['breakfast', 'lunch’, 'dinner']: restaurant type set.add(restaurant_type(activity,
target_city(plan)))
result=({' /K #4'} <=restaurant_type set)
attraction_name_set=set()\nfor activity in allactivities(plan):

if activity_type(activity)=="attraction": attraction_name_set.add(activity_position(activity))
result=({"¥t £][i'} <=attraction_name_set)
Query in Chinese (from human subset): [4147 & w4 5¢, B b B BB IRAT NS 2,5 4T R 20 3] BefiT 2 AAE KN
P63 K, EEARKEIL L e K, [A A SN Gt 5 4 T
.
English translation: [Current location: Nanjing, Destination: Wuhan, Number of travelers: 2, Travel days: 3] The two
of us want to visit Wuhan for 3 days. We mainly want to experience some of the historical areas in Wuhan and also try
the local specialty foods that residents often eat. How should we plan our itinerary?
attraction_type_set=set()

for activity in allactivities(plan):
if activity type(activity)=='attraction'": attraction type set.add(attraction_type(activity, target city(plan)))

result=({'//j 52 # #78'} <=attraction_type_set)"

Query in Chinese (from human subset): [245707 & /g 52, B AR 7 BB IRAIT ANEL 2,5R1T K& 3] BAWTHEWINE
7, BER2000, 43— ik k.
[Current location: Nanjing, Destination: Hangzhou, Number of travelers: 2, Number of travel days: 3] We plan to visit
West Lake in Hangzhou with a budget of 2000. Please provide me with a travel itinerary.
attraction_name_set=set()
for activity in allactivities(plan):
if activity type(activity)=="attraction'": attraction name_set.add(activity position(activity))
result=({' 7G5 5t 44 4 [X '} <=attraction_name_set)

Figure 6: Examples of travel requirements and their DSL expressions.

17

Function Meaning Implementation
Name
innm@ﬂy: thes&ﬂtﬁnm(ﬁﬁnnenﬁ@lwan& def 1nnerc1ty_transport_start_t1m§(transports):
return transports[0]["start_time"]
transport_- port
start_time
innercity_- the end time of innercity trans- def intercity_transport_end_timegtransports):
return transports[-1]["end_time"]
transport_- port
end_time
def intercity_transport_origin(activity):
if "start" in activity:
intercity - the origin city of intercity trans- for city in city_list:
if city in activity["start"]:
transport_- port ;
.. return city
origin return ""
def intercity_transport_destination(activity):
if "end" in activity:
intercity - tthe destination city of intercity for city in city_list:
if city in activity["end"]:
transport_- transport .
S return city
destination

nn

return

Table 12: Concept Function

two difficulty levels: In the Easy level, user inputs encompass a single logical requirement, sourced
from categories such as transportation, restaurants, attractions, and accommodations. In the Medium
level, user inputs involve 2 to 5 logical requirements, introducing more complex constraints. During
the generation, we encourage the LLMs to provide varied and human-like expressions, necessitating a
deeper understanding and processing to accurately interpret and fulfill the user’s needs. For instance,
the logical requirement “’taste Beijing cuisine” could correspond to the natural language query: “Try
local food in Beijing.” We utilize prompt engineering to guide LLMs in refining natural language
expressions to facilitate automated generation. One of the prompts is shown in Figure |7} Several
examples of generated data is in Figure[8] As a result, we obtain the synthetic queries across diverse
travel requirements, including 28 restaurant types, 23 attraction types, 29 hotel features, and more
than 130 specific POIs.

18

D.4 Data Diversity and Bias Mitigation

This subsection provides a detailed analysis of ChinaTravel’s hybrid query design, addressing
concerns about synthetic data limitations and real-world representativeness.

ChinaTravel integrates both synthetic and human-authored queries to balance scalability and realism.
When synthesizing data, we randomly constructed constraints based on the types and specific visit
requirements of POIs such as restaurants, accommodations, transports, and attractions, thereby
ensuring the diversity of the dataset. The human query subset comprises 154 samples collected
through structured questionnaires, which introduce complex real-world constraints such as time-
bound returns (e.g., explicit requirements like “return before 7 PM”) and activity-specific budget
allocations. These queries also incorporate colloquial expressions that reflect native Chinese travel
preferences, exemplified by phrases like local specialty foods frequented by residents. The synthetic
queries are generated through LL.M-based paraphrasing techniques and systematically categorized
into two tiers: Easy-tier queries contain single logical constraints (e.g., specific cuisine requirements),
while Medium-tier queries combine 3-5 interdependent constraints (e.g., compound conditions like
“budget < 3000 CNY + train transport + hotpot dining”).

To mitigate synthetic data bias and enhance diversity, three primary strategies were implemented. First,
constraint combinations were deliberately diversified across temporal, spatial, and cost dimensions,
as detailed in Table[6] Second, a human validation layer filters out unrealistic LLM-generated queries,
such as physically implausible itineraries like “visiting 10 attractions within one day.” Third, the DSL
framework enables compositional generalization of requirements, supporting open-ended constraint
combinations through its formal syntax shown in Table[T]

The current human query subset remains limited by annotation costs, as discussed in the limitation
section. In future work, we will advance data collection by integrating LLMs with real user queries
to automate and diversify the generation of human-like queries. Additionally, all human queries
and automated synthesis tools will be publicly released to support community-driven benchmark
extensions.

D.5 Data with Preference

We introduce six common preferences from user surveys to construct the preference sub-datasets.
Table 7] provides a summary of these preferences.

The corresponding DSL could be formulated as follows.

The number of attractions visited

count = 0
for act_i in all_activities(plan):
if activity_type(act_i)=="attraction": count = count + 1

return count

The average travel time between POIs

time_cost = 0

transport_count = 0

for activity in allactivities(plan): transports =
activity_transports(activity)
transport_count += 1 time_cost += innercity_transport_time (

transports)

average_time_cost = time_cost / transport_count if transport_count > 0

else -1

return average_time_cost

The average travel time to restaurants
restaurant_count = 0
time_cost = 0
for activity in allactivities(plan):
if activity_type(activity) in [’breakfast’, ’lunch’, ’dinner’]:
restaurant_count += 1
time_cost += innercity_transport_time(activity_transports(
activity))

19

if restaurant_count == O0:

average_time_cost = -1
else:

average_time_cost = time_cost / restaurant_count
return average_time_cost

The ratio of food cost
food_cost = 0
total_cost = 0
for activity in allactivities(plamn):
total_cost += activity_cost(activity)
total_cost +=innercity_transport_cost(activity_transports(activity

))
if activity_type(activity) in [’breakfast’, ’lunch’, ’dinner’]:
food_cost += activity_cost(activity)
food_cost_ratio = food_cost / total_cost if total_cost > 0 else -1

return food_cost_ratio

The cost of accommodations
accommodation_cost = 0
for activity in allactivities(plan):
if activity_type(activity) == ’accommodation’:
accommodation_cost += activity_cost(activity)"
return accommodation_cost

The average distance to poi (e.g. xxx)
target_poi = ’xxx’
poi_list = list()
total_distance = 0
poi_count=0
city = target_city(plan)
for activity in allactivities(plan):
if activity_type(activity) in [’breakfast’, ’lunch’, ’dinner’, °’
accommodation’, ’attraction’]:
poi_list.append(activity_position(activity))
for poi in poi_list:
total_distance += poi_distance(city, target_poi, poi)
poi_count += 1
average_dist_cost = total_distance / poi_count if poi_count > 0 else
-1
return average_dist_cost

D.6 Benchmark Difficulty and Applicability

While the Human subset presents significant challenges, the baseline NeSy solution has achieved
60.6% and 46.7% FPR on Easy and Medium subsets, respectively, providing developers with action-
able validation points for initial testing and refinement. Additionally, the Human subset’s extreme
difficulty arises from open language reasoning and unseen concept composition, key challenges
absent in prior benchmarks but unavoidable in practice. By explicitly formalizing these challenges,
ChinaTravel has provided a roadmap for advancing agents toward real-world robustness. Despite
current LLMs’ limitations in handling unseen combinations, their success in code generation suggests
that post-training with DSL may enhance their understanding of diverse travel needs, moving toward
real-world applications.

E Discussion with TravelPlanner

TravelPlanner’s logical constraints contain the total cost, 15 cuisines, 5 house rules, 3 room types,
and 3 intercity transports. ChinaTravel’s logical constraints contain the total cost, 42 cuisines, 15
attraction types, 78 hotel features, 2 room types, 2 intercity-transports types, 3 inner-city-transports
types, and specific POI names (attractions, restaurants, hotels). Crucially, our benchmark introduces

20

compositional constraints derived from human queries (e.g., “return before 7 PM”, “cost of intercity
transports”), reflecting real-world complexity. The key advancement lies in addressing open-language
reasoning and unseen concept composition, which represent significant challenges beyond Trav-
elPlanner’s scope. Our Domain-Specific Language (DSL) enables automated validation of these
combinatorial requirements, bridging the gap between synthetic and real-world needs.

We also provide some example queries and corresponding examples from the TravelPlanner at each
level in Figure and

As shown in Figure in the “easy level”, TravelPlanner only includes constraints on cost. In
contrast, ChinaTravel demonstrates significant advantages over TravelPlanner, particularly in terms of
personalized support for specific Points of Interest (POIs) and more realistic transportation and time
management. These advantages are crucial for developing and evaluating language agents that can
handle real-world travel planning scenarios effectively. ChinaTravel allows users to directly specify
POI names, such as ”Nanjing DaPaXiang” or "HuQiu Mountain Scenic Area,” requiring the agent to
precisely match the entity information from the travel sandbox.

As shown in Figure in the medium set, TravelPlanner includes queries with two types of con-
straints: cost and cuisine, or cost and accommodation. In contrast, ChinaTravel includes queries with
2 to 5 types of constraints, reflecting more complex and diverse multi-constraint requirements. This
difference highlights the ability of ChinaTravel to handle more realistic and varied travel planning
scenarios.

As shown in Figure [20] TravelPlanner includes queries with multiple constraints, such as cost, ac-
commodation type, and cuisine preferences. However, ChinaTravel goes a step further by including
queries with unseen logical constraints and more colloquial expressions. These unseen logical con-
straints and colloquial expressions are essential for travel planning agents to handle real-world users
effectively. They reflect the complexity and diversity of real-world travel planning scenarios, where
users may have diverse requirements that need to be understood and addressed. By incorporating these
elements, ChinaTravel bridges the gap between current academic research benchmarks and real-world
application demands, making it a more comprehensive and realistic benchmark for evaluating the
capabilities of travel planning agents.

F NeSy Planning

. d ichanahai d A Current Plan
Since the Z3 solver from [[10] would restruc- T F—
. . i ay 1, Activi
ture the tool API to return travel information B e B Trsin, G104, 06.27 143:12, ost: 693
. : . . i Shanghai Hongqiao Railway Station
expressed in spegﬁc 73 Vanat?les, which may e s:?ogsfsﬁiff:aﬁam and e e S
not be feasible given that APIs in the real world | attractions as possible. Day LActiviy2] 2
A User \ please give me a travel plan. The Palace Museum, 14:00 — 17:30
are typically black boxes that agents can only ~ I —
f . . ay 1, Activity
call. Following their two-stage solution, we first Exf,';c“"ﬁonl TValidated Plan
. . Planning step by step:
extract logical constraints from.natural language. e Current time: 1730
Based on these constraints, we implement a step- Current position: The Palace Museum
! R x.type = museums, 1. What type of place should we visit next,
by-Sth plan generatlon process using depth_ﬁrst 3 x € Attraction_visited attractions, restaurants or hotels?
. - . x.cuisine = Beijing Cuisine, Itis 17:30 now. We
search, mimicking how humans plan to travel 3 x € Restraunts_visited LLM-based | et ot
. . T . total budget < 5000 choice £ 4 have dinner
by arranging activities one by one. As shown in maximize |Attraction_visited| lUR aurantsearch()
. estaurantSearcl
Fig.[9} we first translate the natural languages to ot verifiot 2 Which PO should we visit next?
. . . lan Verification Ci leted y Y
logical constraints through prompting. generate Failed J, T Pl B e |
.. eijing Pie, Beijing Cuisine
the next activity type based on the current plan, -
. .. O (x) Xinrongji, Jiangzhe Cuisine
and then recursively generate the next activity /® DFS
. . . / b Siji Minfu i Il-
until the goal is reached. The generated plan is l ® OO0 kr:];_vyr:r:el;t:u?a;vte with
then used to solve the problem. In the second [J@) N7 delicious Pekdng duck

step, we define the rule-based activity selection
and score function. For example, if the current
time is in the [10:30, 12:30] and there is no scheduled lunch in the current plan, then the agent should
find a restaurant to have lunch at this time. If the current time is after 22:00 and there are no open-time
attractions nearby, the agent should choose to return to the hotel. For the score function, we select
the restaurants that satisfy the required cuisine and sort the candidates by the price if there a budget
constraints in the constraints C. These ranking functions will help us to find a feasible solution as
soon as possible. In ChinaTravel, the duration arrangement of activities is continuous and difficult to

Figure 9: NeSy Planning with search-based solver.

21

Algorithm 1 Depth-First Greedy Search

Require: Constraints C, current plan p,
if the least activity is an intercity-transport from destination to origin then

return ConstraintValidation(p, C), p > The plan p is finished, return the validation result.
end if
type = GetNextActivityType(p) > Select the next type of activities, e.g. lunch, attraction.
candidates = ToolUse(type) > Collect the corresponding information for the activity type
scores = LLMScore(candidates, p, C) > Score candidates through constraints C.
for activity in candidates do

p-push(activity) > Perform a greedy search with priority ranking.

flag, p = Depth-FirstGreedySearch(C, p)

if flag then

return True, p > Return the solution p if the validation is passed.

end if

p-pop(activity)
end for
return False, p > Fail to find a solution with the given conditions.

enumerate and search. We pre-define a meal or a visit to an attraction as 90 minutes, and when there
are less than 90 minutes until closing time, the event continues until the closing time. Given these
designs, we adapt the neural-symbolic solution into a multi-POI planning problem and evaluate it in
the ChinaTravel benchmark.

Given that some queries are particularly challenging due to the limited number of feasible plans,
we set the maximum runtime for the symbolic sketch from interactive search to 5 minutes per
query, excluding the LLM inference time, to ensure a fair comparison across different models. If
a plan satisfying the generated DSL validation is found within the time limit, it is returned directly.
Otherwise, the program halts when the time limit is reached, and the plan that satisfies environmental
constraints while achieving the highest number of validation code successes among all intermediate
results is returned. In cases where no environment-compliant plan is identified, the partially completed
plan generated up to that point is returned.

In the Figure and 23] we provide the prompts of the LLM POI-ranking phases.

G Evaluation Metric in Competition

The Delivery Rate (DR), Environmental Pass Rate (EPR), Logical Pass Rate (LPR), and Final Pass
Rate (FPR) have been detailed in TravelPlanner [24]. To make the paper more self-contained, we
also provide the corresponding definition here.

Delivery Rate: This metric assesses whether agents can successfully deliver a formatted plan. For
the Nesy planning, if a solution that satisfies the logical constraints has not been found by the time
out, the search is terminated, and the current solution that satisfies the environmental constraints
is returned. If no solution that satisfies the environmental constraints is obtained, an empty plan
is returned. Therefore, unlike the pure LLM method, which primarily assesses the Delivery Rate
based on whether the output meets the formatting requirements, the nesy planning method, which
uses depth-first-search to arrange POIs one by one, shows differences in the Delivery Rate. These
differences mainly reflect the proportion of effective solutions obtained within a limited time based
on the LLM’s POI recommendation. This proportion demonstrates the degree to which the LLM
prioritizes POI arrangements from a natural language perspective and meets formalized logical
requirements. The more accurately the LLM can arrange POIs that are beneficial for long-horizon
planning, the more likely it is to obtain effective solutions and improve the Delivery Rate.

Environmental Pass Rate Comprising the environmental dimensions (as detailed in Tab. [5), this
metric evaluates whether a language agent can accurately incorporate sandbox information into their
generated plans.

22

ZpEP ZceEnv]]passed(c,p)

EPR — micro =
|P| * |Env|

ZpeP HceEnv 1]passed(c,p)

EPR — macro =
|P|

Logical Pass Rate Comprising the logical dimensions (as detailed in Tab. [6)), this metric evaluates
whether a language agent can accurately meet the personalized requirements of the queries.
ZpeP Zcecp ﬂpassed(cp,p)

LPR — micro =
ZpeP ICp|

ZpeP HCEC,, ‘Hpassed(Cp,p)
|P|

LPR — macro =

Final Pass Rate This metric represents the proportion of feasible plans that meet all aforementioned
constraints among all tested plans. It serves as an indicator of agents’ proficiency in producing plans
that meet a practical standard.

ZpEP ﬂpassed(Env,p) ' 1]ptzmed(cp,p)

FPR =
|P|

Preference Ranking To systematically evaluate the satisfaction of soft user preferences in travel
planning, we introduce a Preference Ranking metric that quantifies the alignment of generated
itineraries with diverse user requirements. Each preference (e.g., "maximize attraction visits” or
’minimize transportation time”) is formalized into a Domain-Specific Language (DSL)-based concept,
enabling automated numerical extraction from plans. For instance, the preference for “visiting more
attractions” is translated into a DSL function that counts the total attraction-type activities in a
plan, while “minimizing dining costs” is operationalized via cumulative expense calculations for
meal-related activities.

The Preference Ranking metric operates in two steps: 1) Quantification: Execute DSL code to
compute concept-specific scores (e.g., attraction count, transport time) for each generated plan. 2)
Ranking: Compare methods (e.g., BQ vs. PEQ vs. PDS) by ranking their concept values, prioritizing
higher values for maximization goals () and lower values for minimization goals (|). 3) Aggregation:
Calculate the average ranking on the given samples.

H Detailed Empirical Analysis

H.1 Main Results Table 13: Cost per query across different methods.

Based on the results presented in Table[2]and[13]
we have the following finding and analyses:

Pure LLMs struggle in ChinaTravel. The DR
evaluates agents’ capability to generate valid
JSON travel plans (see Fig.[I). While high DR
values indicate that state-of-the-art LLMs can
produce structurally correct outputs, the near-
zero EPR reveals their fundamental limitations
in acquiring and strictly adhering to required constraints. The sole exception is the DeepSeek
model, which achieves the 6% EPR and 5% FPR at easy level, likely due to its strong capability
to follow Chinese requirements. ReAct (one-shot, GPT-40) excels in Macro LPR but achieves no
FPR, suggesting it circumvents constraints via shortcuts. Our proposed C-LPR metric offers a more
reliable measure of logical constraints, serving as a supplement to FPR. As shown in Table[T3] pure
neural methods incur prohibitively high computational costs due to excessive token consumption.
When powered by GPT-4o, each query incurs $2.4 on average, yet these approaches fail to produce
any constraint-satisfying plans.

Method \#Input #Output «($) ©(3$)

Act 88K 2K 007 .219
ReAct (0-shot)| 206K 3K .021 .638
ReAct (1-shot)|1058K 4K .081 2.43
LLM-modulo | 362K 11K .025 1.12
NeSy Planning| 467K 3K .003 .306

23

The Inadequacies of Existing NeSy Approaches. The fundamental limitation of TTG arises from
its computational complexity, where the constraint count scales as O (N3T) with N POIs and T time
windows. Even when subsampling to 22 POIs and discretizing time into 1-hour slots (T = 24), the
system generates approximately 600,000 constraints for 2-day itinerary. In our main experiments
using the SCIP solver from the PuLP package, TTG was allocated a relaxed 15-minute search
limitation. However, this configuration yielded only 18% valid solutions on easy-subet instances,
with the FPR further reduced to 8% due to the solver’s pruning heuristics. Fig.[10a]illustrates the
solution time of TTG on 1-3 day itinerary. Within the time limit, solutions were found for merely
23% for two-day and 6% for three-day itineraries.

LLM-modulo introduces a oracle symbolic verifier and feedback the error to LLM to refine the plan.
As illustrated in Fig. [I0b] which depicts the error dynamics across 10 refinement iterations, GPT-40
maintains the lowest cumulative error count (1 = 3.2 + 0.8), followed by DeepSeek (¢ = 5.1 + 1.2).
However, their rectification capacity, quantified by successfully rectified errors per iteration rapidly
decays to < 1 after 3-5 rounds, indicating diminishing returns in error correction. Notably, smaller
models (Qwen3-8B and Llama3-8B) achieve higher rectification, but this comes at the cost of
introducing substantial emergent errors. The error reduction remains statistically insignificant across
these models. This pattern suggests that while LLM-modulo enables basic constraint feedback from
previous travel benchmarks [30}24]], its effectiveness diminishes for complex multi-day itineraries.

Nesy Planning provides a promising solution. Our NeSy Planning framework integrates sym-
bolic programs to orchestrate travel planning and tool management while utilizing LLMs to extract
language-based requirements and prioritize POIs. By separating understanding (flexible natural lan-
guage handling), planning (DSL-guided backtrack) and grounding (precise execution), the framework
enhances adaptability and ensures compliance with constraints during context-rich long-horizon
planning. Across all data subsets, it outperforms previous TTG and LLM-modulo mthods, even
without the help of oracle translation. Among the evaluated LLMs, DeepSeek-V3 achieves state-of-
the-art performance across three subsets. With DeepSeek-V3 as the backend, it achieves FPRs of
52.6%, 37.0% and 23.3% on three subsets, highlighting the effectiveness of NeSy solutions for travel
planning with complex constraints. Moreover, this superior performance demonstrates its enhanced
capability for inter-constraint generalization in compositionally novel situations. Another potential
explanation is that the model is developed by a Chinese company. As a result, it has been trained on
a vast amount of Chinese-language data. This extensive exposure to Chinese text has enabled it to
perform exceptionally well in our Chinese travel planning scenarios, giving it advantages over others.

Challenges Persist for Nesy Planning. The performance gap between standard and oracle modes
underscores the importance of DSL translation in NeSy planning. Inadequate translations may result
in plan searches failing to meet user requirements, while incorrect translations can misguide the
search, making feasible solutions unattainable.

We conclude with three challenges and provide the corresponding cases in the Fig. (1) DSL
Syntax Compliance: As evidenced in Fig. while the reflexion process with syntactic validation
effectively reduces surface-level errors, it inadvertently triggers constraint deletion behaviors across
multiple LLMs. Specifically, Qwen3-8B, Llama3-8B, and Mistral-7B exhibit progressive reduction
in extracted DSL constraints during iterative refinement. Notably, GPT-40 generates approximately
two fewer constraints per iteration than DeepSeek-V3 on average. Although this conservative
strategy enables rapid error convergence (achieving zero detected errors within limited iterations), it
risks oversimplifying constraint specifications, critical dependencies may be prematurely discarded,
ultimately yielding solutions that fail to satisfy complex requirements. This observed conservatism
toward unseen constraints likely contributes to GPT-40’s relative performance gap on the Human-154
and Human-1000 benchmarks compared to DeepSeek-V3. (2) Open Contextual Reasoning: In the
Section[3] we have provided a quantitative analysis. In App.[D.2] more examples are provied for this
challenges. (3) Unseen Concept Composition: Real-world requirements are inherently diverse and
complex, making expecting models to encounter all possible needs during development impractical.
A more feasible way is to emulate human reasoning by generalizing existing knowledge to novel
problems. Fig. [ITb]compares three LLMs on seen vs unseen DSL structures under POI-anonymized
evaluation with syntax-level pattern matching. Results reveal critical gaps: 84% novel DSLs show
only 12% alignment (9% overall), vs 93% accuracy on 16% known patterns. GPT-40 and Qwen3
also demonstrate this limitation, excelling on same concepts but failing on novel compositions.

24

In summary, ChinaTravel poses significant challenges for current agents. Neuro-symbolic agents
outperform pure-LLM approaches in constraint satisfaction, showing strong potential for real-world
travel planning. With realistic queries and a versatile DSL for constraint validation, we highlight the
critical challenges while providing a foundation for advancing neuro-symbolic systems in practice.

H.2 Ablation Study with Preference P2 P NeSy Planning BO DS
The comparison of pr@ferences shoulq be con- / \ ?ra;z::ﬁ:in? 277 Z 267 Z :462
ducted under the premise that both environmen- p3 PO Transport time torest, | 222 268 228
tal and logical constraints are satisfied. Given \ | Food cost ratio T 019 029 032
the limited FPR achieved by existing methods, \ Hotel cost | 1350 559 519
we perform a separate analysis of preference i ” Distance to POI L 309 306 26.1

optimization here. Specifically, we sampled
50 queries from the easy subset that NeSy- Figure 12: Ablation on preference ranking.
DeepSeek-Oracle successfully passed as seed

samples. Based on these, six subsets were created by introducing common preferences identified
from user surveys. Three comparative scenarios were designed to explore the roles of LLMs and
symbolic search in optimizing preferences during NeSy Planning: (1) BQ: Baseline solutions without
preference consideration. (2) PEQ: LLM-enhanced recommendations with natural language prefer-
ences. (3) PDS: Hybrid symbolic search optimizing preference objectives under 5-min constraints.
The results are provided in Fig. [12|(where T /| indicate maximization/minimization). We cound find
that: (1) PEQ outperforms BQ in 5/6 preference scenarios, confirming LLMSs’ capacity to interpret
natural language preferences during POI ranking. (2) PEQ underperforms on P2 (transport time
minimization), likely from LLMs’ misinterpretation of complex spatiotemporal constraints. These
results support the scalability of DSL in preference optimization but also highlights the pressing need
for more efficient algorithms.

I Additional Experimental Results

I.1 Multi-Preference Comparison

For multi-preference scenarios (e.g., balancing “attraction visits 7 and “transport time |”), we adopt
an averaged aggregation approach, where rankings reflect the combined performance across all
preferences. This framework ensures scalability and objectivity.

To rigorously evaluate the ability of language agents to balance multiple soft constraints, we con-
structed 15 test subsets by pairing six user preferences (PO-P5) into all possible combinations (e.g.,
”PO + P1”). Each subset contains queries with two preference requirements. We compared two meth-
ods, Baseline Query (BQ) and Preference-Enhanced Query (PEQ), by quantifying their performance
through our DSL-based Preference Ranking metric. For each subset, we extracted numerical scores
for both preferences (Value-1 and Value-2), computed individual rankings (Rank-1, Rank-2), and
derived an aggregated ranking (Agg. Rank.) to reflect overall performance. The results are provided
in the Table [T4l

From these results, we could find that: (1) PEQ Outperforms BQ in Most Scenarios: In 10/15
combinations, PEQ achieves superior aggregated rankings (Aggregated Ranking = 1.43 vs. BQ’s
1.56). Notably, PEQ demonstrates stable improvements on preferences P3 (e.g., maximizing dining
quality?) and P4 (e.g., minimizing accommodation costs|). For instance: In "POT + P4|”, PEQ
reduces accommodation costs by 64% (Value-2: 441 vs. BQ’s 1221) while maintaining high attraction
counts (Value-1: 0.97 vs. 0.79). For ”P37 + P4|”, PEQ simultaneously improves dining quality
(Value-1: 0.26 vs. BQ’s 0.18) and lowers costs (Value-2: 531 vs. 1229). This stability likely stems
from the direct impact of POI selection on these preferences. LLMs in PEQ effectively prioritize
low-cost hotels or high-quality restaurants through natural language hints (e.g., “reduce the cost
on accommodations”), enabling explicit alignment with P3 and P4 requirements. (2) Challenges
in Balancing Multiple Preferences: The results also reveal inherent difficulties in harmonizing
conflicting preferences, particularly when optimizing one requirement necessitates sacrificing another.
Notably, in the POT + P1] scenario, PEQ underperforms BQ on both preferences, highlighting the
inherent difficulty in resolving conflicting objectives. While PEQ marginally improves attraction
counts (Value-1: 0.83 vs. BQ’s 0.79), it incurs a 5.7% increase in transport time (Value-2: 29.7
vs. BQ’s 28.0). This trade-off results in a worse aggregated ranking for PEQ (1.55 vs. BQ’s 1.44),

25

Preference Combination Vaule-1 Vaule-2 Rank-1 Rank-2 Agg. Rank.
BQ PEQ BQ PEQ| BQ PEQ BQ PEQ| BQ PEQ

POT,P1] ‘ 0.79 0.83 28.0 29.7 ‘ 144 155 144 155 ‘ 144 1.55
POT,P2] ‘ 082 126 29.0 319 ‘ 1.56 143 143 1.56 ‘ 1.5 1.5
POT,P37 | 0.81 094 0.18 020 | 142 157 159 140 | 1.51 148
POT,P4] | 079 097 1221 441 | 146 153 173 126 | 1.59 1.40
POT,P5| ‘ 0.78 091 33.6 34.0 ‘ 1.37 162 170 1.29 ‘ 1.54 145
P1|,P2| ‘ 282 278 26.6 30.1 ‘ 1.62 137 148 1.51 ‘ 1.55 144
Pl], P31 | 282 362 020 027 [131 168 1.6 14 | 145 1.54
Pl |,P4 | ‘ 30.3 44.8 1440 585 ‘ 1.14 185 1.77 1.22 ‘ 145 1.54
P1],P5] | 30.1 383 307 302|127 172 169 130 | 148 151
P2 [, P37 | 247 233 027 027 | 143 156 160 139 | 1.52 147
P2|,P4] ‘ 24.1 211 1687 719 ‘ 1.51 148 1.89 1.10 ‘ 1.70 1.29
P2 |,P5 | ‘ 28.0 308 294 26.0 ‘ 1.51 148 1.89 1.10 ‘ 1.70 1.29
P3T,P4 | ‘ 0.18 0.26 1229 531 ‘ 1.64 135 1.69 1.30 ‘ 1.66 1.33
P37,P5] ‘ 0.22 022 333 29.0 ‘ 1.51 148 1.84 1.15 ‘ 1.68 1.31
P4 |,P5| ‘ 1366 767 33.1 31.6 ‘ 1.67 132 145 1.54 ‘ 1.56 143
Aggregated Ranking | \ | 1.56 1.43

Table 14: Multi-Preference Comparison of BQ and PEQ.

indicating that the combined effect of conflicting preferences negates the benefits of natural language
guidance. In 9/15 combinations, PEQ improves one preference at the expense of the other. For
example: P1] + P4]: PEQ reduces accommodation costs by 59% (Value-2: 585 vs. BQ’s 1440) but
increases transport time by 48% (Value-1: 44.8 vs. 30.3). The inability to concurrently satisfy both
preferences underscores the limitations of current LLM-driven prioritization in handling trade-offs.

Our experiments demonstrate that the neuro-symbolic agent (PEQ), enhanced by LLM-driven POI
recommendation, outperforms baseline methods in multi-preference travel planning. By integrating
natural language hints to guide POI selection, PEQ effectively translates user requirements into
actionable itineraries, demonstrating its capability to handle synergistic preferences. However,
balancing inherently conflicting objectives remains challenging. This highlights the need for future
advancements, such as domain-specific fine-tuned LLMs to better resolve preference conflicts or
multi-objective optimization techniques to systematically navigate trade-offs.

I.2 Open Reasoning with Chinese Context

In this section, we quantitatively compare the reasoning capabilities of LLMs in the context of
Chinese travel requirements. Given that many leading LLMs, such as GPT-4, are primarily trained in
English corpora, it is essential to evaluate their performance in a Chinese travel planning context to
better understand their reasoning abilities. We focus on three LLMs: GPT-40, DeepSeek-V2.5, and
Qwen2.5-7B, which are employed in the main experiments.

Specifically, we analyze the POI matching in the NL2DSL process with varying travel requirements
from the synthesized quires and further provide the distribution of the results in Figure [I3] The
comparative analysis reveals significant disparities in reasoning capabilities across the three LLMs
when handling Chinese travel-related queries. DeepSeek-V2.5 demonstrates robust performance in
most categories, achieving high accuracy (Correct > 93%) for attraction-names, attraction-types,
restaurant-names, and hotel-features. However, its performance sharply declines in hotel-names
(Correct: 67%, Missing: 33%), suggesting limited familiarity with Chinese hotel nomenclature
or insufficient contextual grounding in this domain. This contrasts with GPT-40, which excels in

26

hotel-names (Correct: 93%) and achieves perfect accuracy (Correct: 100%) for attraction-types,
highlighting its superior cross-lingual transfer capabilities despite being primarily English-trained.
Notably, GPT-40 maintains consistent performance across all categories (Correct > 93%), underscor-
ing its balanced reasoning proficiency in Chinese contexts. In stark contrast, Qwen2.5-7B exhibits
critical weaknesses, particularly in attraction-names (Correct: 13%, Error: 43%), indicating severe
limitations in entity recognition and syntactic coherence for Chinese proper nouns. The pronounced
missing rates observed in Qwen2.5-7B (e.g., 43% for attraction-names and 23% for hotel-names)
align with its constrained parameter size (7B), which likely impedes its ability to internalize diverse
travel requirements or align them with sandbox’s POI information.

We further conduct the analysis and provide the results on human queries in Figure[T4] The evaluation
of human queries reveals critical limitations in LLMs’ practical reasoning capabilities that synthetic
data fails to expose. DeepSeek-V2.5’s accuracy plummets in hotel-feature (Correct: 40% vs. 93%
in synthetic data), indicating severe degradation when handling ambiguous or culturally nuanced
requirements (e.g., interpreting subjective descriptors like “luxury” or “traditional courtyard-style” in
Chinese contexts). GPT-4o similarly exhibits instability, with significant declines in restaurant-types
(Correct: 37% vs. 97% in synthetic data) and attractions-type (Correct: 69% vs. 100%), suggesting
that its cross-lingual transfer mechanisms falter when confronted with real-world linguistic variability
(e.g., colloquial phrasing or dialect influences). This analysis underscores the necessity of introducing
human queries into benchmarks when evaluating travel planning, as they reveal critical gaps in open
language reasoning for deploying LLMs in real-world travel assistants.

LI.3 Analysis of Pure-LLM Methods

Pure LLM-based methods have demonstrated significant shortcomings in constraint satisfaction, as
evidenced by their near-zero success rates in benchmarks like TravelPlanner. We also attempt the
multi-round refinement methods like Reflexion. While theoretically promising, it is still impractical
in our context. In preliminary evaluations, Reflexion not only failed to achieve improvements in
constraint satisfaction (consistent 0% FPR) but also incurred prohibitive computational costs due
to its reliance on iterative token-heavy interactions. This rendered large-scale evaluation infeasible
given our resource constraints. In light of their current limitations in constraint satisfaction, NeSy
frameworks remain the effective pathway for real-world travel planning. Therefore, in the main body
of this work, we mainly analyze the Nesy method.

In this section, we further summarize the key failure modes of pure-LL.M-based methods observed in
our experiments:

(1) Incorrect API Calls: LLMs frequently generate invalid or hallucinated API calls, leading
to cascading errors in downstream planning. For instance, models may query non-existent APIs
(e.g., city_transport_select instead of inter_city_transport_select) or misuse parameters (e.g., filtering
attractions by an unsupported feature like ’bus’). Such errors exhaust API call limits and prevent
agents from retrieving essential information.

(2) Repetitive Output Loops In iterative planning frameworks like ReAct, LLMs often enter infinite
loops when resolving constraints. For example, an agent might repeatedly query transportation details
for all candidate attractions, even after selecting one, due to a failure to update its internal state. This
behavior mimics the “hallucination loops” reported in TravelPlanner paper.

(3) Reasoning-Action Inconsistency. In ReAct framework, the model first reasons and then takes
an action. However, the reasoning and the action are not always consistent. For example, the model
may reason that the user wants to book a flight, but then take an action to check the information of
trains. Another example is that the model may detect that the expenses exceed the budget but does
not respond to this and ultimately generates a plan that exceeds the budget.

(4) Critical Information Missing. Even when intermediate steps (e.g., API responses) are logged
in a "notebook,” LLMs frequently omit essential details when synthesizing final plans. A recurring
failure is neglecting return transportation (e.g., omitting the train from Shanghai back to Beijing),
which violates feasibility constraints.

Figure T3] provides the fail examples of ReAct (one-shot) with DeepSeek, which outperforms other
pure-LLM-based methods in the main experiments.

27

These limitations underscore the inadequacy of pure-LLM-based approaches for deployment in
long-horizon and constraint-rich domains like travel planning.

J Statements about Scientific Artifacts

The ChinaTravel benchmark is designed to facilitate research in natural language processing and
artificial intelligence, specifically for travel planning tasks. ChinaTravel includes a travel sandbox,
user queries, and an evaluation framework intended for non-commercial, academic research purposes.

Availability. We will publicly release the ChinaTravel benchmark upon publication to facilitate
community research. We look forward to broader adoption and extension of this benchmark.

Licenses. The ChinaTravel benchmark and its associated datasets are licensed under the Creative
Commons Attribution-NonCommercial 4.0 International (CC-BY-NC 4.0)| license. This license
allows for the free use, distribution, and reproduction of the benchmark in any medium, provided that
appropriate credit is given to the original authors and the source of the data is acknowledged, and that
the use is for non-commercial purposes only.

Data anonymization and offensive content. We anonymized the human queries during collection
and instructed participants to avoid including sensitive information. We removed queries containing
offensive content during the data cleaning process.

K Statements about Human Participants

We recruited over 250 volunteers through a structured questionnaire to collect authentic Chinese travel
requirements. Participants were informed about the public use of their data and instructed to avoid
including sensitive personal information. During data cleaning, offensive content and identifiable
details were removed. While no explicit ethics board approval is mentioned, we ensured compliance
with anonymization practices and obtained participant consent for data inclusion. The final dataset
contains 154 human-derived queries reflecting diverse real-world travel needs.

K.1 Instructions Given To Participants

To gather the authentic travel requirements, we collected data through a carefully designed question-
naire. We provided the following instruction information to the participants:

1. The specific constraints the agent can handle and the corresponding details, including the
types and specific names of attractions, restaurants, and hotels; requirements for intercity
transportation (airplane or train) and urban transportation (walk, taxi or subway); as well as
budget limitations for overall expenses or specific activities (such as accommodation and
intercity transportation).

2. The necessary information should be provided in the query, including the departure and
destination cities of the trip, the number of travel days and constraint information.

3. A detailed example with the query and travel planning response.

Fig.[T6and Fig. [I7|respectively show the questionnaire and its translated version.

K.2 Recruitment And Payment

For the collection of Human-154, we recruited a total of 250 student volunteers to provide authentic
Chinese travel requirements. The participants included 121 undergraduate students, 86 master’s
students, and 43 doctoral students. The task of understanding the query background and providing
travel requirements was estimated to take 1-2 minutes per participant. Given the simplicity of the task
and the fact that it did not require extensive professional background or expertise, we compensated
each participant with 1 yuan. This compensation was deemed adequate considering the nature of the
task and the time required to complete it. The payment was determined based on the estimated time

28

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

and the straightforward nature of the natural language requirements, ensuring a fair and reasonable
reward for the participants.

For Human-1000, we partnered with WJX (a professional survey platform) to scale data collection.
Each valid query was incentivized with 6 CNY. After WJXs initial screening, our team rigorously
annotated responses, filtering invalid entries (e.g., nonsensical inputs). It finally yielded 1,000
high-quality queries meeting DSL annotation standards, ensuring both diversity and alignment with
real-world planning scenarios.

K.3 Data Consent

When collecting the data, we clearly informed the participants about the usage of the data and the
potential irreversible risks of it becoming part of a public dataset. We did not track the ID information
of the questionnaire respondents. Additionally, we reminded participants not to include any sensitive
personal information in the questionnaire responses. During the data cleaning process, we directly
removed queries containing offensive content and filtered out sensitive identity information.

K.4 Characteristics of Annotators

Our data collection process solely involved travel requirements and did not include any protected
information, such as sexual orientation or political views as defined under the General Data Protection
Regulation (GDPR). All data were collected from native Chinese speakers to ensure that the travel
requirements fully align with the context and nuances of the Chinese language. This approach was
taken to accurately capture the needs and preferences of the target population, which is primarily
composed of Chinese-speaking individuals. The annotators were recruited from a diverse range of
academic backgrounds, including undergraduate, master’s, and doctoral students, to provide a broad
and representative set of travel requirements.

K.5 DSL Annotation for Human Data

The annotation process for the human data involved four stages to ensure the accuracy and validity of
the Domain-Specific Language (DSL) annotations: (1) Initial DSL Version Generation: GPT-40 was
utilized to provide the initial version of the DSL annotations for the human data. This step aimed
to leverage the language model’s capabilities to generate a baseline for further refinement. (2) Data
Annotation Team Revision: A team of five data annotators was responsible for reviewing and revising
the DSL annotations. The team members divided the workload and made necessary corrections to
the DSL annotations to ensure their accuracy and relevance to the travel requirements. (3) Primary
Developer Verification and Correction: Three of the main developers of the benchmark conducted
a thorough review of all the DSL annotations. They verified the correctness of the annotations and
made revisions as needed. This stage also involved the exclusion of any invalid queries that could not
be verified within the sandbox environment. (4) Final Verification by Primary Developers: The same
three main developers performed a final check on all the DSL annotations. This step ensured that the
annotations were accurate, consistent, and met the required standards for the benchmark.

Throughout the annotation process, the focus was on ensuring that the DSL annotations accurately
captured the travel requirements and were valid within the context of the ChinaTravel benchmark’s
sandbox environment. The annotation process for human data required a deep understanding of the
ChinaTravel DSL and involved joint debugging and verification with the sandbox information. This
significantly limited the size of the annotation team, as only a limited number of annotators had the
necessary expertise and familiarity with both the DSL and the sandbox environment. Additionally,
the process was time-consuming and required meticulous attention to detail, further constraining
the rate at which the human dataset could grow. Despite these challenges, the rigorous annotation
process ensured the quality and reliability of the human data, which is crucial for the evaluation and
development of language agents in real-world travel planning.

29

L TTG

L.1 Constraints Formulation

TTG [12] models the travel planning problem as a MILP (Mixed-Integer Linear Programming)
problem. We adapt their formulation into ChinaTravel for solver-based optimization and the specific
parameters, variable and constraint settings can be found in Tab. [TJIqL7]

L.2 Experiment

Although TTG performs very well on Travelplanner, the solver takes slightly more than 1 second on
average to complete the computation. On the ChinaTravel benchmark, the rapid growth of constraints
in TTG becomes computationally prohibitive. If we use the full sandbox, the average number of
constraints will exceed 10B (For detailed calculations of variable sizes and the number of constraints,
please refer to Tab. [EE]) Therefore, we only include 22 POIs (2 hotels, 10 attractions, 5 restaurants,
5 stations, 100 intercity transports each for arrivals and departures) and use one hour as a time step.
We use LLMs to select them from sandbox to ensure sufficient flexibility in handling different queries.
Nonetheless, its constraint scale still reaches 320k x days and the number of variables also reaches
36k x days. In comparison, the commonly used benchmark for evaluating MILP solvers, MIPLIB
2017 [l6], contains only 10 instances with more than 320k constraints and about 60 instances with
over 36k variables (out of a total of 1065 instances).

In our main experiments, using the SCIP solver from the PuLP package, TTG was allocated a
relaxed 15-minute search limitation. However, this configuration yielded only 18% valid solutions on
easy-subset instances, with the false positive rate (FPR) further reduced to 8% due to the solver’s
pruning heuristics. Fig.[I0|a) illustrates the solution time of TTG on 1- to 3-day itineraries. Within
the time limit, solutions were found for merely 23% of two-day and 6% of three-day itineraries.

Parameter Meaning

hotelNum Number of hotels

attrNum Number of attractions

restNum Number of restaurants

transNum Number of transport modes
stationNum Number of stations

goNum Number of arriving trains/buses
backNum Number of departing trains/buses
timeStep Number of time steps

locNum = hotelNum + attrNum + restNum Total number of POI locations except stations

totalNum = locNum + stationNum Total number of all locations including stations

Table 15: Definition of parameters used in TTG

30

Variable Meaning

ulidx][¢] The traveler is at location idx at time ¢

event|[f] The traveler’s location changes at time ¢

hotel[idx][d] Number of times the traveler visits hotel idx on day (d + 1)
attr[idx] Number of times the traveler visits attraction idx

rest[idx] [meal] Number of times the traveler visits restaurant idx at meal meal
Zhotels Zattrs Zrests 0 Auxiliary variables

needEat[m] Whether the traveler needs to eat meal m (during intercity travel)
check[idx][t] Whether the attraction idx is open at time t
yl(, j, tr,t)] The solution, a matrix of shape fotalNum X totalNum X transNum X timeStep

Table 16: Variables used in TTG

An Example of Prompts for Data Generation

You are a user who wants to ask an AI agent to help you
plan a trip. Please construct some natural language
inquiries based on the following example and provide
the corresponding logical constraint expressions. Note

that "tickets" and "people_number" are the same.

Example:

JSON :

{}

Use the following restaurants.

Restaurant name: {}

This means that "restaurant_names" should include this
restaurant.

The dining options may not always be exactly as
described by the provided features; synonyms can be
used. For example, if the hotel’s feature is a pool,
you could ask naturally in language like "I want to
swim in the hotel pool."

Now, your departure location is {}, and your destination

is {}. The number of people is {}, and the number of
days is {}.

Now please provide a JSON inquiry.

JSON:

H HHHHHE

*

Figure 7: An example of prompts for data generation. This example is about restaurant_name. By
replacing this with other constraints or combining multiple constraints, we can generate data with
different levels of difficulty based on different constraints.

31

Examples of Generated Data

Example 1

“start_city”: “HTHN”,
target_city”: ” i,
“hard_logic™: [
“days==2",
”people_number==1",
“tickets==1",
P ARHEZE) = food_type”

”’natureflanguage”: PHBIMENM . FH— D AEE LEDRR, B2 S HaRE

B3, AT - 7

}

Example 2
{
“start_city”: "IRYI”,
“target_city”: *JLIE”,
“hard_logic™: [
“days==2",
”people_number==3",
”intercity _transport=={"airplane’ }”,
“tickets==3",
”rooms==3"",
“room_type==1"
1,
nature_language”: % B LB FEYI - FAT= AR ITH R
11, FF=RIRIRE - A — P iRiTAA -
}

Example 3

{

“start_city”: " ELJK”,

“target_city”: "FF M,

“hard_logic™: [
”days==3",
’people_number==3",
”costj=7300",
" HZASEBE} = food_type”,
intercity transport=={"train’ }",
“tickets==3",
”rooms==2",
“room_type==2"

]’

, R

“nature_language”: "HHIALEEX . FAI=DNITRILTIMIEL=K, HFE K% H
11, Bz BRI, FRE73000T, FFREIADNURES - G — D RITHLR] - >

Figure 8: Examples of Generated Data

32

T
i
- 1 1
3‘ 50 1 day mp : W Persisting Error 4 Total Errors —— GPT-4o Rectified Qwen3-8B Rectified
g 2-day trip | e Emergent Error DeepSeck-V3 Rectified ~ ——~ Llama3-8B Rectified Mistral-7B Rectified
530 3-day tri \ ’
= ytmp g
=1 ---- Time Out |
=~ 101

0 5 10 15
Search Time (min)

(a) Solution Time of TTG. (b) Refinement of LLM-modulo.

Figure 10: (a) The high computational complexity of TTG renders it infeasible for real-world multi-
day itineraries. (b) LLM-modulo’s error correction declines during iteration, causing emergent errors.

>

B Moched Unseen Syntax S Matched Seen Syntax 5% Unmatched Unseen Syniax 55 Unmatched Seen Syntax

0.8% 7% 1.2% % Yo

v

)

- =) . 3
=1 . =4
- -2 . S

Error () / Passed DSL Count (1)

o

DeepSeek-V3 GPT-40 Qwen3-8B

DeepSeek-V3 GPT40 Qwen3-8B Llama3-8B Mistral-7B
(a) Syntax error of DSL translation. (b) Syntax generalization of DSL translation.

Figure 11: Challenges in NL2DSL translation.

Rate

[GPT-4o Correct I GPT-40 Syntax B DeepSeeck Mismatch ES¥ Qwen Missing
[GPT-40 Missing EZZ4 DeepSeek Correct 22 DeepSeek Syntax BN Qwen Mismatch
I GPT-40 Mismatch FZZ1 DeepSeek Missing BN Qwen Correct BN Qwen Syntax

Figure 13: Results Distribution on Synthesized Quires

33

0.81

0.61

Rate

041

027

0.0

0 GPT-4o Correct I GPT-40 Syntax BEZ# DeepSeek Mismatch ES¥ Qwen Missing
[GPT-40 Missing EZZ4 DeepSeek Correct B8 DeepSeek Syntax ESN Qwen Mismatch
I GPT-40 Mismatch WFZ7Z1 DeepSeck Missing BN Qwen Correct BN Qwen Syntax

Figure 14: Results Distribution on Human Quires

34

Incorrect API Calls

Repetitive Output Loops

Action[20]: goto(city="TRIII", start="TRYIIILZ,", end=" KM ATIR",
start_time=*19:00", method=*“bus”)

Observation[20]: Invalid method. Only support ['metro’, ‘walk', ‘taxi']
Action[25]: goto(city="TRIII", start="TRIIIILE,", end= KM FTIR",
start_time="19:00", method="bus”)

Observation[25]: Invalid method. Only support ['metro’, 'walk’, 'taxi’]
Action[30]: goto(city="“7&II”, start="RIIIAL 3>,
start_time=*19:00", method="bus”)
Observation[30]: Invalid method. Only support ['metro’, 'walk', 'taxi’]

end="K M4 T4k,

Action[3]: city_transport_select(start_city="p%#}", end_city="i{}",
intercity_type="train", earliest_leave_time="19:00")

Observation[3]: 1] U, #5515 5 : name ‘city_transport_select’
is not defined i FEL 2% 5 152 J5 A LA R T A5 24

Thought[4]": ERELZ 41, %2

Lintercity_transport_select. T
A FH IEA 1 R 2

Thought[12]: ?M]TU\ﬂﬁﬂiﬁi’%ﬁi?&ﬂm*mﬁ[_ﬂ—ﬁi%m
Rlo BETFORBATT EARIXH AT

Action[12]: attractions_select(city="iiX", key—' name",
func=lambda x: "SE5E£" in x or "?E?ﬁﬂ@lh%[in x)

Thought[13]: FA'T AT LALE 5 B RN AR L 5% DX AR Ay 2 B 5
T RIRATTH AKX PSR VEA(E S

Action[13]: attractions_select(city="#{iX", key="name",
func=lambda x: "SEESEE" in x or "4 IE (L 5 X" in x)

Thought[14]: FAT AT LA SR A %380 B 1L 5 DX A D 2 B i
T RIRATH AR WA S AU TR S

Action[14]: attractions_select(city="1iX", key- name",
func=lambda x: “H{#SHE" in x or B'J?/WEIJJ HX" in x)

Thought[15]: FATTHT LAE-F 8 85 B A0 AR T8 5 1L 5% [X A D R B35
%T%&ﬂ]?‘;%ﬁ&ﬁﬁ"ﬁfﬁﬂ’wﬂ% 2
Action[15]: attractions_select(cf y " key— name",
func=lambda x: "H{EGEE" in x or "R IJ-U?\I_ in x)

Reasoning-Action Inconsistency

Critical Information Missing

Thought[2]:
UE—

R AT IR T, kT RE LA R FLAIE, T
R HILIE o

Action[15]: planner(query=">4 Az &M F—A N4 2%
K, THEL3000 AR, LR —ANiAT MK,)

Action[2]": "intercity_transport_select(start_city="&JIl", end_city=" Observation[15]: Task finished. The answer is: {"people_number": 1,
50", intercity_type="airplane") "start_city": "/ MI", "target_city": "iL", "itinerary": [{"day": 1,
Observation[2]: [‘FlightID” ‘From’ ‘To’ BeginTime EndTime "activities ... {"start_time": "18:00", "end_time": "22:39", "start": "
Duranon ‘Cost’\n[‘FL240" VY5 2 [F Frblis < md itk - [H b FRPLEE", "end”:) M EE 5", "cost": 543.6, "TrainID": "G877",

LR} “type™: " train", “tickets": 1, "transports": []}1}1}"

Thought[14]: TRELHESC, FATHEEHIIK . AT LU 8>

ix |
[
Acuon[14] planner(query=""% i . &) . AL AAL 2 Lifg
Bi—K, TS3L00NRM, Wi —iRirskl.)
Observation[14]: Task finished. The answer is: {"people_number": 2,

5 b 4 G) U i/ — S5 D

“start_city™: "/ ", "target_city": " Lifg", "itinerary': [{"day": 1,
“activities": [{" start time": "08:00", "end_time": "14:48", "start": "]
M ‘end”: " b IILHFEL", "cost": 787. 73 FllghtID": G818

in", "tickets": 2, "transports":
“attraction”, "transports": [{ start":
M}(iiﬁ it’f%lﬁ" "mode": "walk*

Action[23]: planner(query="4 i i BRI . F—AN AL TR B

K, TiG1600 AR, WHAR—AMAT IR ")~
Observation[23]: Task finished. The answer is: {“people_number’: 1,
“start_city”: “I&JI”, “target_city”: “J5/1”, “itinerary”: [{“day”: 1,
“activities™: [{“type”: “train”, “start_time”: “06:33”, “end_time™:
“15:46”, “cost™ 759.35, “tickets™: 1, “start”: “VAYI%G”, “end”: “IRH
3, TraInID 62787” transpons’ [1}, +-eyy "start": "JE LA

o transports |]} {"type": "train",

"07:00", "cost": 759.35, " tlckets
" /mi}HJE "TrainlD": "G2788",

transpons [|}]}]}

Figure 15: Fail case studies of React-one-shot DeepSeek Method.

35

FEIBORAT HR 4R
AT B AEREE — NS T BRAT IR B4, DME THISSRTTCITT I o H T35 FR IR A 9 A TT R SR B — 82y, 77
FETCVEIAE IR 2T WA B SR MBI AGE R, BAR 25!

LR OMests mat. B BN I RO ML RRES. B, SR

2. HAmmedERT: _ CAIRE. MRt RS BOML SRIIL BB 7ML . SR N HERD
3. RATAE: _ (1-5)

4. AT REL: (1-5)

TEAVE A LA A RE AR B AR AT G SR . A I A P DL SR SEal. B, ETE . BSIRES i (k4. TR BARR Y 3
(i, 54T HHLZE) 0 BAAER, [FR, SR R AR T EMRE AP EE T =AME R BARii . ABRR
K, I RR S BANTLUCAC . R AR AP AR IR (X M SRR — A IRAT LRI G5 R, BFX LR MAS@ e HE . i el HEFF
Fo BRI
FH P i) R] -
AT E M. R AMAEER B2 K, S 3000 AR, R, AR AIRITME.
B REACER [() T
[SI=RpivLl|
H o e 5L
AW H AL > R
BI1%:64, 07:24->08:15
P :122.9 7T
1k
WU R S X
A3 Mk (RS SE DTERUMOR Y. « BT, 64T 3 40k +Hbik 23 Ar4h+54T 8 43kt
W40
W 1] 1 08:50->10: 00
[152:0 76
AR M TS E bR E - R R T
188 70
A 12:10 ->13:10
AETE A TR S 50 % BT
KRG, 1 7H)
B :370 7T
IR RGNS > SR
B 7167220, 20:09->21:23
B :122.9 7T
EEE 18k
ARG FH P 100 R4y S [FE AT 4028, AR B A
G J— e, A AT R
P — BRI TR, BRI R RS TE CE S .
E R A AR TR, Wnd AR e S s B I
LR 2 AN [3 82 2) 1 PP i) R A9 -
RS : BARSNIE 25 FHEEL 2 RAATREMR], MBI & .
g AR E — ANRITER R 550, HRIEI A 3 RAA . AT SRR, A AR W — i i
EHBAENE RFEEAAAC T 2 Ko 58RI B+ Sal 2k b, BEF—REWE, HoRERER, HH—
ANFRAT R
5. 4 i)

Figure 16: Questionnaire

36

Open Travel Planning Data Collection Questionnaire
This questionnaire aims to construct a dataset for travel planning in an open environment to facilitate relevant research. Since the
responses will be part of a public dataset and cannot be revoked, please do not include any sensitive personal information in your
responses. Thank you for your participation!

1. Departure City: (Choose from Beijing, Nanjing, Shanghai, Hangzhou, Shenzhen, Wuhan, Guangzhou, Chengdu, Chongging,
Suzhou)

2. Destination City: (Choose from Beijing, Nanjing, Shanghai, Hangzhou, Shenzhen, Wuhan, Guangzhou, Chengdu,
Chongging, Suzhou)

3. Number of Travelers: (1-5)

4. Number of Travel Days: (1-5)

As a user, you can submit queries to the intelligent agent. Your query may include specific requirements for attractions, dining,
accommodation, intercity transportation (e.g., train, plane), and intra-city transportation (e.g., subway, walking, taxi). You may also
provide personal preferences. Please ensure that your query includes the following three pieces of information: the destination city, the
number of travelers, and the number of travel days, and make sure they are consistent. The intelligent agent will generate a travel plan
based on your request, covering transportation arrangements, accommodation, recommended attractions, and dining suggestions.

Example User Query:
"My current location is Suzhou. I want to travel alone to Nanjing for 2 days with a budget of 3,000 RMB, taking the high-speed train for
both departure and return. Please provide a travel plan."

Example Response from the Intelligent Agent:

Departure: Suzhou

Destination: Nanjing

Transportation: Suzhou North Station — Nanjing South Station
Train: G4, 07:24 — 08:15

Cost: 122.9 RMB

Tickets: 1

Attraction: Xuanwu Lake Scenic Area

Transportation: Subway (Nanjing South Station — Nanjing Forestry University-Xinzhuang)
Route: Walk 3 minutes — Subway 23 minutes — Walk 8 minutes
Cost: 4 RMB

Visit Time: 08:50 — 10:00

Admission: 0 RMB

Lunch: Nanjing Jinling Hotel - Man Yuan Chun Chinese Restaurant
Cost: 188 RMB

Time: 12:10 — 13:10

Accommodation: Crystal Orange Hotel Nanjing Xuanwu Lake
Room Type: Queen Room, 1 room

Cost: 370 RMB

Return: Nanjing South Station — Suzhou Station

Train: G7220, 20:09 — 21:23

Cost: 122.9 RMB

Tickets: 1

Classification of User Queries by Difficulty Level

We categorize user queries into different difficulty levels as follows:

Easy Level: General inquiries without personalized requirements.

Medium Level: Includes some degree of personalization, usually involving food, lodging, or transportation.

Hard Level: Involves more complex and specific needs, such as time constraints, particular locations, or planned activities.

Examples of User Queries at Different Difficulty Levels:

Basic Level: "I want to know the itinerary for a 2-day trip to Shanghai from Hangzhou."

Intermediate Level: "I plan to travel alone to Nanjing on a budget and stay for about three days. I'm interested in history and culture and
would like to explore historical sites in depth."

Advanced Level: "Three of us need to travel to Beijing the day after tomorrow for a 2-day trip. We need to return from Beijing Railway
Station before 10 PM on the second day. We want to visit the Forbidden City on the first day and the Temple of Heaven on the second
day. Please provide a travel plan."

5. Please provide a user query:

Figure 17: The translated version of the questionnaire

37

ChinaTravel

TravelPlanner

A E RN . = ABLETINI—K, i
51400 AR, AT —AMIRITHIR

Current location: Wuhan. I want to visit Suzhou for
a day by myself with a budget of 1,400 RMB.
Please provide me with a travel plan.

Please help me plan a trip from St. Petersburg to
Rockford spanning 3 days from March 16th to
March 18th, 2022. The travel should be planned for
a single person with a budget of $1,700.

AR ER . B ANBERERI3 R, =
Xz ER R AR, A3 — A IRAT R .
Current location: Nanjing. I want to travel to
Chonggqing alone for 3 days. I like sweet foods and
bread. Please provide me with a travel plan.

Please design a travel plan departing from Las
Vegas and heading to Stockton for 3 days, from
March 3rd to March 5th, 2022, for one person, with
a budget of $1,400.

T E R B AFIA NI 3
Ky BEAAHSE, WETAT—MIRAT R
Current location: Chongqing. My friend and I want
to visit Wuhan for 3 days and try the local cuisine.
Could you please provide us with a travel plan?

Craft a travel plan for me to depart from New
Orleans and head to Louisville for 3 days, from
March 12th to March 14th, 2022. I will be
travelling alone with a budget of $1,900.

AL E . AT=A AL RINB 2 K,
A2 D SR LR I 5L, A IRAT—ANIRAT
o

Current location: Chengdu. The three of us want to
visit Shenzhen for 2 days and are interested in
historical sites. Could you please provide us with a
travel itinerary?

Could you aid in curating a 5-day travel plan for
one person beginning in Denver and planning to
visit 2 cities in Washington from March 23rd to
March 27th, 2022? The budget for this trip is now
set at $4,200.

UETALE IR FAAA A NAR L gD 3
K, RRFUGEEAKTRNE, BHRAT—AIRATH
&l

Current location: Shenzhen. My friend and I want
to visit Shanghai for 3 days and we would like to go
to the Ocean Aquarium. Could you please provide
us with a travel plan?

Could you assist in crafting a travel itinerary for a
5-day, single-person trip departing from Orlando
and touring 2 cities in Texas? The travel dates
should range from March 10th to March 14th, 2022,
and the entire travel budget is $3,100.

AL B A AP N 2 B 3
Ry AL—TARURGS, IR AT REEETT 2, W i
L RESRMEANIT T, IR — A IRAT
&l

Current location: Chengdu. My friend and I want to
visit Shanghai for 3 days. We need a twin room,
and we might need a meeting space during our stay.
Please provide me with a travel plan.

Could you help me arrange a 7-day solo travel
itinerary from Kona to California with a budget of
$5,800, intending to visit 3 distinct cities in
California from March 7th to March 13th, 2022?

WEATER L, RIS ITA i % i
PR, LRI o FEK—TJ7 BEBAR)E, 15K
AT — AN HRAT T %

I am currently in Nanjing and plan to travel to
Shanghai with two friends for two days. We have
chosen the YuanShe - Zai Shui Yi Fang Resort
Hotel. Please help us plan a travel itinerary.

Please help me craft a 7-day travel plan. I'm
planning on leaving from Punta Gorda and
exploring 3 different cities in Wisconsin from
March 16th to March 22nd, 2022. The budget for
this trip is set at $5,700.

ARThLE AR A=A AR A T
Ko WHEKERAT, HAZETT . i
I —IRAT LR -

Current location: Beijing. My three friends and I
are planning to visit Chengdu for two days. We
have chosen to travel by train and use subway for
city transportation. Please provide me with a travel
itinerary.

Could you help me create a 7-day travel plan
starting on March 18th, 2022, and ending on March
24th, 2022? The trip will start in Washington and I
would like to visit 3 cities in Minnesota. This trip is
for one person with a budget of $7,200.

Figure 18: Examples of easy-level queries from ChinaTravel and TravelPlanner.

38

ChinaTravel

TravelPlanner

A B . WA AR LI D2 K, S
4000 N, AAKEESE, E—WXIRE, HE5%
ol A EDGXRE G B AR RO, 4R — MR
AT o

Current location: Wuhan. Two of us want to visit
Suzhou for 2 days with a budget of 4000 RMB. We
plan to take the train and stay in a room with a king-
size bed. We would like to visit natural attractions
like Tiger Hill Scenic Area. Please provide a travel
itinerary.

Could you please arrange a 3-day trip for two,
starting in Sacramento and heading to Atlanta,
from March 14th to March 16th, 2022. The
budget for this trip is $4,700, and we require
accommodations where parties are allowed.

METALE M TS AL A 3 R, B
9000 AR, AKZEAEIR, E—WIRKE, WG
B —AIRAT L

Current location: Guangzhou. Two of us want to visit
Chengdu for 3 days with a budget of 9,000 RMB. We
plan to travel round-trip by train and stay in a room
with a double bed. Could you please provide a travel
itinerary for us?

Could you please design a 3-day travel plan for a
group of 5, departing from Manchester and
heading to Charlotte, from March 29th to March
31st, 2022? Our budget is set at $4,800 and we
would prefer to have entire rooms for our
accommodations.

LHTALE)M B AIFT AR LRI
K, WS 2100 AT, EREEXURE, ALibeki
B, MG, AHLRIIMEAIT. Current
location: Guangzhou. My two friends and I want to
g0 to Shenzhen for two days. Our budget is 2,100
RMB. We plan to stay in two twin-bed rooms, travel
around by metro, eat seafood, and visit Shenzhen
Happy Valley.

Could you tailor a 5-day travel plan for two people,
departing from Knoxville and visiting 2 cities in
Florida from March 20 to March 24, 2022? Our budget
is set at $3,900. We'd love to explore local Chinese and
Mediterranean cuisines during our stay.

AETALERI . WA LMD 3 R, B
7000 AR, ARHUEIR, E—WKRKE, FRG
B —AIRAT L.

Current location: Wuhan. Two of us want to visit
Hangzhou for 3 days with a budget of 7,000 RMB.
We plan to travel by plane round-trip and stay in a
room with a large bed. Could you please provide a
travel plan for us?

Could you help create a 7-day travel plan for a
group of 3, departing from Greensboro and
touring 3 different cities in Georgia from March
10th to March 16th, 2022? We have a new budget
of $4,000 for this trip. We'd also appreciate if our
accommodations have smoking areas.

HATALERIM . RN ANABZTIMIE 2 K, T
3500 AR, KK, BEEEMBIEZ
PRSI, 12— A IRAT L.

Current location: Hangzhou. Two of us want to visit
Suzhou for 2 days with a budget of 3,500 RMB. We
would like to stay in a room with a large bed and
visit garden attractions like the Humble
Administrator's Garden. Please provide a travel plan.

Could you help create a 5-day travel itinerary for
a group of 4, starting from New York and visiting
2 cities in Louisiana from March 15th to March
19th, 2022? We have a budget of $12,300. Please
note that we require accommodations where
smoking is permissible.

TR EAC R . TS AN R 3 R, B
7000 AR, FE—RIRKE, ARTEHLE, W
vk, AEEEINEAE— K, HHk—
TRATRLRI o

Current location: Beijing. Two of us want to visit
Shenzhen for 3 days with a budget of 7,000 RMB.
We would like to stay in a hotel with a king-size bed
and preferably a swimming pool. We plan to fly there
and would like to visit Shenzhen Happy Valley.
Please provide a travel itinerary.

Can you provide me with a 5-day travel plan for 2
people, starting from Asheville and exploring 2
cities in New York from March 13th to March
17th, 2022? Our budget is set at $4,700 and we
would love to try local Mexican and Chinese
cuisines during our trip.

Figure 19: Examples of medium-level queries from ChinaTravel and TravelPlanner.

39

ChinaTravel

TravelPlanner

[iz B G, B b s B 50 IRAT A2 2,47 R 3
4] FAFE 2 NFHTH LB 4 K, TH 1500 (8
ARSI, RARABAIZIR, 1RSI
[Current location: Wuhan, Destination: Nanjing,
Number of travelers: 2, Duration of travel: 4 days] My
classmate and I are planning to visit Nanjing for 4 days.
Our budget is 1500 (excluding transportation and
accommodation), just for activities and meals. Please
help us plan.

Can you create a 5-day itinerary for a group of
7 people traveling from Richmond to two cities
in Florida between March 9th and 13th, 20227
Our budget is $8,500. We require
accommodations that allow visitors and should
ideally be entire rooms. In regards to dining
options, we prefer French, American,
Mediterranean, and Italian cuisines.

[AL B R 5, H AL BSOS, IR AT A B 3,0k AT R
5] FAl—F = AR L Ay —), A — ik
AN A, TEE 8000 G, SRS M —uk
LR,

[Current location: Nanjing, Destination: Chengdu,
Number of travelers: 3, Travel days: 5] Our family of
three wants to travel to Chengdu for a week. We mainly
want to visit attractions suitable for children, with a
budget of 8,000 yuan, and also taste some local
delicacies.

Could you help design a travel plan for two
people leaving from Houston to Pensacola for
3 days, from March 6th to March 8th, 2022?
Our budget is set at $1,400 for this trip and we
require our accommodations to be visitor-
friendly. We would like to have options to dine
at Indian, American, Chinese, and Italian
restaurants. We also prefer not to self-drive
during the trip.

CARTALE) M, B AR EERYILIRAT A% 3,547 R
2] ATAF= NN HIEBIGEINEHIR, BEEK
PR X, AT RO ASE, S AR
G

[Current location: Guangzhou, Destination: Shenzhen,
Number of travelers: 3, Number of travel days: 2] Our
group of three plans to travel from Guangzhou to
Shenzhen for two days. We want to explore bustling
neighborhoods, minimize inconvenient transportation,
and keep the total expenses as low as possible.

Could you help create a 3-day travel plan for
two people? We're traveling from West Palm
Beach to White Plains, visiting only one city
from March 5th to March 7th, 2022. We have a
budget of $2,600. For our accommodations,
we'd like rooms that are not shared. We are not
planning on self-driving and will be reliant on
public transportation. Cuisines we are
interested in trying include Mexican, Chinese,
Mediterranean, and American.

[T B T3 M, B bRAr BTN IRAT A B 4,0R47 R ¥
2] FRAR 4 AN NFAUM 2 RFEAT P S S ARs bk 5 5%
i He—F .

[Current location: Suzhou, Destination: Hangzhou,
Number of travelers: 4, Duration of travel: 2 days] I
would like 4 people to go to Hangzhou for 2 days to
explore historical and cultural sites and have some fun
along the way.

Could you generate a 3-day travel plan for a
group of 3 people, departing from Bangor and
visiting Washington from March 21st to March
23rd, 2022? Our budget is set at $3,100. We
require accommodations that are pet-friendly
and we would prefer to have entire rooms to
ourselves. We do not plan on self-driving for
this trip

(4B E R, H AR E LR RAT A 1LIRAT R
3] RENEGHR, BIbRi=R, H¥PE—L&H
JEd T, He— s, TR A).

[Current location: Shanghai, Destination: Beijing,
Number of travelers: 1, Number of travel days: 3] I want
to depart from Shanghai and spend three days in
Beijing. I hope to see some famous landmarks and try
some local specialties, with a sufficient budget.

Could you help with creating a 5-day travel
plan for 2 people, originating from Evansville
and covering 2 cities in Texas from March 17th
to March 21st, 2022? Our preferred
accommodations are private rooms, and they
must permit children under 10 since we will
have them with us. Transportation should not
involve any flights. The budget for this trip is
set at $2,800.

[T AL E A, B AR E I, kAT N B 2,17 REL
3] AP AR =R A (A A 2 Bdgde, it
RN RHUAIA], AL (O BRI LR B

[Current location: Beijing, Destination: Shanghai,
Number of travelers: 2, Number of travel days: 3] My
friend and I are planning to spend three days traveling
from Beijing to Shanghai. We plan to fly round trip and
prefer a red-themed travel route.

Can you assist in creating a travel itinerary for
a group of 4, starting in Seattle and visiting 3
unique cities across Texas? This trip will span
over 7 days from March 10th through March
16th, 2022. We have a budget of $11,000.
Regarding our accommodations, we would like
to rent entire rooms, and it's important that our
lodgings allow parties. As for transportation,
we do not plan to drive ourselves around.

higure 207 Examples of human/hard Ievel queries irom Chinalravel and IravelPlanner.

40

Prompts for POI recommendation

NEXT_POI_TYPE_INSTRUCTION = """

You are a travel planning assistant.

The user’s requirements are: {}.

Current travel plans are: {}.

Today is {}, current time is {}, current location is
{}, and POI_type_list is {}.

Select the next POI type based on the user’s needs and
the current itinerary.

Please answer in the following format.

Thought: [Your reason]

Type: [type in POI_type_list]

Figure 21: Prompts for next-POI-type recommendation

41

Prompts for restaurants recommendation

RESTAURANT_RANKING_INSTRUCTION = """
You are a travel planning assistant.
The user’s requirements are: {user_requirements}.
The restaurant info is:
{restaurant_info}
The past cost for intercity transportation and hotel
accommodations is: {past_cost}l}.

Your task is to select and rank restaurants based on
the user’s needs and the provided restaurant
information. Consider the following factors:
Restaurant name

Cuisine type

Price range

Recommended food

DS W

Additionally, keep in mind that the user’s budget is
allocated across multiple expenses, including
intercity transportation and hotel accommodations.

Ensure that the restaurant recommendations fit
within the remaining budget constraints after
accounting for the past cost.

Note that the price range provided for each restaurant

is the average cost per person per meal, the
remaining budget must cover the cost of three
meals per day for {days} days.

For each day, recommend at least 6 restaurants,
combining restaurants for all days together.

Your response should follow this format:

Thought: [Your reasoning for ranking the restaurants]
RestaurantNameList: [List of restaurant names ranked
by preference, formatted as a Python list]

Figure 22: Prompts for restaurant recommendation

42

Prompts for attractions recommendation

ATTRACTION_RANKING_INSTRUCTION = """
You are a travel planning assistant.
The user’s requirements are: {user_requirements}.
The attraction info is:
{attraction_infol}
The past cost for intercity transportation and hotel
accommodations is: {past_cost}.

Your task is to select and rank attractions based on
the user’s needs and the provided attraction
information. Consider the following factors:
Attraction name

Attraction type

Location

Recommended duration

S W -

Additionally, keep in mind that the user’s budget is
allocated across multiple expenses, including
intercity transportation and hotel accommodations.

Ensure that the attraction recommendations fit
within the remaining budget constraints after
accounting for the past cost.

For each day, recommend at least 8 attractions,
combining attractions for all days together. To
ensure a comprehensive list, consider a larger
pool of candidates and prioritize diversity in
attraction type and location.

Your response should follow this format:

Thought: [Your reasoning for ranking the attractions]
AttractionNamelList: [List of attraction names ranked
by preference, formatted as a Python list]

Example:
Thought: Based on the user’s preference for historical
sites and natural attractions, the attractions
are ranked as follows:
AttractionNamelList: ["Attractionl", "Attraction2",

-]

Figure 23: Prompts for attraction recommendation

43

Constraint Type

Mathematical Formulation

Spatio-temporal

Constraints

o[idx][#] = u[idx] [t + 1] — u[idx] [#]

o[idx][¢] = u[idx][t] — u[idx][t + 1]
event[t] =0 = u[idx][?] = u[ldx] [z+1]
event[t] 1= Zidx o[idx][z] =

uli][

Hotel Constraints

I=
Zhote! [1dx] [#] = u[idx][¢] A event[¢]

d+1)- .
hotel[idx] [d] = Zt(;,S)[eifggf]g;];ay Zhotel [1dX] [7]

Yiax hotel[idx][d] = 1

Attraction Constraints

Zawr [1dX] [£] = u[idx][z] A event[¢]
attr[idx] = X, zage[1dx] (7]
idx attr[idx] > min_attr

check[idx][¢] = False = u[idx][t] =0

Meal Necessity

needEat[m] = 1 = a[m] < Tyep

needBat[m] = 1 = b[m] > Ty

Innercity Transport

Constraints

y[(, j, tran,)] < uli][7]
y[(, j,tran,t)] < event[¢]
y[(, j,tran,1)] <
y[(i, j,tran,1)] <
[I=<
[I <

u[tran] [z + 1]
u[tran] [z + &)
y[(i, j,tran,)] < event[t +]

y[(i, j,tran,1)] < u[j][t+6 +1]

Restaurant Constraints

Zrest [1dX] [£] = u[idx][#] A event[¢]
rest[idx] [m] = £ zreq [idx] [1]
idx rest[idx] [m] < needEat[m]
check[idx][#] = False = u[idx][f] =0

Intercity Travel

Constraints

>, interGo[i] =1

>.;interBack[i] =1

interGo[i] = 1 = u[goStation[i]][7] =1
interBack[i] = 1 = u[backStation[i]][¢t] =1

Table 17: Constraints used in TTG

44

Variable Dimension

u[idx][¢] (totalNum + transNum) X timeStep

o [idx][¢] (totalNum + transNum) X (timeStep — 1)
event|[] timeStep

hotel[idx] [d] hotelNum X days

Zhote! [1dX] [£] hotelNum X timeStep

attr[idx] attrNum

Zatee [1dX] [£] attrNum X timeStep

rest[idx] [meal] restNum X 3 X days

Zrest [1dX] [7] restNum X timeStep

y[(i, j,tr,1)] totalNum X totalNum X transNum X timeStep
total days X stepPerHour X 36k

Table 18: Variable sizes in TTG

Category Estimated Size

Spatio-temporal constraints (totalNum + transNum) X (4 X timeStep + 3)

Hotel constraints hotelNum X (3 X timeStep + days)

Attraction constraints 4 X attrNum X timeStep

Restaurant constraints restNum X (4 X timeStep + days)

Urban transport constraints 7 X totalNum® X transNum X timeStep + 4 X totalNum X timeStep
Intercity transport constraints (goNum + backNum) X timeStep

Table 19: Number of constraints sizes in TTG

45

	Introduction
	ChinaTravel Benchmark
	Benchmark Characteristics
	Empirical Study
	Conclusion
	Limitations
	Broader impacts
	Discussion with Related Work
	Detailed Design of ChinaTravel
	Sandbox Information
	Tutorial of DSL Expression
	Query Synthesis
	Data Diversity and Bias Mitigation
	Data with Preference
	Benchmark Difficulty and Applicability

	Discussion with TravelPlanner
	NeSy Planning
	Evaluation Metric in Competition
	Detailed Empirical Analysis
	Main Results
	Ablation Study with Preference

	Additional Experimental Results
	Multi-Preference Comparison
	Open Reasoning with Chinese Context
	Analysis of Pure-LLM Methods

	Statements about Scientific Artifacts
	Statements about Human Participants
	Instructions Given To Participants
	Recruitment And Payment
	Data Consent
	Characteristics of Annotators
	DSL Annotation for Human Data

	TTG
	Constraints Formulation
	Experiment

