
Solving Zero-Sum Markov Games with Continuous
State via Spectral Dynamic Embedding

Chenhao Zhou1 Zebang Shen2 Chao Zhang1∗ Hanbin Zhao1 Hui Qian1,3

1College of Computer Science and Technology, Zhejiang University
2Department of Computer Science, ETH Zurich

3State Key Lab of CAD&CG, Zhejiang University
{zhouchenhao,zczju,zhaohanbin,qianhui}@zju.edu.cn

zebang.shen@inf.ethz.ch

Abstract

In this paper, we propose a provably efficient natural policy gradient algorithm
called Spectral Dynamic Embedding Policy Optimization (SDEPO) for two-player
zero-sum stochastic Markov games with continuous state space and finite action
space. In the policy evaluation procedure of our algorithm, a novel kernel embed-
ding method is employed to construct a finite-dimensional linear approximations
to the state-action value function. We explicitly analyze the approximation error in
policy evaluation, and show that SDEPO achieves an Õ( 1

(1−γ)3ϵ ) last-iterate conver-
gence to the ϵ−optimal Nash equilibrium, which is independent of the cardinality
of the state space. The complexity result matches the best-known results for global
convergence of policy gradient algorithms for single agent setting. Moreover, we
also propose a practical variant of SDEPO to deal with continuous action space and
empirical results demonstrate the practical superiority of the proposed method.

1 Introduction
Two-player zero-sum stochastic Markov games (2p0s-MGs) has been the focus of research across a
range of research communities. In this problem, two players select their actions based on the current
state simultaneously and independently. Player one aims to maximize the return based on the reward
provided by the environment, while player two aims to minimize it. For 2p0s-MGs with finite state
space, tabular methods [Alacaoglu et al., 2022, Bai and Jin, 2020, Daskalakis et al., 2020, Wei et al.,
2021, Zhao et al., 2022] represent the state-action value function with tables, which results in a
sample complexity depending on the cardinality of the state spaces.
To deal with 2p0s-MGs with complex state space, researchers recently employ function approxi-
mations of the state-action value function to deal with large-scale discrete/continuous state space,
including linear function approximations [Xie et al., 2020, Chen et al., 2022], kernel function ap-
proximations [Junchi Li et al., 2022, Qiu et al., 2021] and general function classes such as neural
networks [Jin et al., 2022, Huang et al., 2021]. Basically, these methods use samples to construct
the function approximations and update the policies with value iteration. Theoretical analyses show
that these methods possess sample complexities independent of the state space’s cardinality. Note
that these methods fail to explicitly utilize the dynamics information of the underlying environments
and only achieve a sub-optimal sample complexity Õ(ϵ−2) to find an ϵ−optimal Nash equilibrium
for 2p0s-MGs with known system dynamics.

In this paper, we introduce a spectral dynamic embedding method, which explicitly uses the dy-
namics information to approximate the state-action value functions, and propose an efficient natural-
policy-gradient-type algorithm, called Spectral Dynamic Embedding Policy optimization (SDEPO),
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Dynamic State
Space Reference Iteration

Complexity
Last-iterate

Convergence
Horizon
Length

Unknown

Finite
Alacaoglu et al. [2022] Õ

(
1

(1−γ)3ϵ
)

Yes Infinite

Zhao et al. [2022] Õ
(

1
(1−γ)3ϵ

)
Yes Infinite

Infinite

Xie et al. [2020] Õ
(
d3/2H2

ϵ2

)
No Finite

Chen et al. [2022] Õ
(
dH3/2

ϵ2

)
No Finite

Jin et al. [2022] Õ
(
dH2

ϵ2

)
No Finite

Huang et al. [2021] Õ
(
dH2

ϵ2

)
No Finite

Qiu et al. [2021] Õ
(
H2

ϵ2

)
No Finite

Junchi Li et al. [2022] Õ
(
H3/2

ϵ2

)
Yes Finite

Known
Finite

Cen et al. [2021] Õ
(

1
(1−γ)3ϵ

)
Yes Finite

Wei et al. [2021] Õ
( |S|3
(1−γ)9ϵ2

)
Yes Infinite

Zhang et al. [2022] Õ
(
H4

ϵ

)
Yes Finite

Infinite This Work Õ
(

1
(1−γ)3ϵ

)
Yes Infinite

Table 1: Comparison of policy optimization methods for finding an ϵ-optimal NE of two-player
zero-sum episodic Markov games in terms of the duality gap. Here, H refers to the horizon length
and d is the dimension of their features. For simplicity, we ignore the problem-dependent constant.

for 2p0s-MGs. In particular, the spectral dynamic embedding method directly constructs truncated
linear approximations to the transition dynamics of a Markov game in a kernel space, and imple-
ments dynamic programming to calculate the state-action value function approximation. The supe-
riority of spectral dynamic embedding has been justified in single agent setting [Ren et al., 2022,
2023]. We leverage two kernel feature generation methods for the truncated approximation, namely
random feature generation and Nyström feature generation, and analyze the approximation error of
these two methods during policy evaluation. Our contributions lie in the following folds.
1. We present a truncated kernel-based linearization method for the state-action value function ap-

proximation in two-player zero-sum Markov games with continuous state space. With the ran-
dom/Nyström feature generation, this method automatically generates truncated kernel represen-
tation from system dynamics, bypassing the difficulty of kernel feature decision existed in other
kernel approximation methods. By integrating the acquired kernel features into the temporal dif-
ference learning process, we estimate the state-action value functions through the least square
policy evaluation. Leveraging the obtained value functions, policy improvement can be achieved
through the natural policy gradient descent/ascent approach.

2. We establish rigorous analysis of the approximation error in the truncated value-function approx-
imation and the statistical error induced in policy improvement procedure with finite samples.
Our theoretical analysis demonstrates that SDEPO achieves a near-optimal Õ( 1

(1−γ)3ϵ ) last-iterate
convergence to the ϵ-optimal Nash equilibrium for 2p0s-MGs with continuous state space and
finite action space, where γ represents the discounted factor. This complexity result matches the
best-known results for the policy gradient algorithm to achieve global convergence in the single
agent setting.

Moreover, we also propose a practical variant of SDEPO to deal with continuous action space and
empirical results demonstrate the practical superior performance of the proposed method.

1.1 Related works
RL methods for 2p0s-MGs. There is a large body of literature on MARL for two-player MGs.
Alacaoglu et al. [2022], Daskalakis et al. [2020], Zhao et al. [2022] focus on the tabular setting, i.e.,
the state-action space can be represented by a table with moderate size To address the challenge of
continuous state spaces, many researchers have designed algorithms based on function approxima-
tion. Xie et al. [2020], Chen et al. [2022] investigated methods based on linear function approxi-
mation, using a set of linear features to represent the state transition function and reward function.
Jin et al. [2022], Huang et al. [2021] employed general function approximation for MGs with low
multi-agent Bellman eluder dimension and MGs with a finite minimax Eluder dimension. Although
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these algorithms yield strong theoretical guarantees, they are computationally inefficient. Junchi Li
et al. [2022], Qiu et al. [2021] studied learning MGs with kernel approximation. Their approachs
assume that there are a set of (possibly infinite-dimensional) kernel features that span the transition
function or value function space. However, finding a good set of kernel features is a very challenging
task, making their assumption difficult to satisfy. Additionally, infinite-dimensional kernel features
are infeasible to compute, so their method requires finite-dimensional approximation, and the errors
caused by finite-dimensional approximation currently lack analysis.
Tabular methods for 2p0s-MGs where system dynamics are known. As shown in Table 1, a par-
allel line of research aims to solve 2p0s-MGs with system dynamics known. For the infinite-horizon
discounted setting, Wei et al. [2021] proposed an optimistic gradient descent ascent (OGDA) method
which achieves a last-iterate convergence at an Õ

( |S|3
(1−γ)9ϵ2

)
iteration complexity. Cen et al. [2021]

established linear last-iterate convergence of entropy-regularized OMWU. For the finite-horizon
episodic setting, Zhang et al. [2022] showed that the modified optimistic Follow-The-Regularized-
Leader method finds an ϵ-optimal NE in Õ

(
H4

ϵ

)
iterations and Cen et al. [2023] proposed a single-

loop policy optimization algorithm that implies the last-iterate convergence with an iteration com-
plexity of Õ

(
H3

ϵ

)
. However, their methods are all confined to tabular setting, whereas our method

can handle problems in continuous state spaces.
RL with Function Approximation. Function approximation in single-agent RL has been exten-
sively studied in recent years to achieve a better sample complexity that depends on the complexity
of function approximators rather than the size of the state/action space. One line of work studies RL
with linear function approximation [Yang and Wang, 2019, Jin et al., 2020]. Typically, these meth-
ods assume the optimal value function can be well approximated by linear functions, and achieve
polynomial sample efficiency guarantees related to feature dimension under certain regularity con-
ditions. Another line of works studied the MDPs with general nonlinear function approximations
[Jiang et al., 2017, Jin et al., 2021]. Jiang et al. [2017], Jin et al. [2021] present algorithms with
PAC guarantees for problems with low Bellman rank and low BE dimension, respectively. We note
that MGs are inherently more complex than MDPs due to their min-max nature and it is generally
difficult to directly extend these results to the dual-player dynamic setting of MGs.
2 Background and Preliminaries
In this section, we present the necessary definitions that will be adopted throughout the paper. In
Section 2.1, we formally describe the setup for two-player zero-sum stochastic Markov games with
simultaneous moves. In Section 2.2, We briefly introduce the background knowledge about positive
definite kernels and their decompositions.
2.1 Simultaneous-Move Markov Games
A two-player zero-sum stochastic Markov games with simultaneous moves is defined by the tuple
(S,A1,A2, r,P, γ), where S is the state space, Ai is the set of actions that player i ∈ {1, 2} can
take, r is the reward function, P is the transition function and γ ∈ [0, 1) is the discounted factor. At
each step t, given the state s ∈ S , P1 and P2 take actions a ∈ A1 and b ∈ A2, respectively, and then
both receive the reward r(s, a, b). The system then shifts to a new state s′ ∼ P(·|s, a, b) according to
the transition kernel. Throughout this paper, we assume for simplicity that S = Rd, A1 = A2 = A
and that the rewards r(s, a, b) are deterministic functions of the tuple (s, a, b) taking value in [−1, 1];
generalization to the setting with A1 ̸= A2 and stochastic rewards is straightforward.

Denote by ∆ ≡ ∆(A) the probability simplex over the action space A. A stochastic policy of P1 is
a sequence of functions π := (πt : S → ∆)t. At each step t and state s ∈ S , P1 takes an action
sampled from the distribution πt(s) over A. Similarly, a stochastic policy of P2 is given by the
sequence π := (πt : S → ∆)t.

For a fixed pair of policies (π, π) for both players, the value and Q (a.k.a. action-value) functions
for the above game can be defined as following:

V π,π(s) : = E
[ ∞∑
t=0

γtr(st, at, bt)|s0 = s

]
,

Qπ,π(s, a, b) : = E
[ ∞∑
t=0

γtr(st, at, bt)|s0 = s, a0 = a, b0 = b

]
,

where the expectation is over at ∼ πt(·|st), bt ∼ πt(·|st) and st+1 ∼ P(·|st, at, bt).
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In the zero-sum setting, for a given initial state s0, P1 seeks to maximize V π,π(s0) whereas P2 aims
to minimize it. Accordingly, we introduce the value and Q functions when P1 plays the best response
to a fixed policy π of P2: V ∗,π(s) = maxπ V

π,π(s) and Q∗,π(s, a, b) = maxπ Q
π,π(s, a, b).

Similarly, when P2 plays the best response to P1’s policy π, we define V π,∗(s) = minπ V
π,π(s)

and Qπ,∗(s, a, b) = minπ Q
π,π(s, a, b).

A Nash Equilibrium (NE) of the game is a pair of stochastic policies (π∗, π∗) that are the best
response to each other, which we write as V π

∗,π∗
(s) = V ∗,π∗

(s) = V π
∗,∗(s). NE always exists

for discounted two-player zero-sum Markov Games [Filar and Vrieze, 2012]. Correspondingly, let
V ∗(s) := V π

∗,π∗
(s) and Q∗(s, a, b) := Qπ

∗,π∗
(s, a, b) denote the values of the NE. In practice, we

always seek to find an ϵ−optimal Nash equilibrium, which is a pair of stochastic policies (π, π) that
satisfies Es∼µ0 maxπ′,π′ V π

′,π(s)− V π,π
′
(s) ≤ ϵ. for a initial state distribution µ0.

We are interested in finding a one-sided ϵ−optimal Nash equilibrium, similar to Alacaoglu et al.
[2022], Zhao et al. [2022], Daskalakis et al. [2020], Zhang et al. [2019]. In particular, for the initial
state distribution µ0, we seek πout such that Es∼µ0

maxπ V
π,πout(s)− V ∗(s) ≤ ϵ.

We assume that the transition function satisfies the following assumption.
Assumption 1. For each (st, at, bt) ∈ S ×A×A, we assume that

st+1 = f(st, at, bt) + ϵt, where ϵt ∼ N (0, σ2Id).

The function f : S × A × A → S describes the general dynamics and {ϵt}∞t=0 are independent
Gaussian noises. In other words,

P(st+1|st, at, bt) ∝ exp
(
−
∥f(st, at, bt)− st+1∥22

2σ2

)
(1)

2.2 Positive definite kernels and two decompositions
To efficiently represent the continuous state space of 2p0s-MGs which can not be handled by tra-
ditional tabular methods, it is common to embed the continuous state space into a kernel space. A
widely used kernel is the positive definite (PD) kernel.
Definition 1 ((Positive-Definite) Kernel [Mohri, 2018]). A symmetric function k : X × X → R is
said to be a positive definite kernel if for any {x1, . . . , xm} ⊂ X , the matrix K = [k(xi, xj)]ij ∈
Rm×m is symmetric positive-definite.

PD kernels admit many decompositions, such as Bochner decomposition [Devinatz, 1953], Mercer
decomposition [Mercer, 1909], Canonical decomposition [Stochel, 1992] and Kolmogorov decom-
position [Ghaemi et al., 2021]. Among these decompositions, Bochner decomposition [Devinatz,
1953] and Mercer decomposition [Mercer, 1909] have recently draw significant attention since they
lead to efficient, low-dimensional approximations of the kernel, reducing computational complexity
[Liu et al., 2021].
Definition 2 (Bochner decomposition [Rudin, 2017] and Mercer decomposition [Mercer, 1909]).
Let X ⊂ Rd be a compact domain, µ a strictly positive Borel measure on X , and k(x, x′) =
G(x − x′) a bounded continuous shift-invariant positive definite kernel. Then, k(x, x′) admits
Bochner decomposition, i.e. there exists a non-negative measure ω, such that

G(x− x′) =

∫
Rd
p(ω) exp

(
iω⊤(x− x′)

)
dω, (2)

and Mercer decomposition, i.e. there exists a countable orthonormal basis {ei}∞i=1 of L2(µ) with
corresponding eigenvalues {σi}∞i=1,2 such that

k(x, x′) =

∞∑
i=1

σiei(x)ei(x
′), (3)

where the convergence is absolute and uniform for all (x, x′) ∈ X × X . Without loss of generality,
we assume σ1 ≥ σ2 ≥ · · · > 0.

2Given a probability measure µ defined on X ⊆ Rd, we denote L2(µ) as the set of functions f : X → R
such that

∫
X (f(x))2dµ(x) < ∞.
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It can be verified that the Gaussian kernel, k(x, x′) = exp(−∥x−x′∥2

2σ2 ), meets the conditions in
the above definition, and it admits both a Bochner decomposition and a Mercer decomposition
[Ren et al., 2023]. Note that according to the Bochner/Mercer decomposition, the kernel can be
represented with infinite basis. Practically, one can construct finite-dimensional approximations to
the positive-definite kernel based on the Bochner/Mercer decompositions with random/Nyström fea-
tures [Rahimi and Recht, 2008, Williams and Seeger, 2000], respectively. Recently, Ren et al. [2023]
utilize a finite-dimensional approximation to represent the environment in stochastic nonlinear con-
trol problems and showed its superior performance, motivating our work.

3 Policy Optimization with Spectral Dynamic Embedding
In this section, we begin by introducing spectral dynamic embedding to represent the environment
of the Markov game. This approach allows us to express the Q-function for any policy pair with in-
finite dimensional features. Subsequently, we develop finite-dimensional approximated features for
computational tractability. With these features, each player conducts least square policy evaluation
to estimate the Q-function of current policy pair based on the generated features and then improve
the policy by natural policy gradient based on the estimated Q-function. This leads to Spectral
Dynamic Embedding Policy Optimization (SDEPO) in Algorithm 3.

3.1 Spectral Dynamics Embedding
By interpreting the state transition function (1) as a Gaussian kernel, we can decompose the tran-
sition function of a Markov game using Bochner decomposition and Mercer decomposition, as de-
tailed below.
Lemma 1 (Spectral Dynamic Embedding). Consider any α ∈ [0, 1). Denote kα(x, x

′) =

exp
(
− (1−α2)∥x−x′∥2

2σ2

)
for any 0 ≤ α < 1. We can decompose kα(x, x′) using Bochner decompo-

sition and Mercer decomposition.

Let

ψω(s, a, b) =
gα(f(s, a, b))

αd

[
cos

(
ω⊤f(s, a, b)√

1− α2

)
, sin

(
ω⊤f(s, a, b)√

1− α2

)]
,

χω(s
′) = pα(s

′)[cos(
√

1− α2ω⊤s′), sin(
√

1− α2ω⊤s′)]⊤,

where gα (f(s, a, b)) := exp
(
α2∥f(s,a,b)∥2

2(1−α2)σ2

)
, ω ∼ N (0, σ−2Id), and pα(s

′) =
αd

(2πσ2)d/2
exp

(
−∥αs′∥2

2σ2

)
is a Gaussian distribution for s′ with standard deviation σ

α .

Using Bochner decomposition, we have

P (s′|s, a, b) =Eω∼N (0,σ−2Id)

[
ψω(s, a, b)

⊤χω(s
′)
]
:= ⟨ψω(s, a, b), χω(s′)⟩N (0,σ−2Id)

. (4)

Let µ be a strictly positive Borel measure on S . By Mercer’s theorem, kα admits a decomposition
for any (x, x′) ∈ X [Fasshauer, 2011]:

kα(x, x
′)=

∞∑
i=1

σα,ieα,i(x)eα,i(x
′), {eα,i} a basis for L2(µ). (5)

We denote kα(x, x′) = ⟨ẽα(x), ẽα(x′)⟩ℓ2 where ẽα,i(x) =
√
σα,ieα,i(x) for each positive integer

i.3

ψM (s, a, b) =
gα (f(s, a, b))

αd
ẽα

(
f(s, a, b)

1− α2

)⊤

, χM (s′) = pα(s
′)ẽα (s

′)
⊤

Then,
P (s′|s, a, b) = ⟨ψM (s, a, b), χM (s′)⟩ℓ2 . (6)

The tunable parameter α offers advantages for theoretical analysis and can also be leveraged to
enhance empirical performance.

Let ϕω(·) = [ψω(·), r(·)] and ϕM (·) = [ψM (·), r(·)]. The ϕω(·) and ϕM (·) are named as Bochner
Spectral Dynamic Embedding and Mercer Spectral Dynamic Embedding, respectively. These em-
beddings form infinite-dimensional bases of the Q-function for arbitrary policy pairs, allowing for a
linear representation of the Q-function.

3The ℓ2 norm is the usual norm for square-summable infinite-dimensional vectors v indexed by the positive
integers, such that ∥v∥2ℓ2 =

∑∞
i=1 v

2
i .
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Algorithm 1 Random Features Generation
Data: Transition Model s′ = f(s, a, b) + ε where ε ∼ N (0, σ2Id), Reward Function r(s, a, b),

Number of Random/Nyström Feature m
Result: ϕ(·, ·, ·)

1 Sample i.i.d. {ωi}i∈[m] where ωi ∼ N (0, σ−2Id) and construct the feature

ψrf(s, a, b) =
gα(f(s, a, b))

αd

[
sin(ω⊤

i f(s, a, b)/
√
1− α2), cos(ω⊤

i f(s, a, b)/
√
1− α2)

]
i∈[m]

,

(7)

set ϕ(s, a, b) = [ψrf(s, a, b), r(s, a, b)].

Algorithm 2 Nyström Features Generation
Data: Transition Model s′ = f(s, a, b) + ε where ε ∼ N (0, σ2Id), Reward Function r(s, a, b),

Number of Random/Nyström Feature m, Number of Nyström Samples nNys ≥ m, Nyström
Sampling Distribution µNys

1 Sample nnys random samples {x1, . . . , xnys} independently from S , following the distribution µNys.
2 Construct nnys-by-nnys Gram matrix given by K(nNys)

i,j = kα(xi, xj).
3 Perform eigendecomposition on the Gram matrixK(nnys)U = ΛU , with λ1 ≥ · · · ≥ λnnys denoting

the corresponding eigenvalues.
4 Construct the feature

ψnys(s, a, b)=

[
gα(f(s, a, b))

αd
√
λi

nnys∑
ℓ=1

Ui,ℓkα

(
xℓ,

f(s, a, b)

1−α2

)]
i∈[m]

, (8)

set ϕ(s, a, b) = [ψnys(s, a, b), r(s, a, b)].

Lemma 2. For any policy pair, there exist weights {θπ,πω } (where ω ∼ N (0, σ−2Id)) and θπ,πM ∈ ℓ2
such that the corresponding value function satisfies

Qπ,π(s, a, b) =
〈
ϕω(s, a, b), θ

π,π
ω

〉
N (0,σ−2Id)

=
〈
ϕM (s, a, b), θ

π,π
M

〉
ℓ2

We provide the proof of this section in Appendix A.

3.2 Finite-dimensional truncated Embedding
Basically, a desirable feature embedding method should provide a good approximation to the under-
lying dynamics of MGs with a modest feature dimension. However, the dimension of both Bochner
and Mercer spectral dynamic embedding is infinite, which is computationally intractable, motivating
us to investigate the finite-dimensional embeddings.
We construct finite-dimensional truncations of Bochner and Mercer embedding using random fea-
ture [Ren et al., 2022] and Nyström feature [Williams and Seeger, 2000], respectively, to provide
efficient finite linear approximations to represent the transition kernel. As show in Algorithm 1 and
Algorithm 2, random feature is the Monte-Carlo approximation for the Bochner embedding and Nys-
tröm feature approximates the subspace spanned by the top eigenfunctions of the Mercer embedding
via eigendecomposition of an empirical Gram matrix. A detailed derivation of the Nyström method
is provided in Appendix B. We analyze the approximation error due to using the finite-dimensional
basis in Appendix D. The finite-dimensional embedding is a crucial component of our algorithm,
Spectral Dynamic Embedding Policy Optimization (SDEPO), which is given as Algorithm 3.

3.3 Policy Optimization with Finite-dimensional Embedding
After generating the finite-dimensional embedding, SDEPO is divided in two stages. It finds an ap-
proximate solution πk in Stage 1, which is then utilized in Stage 2 to derive an approximate solution
πk. In each stage, there are two main components: policy evaluation and policy improvement. Least
square policy evaluation is conducted for estimating the state-action value function of current policy
pair upon the generated finite-dimensional truncation features Qπt,πt(s, a, b) = ϕ(s, a, b)⊤wπt,πt .
In the policy improvement procedure, based on the approximated value function, the natural policy
gradient method is used to adjust the policy of each player iteratively in an alternating fashion.
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Algorithm 3 Spectral Dynamic Embedding Policy Optimization (SDEPO)
Data: Transition Model s′ = f(s, a, b) + ε where ε ∼ N (0, σ2Id), Reward Function r(s, a, b),

Number of Random/Nyström Feature m, Number of Nyström Samples nNys ≥ m, Nyström
Sampling Distribution µNys, Number of Sample n, Factorization Scale α, Learning Rate η

Result: πk
5 Generate ϕ(s, a, b) using Algorithm 1 or Algorithm 2.

Initialize θ0 = θ0 = 0 and π0(·|s) = π0(·|s) = Unif(A) for all s ∈ S .
6 for k = 0, 1, · · · ,K do

Stage 1
7 Initialize θk,0 = θk, θk,0 = θk and πk,0(·|s) = πk(·|s), πk,0(·|s) = πk(·|s) for all s ∈ S .
8 for t = 0, 1, · · · , T − 1 do
9 Sample i.i.d. {si, ai, bi, s′i, a′i, b′i}i∈[n] with policy pair πk−1, πk−1 , where s′i =

f(si, ai, bi) + ε .
10 Initialize ŵk,t,0 = 0.
11 for l = 0, 1, · · · , L− 1 do
12 Solve

ŵk,t,l+1=argmin
w

∑
i∈[n]

(
ϕ(si, ai, bi)

⊤w−r(si, ai, bi)−γϕ(s′i, a′i, b′i)⊤ŵk,t,l
)2
. (9)

13 Update θk,t+1 = θk,t + ηŵk,t,L, θk,t+1 = θk,t − ηŵk,t,L and

πk,t+1(a|s) ∝ exp(Eb∼πk,t(·|s)[ϕ(s, a, b)]
⊤θk,t+1),

πk,t+1(b|s) ∝ exp(Ea∼πk,t(·|s)[ϕ(s, a, b)]
⊤θk,t+1).

(10)

14 Output πk = 1
T

∑T
t=1 πk,t.

Stage 2
15 Initialize θ

′
k,0 = 0 and π′

k,0(·|s) = Unif(A).
16 for t = 0, 1, · · · , T − 1 do
17 Sample i.i.d. {si, ai, bi, s′i, a′i, b′i}i∈[n] with policy pair π′

k,t, πk,where s′i = f(si, ai, bi) + ε.

18 Initialize ζ̂k,t,0 = 0 for all s ∈ S .
19 for l = 0, 1, · · · , L− 1 do
20 Solve

ζ̂k,t,l+1=argmin
ζ

∑
i∈[n]

(
ϕ(si, ai, bi)

⊤ζ−r(si, ai, bi)−γϕ(s′i, a′i, b′i)⊤ζ̂k,t,l
)2
. (11)

21 Update θ
′
k,t+1 = θ

′
k,t + ηζ̂k,t,L and

π′
k,t+1(a|s) ∝ exp(Eb∼πk(·|s)[ϕ(s, a, b)]

⊤θ
′
k,t+1). (12)

22 Output πk = π′
k,t̂

, where t̂ ∈ [T ] is selected uniformly at random.

πt+1 is updated as

πt+1(·|s) = arg max
π(·|s)∈∆(A)

〈
π(·|s),Eb∼πt(·|s)[ϕ(s, ·, b)]

⊤wπt,πt
〉
+

1

η
KL (π(·|s)||πt(·|s))

yielding the following closed-form solution,
πt+1(a|s) ∝ πt(a|s) exp

(
Eb∼πt(·|s)[ϕ (s, a, b)]

⊤ηwπt,πt
)
= exp

(
Eb∼πt(·|s)[ϕ (s, a, b)]

⊤θt+1

)
where θt+1 =

∑t
i=0 ηw

πi,πi . π is updated by similar update rule.
Note that in SDEPO, each player is required to have knowledge of their opponent’s strategy, which
is crucial for effective policy optimization and is a common requirement in numerous existing al-
gorithms for Markov games. [Xie et al., 2020, Chen et al., 2022, Junchi Li et al., 2022, Alacaoglu
et al., 2022]
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4 Theoretical Results
The major difficulty in analyzing the convergence of SDEPO is that the policies of both players
evolve at each iteration, leading to non-stationary in the environment for each player. Additionally,
there exists a certain level of estimation error in the transition and Q-function for each player. As
a consequence, the vanilla proof strategy of convergence of policy optimization used in majority of
the literature is no longer applicable.
In this section, we provide rigorous investigation of the impact of the approximation error for policy
evaluation and derive the convergence of policy optimization. We first specify the commonly used
assumptions [Yu and Bertsekas, 2008, Jin et al., 2020, Agarwal et al., 2021, Abbasi-Yadkori et al.,
2019, Ren et al., 2023], under which we derive our theoretical results below.
Assumption 2 (Regularity Condition for Dynamics). For the dynamic function f , there exists a
constant cf , such that ∥f(s, a, b)∥ ≤ cf for all s ∈ S, a ∈ A, b ∈ A.

Assumption 3 (Regularity Condition for Stationary Distribution). The stationary distribution νπ,π
for all policy pair (π, π) has full support, and satisfies the following conditions with Υ1,Υ2 > 0:

λmin

(
Eνπ,π

[
ϕ(s, a, b)ϕ(s, a, b)⊤

])
≥ Υ1,

λmin

(
Eνπ,π

[
ϕ(s, a, b)

(
ϕ(s, a, b)− γEνπ,πϕ(s′, a′, b′)

)⊤]) ≥ Υ2.

Assumption 4 (Regularity Condition for Feature). The features {ϕω(s, a, b)}(s,a,b)∈S×A×A and
{ϕω(s, a, b)}(s,a,b)∈S×A×A are linearly independent.

First, we have the following bound on the error for policy evaluation. For convenience, we focus
solely on the error for least square policy evaluation in Stage 1. A similar analysis can be conducted
for policy evaluation error in Stage 2. We decompose the error for policy evaluation into two parts,
one is the approximation error due to the finite number of features, and one is the statistical error due
to the finite number of samples. Combine the approximation error and the statistical error, we have
the following bound on the error for policy evaluation. Detailed proof can be found in Appendix D.
Theorem 1. Let L = Θ(log n). Denote g̃α := sups,a,b

gα(f(s,a,b))
αd

and Q̂π,πΦ,L = ϕ⊤ŵL. With
probability at least 1− δ, we have that for the random features,∥∥∥Qπ,π − Q̂

π,π
Φrf ,L

∥∥∥
νπ,π

= Õ

(
g̃α

(1−γ)2
√
m

+
g̃6αm

3

(1−γ)Υ2
1Υ2

√
n

)
, (13)

and for the Nyström features,∥∥∥Qπ,π − Q̂
π,π
Φnys,L

∥∥∥
νπ,π

= Õ

(
g̃α

(1− γ)2nnys
+

g̃6αm
3

(1− γ)Υ2
1Υ2

√
n

)
. (14)

As shown in Theorem D.1, Nyström method improves the approximation error from O(m−1) to
O(n−1

nys) with a mild assumption to make in the kernel literature (cf. Theorem 2 in [Belkin, 2018]).
Then, we provide the error analysis for policy optimization. We remark that in the following proof
we assume the action space |A| is finite for simplicity. The following assumption assumes that
the selection probability of each action is positive under each state, which is a commonly used
assumption in the analysis of policy gradient type methods [Alacaoglu et al., 2022, Lan, 2023].4

Assumption 5. There exists a constant c such that, for any policy iterate pair πk, πk, for any state
action tuple s, a, b, it holds that πk(a|s) ≥ c > 0, πk(b|s) ≥ c > 0.
We now present the result for policy optimization. We use Perolat et al. [2015]’s error propaga-
tion framework, which needs the results in each stage. The detailed proof of it can be found in
Appendix E. First, we analyze the error in the Stage 1 of Algorithm 3.
Lemma 3. Denote Qk−1 = Qπk−1,πk−1 , πsQsπs = Ea∼π(·|s),b∼π(·|s)[Q(s, a, b)]. Let Assump-
tion 5 hold. In Stage 1 of Algorithm 3,

E
[
max
π

πQk−1πk −min
π
πkQk−1π

]
≤ 1

ηT
log

1

c
+ 2∥Q̂πk−1,πk−1 −Qπk−1,πk−1∥νπk−1,πk−1

+
η

2(1− γ)2
.

4This assumption can be removed if we use a β−greedy mixed version of πk, πk. As the β−greedy mixed
policies are shifted with the original ones, we provide the convergence analyses of SDEPO with β−greedy
exploration in Appendix E.1.
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This result shows how the error in the approximation of theQ-function and the learning rate η impact
the optimization performance in Stage 1. Next, we turn to Stage 2 and provide an upper bound on
the one-sided error.
Lemma 4. Let Assumption 5 hold and µ0 be a state distribution. In Stage 2 of Algorithm 3,

1

T

T∑
t=1

Es∼µ0

[
V π

∗
k,πk(s)− V π

′
k,t,πk(s)

]
≤ 1

1− γ

(
log 1

c

ηT
+

η

(1− γ)2
+ η∥Q̂π

′
k,t,πk −Qπ

′
k,t,πk∥νπ′

k,t
,πk

)
.

Building on the results from Stage 1 and Stage 2, along with the policy evaluation error, and using the
error propagation framework from Perolat et al. [2015], we can now derive the overall convergence
result for the policy optimization process. Specifically, we obtain the following proposition, which
quantifies the iteration complexity required to reach a near-optimal solution:

Proposition 1. Let L = Θ(log n) and T =
√

log 1/c
log n ( 1

(1−γ)2 + g̃α
(1−γ)2

√
m

+
g̃6αm

3

(1−γ)Υ2
1Υ2

√
n
) for

random features and T =
√

log 1/c
log n ( 1

(1−γ)2 + g̃α
(1−γ)2nnys

+
g̃6αm

3

(1−γ)Υ2
1Υ2

√
n
) for Nyström features.

Iteration complexity to get Es∼µ0

[
maxπ V

π,πk(s)− V ∗(s)
]
≤ ϵ is Õ( 1

(1−γ)3ϵ ).

Proposition 1 shows the iteration complexity to one-sided NE and it can be directly extended to
establish a two-sided NE by applying the algorithm with the roles switched [Zhao et al., 2022].
5 The Practical variant of SDEPO
Many practical 2p0s-MGs not only have continuous state spaces but also continuous action spaces,
such as such as real-time strategy games [Vinyals et al., 2019, Berner et al., 2019] and robust policy
optimization [Pinto et al., 2017]. Note that the natural policy gradient update (31) and (12) in SDEPO
involve the expectation w.r.t. the action, which is generally intractable for continuous action space.
Hence, we propose a practical variant of SDEPO, named SDEPO-NN, to deal with continuous (or large-
scale discrete ) action space. SDEPO-NN utilizes neural networks in policy π and the state-action
value function approximation Q, detailed in Algorithm F.
Based on the spectral dynamic embedding ϕ, we parameterize the Q function of player one
as Qθ(s, a, b) = r(s, a, b) + ϕ(s, a, b)⊤θ and parameterize the Q function of player two as
Q
θ
(s, a, b) = r(s, a, b)+ϕ(s, a, b)⊤θ, and trainQθ andQ

θ
by minimizing the soft Bellman residual.

We restrict the players’ policies πψ and πψ to Gaussians with the reparametrization trick, i.e., at =
fψ(ϵt; st) and bt = fψ(ϵ

′
t; st) where ϵt and ϵ′t are input noise vectors, sampled from a Gaussian.

The policy parameters can be learned by minimizing

J(ψ) = Est∼D,ϵt,ϵ′t∼N

[
log πψ(fψ(ϵt; st)|st)−Qθ(st, πψ(fψ(ϵt; st)|st), πψ(fψ(ϵ

′
t; st)|st))

]
,

and

J(ψ) = Est∼D,ϵt,ϵ′t∼N

[
log πψ(fψ(ϵ

′
t; st)|st)−Q

θ
(st, πψ(fψ(ϵt; st)|st), πψ(fψ(ϵ

′
t; st)|st))

]
,

where D is the replay buffer, and πψ and πψ are defined implicitly in terms of fψ and fψ , respec-
tively.
Note that tabular methods [Alacaoglu et al., 2022, Bai and Jin, 2020, Daskalakis et al., 2020, Wei
et al., 2021, Zhao et al., 2022] can discretize the state/action spaces to handle applications with
continuous state/action spaces. However, directly applying such methods often incurs the curse
of dimension and requires an excessive amount of computation resources even for a small size
problem. On the other hand, although there exist theoretical-guaranteed methods for 2p0s-MGs
with continuous state and action space, they all involve a computational intractable subroutine, i.e.,
Qiu et al. [2021], Junchi Li et al. [2022] need to solve a difficult ’find_ne’/’find_cce’ subroutine,
and Jin et al. [2022], Huang et al. [2021] have to tackle a comprehensive constrained optimization
problem.

6 Numerical verification
In this section, we present two experiments to evaluate our methods. The first experiment focuses on
a simple zero-sum Markov game featuring a continuous state space and a finite action space, aiming
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to validate the convergence of SDEPO. The second experiment adapts a multi-agent scenario inspired
by the simple push [Lowe et al., 2017], where both the state and action spaces are continuous, to
assess the effectiveness of SDEPO-NN.
In the first experiment, we designed a simple zero-sum Markov game with a continuous state and
finite action space (S = R, |A| = 5). The state space is partitioned into 42 distinct intervals: one inter-
val for (−∞,−10), 40 intervals evenly spaced by 0.5 units in the range [−10, 10), and one interval
for (10,∞). In the i-th interval, the transition dynamics are defined by P (s, a, b) = f(s, a, b) + ϵ,
where ϵ ∼ N (0, 1), and f(s, a, b) = ϵi,a,b, with ϵi,a,b ∼ Unif(−10.5, 10.5). The reward function
is r(s, a, b) = ϵ′i,a,b, where ϵ′i,a,b ∼ Unif(−1, 1). The initial state distribution is assumed to be
uniform over [−10.5, 10.5].
We ran SDEPO for 120 iterations, and measured the convergence of π by metrics in Proposition
1. As shown in Figure 1, SDEPO with random features and Nyström features both converge after
60 iterations. We discretized the state space of this environment and compared it with OFTRL
[Zhang et al., 2022], a tabular method where the environment is known. We adopted the parameter
settings recommended in [Zhang et al., 2022] and adjusted the environment to a 100-horizon setting.
As shown in Figure 1, our method demonstrated superior convergence in this environment. This
likely stems from the fact that OFTRL operates on the discretized state space, whereas our method
computes on the original state space.

Figure 1: Performance illustration of SDEPO and OFTRL for solving the random generated Markov
game.
Next, we conduct experiments on an adapted version of simple push [Lowe et al., 2017], wherein
both the state and action spaces are continuous. This problem consists of two agents and one land-
mark. Each agent receives a reward for proximity to the landmark while ensuring the other agent
remains distant. Thus, agents must learn to stay close to the landmark and simultaneously push the
other agent away. At each time step, a noise ϵ ∼ N (0, σ2Id) is added to the state.
We implemented SDEPO-NN with random features (SDEPO-NNrf ) and Nyström features
(SDEPO-NNnys), comparing them against methods where Q functions do not utilize spectral dy-
namical embedding (NPG-NN). Table 2 shows the results of winning rate after training by 20000
iterations with varying noise levels. It is evident that SDEPO-NNrf and SDEPO-NNnys largely outper-
forms NPG-NN, which shows the effectiveness of the spectral dynamical embedding.

Winning
rate NPG-NN SDEPO-NNrf SDEPO-NNnys

NPG-NN 49.69%/47.7% 5.23%/0.55% 5.16%/0.59%
SDEPO-NNrf 95.13%/99.37% 50.35%/49.95% 49.74%/49.94%
SDEPO-NNnys 95.38%/99.38% 49.69%/49.95% 50%/49.84%

Table 2: Comparison of winning rates between NPG-NN, SDEPO-NNrf , and SDEPO-NNnys in Simple
Push with σ = 0.1/0.01. The results before and after / correspond to σ = 0.1 and 0.01, respectively.

7 Conclusion
In this paper, we propose a provably efficient natural policy gradient algorithm for two-player zero-
sum stochastic Markov games with continuous state. We analyze the approximation error and con-
vergence of the algorithm. To deal with continuous action spaces, a practical variant is provided and
demonstrates superior performance. A possible direction is to extend our methods to independent
learning setting.
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A Derivation of Spectral Dynamic Embedding

In this section, we derivate spectral dynamic embedding and then prove the Q-function for arbitrary
policy pair can be linearly represented by the feature functions {ϕω(s, a, b)} with ω ∼ N

(
0, σ2Id

)
and ϕM (s, a, b) ∈ ℓ2.

Lemma A.1 (i.e. Lemma 1). Consider any α ∈ [0, 1). Denote kα(x, x′) = exp
(
− (1−α2)∥x−x′∥2

2σ2

)
for any 0 ≤ α < 1. We can decompose kα(x, x′) using Bochner decomposition and Mercer decom-
position. Let

ψω(s, a, b) =
gα(f(s, a, b))

αd

[
cos

(
ω⊤f(s, a, b)√

1− α2

)
, sin

(
ω⊤f(s, a, b)√

1− α2

)]
,

χω(s
′) = pα(s

′)[cos(
√

1− α2ω⊤s′), sin(
√

1− α2ω⊤s′)]⊤,

where gα (f(s, a, b)) := exp
(
α2∥f(s,a,b)∥2

2(1−α2)σ2

)
, ω ∼ N (0, σ−2Id), and pα(s

′) =

αd

(2πσ2)d/2
exp

(
−∥αs′∥2

2σ2

)
is a Gaussian distribution for s′ with standard deviation σ

α . Using
Bochner decomposition, we have

P (s′|s, a, b) =Eω∼N (0,σ−2Id)

[
ψω(s, a, b)

⊤χω(s
′)
]
:= ⟨ψω(s, a, b), χω(s′)⟩N (0,σ−2Id)

, (15)

By Mercer’s theorem, kα admits a decomposition for any (x, x′) ∈ X :

kα(x, x
′)=

∞∑
i=1

σα,ieα,i(x)eα,i(x
′), {eα,i} a basis for L2(µ). (16)

We denote kα(x, x′) = ⟨ẽα(x), ẽα(x′)⟩ℓ2 where ẽα,i(x) =
√
σα,ieα,i(x) for each positive integer

i.5

ψM (s, a, b) =
gα (f(s, a, b))

αd
ẽα

(
f(s, a, b)

1− α2

)⊤

, χM (s′) = pα(s
′)ẽα (s

′)
⊤

Then,

P (s′|s, a, b) = ⟨ψM (s, a, b), χM (s′)⟩ℓ2 . (17)

Proof. For Bochner decomposition, we first notice that ∀α ∈ (0, 1), we have

P (s′|s, a, b) ∝ exp

(
−∥s′ − f(s, a, b)∥2

2σ2

)

= exp

(
−∥αs′∥2

2σ2

)
exp

(
−
∥∥(1− α2)s′ − f(s, a, b)

∥∥2
2σ2(1− α2)

)
exp

(
α2∥f(s, a, b)∥2

2(1− α2)σ2

)
.

(18)

The factorization of the transition P (s′|s, a, b) in (15) can thus be derived from the property of the
Gaussian kernel by applying Bochner decomposition in Lemma 2 to the second term in (18).

For the Mercer decomposition, the proof is analogous, where here we apply Mercer’s theorem to
decompose the middle term in terms of the kernel kα

kα

(
s′,

f(s, a, b)

1− α2

)
= exp

−
(1− α2)

∥∥∥s′ − f(s,a,b)
1−α2

∥∥∥2
2σ2

 = exp

(
−
∥∥(1− α2)s′ − f(s, a, b)

∥∥2
2σ2(1− α2)

)
.

5The ℓ2 norm is the usual norm for square-summable infinite-dimensional vectors v indexed by the positive
integers, such that ∥v∥2ℓ2 =

∑∞
i=1 v

2
i .
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Let ϕω(·) = [ψω(·), r(·)] and ϕM (·) = [ψM (·), r(·)]. Here we prove the Q-function for arbitrary
policy pair can be linearly represented by the feature functions {ϕω(s, a, b)} with ω ∼ N

(
0, σ2Id

)
and ϕM (s, a, b) ∈ ℓ2.

Lemma A.2 (i.e. Lemma 2). For any policy, there exist weights {θπ,πω } (where ω ∼ N (0, σ−2Id))
and θπ,πM ∈ ℓ2 such that the corresponding value function satisfies

Qπ,π(s, a, b) =
〈
ϕω(s, a, b), θ

π,π
ω

〉
N (0,σ−2Id)

=
〈
ϕM (s, a, b), θ

π,π
M

〉
ℓ2

Proof. Denote µω(·) = [χω(·), 0]⊤, µM (·) = [1, χM (·)]⊤, θr = [0, 0, 1]⊤, θr,M = [1, 0, 0, . . . ]⊤ ∈
ℓ2. Our claim can be verified easily by applying the decompositions to Bellman recursion:

Qπ,π(s, a, b) = r(s, a, b) + γEP
[
V π,π(s′)

]
(19)

=
〈
ϕω(s, a, b), θr + γ

∫
S
µω(s

′)V π,π(s′)ds′︸ ︷︷ ︸
θ
π,π
ω

〉
N (0,σ−2Id)

=
〈
ϕM (s, a, b), θr,M+γ

∫
S
µM (s′)V π,π(s′)ds′︸ ︷︷ ︸
θ
π,π
M

〉
ℓ2
,

where the second equation comes from the Bochner decomposition and the third equation comes
from the Mercer decomposition.

B Derivation of Nyström method

Consider a bounded and continuous positive definite kernel k(x, y) defined on a compact space S ,
along with any probability measure µ on S , e.g. the µnys considered in Algorithm 3. Mercer’s
theorem guarantees the existence of eigenvalues {σj}∞j=1 and orthonormal eigenvectors {ej}∞j=1 ⊂
L2(µ) such that for any j ∈ N and any x ∈ S , the following holds:∫

S
k(x, y)ej(y)dµ(y) = σjej(x). (20)

The Nyström method provides an approximation of the Mercer eigendecomposition of k(x, y) =∑∞
j=1 σjej(x)ej(y) in the form

k̂nm(x, y) =

m∑
i=1

σ̂iêi(x)êi(y)

for some positive integer m. Here, the pairs where the (σ̂i, êi) are determined through a numerical
approximation of the eigenfunction problem outlined (20). We will now describe the procedure in
detail.

Recall that nnys refers to the number of samples used to construct the Nyström features. For sim-
plicity, in the sections of the Appendix that address Nyström approximation results, we denote
n := nnys, unless otherwise noted. It is important not to confuse this n with the n used to represent
the number of samples for statistical learning of the Q-function. Suppose we draw n independent
samples Xn = {xs}ns=1 from S according to the distribution µ. For any eigenfunction ej , the
eigenfunction problem from (20) can be numerically approximated by:

1

n

n∑
s=1

k(x, xs)ej(xs) ≈ σjej(x), (21a)

1

n

n∑
s=1

(ej(xs))
2 ≈ 1. (21b)
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Let K(n) ∈ Rn×n denote the Gram matrix where (Kn)rs = k(xr, xs), and let the eigendecompo-
sition of K(n) be K(n)U = ΛU with U orthogonal and Λ diagonal. To satisfy (21a), the condition
must hold for all x ∈ Xn. Specifically, for any r ∈ [n], we should expect

1

n

n∑
s=1

k(xr, xs)ej(xs) ≈ σjej(xr) (22)

for any eigenfunction ej(·) and its corresponding eigenvalue σj of k(·, ·). For any eigenvector ui of
the Gram matrix K(n), we have the relation

1

n

n∑
s=1

k(xr, xs)(ui)s =
λi
n
(ui)r.

It is therefore natural to extend ui ∈ Rn to an eigenfunction ẽi by setting ẽi(xs) = (ui)s for any
xs ∈ Xn, and for other x, define

ẽi(x) :=
1

λi

n∑
s=1

k(x, xs)(ui)s,

with associated eigenvalue λi
n . To satisfy the orthonormality condition from (21b), since

1

n

n∑
s=1

ẽi(xs)
2 =

1

n

n∑
s=1

(ui)
2
s =

1

n
,

we scale

êi(x) :=
√
nẽi(x) =

√
n

λi

n∑
s=1

k(x, xs)(ui)s.

Using these scaled eigenfunctions, we define the Nyström approximation k̂n of the original kernel
k as

k̂n(x, y) =

n∑
i=1

λi
n
êi(x)êi(y) = k(x,Xn)

(
n∑
i=1

1

λi
uiu

⊤
i

)
k(Xn, x), (23)

where k(x,Xn) is a row vector with components k(x, xs), and k(Xn, y) is a column vector with
components k(xs, y). Based on (23), for any m ≤ n, we then define the rank-m Nyström approxi-
mation as

k̂nm(x, y) = k(x,Xn)

(
m∑
i=1

1

λi
uiu

⊤
i

)
k(Xn, x), (24)

which is the rank-m Nyström kernel approximation used in the paper. Since it can be written as
k̂n,m(x, y) = φnys(x)

⊤φnys(y), where

(φnys)i(·) =
1√
λi
u⊤i k(X

n, ·), ∀i ∈ [m], (25)

we can view φnys(·) ∈ Rm as the rank-m Nyström features corresponding to the Nyström approxi-
mation.

C The performance difference lemma

Lemma C.3 (Performance difference lemma. See [Alacaoglu et al., 2022]). For any policies
π1, π2, π and any state s0,

V π1,π(s0)− V π2,π(s0) =
1

1− γ
Es′∼dπ1,πs0

⟨Eb∼π(·|s)Qπ2,π(s, ·, b), π1(·|s)− π2(·|s)⟩

where dπ1,π2
s0 (s) = (1 − γ)

∑∞
t=0 γ

tPπ1,π2(st = s|s0), where Pπ1,π2(st = s|s0) denote the proba-
bility that st = s after starting at s0 and following the policies π1 and π2.
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D Error analysis for Policy Evaluation

We provide a brief outline of our overall proof strategy for policy evaluation. For convenience, we
focus solely on the error for least square policy evaluation in Stage 1. A similar analysis can be
conducted for policy evaluation error in Stage 2.

We decompose the error into two parts, one is the approximation error due to the limitation of our
basis (i.e., finite m in Line 1 of Algorithm 1 and Line 4 of Algorithm 2), and one is the statistical
error due to the finite number of samples we use (i.e., finite n in Line 27 of Algorithm 3). For
notational simplicity, we omit π, π and use ν to denote the stationary distribution corresponding to
π, π in this section. For the ease of presentation, we omit the polynomial dependency on cf and
focus on the dependency of other terms of interest.

D.1 Approximation Error

We start by deriving a bound on the approximation error when representing the Q-function for a
given policy pair using an imperfect, finite-dimensional feature set. In such cases, the best possible
approximation, denoted as Q̃, is the solution to a projected Bellman equation (cf. Yu and Bertsekas
[2008]), which is defined as follows: given any (possibly finite-dimensional) feature map Φ :=
{ϕ(s, a, b)}(s,a,b)∈S×A×A, the approximation Q̃Φπ,π is defined by:

Q̃Φπ,π = Πν,Φ(r + Pπ,πQ̃Φπ,π), (26)

where ν represents the stationary distribution under π, π, and the operator Pπ,π is given by

(Pπ,πf)(s, a, b) = E(s′,a′,b′)∼P (s,a,b)×π×πf(s
′, a′, b′). (27)

and Πν,Φ is the projection operator as defined as

Πν,ΦQ = argmin
f∈span(Φ)

Eν (Q(s, a, b)− f(s, a, b))
2
. (28)

Our focus on Q̃πΦ is motivated by the fact that the least-squares policy evaluation step in Algorithm
3 (see equation (11)) recovers Q̃πΦ if the number of samples, n, goes to infinity. The effect of a finite
sample size n on the statistical error will be discussed later.

Next, we present our bound on the approximation error for the random and Nyström features. We
begin with the random feature approach, which . To do so, we first need the following technical
result, which relies on the following technical lemma, adapted from Lemma 1 in Rahimi and Recht
[2008].
Lemma D.4 (cf. Lemma 1 from Rahimi and Recht [2008]). Let p be a distribution on a space Ω,
and consider a mapping ϕ(x;ω) ∈ Rℓ. Suppose

f∗(x) =

∫
Ω

p(ω)β(ω)⊤ϕ(x;ω)dω,

for some vector β(ω) ∈ Rℓ where supx,ω
∣∣β(ω)⊤ϕ(x;ω)∣∣ ≤ C for some C > 0. Consider {ωi}ki=1

drawn iid from p, and denote the sample average of f∗ as f̂(x) = 1
K

∑K
k=1 β(ωk)

⊤ϕ(x;ωk). Then,
for any δ > 0, with probability at least 1− δ over the random draws of {ωi}ki=1,√∫

X

(
f̂(x)− f∗(x)

)2
dµ(x) ≤ C√

K

(
1 +

√
2 log

1

δ

)
.

Based on Lemma D.4, we derive the approximation error with random features.
Proposition D.1 (Q-Approximation error with random features). We define the feature map Φrf for
random features as follows

Φrf = {[ψrf(s, a, b), r(s, a, b)]}(s,a,b)∈S×A×A, (29)

where ψrf(s, a, b) is defined in (7) in Algorithm 3. Then, for any δ > 0, with probability at least
1− δ, we have that ∥∥∥Qπ,π − Q̃

π,π
Φrf

∥∥∥
ν
= Õ

(
γg̃α

(1− γ)2
√
m

)
, (30)

where ∥ · ∥ν is the L2 norm defined as ∥f∥ν =
∫
f2dν, and Q̃π,πΦrf

is defined in (26).

17



Proof. By leveraging the contraction property and the results from Yu and Bertsekas [2008], we
establish the following bound:∥∥∥Qπ,π − Q̃

π,π
Φrf

∥∥∥
ν
≤ 1

1− γ

∥∥Qπ,π −Πν,Φrf
Qπ,π

∥∥
ν
, (31)

where Πν,Φrf
is defined as in (28). By definition Πν,Φrf

is contractive under ∥ · ∥ν . Note that

Qπ,π(s, a, b) = r(s, a, b) + γEω∼N (0,σ−2Id)

[
ϕω(s, a, b)

⊤
∫
S
µω(s

′)V π,π(s′)ds′
]
.

Using Hölder’s inequality, along with the fact that ∥V π∥∞ = O((1− γ)−1), and denoting βπ,πω :=∫
S µω(s

′)V π,π(s′)ds′, we have for every ω that∥∥βπ,πω ∥∥
∞ = O((1− γ)−1).

Additionally, recalling that ϕω(s, a, b) = [ψω(s, a, b), r(s, a, b)], we have

sup
((s,a,b),ω)

|ϕω(s, a, b)⊤βπ,πω | ≤ sup
((s,a,b),ω)

|ψω(s, a, b)|1
∥∥βπ,πω ∥∥

∞

since the coordinate in βπ,πω corresponding to the reward part of ϕω(s, a, b) is 0. Noting

sup
((s,a,b),ω)

|ψω(s, a, b)|1 ≤ 2 sup
(s,a,b)

gα(f(s, a, b))

αd
,

we conclude that

sup
((s,a,b),ω)

|ϕω(s, a, b)⊤βπ,πω | ≤ sup
((s,a,b),ω)

|ψω(s, a, b)|1
∥∥βπ,πω ∥∥

∞ = O

(
sup(s,a,b) gα(f(s, a, b))

αd(1− γ)

)
Applying Lemma D.4, we obtain the following bound:∥∥Qπ,π −Πν,Φrf

Qπ,π
∥∥
ν
= Õ

(
γ sups,a,b gα(f(s, a, b))

αd(1− γ)
√
m

)
. (32)

Substituting (32) into (31) completes the proof.

As shown above, the approximation error for random features decreases at a rate ofO
(
m−1/2

)
with

high probability as the number of random features m increases.

Next, we turn to the approximation error for Nyström features. To establish this result, we first
present the following key finding.
Lemma D.5 (cf. Lemma 8 from Ren et al. [2023]). Consider the following Mercer decomposition
(on S) of kα(·, ·):

kα(x, x
′) =

∞∑
i=1

σiei(x)ei(x
′), (33)

where {ei}∞i=1 forms a countable orthonormal basis for L2(µnys) with corresponding values
{σi}∞i=1. Let Xnnys = {xi}

nnys

i=1 be an i.i.d nnys-point sample from µnys. In addition, let λ1 ≥
λ2 ≥ · · · ≥ λnnys

denote the eigenvalues of the (unnormalized) Gram matrix K(nnys) in its eigende-
composition K(nnys)U = ΛU where U⊤U = U⊤ = I . Suppose that σj , λj/nnys ≲ exp(−βj1/h)
for some β > 0 and h > 0. Suppose that nnys ≥ 3 and that ⌊(2 log nnys)h/βh⌋ ≤ m ≤ nnys.

Consider the rank-m kernel approximation k̂nnys
α,m constructed using Nyström features, defined as

follows:

k̂nnys
α,m (s, t) = φnys(s)

⊤φnys(t), (34)

where φnys(·) ∈ Rm and is defined as

(φnys)i(·) :=
1√
λi
u⊤i kα(X

nnys , ·), ∀i ∈ [m], (35)
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where ui denotes the i-th column of U , and kα(Xnnys , ·) denotes a nnys-dimensional vector where
(kα(X

nnys , ·))ℓ = kα(xℓ, ·); for details on how φnys(·) is derived, see Appendix B. Then, for any
δ > 0, with probability at least 1− δ,

∫
S

√(
kα − k̂

nnys
α,m

)
(x, x)dµnys(x) = Õ

√√√√ nnys∑
i=m+1

1

nnys
λi +

1

nnys

 = Õ

(
1

nnys

)
. (36)

Leveraging Lemma D.5, we can now derive the following result for the approximation error associ-
ated with Nyström features.

Proposition D.2 (Q-Approximation error with Nyström features). Suppose all the assumptions in
Lemma D.5 hold. Suppose also that we pick the sampling distribution µnys such that

µnys(x) = pα(x). (37)

We define the feature map Φnys for the Nyström features as follows:

Φnys = {[ψnys(s, a, b), r(s, a, b)]}(s,a,b)∈S×A×A, (38)

where ψnys(s, a, b) ∈ Rm is defined in (38) in Algorithm 3. Then, for any δ > 0, with probability at
least 1− δ, ∥∥∥Qπ,π − Q̃π,πnys

∥∥∥
ν
≤ Õ

(
γg̃α

(1− γ)2nnys

)
≤ Õ

(
γg̃α

(1− γ)2m

)
,

where ∥ · ∥ν is the L2 norm defined as ∥f∥ν =
∫
f2dν, Q̃π,πΦnys

is defined in (26), and g̃α :=

sups,a,b
gα(f(s,a,b))

αd
.

Proof. Following the analysis at the beginning of the proof of Proposition D.1, and using the con-
traction property along with results from Yu and Bertsekas [2008], we have the following bound:∥∥∥Qπ,π − Q̃

π,π
Φnys

∥∥∥
ν
≤ 1

1− γ

∥∥Qπ,π −Πν,Φnys
Qπ,π

∥∥
ν
, (39)

where Πν,Φnys
is defined as in (28).

Next, we need to bound the term
∥∥Qπ,π −Πν,Φnys

Qπ,π
∥∥
ν
. Starting from (34), and recalling the def-

inition of φnys(·) from (35), we express our Nyström approximation of the kernel kα
(
s′, f(s,a,b)1−α2

)
as

k̂nnys
m

(
s′,

f(s, a, b)

1− α2

)
= φnys(s

′)⊤φnys

(
f(s, a, b)

(1− α2)

)
. (40)

Since we have ψnys(s, a, b) = gα(f(s, a, b))φnys

(
f(s,a,b)
1−α2

)
, where ψnys(·) is defined as in (8), this

suggests the following Nyström-based approximation for the Q-function:

Q̂π,πnys (s, a, b) :=r(s, a, b) + γψnys(s, a, b)
⊤
(∫

S φnys(s
′)V π,π(s′)pα(s

′)ds′

αd

)
.

It is important to note that this approximation is a valid solution to the objective:

argmin
f∈span(Φnys)

Eν
(
Qπ,π(s, a, b)− f(s, a, b)

)2
.
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Thus, we have∥∥Πν,Φnys
(Qπ,π)−Qπ,π

∥∥
ν
≤
∥∥∥Q̂π,πnys −Qπ,π

∥∥∥
ν

= γ

∥∥∥∥ψnys(s, a, b)
⊤
(∫

S φnys(s
′)V π,π(s′)pα(s

′)ds′

αd

)
−
∫
S
P (s′ | s, a, b)V π,π(s′)ds′

∥∥∥∥
ν

= γ

∥∥∥∥∥
(
gα(f(s, a, b))

αd

)(∫
S
φnys

(
f(s, a, b)

1−α2

)⊤

φnys(s
′)V π,π(s′)dpα(s

′)

−
∫
S
kα(s

′,
f(s, a, b)

1−α2
)V π,π(s′)dpα(s

′)

)∥∥∥∥
ν

≤ γg̃α
1− γ

×
∥∥∥∥∫

S

∣∣∣∣k̂nnys
m

(
s′,

f(s, a, b)

1−α2

)
−kα

(
s′,

f(s, a, b)

1−α2

)∣∣∣∣ pα(s′)ds′∥∥∥∥
ν︸ ︷︷ ︸

T1

. (41)

Using the one-to-one correspondence between Reproducing Kernel Hilbert Spaces (RKHS) and PD
kernels, we can express the kernel function kα as an inner product in the corresponding RKHS, Hkα .
Specifically, we have

kα

(
s′,

f(s, a, b)

1− α2

)
= ⟨kα

(
f(s, a, b)

1− α2
, ·
)
, kα(s

′, ·)⟩Hkα

k̂nnys
m

(
s′,

f(s, a, b)

1− α2

)
= kα(

f(s, a, b)

1− α2
, Xn)

m∑
i=1

1

λi
uiu

⊤
i kα(X

n, s′)

=

〈
kα(

f(s, a, b)

1− α2
, ·), kα(Xn, ·)

〉
Hkα

m∑
i=1

1

λi
uiu

⊤
i kα(X

n, s′)

= ⟨kα
(
f(s, a, b)

1− α2
, ·
)
, k̂nnys
m (s′, )⟩Hkα

By choosing µnys = pα(x), continuing from (41), we have

T1

=

∥∥∥∥∫
S

∣∣∣∣k̂nnys
m

(
s′,

f(s, a, b)

1− α2

)
− kα

(
s′,

f(s, a, b)

1− α2

)∣∣∣∣ pα(s′)ds′∥∥∥∥
ν

=

∥∥∥∥∫
S

∣∣∣∣⟨kα(f(s, a, b)1− α2
, ·
)
, k̂nnys
m (s′, )⟩Hkα

− ⟨kα
(
f(s, a, b)

1− α2
, ·
)
, kα(s

′, ·)⟩Hkα

∣∣∣∣ pα(s′)ds′∥∥∥∥
ν

=

∥∥∥∥∥
∫
S

∣∣∣∣∣
〈
kα

(
f(s, a, b)

1−α2
, ·
)
, k̂nnys
m (s′, ·)−kα(s′, ·)

〉
Hkα

∣∣∣∣∣ dpα(s′)
∥∥∥∥∥
ν

≤

∥∥∥∥∥
∫
S

√
kα

(
f(s, a, b)

1− α2
,
f(s, a, b)

1−α2

)√
(kα−k̂

nnys
m )(s′, s′)dpα(s

′)

∥∥∥∥∥
ν

≤
∥∥∥∥∫

S

√
(kα − k̂

nnys
m )(s′, s′)dpα(s

′)

∥∥∥∥
ν

To move from the second-to-last line to the last line, we used the fact that kα(·, ·) ≤ 1. Next,
applying Lemma D.5 and using the decay assumption on the eigenvalues from both the Mercer
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expansion and the empirical Gram matrix, we obtain a probabilistic bound. Specifically, for any
δ > 0, with probability at least 1− δ, we have

T1 ≤
(∫

S

√
(kα − k̂

nnys
m )(s′, s′)µ(s′)ds′

)
= Õ

(
1

nnys

)
.

Thus, by combining (41) with the bound on T1, we conclude the desired result, demonstrating that
the error introduced by the Nyström approximation decays at the rate Õ(1/nnys).

Remark D.1. As demonstrated by the proposition above, a key advantage of the Nyström method
is its ability to reduce the approximation error to O(

(
n−1
nys

)
), where nnys represents the number of

samples used to construct the Gram matrix for generating Nyström features. This rate of O(
(
n−1
nys

)
)

consistently outperforms theO(1/m) wherem is the number of features, since SDEPO is designed to
select m ≤ nnys. The only requirement for this improvement is that the eigenvalues of the empirical
Gram matrix and Mercer expansion meet certain decay assumptions, which is a standard assumption
to make in the kernel literature (cf. Theorem 2 in Belkin [2018]).

D.2 Statistical Error

We now present the bound on the statistical error arising from using a finite number of samples, n.
The result holds for both Nyström and random features.

Proposition D.3. For each policy pair {π, π} encountered in the algorithm, let Q̂π,πΦ,L denote the
policy given by

Q̂
π,π
Φ,L(s, a, b) = ϕ(s, a, b)⊤ŵL,

where ŵL is defined as in (11), and Φ can either be the reward concatenated with the Nyström or
random features, i.e. either Φnys or Φrf . Then, for sufficiently large n, there exists an universal
constant C > 0 independent of m, n, L and (1− γ)−1, such that with probability at least 1− δ, we
have ∥∥∥Q̃π,πΦ − Q̂

π,π
Φ,L

∥∥∥
ν
≤ γL

∥∥∥Q̃π,πΦ

∥∥∥
ν
+
Cg̃6αm

3polylog(m,L/δ)

(1− γ)Υ2
1Υ2

√
n

, (42)

where we recall Q̃π,πΦ is defined as in (26).

Proof. To simplify the presentation, let us define Φ as the concatenation of ϕ(s, a, b) across all
(s, a, b) ∈ S ×A×A, and define the operator Pπ,π as

(Pπ,πf)(s, a, b) = E(s′,a′)∼P (s,a,b)×π×πf(s
′, a′, b′).

Additionally, define w̃ as the solution to the equation:

w̃ =
(
Eν
[
ϕ(s, a, b)ϕ(s, a, b)⊤

])−1(
Eν
[
ϕ(s, a, b)

(
r(s, a, b) + γE(s′,a′,b′)∼P (s,a,b)×π×π

[
ϕ(s′, a′, b′)⊤w̃

])])
,

and let Q̃(s, a, b) = ϕ(s, a, b)⊤w̃. It is straightforward to observe that w̃ is the fixed point of the
population (i.e., n→ ∞) projected least square update (11). Furthermore, we can express w̃ as

w̃ =
(
Eν
[
ϕ(s, a, b)

(
ϕ(s, a, b)− γE(s′,a′,b′)∼P (s,a,b)×π×πϕ(s

′, a′, b′)
)⊤])−1

Eν [ϕ(s, a, b)r(s, a, b)] .

For the sake of brevity, we will omit the subscript when ν refers to the Lebesgue measure. We define
Π̂ν and P̂π,π as the empirical counterparts of Πν and Pπ,π , respectively. Under the update rule (11),
we have the following relations:

Φŵt+1 =Π̂ν(r + γP̂π,πΦŵt),

Φw̃ =Πν(r + γPπ,πΦw̃),
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which lead to

Φ(w̃ − ŵt+1) = (Πν − Π̂ν)r + γ(ΠνP
π,π)Φ(w̃ − ŵt) + γ(ΠνP

π,π − Π̂ν P̂
π,π)Φŵt.

Applying the triangle inequality, we can bound this as:

∥Φ(w̃ − ŵt+1)∥ν ≤ γ ∥Φ(w̃ − ŵt)∥ν +
∥∥∥(Πν − Π̂ν

)
r
∥∥∥
ν
+ γ

∥∥∥(ΠνPπ,π − Π̂ν P̂
π,π
)
Φŵt

∥∥∥
ν
,

where we use the contractivity under ∥ · ∥ν . Telescoping over t, we have

∥Φ(w̃ − ŵL)∥ν ≤γT ∥Φ(w̃ − ŵ0)∥ν+
1

1− γ

∥∥∥(Πν − Π̂ν

)
r
∥∥∥
ν

+
γ

1− γ
max
l∈[L]

∥∥∥(ΠνPπ,π − Π̂ν P̂
π,π
)
Φŵt

∥∥∥
ν
.

The following proof follows the same reasoning as Appendix E in Ren et al. [2023].

Proposition D.3 shows that the statistical error of the linear components can be broken down into two
parts. The first part, γL

∥∥∥Q̃π,π∥∥∥
ν
, arises from initializing with ŵ0 = 0 and decreases as the number

of least-squares policy evaluation iterations L increases. The second part, Cg̃6αm
3polylog(m,L/δ)

(1−γ)Υ2
1Υ2

√
n

,
represents the statistical error from using a finite sample size and diminishes as n increases. By
choosing L = Θ(log n), we can balance both parts, resulting in an estimation error that decreases at
a rate of O(n−1/2) with high probability.

D.3 Total Error for Policy Evaluation

Combine the approximation error in Proposition D.1 and Proposition D.2 with the statistical error
from Proposition D.3, we obtain the following bound on the total error for least-squares policy
evaluation:
Theorem D.1 (i.e. Theorem D.1). Let L = Θ(log n). With probability at least 1− δ, we have that
for the random features Φrf ,

∥∥∥Qπ,π − Q̂
π,π
Φrf ,L

∥∥∥
ν
= Õ

 g̃α
(1−γ)2

√
m︸ ︷︷ ︸

approx. error

+
g̃6αm

3

(1−γ)Υ2
1Υ2

√
n︸ ︷︷ ︸

stat. error

 , (43)

and for the Nyström features

∥∥∥Qπ,π − Q̂
π,π
Φnys,L

∥∥∥
ν
= Õ

 g̃α
(1− γ)2nnys︸ ︷︷ ︸
approx. error

+
g̃6αm

3

(1− γ)Υ2
1Υ2

√
n︸ ︷︷ ︸

stat. error

 .

Proof. This result follows directly from the triangle inequality, i.e.,∥∥∥Qπ,π − Q̂
π,π
Φ,L

∥∥∥
ν
≤
∥∥∥Qπ,π − Q̃

π,π
Φ

∥∥∥
ν
+
∥∥∥Q̃π,πΦ − Q̂

π,π
Φ,L

∥∥∥
ν
.

The first term, representing the approximation error, is bounded by Proposition D.1 and Proposi-
tion D.2 for random and Nyström features, respectively. The second term, capturing the statistical
error, is bounded by Proposition D.3.

Theorem D.1 provides the estimation error bound for the Q-function using least-squares policy eval-
uation, applicable to both random and Nyström features. The result reveals a key tradeoff between
the approximation error and statistical error. For random features, increasing the number of features
m enhances the ability to approximate the original infinite-dimensional function space, as reflected
by the Õ

(
1√
m

)
approximation error term on the RHS of (43). However, this improvement comes at
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the cost of needing more learning samples n during policy evaluation to effectively train the weights,
as indicated by the Õ

(
m3
√
n

)
statistical error term in (43). For Nyström features, this tradeoff may be

better especially since the approximation term scales as Õ(1/nnys) ≤ Õ(1/m) while thestatistical
error term remains the same as with random features. As a result, the Nyström method offers a better
approximation error rate with additional mild assumption.

E Convergence analysis of SDEPO

In this section, we denote Qk−1 = Qπk−1,πk−1 , and use the notation πsQsπs =
Ea∼π(·|s),b∼π(·|s)[Q(s, a, b)].

To establish the convergence of the policy optimization procedure, we follow the error propagation
framework from Perolat et al. [2015], which consists of two key stages:

Stage 1: Identify an approximate solution πk such that

Emax
π

πsQsk−1π
s
k −min

π
max
π

πsQsk−1π
s = ϵk1(s),

where the expectation is taken over the randomness of the algorithm used to generate πk.

In our analysis, we bound the stronger quantity, which is called duality gap

E
[
max
π

πsQsk−1π
s
k −min

π
πskQ

s
k−1π

s

]
≥ ϵk1(s),

where the bound follows from the definition of Nash equilibrium, as minπ πkQk−1π ≤
minπmaxπ πQk−1π.

Stage 2: Identify an approximate solution πk such that

V πk,π
∗
k(s)− EV πk,πk(s) = ϵk2(s),

where the expectation is over the randomness of the algorithm used to generate πk.

Following the analysis in Perolat et al. [2015], we conclude that there exists a constant C, such that

Es∼µ0

[
max
π

V π,πk(s)− V ∗(s)
]
≤ C

(
k

1− γ
sup

j∈1,··· ,k−1
Es[ϵj2(s) + ϵj2(s)] +

γk

1− γ

)
. (44)

First, we analyze the error in the Stage 1 of Algorithm 3.
Lemma E.6 (i.e. Lemma 3). Let Assumption 5 hold. In Stage 1 of Algorithm 3,

E
[
max
π

πQk−1πk −min
π
πkQk−1π

]
≤ 1

ηT
log

1

c
+ 2∥Q̂πk−1,πk−1 −Qπk−1,πk−1∥νπk−1,πk−1

+
η

2(1− γ)2
.

Proof. Denote Q = Qk−1. Recall the notation πsQsπs = Ea∼π(·|s),b∼π(·|s)[Q(s, a, b)]. First by
definition of πk and the standard formulation for the duality gap, we have for all s

πsQsπk− πskQ
sπs=

1

T

T∑
t=1

⟨Eb∼πk,t(·|s)Q(s, a, ·), π(·|s)⟩− 1

T

T∑
t=1

⟨Ea∼πk,t(·|s)Q(s, ·, b), π(·|s)⟩

=
1

T

T∑
t=1

⟨Eb∼πk,t(·|s)Q(s, a, ·), π(·|s)− πk,t(·|s)⟩

− ⟨Ea∼πk,t(·|s)Q(s, ·, b), π(·|s)− πk,t(·|s)⟩.
From the update rule of πk,t+1, it holds for all k, s, π that

⟨∇KL(πk,t+1, πk,t) + ηEa∼πk,t [Q̂πk−1,πk−1(s, a, ·)], π(·|s)− πk,t+1(·|s)⟩ ≥ 0.
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Applying the three-point identity yields:

KL(π(·|s), πk,t+1( · |s)) ≤ KL(π(·|s), πk,t(·|s))−KL(πk,t+1(·|s), πk,t(·|s))

+η⟨Ea∼πk−1
[Q̂πk−1,πk−1(s, a, ·)−Qπk−1,πk−1(s, a, ·)], π(·|s)− πk,t+1(·|s)⟩

+η⟨Ea∼πk−1
[Qk−1(s, a, ·)], π(·|s)− πk,t+1(·|s)⟩.

We can bound the inner products using Cauchy-Schwarz, Young’s and Pinsker’s inequalities,

η⟨Ea∼πk−1
[Q̂πk−1,πk−1(s, a, ·)−Qπk−1,πk−1(s, a, ·)], π(·|s)− πk,t+1(·|s)⟩

≤ 2η∥Q̂πk−1,πk−1 −Qπk−1,πk−1∥νπk−1,πk−1

η⟨Ea∼πk−1
[Qπk−1,πk−1(s, a, ·)], π(·|s)− πk,t+1(·|s)⟩

=η⟨Ea∼πk−1
[Qπk−1,πk−1(s, a, ·)], π(·|s)− πk,t(·|s)⟩

+η⟨Ea∼πk−1
[Qπk−1,πk−1(s, a, ·)], πk,t(·|s)− πk,t+1(·|s)⟩

≤η⟨Ea∼πk−1
[Qπk−1,πk−1(s, a, ·)], π(·|s)− πk,t(·|s)⟩+

η2

2(1− γ)2
+KL(πk,t+1(·|s), πk,t(·|s))

Combining these estimates gives us:

⟨Ea∼πk−1
[Qπk−1,πk−1(s, a, ·)], πk,t(·|s)− π(·|s)⟩+ 1

η
KL(π(·|s), πk,t+1(·|s))

≤1

η
KL(π(·|s), πk,t(·|s)) + 2∥Q̂πk−1,πk−1 −Qπk−1,πk−1∥νπk−1,πk−1

+
η2

2(1− γ)2

Summing these inequalities results in:

1

T

T∑
t=1

⟨Ea∼πk,t [Qπk,t,πk,t(s, a, ·)], πk,t(·|s)− π(·|s)⟩

≤ 1

ηT
KL(π, πk,0) + 2∥Q̂πk−1,πk−1 −Qπk−1,πk−1∥νπk−1,πk−1

+
η2

2(1− γ)2

≤ 1

ηT
log

1

c
+ 2∥Q̂πk−1,πk−1 −Qπk−1,πk−1∥νπk−1,πk−1

+
η

2(1− γ)2

This result shows how the error in the approximation of theQ-function and the learning rate η impact
the optimization performance in Stage 1. Next, we turn to Stage 2 and provide an upper bound on
the one-sided error.
Lemma E.7 (i.e. Lemma 4). Let Assumption 5 hold and µ0 be a state distribution. In Stage 2 of
Algorithm 3,

1

T

T∑
t=1

Es∼µ0

[
V π

∗
k,πk(s)− V π

′
k,t,πk(s)

]
≤ 1

1− γ

(
log 1

c

ηT
+

η

(1− γ)2
+ η∥Q̂π

′
k,t,πk −Qπ

′
k,t,πk∥νπ′

k,t
,πk

)
.

Proof. By the update rule for π′
k,t+1, for all s and π, we have that

KL(π(·|s), π′
k,t+1(·|s)) ≤ KL(π(·|s), π′

k,t(·|s))

− η⟨Eb∼πk [Q̂
π′
k,t,πk(s, ·, b)], π(·|s)− π′

k,t+1(·|s)⟩ −KL(π′
k,t+1(·|s), π′

k,t(·|s))

= KL(π(·|s), π′
k,t(·|s))− η⟨Eb∼πk [Q̂

π′
k,t,πk(s, ·, b)−Qπ

′
k,t,πk(s, ·, b)], π(·|s)− π′

k,t+1(·|s)⟩

− η⟨Eb∼πk [Q
π′
k,t,πk(s, ·, b)], π(·|s)− π′

k,t+1(·|s)⟩ −KL(π′
k,t+1(·|s), π′

k,t(·|s))
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We can bound the inner products using Cauchy-Schwarz, Young’s and Pinsker’s inequalities

η⟨Eb∼πk [Q̂
π′
k,t,πk(s, ·, b)−Qπ

′
k,t,πk(s, ·, b)], π(·|s)− π′

k,t+1(·|s)⟩

≤ O(η∥Q̂π
′
k,t,πk −Qπ

′
k,t,πk∥νπ′

k,t
,πk

)

and

η⟨Eb∼πk [Q
π′
k,t,πk(s, ·, b)], π(·|s)− π′

k,t+1(·|s)⟩

=− η⟨Eb∼πk [Q
π′
k,t,πk(s, ·, b)], π(·|s)− π′

k,t(·|s)⟩

− η⟨Eb∼πk [Q
π′
k,t,πk(s, ·, b)], π′

k,t(·|s)− π′
k,t+1(·|s)⟩

≤ − η⟨Eb∼πk [Q
π′
k,t,πk(s, ·, b)], π(·|s)− π′

k,t(·|s)⟩

+
η2∥Qπ

′
k,t,πk(s, a, b)∥2∞

2
+KL(π′

k,t+1(·|s), π′
k,t(·|s))

Consequently, we have that

⟨Eb∼πk [Q
π′
k,t,πk(s, ·, b)], π(·|s)−π′

k,t(·|s)⟩+
1

η
KL(π(·|s), π′

k,t+1(·|s))|

≤1

η
KL(π, π′

k,t) +O(η(∥Qπ
′
k,t,πk(s, a, b)∥2∞ + ∥Q̂π

′
k,t,πk −Qπ

′
k,t,πk∥νπ′

k,t
,πk

))

Summing the inequality, we get

1

T

T∑
t=0

⟨Eb∼πk [Q
π′
k,t,πk(s, ·, b)], π(·|s)− π′

k,t(·|s)⟩ (45)

≤ 1

ηT
KL(π, π′

k,t) +
η

(1− γ)2
+ η∥Q̂π

′
k,t,πk −Qπ

′
k,t,πk∥νπ′

k,t
,πk

(46)

By the performance difference lemma, we obtain

V π
∗
k,πk(s0)− V π

′
k,t,πk(s0) =

1

1− γ
E
s∼d

π∗
k
,πk

s0

⟨Eb∼πk(·|s)Q
π′
k,t,πk(s, ·, b), π∗

k(·|s)− π′
k,t(·|s)⟩.

Proposition E.4. Let Assumption 5 hold and µ0 be a state distribution,

Es∼µ0

[
max
π

V π,πK (s)− V ∗(s)
]

≤O

(
CK

(1− γ)2
(
log 1

c

ηT
+

η

(1− γ)2
+ η∥Q̂πk−1,πk−1 −Qπk−1,πk−1∥νπk−1,πk−1

+ η∥Q̂π
′
k,t,πk −Qπ

′
k,t,πk∥νπ′

k,t
,πk

) +
γK

1− γ

)
.

where C is a problem-dependent constant.

Proof. Inserting the results of Lemma E.6,Lemma E.7 to (44) gives the result.

Let L = Θ(log n) and T =
√

log 1/c
log n ( 1

(1−γ)2 + g̃α
(1−γ)2

√
m

+
g̃6αm

3

(1−γ)Υ2
1Υ2

√
n
) for random fea-

tures and T =
√

log 1/c
log n ( 1

(1−γ)2 + g̃α
(1−γ)2nnys

+
g̃6αm

3

(1−γ)Υ2
1Υ2

√
n
) for Nyström features. Combin-

ing the error of policy evaluation in Theorem D.1, we have that the iteration complexity to get
Es∼µ0

[
maxπ V

π,πk(s)− V ∗(s)
]
≤ ϵ is Õ( 1

(1−γ)3ϵ ).
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E.1 proof with β-greedy exploration

In this section, we are going to use β−greedy policy to avoid Assumption 5. Let us define the
modified policies with greedy exploration

π̂ = (1− β)π + βUnif(A), π̂ = (1− β)π + βUnif(A)

Now we are going to sample with the π̂, π̂ and the algorithm will read as Algorithm 4.

Lemma E.8. In Stage 1 of Algorithm 4,

E
[
max
π

πQk−1πk −min
π
πkQk−1π

]
≤ η

2(1− γ)2
+

32γβ

(1− γ)2
+

1

ηT
log

1

|A|
+ 2η∥Q̂π̂k−1,π̂k−1 − ˆ̂

Q∥νπ̂k−1,π̂k−1
.

Proof. Denote Q = Qk−1,
ˆ̂
Q = Qπ̂k−1,π̂k−1 . First by definition, it holds for all s

πsQsπsk − πskQ
sπs

=
1

T

T∑
t=1

[
⟨Eb∼πk,t(·|s)Q(s, ·, b), π(·|s)− πk,t(·|s)⟩ − ⟨Ea∼πk,t(·|s)Q(s, a, ·), π(·|s)− πk,t(·|s)⟩

]
=

1

T

T∑
t=1

[
⟨Eb∼πk,t(·|s)

ˆ̂
Q(s, ·, b), π(·|s)− πk,t(·|s)⟩ − ⟨Ea∼πk,t(·|s)

ˆ̂
Q(s, a, ·), π(·|s)− πk,t(·|s)⟩

]
+

1

T

T∑
t=1

[
⟨Eb∼πk,t(·|s)[Q(s, ·, b)− ˆ̂

Q(s, ·, b)], π(·|s)− πk,t(·|s)⟩

− ⟨Ea∼πk,t(·|s)[Q(s, a, ·)− ˆ̂
Q(s, a, ·)], π(·|s)− πk,t(·|s)⟩

]
For the error terms note

⟨Eb∼πk,t(·|s)[Q(s, ·, b)− ˆ̂
Q(s, ·, b)], π(·|s)− πt(·|s)⟩

≤ 2∥Eb∼πk,t(·|s)Q(s, ·, b)− ˆ̂
Q(s, ·, b)∥∞

≤ 2γmax
a,b

|Es′∼P (·|s,a,b)[V
πk−1,πk−1(s′)− V π̂k−1,π̂k−1(s′)]|

≤ 2γ∥V πk−1,πk−1 − V π̂k−1,π̂k−1∥∞

≤ 16γβ

(1− γ)2
,

where the last step is due to the Lipschitzness of the value function due to performance difference
lemma and that the policies π̂k−1, π̂k−1 and πk−1, πk−1 differ at most by β.

By three point identity, we have

KL(π(·|s), πk,t+1(·|s)) ≤ KL(π(·|s), πk,t(·|s))

+ η⟨Ea∼π̂k−1
[Q̂π̂k−1,π̂k−1(s, a, ·)− ˆ̂

Q(s, a, ·)], π(·|s)− πk,t+1(·|s)⟩

+ η⟨Ea∼π̂k,t [
ˆ̂
Q(s, a, ·)], π(·|s)− πk,t+1(·|s)⟩

−KL(πk,t+1(·|s), πk,t(·|s)).

Again we use Cauchy-Schwarz and Youngss inequalities

η⟨Ea∼π̂k−1
[Q̂π̂k−1,π̂k−1(s, a, ·)− ˆ̂

Q(s, a, ·)], π(·|s)−πk,t+1(·|s)⟩ ≤ 2η∥Q̂π̂k−1,π̂k−1− ˆ̂
Q∥νπ̂k−1,π̂k−1
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Algorithm 4 Spectral Dynamic Embedding Policy Optimization with β-greedy exploration
Data: Transition Model s′ = f(s, a, b) + ε where ε ∼ N (0, σ2Id), Reward Function r(s, a, b),

Number of Random/Nyström Feature m, Number of Nyström Samples nNys ≥ m, Nyström
Sampling Distribution µNys, Number of Sample n, Factorization Scale α, Learning Rate η

Result: πk
23 Generate ϕ(s, a, b) using Algorithm 1 or Algorithm 2.

Stage 1: Initialize θ0 = θ0 = 0 and π0(·|s) = π0(·|s) = Unif(A) for all s ∈ S .
24 for k = 0, 1, · · · ,K do
25 for t = 0, 1, · · · , T − 1 do
26 Initialize θk,0 = θk, θk,0 = θk and πk,0(·|s) = πk(·|s), πk,0(·|s) = πk(·|s) for all s ∈ S .
27 Sample i.i.d. {(si, ai, bi, s′i), a′i, b′i}i∈[n] with policy pair π̂k,t, π̂k,t, where s′i =

f(si, ai, bi) + ε.
28 Initialize ŵk,t,0 = 0.
29 for l = 0, 1, · · · , L− 1 do
30 Solve

ŵk,t,l+1 = argmin
w

∑
i∈[n]

(
ϕ(si, ai, bi)

⊤w − r(si, ai, bi)− γϕ(s′i, a
′
i, b

′
i)

⊤ŵk,t,l
)2
(47)

31 Update θk,t+1 = θk,t + ηŵk,t,L, θk,t+1 = θk,t − ηŵk,t,L and

πk,t+1(a|s) ∝ exp(Eb∼πk,t(·|s)[ϕ(s, a, b)]
⊤θk,t+1), (48)

πk,t+1(b|s) ∝ exp(Ea∼πk,t(·|s)[ϕ(s, a, b)]
⊤θk,t+1). (49)

32 Output πk = 1
T

∑T
t=1 πk,t.

33 Stage 2: Initialize θ
′
k,0 = 0 and π′

k,0(·|s) = Unif(A).
for t = 0, 1, · · · , T − 1 do

34 Sample i.i.d. {(si, ai, bi, s′i), a′i, b′i}i∈[n] with policy pair π̂
t

k, π̂k, where s′i = f(si, ai, bi) +
ε.

35 Initialize ζ̂k,t,0 = 0.
36 for l = 0, 1, · · · , L− 1 do
37 Solve

ζ̂k,t,l+1 = argmin
ζ

∑
i∈[n]

(
ϕ(si, ai, bi)

⊤ζ − r(si, ai, bi)− γϕ(s′i, a
′
i, b

′
i)

⊤ζ̂k,t,l

)2
(50)

38 Update θ
′
k,t+1 = θ

′
k,t + ηζ̂k,t,L and

π′
k,t+1(a|s) ∝ exp(Eb∼πk(·|s)[ϕ(s, a, b)]

⊤θ
′
k,t+1). (51)

39 Output πk = π′
k,t̂

, where t̂ ∈ [T ] is selected uniformly at random.

η⟨Ea∼π̂k,t [
ˆ̂
Q(s, a, ·)], π(·|s)− πk,t+1(·|s)⟩

=η⟨Ea∼π̂k,t [
ˆ̂
Q(s, a, ·)], π(·|s)− πk,t(·|s)⟩

+η⟨Ea∼π̂k,t [
ˆ̂
Q(s, a, ·)], πk,t(·|s)− πk,t+1(·|s)⟩

≤η⟨Ea∼π̂k,t [
ˆ̂
Q(s, a, ·)], π(·|s)− πk,t(·|s)⟩

+
η2

2(1− γ)2
+KL(πk+1(·|s), πk(·|s))
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Using these estimations, we have that

⟨Ea∼π̂k,t [
ˆ̂
Qπ̂k,t,π̂k,t(s, a, ·)], πk,t(·|s)− π(·|s)⟩+ 1

η
KL(π(·|s), πk,t+1(·|s))

≤1

η
KL(π(·|s), πk,t(·|s)) +

η

2(1− γ)2
+ 2η∥Q̂π̂k−1,π̂k−1 − ˆ̂

Q∥νπ̂k−1,π̂k−1

Summing the inequality, we get

1

T

T∑
t=1

⟨Ea∼π̂k,t [
ˆ̂
Qπk,t,πk,t(s, a, ·)], πk,t(·|s)− π(·|s)⟩

≤ 1

ηT
KL(π, πk,0) + 2η∥Q̂π̂k−1,π̂k−1 − ˆ̂

Q∥νπ̂k−1,π̂k−1

≤ 1

ηT
log

1

|A|
+

η

2(1− γ)2
+ 2η∥Q̂π̂k−1,π̂k−1 − ˆ̂

Q∥νπ̂k−1,π̂k−1

Thus

E
[
max
π

πQk−1πk −min
π
πkQk−1π

]
≤ η

2(1− γ)2
+

32γβ

(1− γ)2
+

1

ηT
log

1

|A|
+ 2η∥Q̂π̂k−1,π̂k−1 − ˆ̂

Q∥νπ̂k−1,π̂k−1

Lemma E.9. In Stage 2 of Algorithm 4,

E
1

T

T∑
t=0

V π
∗
k,πk(s0)− V π

′
k,t,πk(s0)

≤O

 log |A|
(1− γ)ηT

+
η

(1− γ)3
+

γβ

η(1− γ)3
+

∥Q̂π
′
k,t,πk − ˆ̂

Q∥νπ′
k,t

,πk

1− γ

 .

Proof. Denote ˆ̂
Q = Qπ̂

′
k,t,π̂k . By the update rule of the algorithm,

KL(π(·|s), π′
k,t+1(·|s)) ≤ KL(π(·|s), π′

k,t(·|s))

− η⟨Eb∼π̂k [Q̂
π̂
′
k,t,π̂k(s, ·, b)], π(·|s)− π′

k,t+1(·|s)⟩ −KL(π′
k,t+1(·|s), π′

k,t(·|s))
= KL(π(·|s), π′

k,t+1(·|s))−KL(π′
k,t+1(·|s), π′

k,t(·|s))

− η⟨Eb∼π̂k [Q̂
π̂
′
k,t,π̂k(s, ·, b)− ˆ̂

Q(s, ·, b)], π(·|s)− π′
k,t+1(·|s)⟩

− η⟨Eb∼π̂k [
ˆ̂
Q(s, ·, b)], π′

k,t(·|s)− π′
k,t+1(·|s)⟩

− η⟨Eb∼π̂k [Q
π̂
′
k,t,π̂k(s, ·, b)], π(·|s)− π′

k,t(·|s)⟩

− η⟨Eb∼π̂k [
ˆ̂
Q(s, ·, b)−Qπ̂

′
k,t,π̂k(s, ·, b)], π(·|s)− π′

k,t(·|s)⟩

We bound the inner products similarly

η⟨Eb∼π̂k [Q̂
π̂
′
k,t,π̂k(s, ·, b)− ˆ̂

Q(s, ·, b)], π(·|s)− π′
k,t+1(·|s)⟩ ≤ O(η∥Q̂π̂

′
k,t,π̂k − ˆ̂

Q∥ν
π̂′
k,t,π̂k

)

η⟨Eb∼π̂k [
ˆ̂
Q(s, ·, b)], π′

k,t(·|s)− π′
k,t+1(·|s)⟩ ≤

η2

2(1− γ)2
+KL(π′

k,t+1(·|s), π′
k,t(·|s))

and
η⟨Eb∼πk [

ˆ̂
Q(s, ·, b)−Qπ

′
k,t,πk(s, ·, b)], π(·|s)− π′

k,t(·|s)⟩ ≤
16γβ

(1− γ)2
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Algorithm 5 Spectral Dynamic Embedding Policy Optimization with Neural Networks
Data: Transition Model s′ = f(s, a, b) + ε where ε ∼ N (0, σ2Id), Reward Function r(s, a, b),

Number of Random/Nyström Feature m, Number of Nyström Samples nNys ≥ m, Nyström
Sampling Distribution µNys, Factorization Scale α, Learning Rate ηactor and ηcritic

Result: πθ, πθ
1 Generate ϕ(s, a, b) using Algorithm 1 or Algorithm 2.
2 Initialize πθ, πθ, Qψ, Qψ .

3 for each iteration do
4 for each environment step do
5 Sample {(si, ai, bi, s′i, a′i, b′i)} to replay buffer.
6 for each gradient step do
7 Update θ,θ by minimizing eqs. (55) and (57), respectively.
8 Update ψ, ψ by minimizing eqs. (61) and (62), respectively.

Consequently, we have that

⟨Eb∼πk [Q
π′
k,t,πk(s, ·, b)], π(·|s)− π′

k,t(·|s)⟩+
1

η
KL(π(·|s), π′

k,t+1(·|s))| (52)

≤1

η
KL(π(·|), π′

k,t(·|s)) +O(
γβ

(1− γ)2
+ η(

1

(1− γ)2
+ ∥Q̂π

′
k,t,πk − ˆ̂

Q∥νπ′
k,t

,πk
)) (53)

By the performance difference lemma

V π
∗
k,πk(s0)− V π

′
k,t,πk(s0) =

1

1− γ
E
s∼d

π∗
k
,πk

s0

⟨Eb∼πk(·|s)Q
π′
k,t,πk(s, ·, b), π∗

k(·|s)− π′
k,t(·|s)⟩.

Summing the inequality, we get

E
1

T

T∑
t=0

V π
∗
k,πk(s0)− V π

′
k,t,πk(s0)

≤O(
log |A|

(1− γ)ηT
+

η

(1− γ)3
+

γβ

η(1− γ)3
+

∥Q̂π
′
k,t,πk − ˆ̂

Q∥νπ′
k,t

,πk

1− γ
)

(54)

Proposition E.5. For the output of player2,

Es∼µ0

[
max
π

V π,πK (s)− V ∗(s)
]

≤O

(
CK

(1− γ)2
(
log 1

c

ηT
+

η

(1− γ)2
+

γβ

η(1− γ)2
+ η∥Q̂π

′
k,t,πk −Qπ

′
k,t,πk∥νπ′

k,t
,πk

+η∥Q̂π̂k−1,π̂k−1 − ˆ̂
Q∥νπ̂k−1,π̂k−1

) +
γK

1− γ

)
.

where C is a problem-dependent constant.

Proof. Combining Lemma E.8,Lemma E.9 and (44) gives the result.

F SDEPO with Neural Networks

To deal with continuous action space, we propose a practical variant of SDEPO, named SDEPO-NN, to
deal with continuous (or large-scale discrete ) action space. SDEPO-NN utilizes neural networks in
policy π and the state-action value function approximation Q, detailed in Algorithm F.
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Specifically, we parameterize π, π with ψ,ψ and parameterize Q,Q with θ, θ, respectively. Based
on the spectral dynamic embedding proposed in our paper, we parameterize the Q function as
Qθ(s, a, b) = r(s, a, b) + ϕ(s, a, b)⊤θ and parameterize the Q function as Q

θ
(s, a, b) = r(s, a, b) +

ϕ(s, a, b)⊤θ.

The Q function is trained to minimize the soft Bellman residual

J(θ) = E(st,at,bt,s′t,a
′
t,b

′
t)∼D

[
1

2
(Qθ(st, at, bt)− Q̂θ(st, at, bt))

2

]
, (55)

with

Q̂θ(st, at, bt) = r(st, at, bt) + γ[Qθ(s
′
t, a

′
t, b

′
t)− α log πψ(a

′
t|s′t)]. (56)

Similarly, The Q function is trained to minimize the soft Bellman residual

J(θ) = E(st,at,bt,s′t,a
′
t,b

′
t)∼D

[
1

2
(Q

θ
(st, at, bt)− Q̂

θ
(st, at, bt))

2

]
, (57)

with

Q̂
θ
(st, at, bt) = r(st, at, bt) + γ[Q

θ
(s′t, a

′
t, b

′
t)− α log πψ(b

′
t|s′t)]. (58)

We restrict the policy to Gaussians and the policy parameters can be learned by minimizing

J(ψ) = Est∼D

[
KL

(
πψ(·|st)∥

exp(Ebt∼πψ [Qθ(st, ·, bt)]
Zθ,1(st)

)]
(59)

and

J(ψ) = Est∼D

[
KL

(
πψ(·|st)∥

exp(Eat∼πψ [Qθ(st, at, ·)]
Zθ,2(st)

)]
, (60)

where D is the replay buffer, Zθ,1(st) and Zθ,2(st) are normalization factors for the distributions.

To lower variance, we reparameterize the policy using a neural network transformation at =
fψ(ϵt; st) and bt = fψ(ϵ

′
t; st) where ϵt and ϵ′t are input noise vectors, sampled from a Gaussian.

We can now rewrite the objectives in Equations 59 and 60 as

J(ψ) = Est∼D,ϵt,ϵ′t∼N

[
log πψ(fψ(ϵt; st)|st)−Qθ(st, πψ(fψ(ϵt; st)|st), πψ(fψ(ϵ

′
t; st)|st))

]
(61)

and

J(ψ) = Est∼D,ϵt,ϵ′t∼N

[
log πψ(fψ(ϵ

′
t; st)|st)−Qθ(st, πψ(fψ(ϵt; st)|st), πψ(fψ(ϵ

′
t; st)|st))

]
(62)

where πψ and πψ are defined implicitly in terms of fψ and fψ , respectively.
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Guidelines:
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Justification: Our assumption may be difficult to verify for compliance. It is left to our
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the implications would be.
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Justification: Section 4
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
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• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.
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experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Section 6
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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• While we encourage the release of code and data, we understand that this might not

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
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proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.
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Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
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Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [No]

Justification: Section 6

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
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Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Section 6
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).
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Answer: [Yes]
Justification: Section 6
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Section 7
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: the paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the original paper that produced the environment.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
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Answer: [Yes]
Justification: Code is well documented.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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