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Abstract

Segmenting microscopy images is a crucial step for quantitatively analyzing bio-1

logical imaging data. Classical tools for biological image segmentation need to2

be adjusted to the cell type and image conditions to get decent results. Another3

limitation is the lack of high-quality labeled data to train alternative methods like4

Deep Learning since manual labeling is costly and time-consuming. Weakly Super-5

vised Cell Segmentation in Multi-modality High-Resolution Microscopy Images16

was organized by NeurIPS to solve this problem. The aim of the challenge was to7

develop a versatile method that can work with high variability, with few labeled8

images, a lot of unlabeled images, and with no human interaction. We developed9

CrossCT, a framework based on the cross–teaching between a CNN and a Trans-10

former. The main idea behind this work was to improve the organizers’ baseline11

methods and use both labeled and unlabeled data. Experiments show that our12

method outperforms the baseline methods based on a supervised learning approach.13

We achieved an F1 score of 0.5988 for the Transformer and 0.5626 for the CNN14

respecting the time limits imposed for inference. The code is available on GitHub15

https://github.com/dasch-lab/crossct.16

1 Introduction17

Microscopy image segmentation is often a crucial step in the quantitative analysis of imaging data for18

biological applications [1]. Usually, the identification of nuclei via segmentation is the first step to19

detect single cells in an image and perform subsequent tasks, e.g. counting cells [2], tracking moving20

populations [3], and subcellular localization of protein signal [4].21

1https://neurips22-cellseg.grand-challenge.org/

36th Conference on Neural Information Processing Systems (NeurIPS 2022).
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Most of the existing bioimage analysis tools identify nuclei using classical segmentation algo-22

rithms.These methods commonly consist of sophisticated combinations of pre-processing filters, e.g.,23

Gaussian or median filters, and segmentation operations, e.g., a region adaptive thresholding followed24

by a watershed transformation [5]. The main problem with these algorithms is that traditional methods25

need to be adjusted to the cell type and image conditions. However, a controlled experimental setting26

is not sufficient to find a unique choice of parameters that can correctly segment all the images.27

In fact, classical algorithms can fail to adapt to the heterogeneity of biological samples or can be28

sensitive to technical artifacts.29

Deep Learning (DL) algorithms have shown encouraging results in fully supervised image segmen-30

tation [6, 7], outperforming traditional methods even on very diverse datasets. To achieve good31

performance and improve the generalization ability, DL models require a diverse and large amount of32

high-quality labeled data. However, creating datasets with these requirements is extremely laborious33

and time-consuming. Such an issue is more noticeable in the field of microscope imaging where the34

resolution is high. Transfer learning was proposed to address the scarcity of data by transferring the35

data distribution from the source domain to the target domain [8, 9, 10]. Another way to address36

data scarcity is to apply weakly-supervised and semi-supervised learning. In recent years, numerous37

weakly-supervised segmentation techniques have been developed, the main idea is to use as less38

annotation as possible (e.g. image-level labels [11, 12], bounding box annotation [13, 14], and point39

annotation [15, 16, 17, 18]). On the other hand, semi-supervised learning aims to construct models40

that use both labeled and unlabeled images (e.g. consistency regularization [19, 20], GAN-based41

approach ( [21, 22]).42

The ’Weakly Supervised Cell Segmentation in Multi-modality High-Resolution Microscopy Images’43

competition was organized by Neural Information Processing Systems (NeurIPS) to challenge the44

participants to find cell segmentation methods that could be applied to various microscopy images45

across multiple imaging platforms and tissue types. The goal is to create a generic, reusable model46

that is trained once and can be reused on various microscopy experiments without further user47

intervention. The task’s difficulty is working with an extremely variable dataset, both in terms of48

the type and size of the cell, and in terms of acquisition techniques. In addition, the dataset has49

limited labeled images and many unlabeled images (unlabeled images are relatively easy to obtain in50

practice).51

In this paper, we present CrossCT, a framework based on cross-teaching between a Convolutional52

Neural Network (CNN) and a Transformer. Our method benefits from the two different learning53

paradigms: CNN is inadequate in learning global context and long-range spatial relations; trans-54

formers can capture long-range feature dependencies, but the lack of low-level details may result55

in limited localization capabilities. For instance, CNN-based deep networks generally have weak56

performances, especially when target structures exhibit significant variation in texture, shape, and57

size. Hence, long-range dependency learning could help to prevent the segmentation network from58

making this mistake. This paradigm of learning global and local features has proven effective in59

object detection [23, 24] and image segmentation [25].60

The paper is organized as follows. In Section 2, the proposed method is presented. Section 3 describes61

the dataset and the training protocol. Section 4 shows and discusses the experimental results. Finally,62

in Section 5, we draw the conclusions.63

2 Method64

Our method is represented in Fig 3. The framework is composed of two networks: a CNN (U-Net)65

that learns the local features in the images, and a Transformer (Swin Transformer + U-Net) that66

learns the global features in the images. The cross-teaching method is based on a previous work67

[25] that applies a similar framework to biomedical images. The main differences between our work68

and [25] are the following. Firstly, the original work directly uses instance labels, while our network69

works with two different types of labels. In particular, background, interior and boundary are used as70

classes, but we also exploited two distance maps, neighbor maps and distance maps from the cell71

center. Secondly, we designed a new loss that takes into account the two different kinds of labels.72

The proposed scheme implicitly encourages consistency between the two networks, combining the73

advantages of CNNs and Transformers to compensate each other and resulting in better performance.74

2



In addition, this approach uses both labeled and unlabeled images, contrary to the baseline methods75

provided by the organizers that used just a supervised approach.76

2.1 Preprocessing77

The dataset provided by the NeurIPS challenge organizers has been generated with four different ac-78

quisition techniques (Brightfield, Fluorescent, Phase-contrast, and Differential interference contrast),79

and therefore the images presents a different number of channels. To uniform the dataset format, all80

images were converted to three channels, and the channels were repeating two times for one-channel81

images. Then, the images were processed starting with an intensity normalization provided by the82

organizers, which makes the nuclei more visible to the network (Fig 1). Finally, the images were83

saved using a uint16 format.84

As for the labels, instead of using the instance representation, the organizers proposed a three-class85

representation (background, interior, and boundary) to help the network separating the nuclei. To86

further improve cell boundary recognition, we added two more information: the distance from the87

center of the cell and the neighbor distance between cells. Cell distances are generated from ground88

truth data by computing the Euclidean distance transform for each cell independently, while the89

neighbor distances are computed considering each pixel of a cell as the inverse normalized distance90

to the nearest pixel of the closest neighboring cell. This representation was defined in [26] to solve91

the challenging problem of segmenting touching cells of various types in the absence of large training92

datasets. The three-class labels were saved in an uint16 format and the two distance maps were saved93

in a float32 format. In Fig 2 the five classes used for the training are shown.94

(a) Original image (b) Pre-processed image

Figure 1: Intensity normalization applied to the images.

2.2 NeurIPS baseline models95

NeurIPS provided three different models as baselines for the challenge 2 : U-Net [27], ViT + U-96

Net [28], and Swin Transformer + U-Net [29]. Adam optimizer [30] with an initial learning rate of97

6e-4 was used for the training. The batch size was set to 8 and the maximum number of epochs to 200098

with an epoch tolerance of 100. The dataset used was the labeled dataset provided by the organizers99

(training: 900 images, validation: 100 images). The code is implemented using PyTorch [31] and100

MONAI library 3. Table 4 shows the results of the three models’ training. The Swin Transformer +101

Unet is the better-performing model, followed by the U-Net.102

2.3 CrossCT103

The proposed solution is based on the Cross Teaching between a CNN and a Transformer network.104

The CNN component is the U-Net provided by the organizers using the MONAI framework. The105

input to the network is a patch of 3 channels×256 pixels×256 pixels obtained from the original106

2https://neurips22-cellseg.grand-challenge.org/baseline-and-tutorial/
3https://monai.io/index.html
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(a) Interior (b) Boundary

(c) Distance from the center of the cell (d) Distance from neighbor cells

Figure 2: Different representations used for the training.

training images. The output is the same patch with the 5 classes representation. The U-Net is a107

5-layer network with down/upsampling by a factor of 2 at each layer with 2 convolution residual units.108

The transformer component of the framework is the U-Net architecture with a Swin transformer109

encoder. Even in this case, we used the baseline model developed using MONAI. The network has a110

3 channels patch input with a size (of 256,256), 5-channel output, and a feature size of 24.111

The loss function combines of the supervised loss and the cross-teaching loss. In each loss, we have112

considered the classification task (detection of background, interior, and boundary) and the regression113

task (distance maps and neighbor maps). The classification task was performed using the summation114

between Dice loss [32] and cross-entropy loss because compound loss functions have been proven to115

be robust in various medical image segmentation tasks [33]. The regression problem was carried out116

using the Mean Squared Error (MSE) loss function used on [26].117

For the labeled data, the CNN and transformer are supervised by the ground truth individually. For118

an input image xi, the proposed framework produces two predictions:119

pci = fcϕ (xi) ; (1) pti = ftϕ (xi) (2)120

where pci , pti represent the prediction of a CNN (f c
ϕ(.)) and a Transformer (f t

ϕ(.)), respectively. Each121

network predicts the 3 class labels (pci,3c for the CNN and pti,3c for the Transformer) and the distance122

and neighbor maps (pci,dn for the CNN and pti,dn for the Transformer). Considering yi,3c and yi,dc123

the ground truth labels for the 3 classes and the distance and neighbor maps, the supervised loss is124

computed as the sum of the two networks’ supervised loss:125

Lsup = Lsup1 + Lsup2 (3)

where,126
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Lsup1 = DiceCE(pci,3c, yi,3c) +MSE(pci,dn, yi,dn) (4)

Lsup2
= DiceCE(pti,3c, yi,3c) +MSE(pti,dn, yi,dn) (5)

are the loss computed for each network as the sum of the DiceCE Loss of the 3 class labels and the127

MSE of the distance and neighbor maps.128

Then the predictions of unlabeled images generated by CNN/Transformer are used to update the129

parameters of the Transformer/CNN respectively. Based on the predictions of (f c
ϕ(.)) and (f t

ϕ(.)), the130

pseudo labels for the 3 classes for the cross teaching strategy are generated by this way:131

plci,3c = argmax
(
pci,3c

)
= argmax

(
fcϕ (xi)

)
(6)

plti,3c = argmax
(
pti,3c

)
= argmax

(
ftϕ (xi)

)
(7)

The cross-teaching loss is computed as the sum of the DiceCE Loss between the prediction of CNN132

and the pseudo label of the Transformer and vice versa. Then we sum the MSE between the prediction133

of the CNN and the prediction of the Transformer, as in the following equations:134

Lctl = Lctl1 + Lctl2 + Lregression (8)
where,135

Lctl1 = DiceCE(pci,3c,pl
t
i,3c), (9)

Lctl2 = DiceCE(pti,3c,pl
c
i,3c) (10)

Lregression = MSE(plci,dn,pl
t
i,dn). (11)

The final loss is the sum of the supervised loss and a weight factor multiplied by the cross-teaching136

loss function:137

Ltotal = Lsup + λLctl (12)

The weight factor is defined by a time-dependent Gaussian warming-up function commonly138

λ(t) = 0.1 · e−5(1− ti
ttotal

)2 .139

2.4 Post-processing140

Regarding post-processing, we used the one provided by the organizers, which defines the instances141

starting from the interior map predicted by the network.142

3 Experiments143

3.1 Dataset144

The training set provided by the organizers consists of 1000 labelled images and 1726 unlabeled145

images originating from various microscopy types, tissue types, and staining types. There are four146

microscopy modalities in the training set, including Bright Field (BF), Fluorescent (fluor), Phase-147

Contrast (PC), and Differential Interference Contrast (DIC). The dataset has different types of cells,148

e.g. bone marrow, primary dermal human fibroblast cells, induced leukocyte stem cells, platelets, and149

saccharomyces cerevisiae cells. Moreover, the images have different features in terms of the number150

of nuclei per image and different cell dimensions. The validation set comprises 100 unlabeled images151

and the test set of more than 200 images.152
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Figure 3: Cross–teaching between CNN and Transformer. Labeled and unlabeled images pass through
both networks. The two networks predict the 3 classes (background, interior, and boundary) and
Distance and Neighbor maps (DN). For the supervised branch, the predictions are compared with the
ground–truth labels. For the cross–teaching branch, the prediction of the 3 classes of one network is
compared with the pseudo-label of the other, and the prediction of the DN labels of the two networks
is compared with each other.

Two additional public datasets were included in the original one (Cellpose [34] and Omnipose [35])153

with the aim of helping the network generalizing more widely and more robustly. The Cellpose154

dataset is composed by 608 highly-varied images of cells, containing over 70,000 segmented objects.155

Those images contain different types of cells (e.g. neurons, macrophages, epithelial and muscle cells,156

as well as plant cells), a small set of microscopy images that did not contain cells or contained cells157

from very different types of experiments, and a small set of non-microscopy images (e.g. fruit, rocks,158

and jellyfish). The Ominpose dataset has 735 bacteria images originating from four different sources159

using distinct microscopes, objectives, sensors, illumination sources, and acquisition settings.160

3.2 Implementation details161

The code is implemented using PyTorch [31] and MONAI library 4. MONAI is an open-source162

framework that is built on top of PyTorch. More information about the environment are shown in163

Table 1.164

The final evaluation of the model is performed using two metrics: F1 score and time efficiency. The165

F1-score is computed at the IoU threshold 0.5 for the true positive. The time efficiency shown in166

the equation 13, considers the prediction time and the time tolerance for the docker startup time.167

Specifically, the time tolerance is 10s if the image size (height H x width W) is no more than 1,000,000.168

If the image size is more than 1,000,000, the time tolerance is (HxW)/1000000x10s.169

Time Tolerance(H, W) =
{

10s, if H ×W ≤ 106

H×W
106 × 10s, if H ×W > 106

,

Running time = max(0, T − Time Tolerance)
(13)

3.2.1 Environment settings170

The development environments and requirements are presented in Table 1.171

3.2.2 Training protocols172

Our network architecture consists of a U-Net and a Swin transformer U-Net provided as the baseline173

by the organizers, as already described in the previous section, but with some training modifications174

Table 2. A final dataset of 2343 labelled images (NeurIPS dataset, Cellpose dataset, and Omnipose175

4https://monai.io/index.html
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Table 1: Development environments and requirements.
System Ubuntu 20.04.5 LTS
CPU AMD EPYC 7413 24-Core Processor
RAM 16×4GB; 2.67MT/s
GPU (number and type) NVIDIA A100-SXM-80GB
CUDA version 11.5
Programming language Python 3.8.13
Deep learning framework Pytorch [31] (Torch 1.12.1, torchvision 0.13.1)
Code https://github.com/dasch-lab/crossct

dataset) was used to train the two baseline models. The dataset was splitted in a training set (70%)176

and as a validation set (30%) for the performance assessment. Data augmentation was applied to the177

training images, following the same procedure provided by the organizers. Image size was uniformed178

by randomly sampling patches of 256×256 from the original dataset, and we used a sliding window179

of 256×256 for the inference. During the training, we evaluate the validation dataset and we saved180

the model that had a higher F1 score.181

Once the baseline was trained, we used the U-Net and the Swin Transformer + U-Net model as the182

pre-trained model for the cross-teaching between those two networks. This makes cross-teaching183

faster than starting from scratch. The cross-teaching protocol is defined in Table 3 and we have184

followed the same procedure illustrated for the baseline training, but we used just the NeurIPS training185

dataset (1000 labeled images and 1726 unlabeled dataset).186

In Table 4 we have also included a cross-teaching between ResNet + U-Net [36] and Swin + U-Net187

to evaluate if a different network could achieve better results with respect to the U-Net. The ResNet188

+ UNet was modified with 5 layers as the U-Net, and the number of parameters is twice the U-Net189

(ResNet + U-Net: 3.23M and U-Net: 1.63M 3). We directly pre-trained the ResNet + U-Net as the190

other networks and use it for cross-teaching.191

Table 2: Training protocols for the two baseline models: U-net and Swin transformer + U-net.

Network initialization “he" normal initialization
Batch size 64
Patch size 256×256
Total epochs 2000
Optimizer Adam
Initial learning rate (lr) 0.1
Lr decay schedule -
Training time 1 week
Loss function Dice Cross Entropy + Mean Squared Error
Number of model parameters U-Net: 1.63M ; Swin Transf + U-Net: 6.29M5

Number of flops U-Net: 1.27G; Swin Transf + U-Net: 4.87G6

CO2eq (Optional) -

4 Results and discussion192

The cross-teaching method exploits labeled and unlabeled images, where the unlabeled data prediction193

is used as the pseudo label to directly supervise the other network end-to-end. The strategy of cross-194

teaching can produce more stable and accurate pseudo labels than explicit consistency regularization.195

Hence, the use of unlabeled images has improved the performance of the two networks compared to196

the two baselines, as shown in Table 4.197

During the training and evaluation phase, the Swin Transformer U-Net (F1 score: 0.5988) performed198

better than the U-Net (F1 score: 0.5626). Although the first network has a higher score, we chose the199

second one because it is faster in performing the segmentation, since the prediction time is part of200

the evaluation. The tuning set analysis highlighted the efficacy of U-Net in recognizing nuclei of201

different dimensions and shapes but still does not separate the nuclei properly when the cells are202
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Table 3: Training protocols for the cross-teaching between the U-Net and the Swin transformer +
U-Net.

Network initialization pre-trained baseline models (Table 2)
Batch size 64
Patch size 256×256
Total epochs 50,000
Optimizer Adam
Initial learning rate (lr) 0.01
Lr decay schedule -
Training time 4 weeks
Loss function Dice Cross Entropy + Mean Squared Error
Number of model parameters U-Net: 1.63M ; Swin Transf + U-Net: 6.29M7

Number of flops U-Net: 1.27G; Swin Transf + U-Net: 4.87G8

CO2eq (Optional) -

close or merged together. One of the reasons could be that the boundary was not correctly detected203

during the prediction and this requires more accurate post-processing to define them better.204

205

4.1 Quantitative results on tuning set206

The F1 score obtained on the tuning set for the different models is presented in Table 4. The unlabeled207

images improved the performance of the baseline models. Since we have introduced unlabelled208

images for the training, we need to check if CrossCT has better performance with the whole dataset.209

As reference methods for the ablation study, we used the U-Net and Swin + U-Net pre-trained with210

fully-supervised learning. Unfortunately, the tuning set labels were not available at the time of211

writing, hence we have decided to compare both models with a subset of the labeled dataset (our212

validation dataset used during the training). Figure 4 shows the comparison between the different213

networks in a bone marrow image. The cross-teaching and the addition of the unlabelled data allowed214

the CrossCT method to separate the cells better and to have a more "clear" output than the U-Net215

trained just with a fully supervised approach. Additionally, table 4 shows that the Swin + U-Net216

during the cross-teaching is performing better and learns faster than the U-Net only if the network217

is pre-trained. This difference in performance could be explained by the already demonstrated218

capacity of transformers to perform better than CNNs when it comes to transferring knowledge as219

demonstrated in [37].220

4.2 Qualitative results on validation set221

Figure 5 shows some qualitative results of the CrossCT U-Net for different type cells in the tuning222

set. Images with fully separated cells are properly segmented regardless of cell type and shape. In223

Fig. 5(a) the violet cells are correctly segmented by the network. Moreover, the platelet images are224

correctly segmented even if the boundary of the cells is difficult to define starting from the image.225

Generally speaking, the network fails to correctly separate cells that are near or merged together and226

with too high or too low nuclei dimensions, even if the network is able to detect the cells (e.g., in227

fluorescence images). This could be solved with better post-processing that combines the 5 different228

outputs of the network. Fig. 5(b) highlights issues in segmenting specific types of images (e.g., bone229

marrow and fluorescence). A possible cause could be the relatively poor representation of those types230

of images in the training dataset. This problem could be solved using a more balanced dataset and231

more data augmentation for the different cells.232

4.3 Segmentation efficiency results on validation set233

The segmentation efficiency for our network is represented in Table 5. The overall ranking time234

is 3.0778 seconds, dividing this time by the 101 validation images, we obtain a mean time of 0.03235

seconds.236
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(a) Bone marrow image (b) Ground truth

(c) Pre-trained U-Net (d) DCrossCT U-Net

(e) Pre-trained Swin + U-Net (f) CrossCT Swin + U-Net

Figure 4: Comparison between CrossCT and the pre-trained model on bone marrow images.

(a) Good segmentation result examples

(b) Poor segmentation examples

Figure 5: CrossCT U-Net prediction with different types of cells.

9



Table 4: F1 score evaluation for the different models used in this study.

Phase Classes Learning Additional
dataset Epochs Model

Best mean
dice

(training)

Mean F1
score

(training)

Mean F1
score

(submission)

baseline 3 supervised - 2,000

U-Net 0.7119 0.6463 0.4937
VIT + U-Net 0.5915 0.2790 0.2828
Swin + U-Net 0.7286 0.6735 0.5482
ResUnet 0.6721 0.6241 0.5466

pre-trained 5 supervised Cellpose
Omnipose 2,000

U-Net 0.7970 0.5733 0.5335
Swin + U-Net 0.8089 0.6301 0.6015
ResUnet 0.8023 0.6287 0.6011

cross-teaching 3 semi-sup -
2,000 U-Net 0.6191 0.3158 0.2225

Swin + U-Net 0.5909 0.2102 0.2185

50,000 U-Net 0.7062 0.5339 0.5339
Swin + U-Net 0.7038 0.4488 0.4437

CrossCT 5 semi-sup -
2,000 U-Net 0.5939 0.3821 0.3369

Swin + U-Net 0.6204 0.4485 0.4448

50,000 U-Net 0.7280 0.6896 0.5626
Swin + U-Net 0.7360 0.7068 0.5988

CrossCT 5 semi-sup -
2,000 ResUnet 0.6961 0.6229 0.5387

Swin + U-Net 0.6236 0.5062 0.4332

50,000 ResUnet 0.7133 0.6835 0.5700
Swin + U-Net 0.7383 0.6950 0.6059

Table 5: Running time evaluation.

Img Name Real Running Time (s) Rank Running Time (s)
cell_00001.tiff 13.0778 3.0778
from cell_00002.png

to cell_00100.tif average: 8.0072 0.0

cell_00101.tif 28.5264 0.0

4.4 Results on final testing set237

The final ranking of the challenge was made by evaluating the model on the test set. Table 6 shows238

the F1 score for different types of images. CrossCT achieves interesting results on all types of images,239

except fluorescence images. This is probably because fluorescence images have a higher number of240

nuclei, which are very dense and of different shapes. In fact, in the fluorescence labels, there is no241

clear edge between the different cells. This aspect could be solved by using the distance and neighbor242

maps, which will also improve the prediction of the whole dataset.243

Table 6: Results on the test set

Median
FI-AII

Median
FI-BF

Median
FI-DIC

Median
FI-Fluo

Median
FI-PC

Mean
FI-AII

Mean
FI-BF

Mean
FI -DIC

Mean
FI-Fluo

Mean
FI-PC

0.3463 0.4401 0.4005 0.0088 0.5268 0.3437 0.4408 0.3856 0.0878 0.4816

4.5 Limitation and future work244

Dataset image variability is the main limitation, some categories are more numerous than others (e.g.245

bone marrow and fluorescence images have a high number of examples). The dataset imbalance246

makes it more difficult for the network to learn segmenting different types of cells. Moreover, the247

difference in cell sizes within the image increases the difficulty of the segmentation task. Another248

limitation is that the networks still can not perfectly separate all nuclei. Hence, one of the main future249

development is to develop a more sophisticated post-processing combining the prediction of the three250

classes with the distance and neighbor maps to improve cell separation.251

Next step would be to analyze the performance of our framework with a semi-supervised method to252

see if we have achieved similar or better results. Moreover, the main idea of the paper was to improve253

the baseline method and use the unlabelled images. However, giving the good performance of the254
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ResUnet, testing different combinations of networks could achieve better results. We should also255

exploit different semi-supervised learning techniques to analyze which one is the best in transferring256

knowledge.257

An interesting aspect to further analyse is the error propagation using pseudo labels that can also258

lead to low performance. In self-labelling network, the detector is misguided by the incorrect pseudo259

labels predicted by itself (dubbed self-errors). Teacher-student network are not enough to solve this260

problems since pseudo labels always remain fixed, and the teacher detector do converge to the student261

detector in the late stage of training, thus the labeling process degenerates into the self-labeling262

manner and suffers from the same limitations. Cross Pseudo Supervision is a good method to limit263

this errors [38]. This work consists of two parallel segmentation networks that have the same structure264

and their weights are initialized differently. This could be more similar to our case. However, [39]265

showed that the cross-pseudo supervision methods cannot fully exploit the advantages of multiple266

models and improve the quality of pseudo labels. The authors proposed a framework that leverages267

the disagreements between networks to discern the self-errors and refines the pseudo label quality268

by the proposed cross-rectifying mechanism. Hence, future development could include also a more269

detailed study on error propagation with this different semi-supervised learning approaches.270

5 Conclusions271

In conclusion, in this work, we present CrossCT, a generic and reusable model based on cross-teaching272

between CNN and Transformer , able to segment a variety of different microscopy experiments,273

without additional user intervention. The idea is based on the assumption that CNN can capture local274

features efficiently and Transformer can model the long-range relation better, and these properties275

can complement each other during training. Experimental results showed that the proposed method276

can outperform the supervised method provided by the organizers as a baseline. In the future,277

more sophisticated pre-processing techniques will be implemented to resize the nuclei dimension278

to improve the high dimension nuclei detection and separation. In addition, more efficient post-279

processing technique will be adopted to better separate the nuclei. A starting point could be to280

combine the 3 classes with the distance labels and the neighbor labels.281
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