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Abstract

Parameter-efficient  fine-tuning (PEFT)
methods, particularly Low-Rank Adaptation
(LoRA), offer an efficient way to adapt large
language models with reduced computa-
tional costs. However, their performance
is limited by the small number of trainable
parameters. Recent work combines LoRA
with the Mixture-of-Experts (MoE), i.e.,
LoRA-MOoE, to enhance capacity, but its full
potential remains underexplored. Existing
methods often overlook two key factors: 1)
the influence of downstream tasks when
assigning expert numbers, and 2) the uniform
rank assignment across all LoRA experts,
which restricts representational diversity. To
mitigate these gaps, we propose GuiLoMo, a
fine-grained layer-wise expert numbers and
ranks allocation strategy with GuidedSelection
Vectors (GSVs). GSVs are learned via a
prior bilevel optimization process to capture
both model- and task-specific needs, and are
then used to allocate optimal expert numbers
and ranks. Experiments on three backbone
models across diverse benchmarks show that
GuiLoMo consistently achieves superior or
comparable performance to all baselines.
Further analysis offers key insights into how
expert numbers and ranks vary across layers
and tasks, highlighting the benefits of adaptive
expert configuration. Our code is available
at https://anonymous.4open.science/r/
GuilLoMo-C638.

1 Introduction

Although large language models (LLMs) have
demonstrated remarkable performance across a
wide range of general tasks (Jiang et al., 2023;
Brown et al., 2020; Chowdhery et al., 2023; Jian
etal., 2023; Touvron et al., 2023b; Han et al., 2021),
they still fall short in certain tasks or domains,
such as reasoning (Gou et al., 2023; Srivastava
and Gandhi, 2024; Yu et al., 2025), multilingual-
ism (Huang et al., 2023; Gurgurov et al., 2024;

MoLA  AlphalLoRA G?CI)I;(;SI\;IO
Model Specific X v v
Task Specific X X v
Expert Number v v v
Expert Rank X X v

Table 1: Compared to existing methods, our proposed
GuiLoMo strategy can allocate the optimal expert num-
bers and ranks within LoRA-MOoE, tailored to specific
models and tasks.

Zhang et al., 2024a), and question answering in
specialized contexts (Biancotti et al., 2024; Zhang
et al., 2024b; Yang et al., 2024). To enhance the
performance of LLMs in these challenging areas,
a common practice is fine-tuning. However, with
the growing size of current LLMs, full fine-tuning
faces significant challenges in terms of computa-
tional efficiency and memory consumption. To mit-
igate these issues, parameter-efficient fine-tuning
(PEFT) methods have gained considerable atten-
tion (Houlsby et al., 2019; Li and Liang, 2021;
Lester et al., 2021; Hu et al., 2022; Liu et al., 2022;
Zhang et al., 2023; Yang et al., 2025). Among
these methods, Low-Rank Adaptation (LoRA) (Hu
et al., 2022) is regarded as one of the most efficient
approaches. Nonetheless, its performance remains
constrained due to the relatively small number of
trainable parameters (Xu et al., 2023). Recent stud-
ies suggest that combining LoRA with the Mixture-
of-Experts (MoE) paradigm, referred to as LoRA-
MoE, by incorporating multiple LoORA modules,
offers a promising solution to this limitation (Wu
et al., 2024; Gao et al., 2024; Qing et al., 2024;
Dou et al., 2024; Liu et al., 2023; Luo et al., 2024).

However, fully exploiting the potential of LoRA-
MoE remains an open research question. First, Gao
et al. (2024) considered that uniformly allocating
the number of experts across all layers is subop-
timal, as different layers play distinct roles in the
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model. Over-allocating experts to certain layers
can lead to redundancy and degraded performance.
To address this, they proposed a group-wise expert
allocation strategy (MoLA), which divides all lay-
ers into four groups and assigns varying numbers of
experts to each group, ensuring that layers within
the same group share the same number of experts.
Building on this, Qing et al. (2024) introduced a
layer-wise allocation strategy (AlphalLoRA), which
theoretically determines the expert numbers for
each layer based on its training quality.

Despite these advancements, two critical lim-
itations remain, as shown in Table 1: 1) These
methods determine the expert number without con-
sidering the downstream task. This is problematic,
as different tasks may have varying levels of com-
plexity and specific needs, which should influence
the optimal expert configuration (as supported by
experiments in Appendix A); 2) These methods
also overlook the intrinsic rank of LoRA experts,
typically assigning the same rank to all LoRA ex-
perts. This uniformity leads to equivalent repre-
sentational capacities across experts, causing them
to capture similar information. Thus, LoRA-MoE
struggles to handle diverse and complex inputs.

To address these limitations, we propose
GuiLoMo, a fine-grained strategy for jointly al-
locating layer-wise expert numbers and ranks in
LoRA-MOoE based on bilevel optimization with
GuidedSelection vectors. GuiLoMo operates in
two steps: 1) Obtaining GuidedSelection Vectors
(GSVs): Through an initial optimization, GSVs
are learned to guide LoORA-MOoE in selecting the
optimal expert numbers and ranks tailored to both
the model backbone and the downstream task; 2)
Allocating Expert Numbers and Ranks: After the
prior optimization, the optimized GSVs are used to
allocate expert numbers and ranks for LORA-MoE,
followed by the final training phase.

To summarize, our contributions are as follows:

1) To further unlock the potential of LoRA-
MoE, we propose GuiL.oMo, a fine-grained layer-
wise expert numbers and ranks allocation strategy
based on proposed GuidedSelection mechanism.

2) We conduct extensive experiments on a
wide range of tasks, including natural language
understanding, question answering, and mathemat-
ical reasoning, demonstrating the effectiveness of
GuiLoMo. For instance, GuiLoMo achieves an
average 2.61% improvement on mathmatical rea-
soning tasks with LLaMA-27g. Further analysis

confirms the effectiveness of GuidedSelection vec-
tors in selecting optimal expert numbers and ranks.

3) We provide valuable insights into the rela-
tionship between expert numbers, ranks, and their
assigned layers. For example, we observe that top
layers require more experts and higher ranks. How-
ever, in bottom layers, multi-head attention (MHA)
benefits more from increased expert numbers and
ranks, whereas feed-forward networks (FFN) only
exhibit this behavior in middle and later layers.

2 Preliminary

LoRA-MoE Framework LoRA-MOoE integrates
multiple vanilla LoRA experts into each pre-trained
LLM submodule. Vanilla LoRA (Hu et al., 2022)
efficiently adapts large models to downstream tasks
by lowering computational and memory costs. For
a pre-trained weight matrix Wg € R™*" LoRA
creates two low-rank trainable matrices A and
B, where B € R™*", A € R™" where r <
min(m,n). During training, W¢ remains fixed
while A and B are updated via gradient descent.
The output representation h is defined as follows:

h = Woz + BAz (1)

Every traditional LoORA-MoE layer incorporates N
LoRA experts. The forward pass through the layer
can be formulated as:

N
h=Woz+ ) G(z);BiAsz 2)
=1

where G(x) = Softmax(zW,) represents the
router in the LORA-MOoE layer. W,. is the train-
able parameter matrix of the routing network that
directs input x to different experts. By adaptively
allocating inputs, the router promotes expert spe-
cialization, enhancing their ability to handle diverse
tasks and input patterns.

Applying LoRA-MoE for LLMs LoRA-MoE
is applied to key modules of LLMs, namely multi-
head attention (MHA) and feed-forward networks
(FFNs). In MHA, inputs are projected via W€,
WE WV, and WO e R?*4_Each FFN uses gate-
and up-projection matrices W&, WU ¢ R g
activation (e.g., GELU), and a down-projection
WP e R¥*4 where d’ > d. GuiLoMo assigns
optimal expert number and rank to these matrices.
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Figure 1: An illustration of our GuiLoMo strategy. GuiLoMo involves two steps: (Step 1): Exploring the optimal
number of experts and ranks via a bilevel optimization algorithm. (Step 2): Allocate optimal expert number and
rank based on guided-selection vectors obtained in the previous step.

3 Method

In this section, we present our GuiLoMo strategy,
which consists of two main steps: 1) A bilevel op-
timization algorithm is employed to obtain Guid-
edSelection Vectors (GSVs) of expert number and
rank for each module, tailored to the specific down-
stream task and model (§ 3.1); 2) Based on the ob-
tained GSVs, it allocates the optimal expert number
and rank to each module in LORA-MoE, which are
then used for final training (§ 3.4). See § 3.2 and
§ 3.3 for details of GSVs.

3.1 Bilevel Optimization for Obtaining the
GuidedSelection Vector

In this section, we introduce the objective of bilevel
optimization used to obtain GuidedSelection Vec-
tors and its optimization process.

Optimization Objective Formally, our objec-
tive is to automatically determine the optimal
expert number e; for a given module (e.g.,
down-projection in FFN) within the i-th layer,
and the optimal rank r} ; for the j-th expert under
a specified LLM and downstream task setting.

To achieve this, we formulate the problem as an
optimization task. In this process, we introduce
the Expert GuidedSelection Vector g, and Rank
GuidedSelection Vector g as key components of
the optimization, and the optimization objective is:

min E(D7 79,8, gR) (3)
{gE.8Rr}
L =Lsrr + LBAL 4

where 7y is specific LLM and Lgpr denotes the su-
pervised fine-tuning loss, which is computed via au-
toregressive language modeling on the downstream
dataset D, while Lpar (refer to Eq. 14) represents
the MoE balancing loss (Fedus et al., 2022; Zoph
et al., 2022), which is introduced to encourage bal-
anced utilization across experts and prevent expert
collapse. The GuidedSelection Vector g € Rémax
and g; € R™ are both trainable, with ep,x and
Tmax representing the predefined maximum number
of experts and rank in LoRA expert (see § 3.2 and
§ 3.3 for more details of g and g). Since the op-
timization of g, g5 should be under the optimal
T, we draw inspiration from Liu et al. (2019) and
formulate the problem as a bilevel optimization:

min L(D1,7p,8x, Er)
{er.gr} ®)

s.t.my = argn}r%)n L(Ds, 70, 8 8r)

where D; and Dy are two splits of the training set
D with equal size.

Optimization Process Based on the above objec-
tive, we formulate the overall procedure for obtain-
ing the optimized GSVs in only a few T training
steps.! For a specific ¢-th training step, we first
update 7;(t) from 7y as in Eq. 6, and then opti-
mize the GSVs (g and 7(t)) with {gs, gr}®
following Eq. 5.

ﬂ-; (t) = 7T9(t) - 59 * vwe(t)['(D27 7T9(t)7 g, gR) (6)

'T is a hyperparameter in our experiments.



where & is the learning rate. The overall optimiza-
tion procedure is summarized in Alg. 1. The final
obtained g7}, and g}, determine the optimal number
of experts and ranks according to the strategy de-
scribed in § 3.4. GuiLoMo progressively learns the
optimal heterogeneous LoRA-MoE configuration,
allowing it to meet model- and task-specific needs.

Algorithm 1: Optimization Process

Input: Predefined maximum number of
experts emax and LoRA rank rp,«
per module, T" optimization steps,
learning rate {g for GSVs.

Output: The optimized Expert GSV g7,

and Rank GSV gr..
1 Initialize the LoRA-MoE framework

according to the emax and rmax;

2 Split the training set D into D; and Ds;
sfort=0,t<Tdo
4 Obtain 7;(t) from Eq. 6;
5 Compute the gradients of GSVs
Vigneny 0 LDL (), 8, g);

6 Update ggﬂ) and ggﬂ) using the

gradients in Eq. 9 and the learning rate
&g for GSV parameters;

7 Update weights mg(t + 1) by
descending the gradients with respect
to model weights

vﬂg(t)E(DQJ W@(t)7 gJ(EtJrl)v gg)),

8 Derive the optimized Expert GSV g}, and
Rank GSV g7.

3.2 Expert GuidedSelection Vector

For the Expert GSVs g, € R®mx, we first predefine
the maximum expert number en,x and initialize
them with Gaussian distribution:

gp = Softmax(a), with o = {oy }i™5 (7)
where a; ~ N (0, 1), and g denotes the selection
probabilities for different allocated expert number
settings. GuiLoMo selects the expert number set-
ting by taking the index of the maximum value
in g. For example, if the maximum value of g
at the ¢-th layer occurs at the 3-th position dur-
ing the current training step, we allocate 3 experts
for this module (see the green region in Fig 1).
Since gt is learned through a few optimization
steps on the task-specific data, the expert selection

process described above needs to be differentiable.
To guarantee gradient flow and enable end-to-end
optimization, we adopt the Straight-Through Gra-
dient Estimator (STGE) (Bengio et al., 2013) along
with an auxiliary virtual vector M g to approximate
discrete selection while maintaining differentiabil-
ity. Let n* denote the index of the maximum value
in gz. The forward propagation of the expert vir-
tual vector Mg € {0, —oco} is formulated as

follows:
; 0 if i <n*
v 3 =
ME_{ —o00, ifi>n* )
For example, when allocating 3 experts, the ex-
pert virtual vector Mg is: [0,0,0, —o0, ..., —00].

Meanwhile, in the backward propagation, we prop-
agate the gradient flow from Mg to gz:

oL oL
0gx B /H( 8/\/IE)

€))

For more details on the H operation, please refer to
Appendix G. The Mg is applied to top-K routing
process to guide the learning of g:

Gila) = TopK (Softmax(z W, + MEg), K);
S K, TopK(Softmax(z W, + Mg), K);

10)

where W,. denotes the weight of routing network.

3.3 Rank GuidedSelection Vector

The Rank GSVS grcprmax shares a similar concept
with the Expert GSVs during bilevel optimization.
It begins by predefining the maximum rank 7pax
and is also initialized with Gaussian distribution
using Eq. 7. However, the semantic meaning of
each element differs, where each element in g
represents a specific rank assigned to the corre-
sponding expert. We select the index of maximum
value in g, i.e., m*, to determine the rank for the
current training step. Similar to g, gz is non-
differentiable during this process; therefore, we
design rank virtual vector Mp € {0, 1} ™= to ad-
dress this issue:

My = { ,

For example, if the maximum value of g at a given
training step is located at the 4-th element, the rank
for this module is set to 4 (see the yellow region
in Fig. 1). Accordingly, the corresponding Rank
GuidedSelection Vector Mp is [1,1,1,1,0,...,0].
Then, we parameterize on each LoRA expert
matrix, denoted as A = BA € R™*™ (Eq. 1), in

if i < m*
if 7 > m*

1D



Models | Strategy IMRPC COLA RTE |ScienceQA CommonsenseQA OpenBookQA | Avg.
MoLA(5)-Uniform(8) 82.43 84.18 83.03 90.28 75.10 76.00 81.84
AlphaLoRA-Uniform(8) | 85.19 85.42 85.19| 90.37 76.49 78.20 83.48

LLaMA7s |MoLA(S5) + SoRA 82.55 84.76 83.03 90.38 75.35 76.80 82.15
AlphalL.oRA + SoRA 85.51 85.62 85.20| 90.78 76.82 78.20 83.69
GuiLoMo (Ours) 85.04 85.71 85.92| 91.50 77.15 78.60 83.99
MoLA(5)-Uniform(8) 84.17 86.19 84.83 92.08 77.55 80.00 84.14
AlphaLoRA-Uniform(8) | 84.23 86.67 87.36| 92.71 78.05 80.80 84.97

LLaMA-275 [MoLA(5) + SoRA 84.46 86.31 84.84| 92.36 77.81 80.20 84.31
AlphalLoRA + SoRA 84.99 85.81 87.00| 92.31 78.38 80.00 84.75
GuiLoMo (Ours) 85.80 87.25 87.36| 92.99 78.46 81.20 85.51
MoLA(5)-Uniform(8) | 86.61 87.15 87.73| 93.97 79.52 83.40 86.40
AlphaLoRA-Uniform(8)| 87.13 88.88 88.09| 94.42 80.02 83.80 87.06

LLaMA-3gg |MoLA(5) + SoRA 85.97 87.54 88.45 94.24 79.44 84.00 86.61
AlphalL.oRA + SoRA 87.07 88.69 89.53| 94.20 80.18 84.00 87.28
GuiLoMo (Ours) 87.77 89.26 88.45| 94.83 81.24 85.60 87.86

Table 2: Accuracy comparison of different methods under direct fine-tuning for each dataset. MoLA(5) indicates
assigning a uniform 5 experts to each layer. Uniform(8) denotes setting all the rank of LORA expert to 8.

a form that mimic singular value decomposition
(SVD) to obtain A = PAQ. P € R4 > max apd
Q € R™=*42 ¢orrespond to the original LoORA ma-
trices B and A, respectively, and A are initialized
to 1. Note that we do not perform exact SVD. Sub-
sequently, the rank virtual vector M is integrated
with A and is incorporated into Eq. 2 to perform
forward propagation:

K
h' =Woz+) G(x)P(MroA©Qa) (12)
=1

where ® denotes element-wise dot product, and G
is defined in Eq. 10. M guide the learning of gp,
and its gradients are backpropagated in the same
manner as M g in Eq. 9, using STGE technique.

3.4 Allocating Expert Number and Rank via
GSV

After obtaining optimized expert and rank GSVs,
the optimal expert number e* and rank r* are deter-
mined by selecting the index corresponding to the
maximum values in g and gz, respectively. The
formulation is given as follows:

e = argmax (g’
i gmax ( E) 13)
ri ;. = argmax (gy’)

i,J

where €] < enax and r;‘i ;< Tmax denote the as-
signed expert number and rank in the ¢-th layer and
the rank of the j-th expert in the i-th layer, respec-
tively. Subsequently, we fine-tune the model using
the loss function defined in Eq. 4 with expert num-
ber ¢* and rank r*, where the LORA-MoE weights
are initialized with 7} (T").

4 Experiment

In this section, we conduct extensive experiments
to examine the performance of GuiLoMo. We also
conduct experimental analyses to gain deeper in-
sights into this field, as presented in § 4.3. Imple-
mentation details can be found in Appendix D.

4.1 Experimental Settings

Datasets Following Qing et al. (2024), we evalu-
ate our model on six natural-language understand-
ing (NLU) and question-answering (QA) bench-
marks, three from GLUE and three focused on
reasoning: (1) the Microsoft Research Paraphrase
Corpus (MRPC) (Dolan and Brockett, 2005); (2)
the Recognizing Textual Entailment (RTE) dataset
(Wang et al., 2019); (3) the Corpus of Linguistic
Acceptability (CoLA) (Wang et al., 2019); (4) Sci-
enceQA (Lu et al., 2022); (5) CommonsenseQA
(Talmor et al., 2019); and (6) OpenBookQA (Mi-
haylov et al., 2018).

We also evaluate GuiLoMo on mathematical rea-
soning benchmarks. Specifically, we perform in-
struction tuning on the MetaMathQA (Yu et al.,
2024) dataset and evaluate on three benchmarks:
1) MultiArith (Roy et al., 2015), 2) SVAMP (Patel
et al., 2021), and 3) GSM8K (Cobbe et al., 2021).
Comprehensive descriptions of all datasets appear
in Appendix B.

Models We have applied our method to
LLaMA~7g (Touvron et al., 2023a), LLaMA-275
(Touvron et al., 2023b), LLaMA-3gg (Cobbe et al.,
2021), and Mistral-v0.175 (Jiang et al., 2023).

Baselines We compare our GuiL.oMo strategy
with current state-of-the-art (SOTA) baseline meth-



Models | Strategy | GSM8K SVAMP MultiArith | Avg.
M(5)-U(8) 4404 5200  88.16 [61.40
A-U@®) 4503 5360  86.67 |61.77
LLaMA7 | M(5) +S 4397 5380 8850 |62.09
A+S 46.10 5480  89.17 |63.36
GuiLoMo (Ours) | 47.01  56.60  91.17 |64.93
M(5)-U(8) 49.50 5710  87.00 |64.53
A-U®) 5042 57.00 9133 [66.25
LLaMA-275 | M(5) + S 5042 5790 8833 6555
A+S 5148 5800 9250 |67.33
GuiLoMo (Ours) | 53.07  59.20  93.67 |68.65
M(5)-U(8) 71.03 7430  96.83 |80.72
A-U@®) 7149 7510 9733|8131
LLaMA-3g5 | M(5) + S 7172 7350 97.00 |80.74
A+S 7301 7530 9733 |81.88
GuiLoMo (Ours)| 72.85  76.00  97.83 |82.23

Table 3: The results of mathematical reasoning under
three models. M(5)-U(8): MoLA(5)-Uniform(8); A-
U(8): AlphaLoRA-Uniform(8); M(5) + S: MoLA(5) +
SoRA; A +S: AlphalLoRA + SoRA.

ods including MoL A (Gao et al., 2024)-Uniform,
AlphalLoRA (Qing et al., 2024)-Uniform (where
“Uniform” refers to either assigning the same
number of experts to all layers or assigning the
same rank to all experts), MoLA+SoRA, Al-
phalLoRA+SoRA. SoRA (Ding et al., 2023) is a
variant of LoRA that allows for dynamic adjust-
ments to the intrinsic rank during the adaptation
process.” Implementation details of baselines can
be found in Appendix E.

4.2 Main Result

Table 2 reports the results on three NLU tasks
and three QA benchmarks. Across these datasets,
GuiLoMo surpasses every baseline in terms of Avg.
performance. Specifically, relative to AlphalLoRA-
Uniform(8), GuiLoMo delivers consistent gains
of 0.61%, 0.64%, and 0.84% on the three model
settings, respectively. GuiLoMo also outperform
baselines on mathematical reasoning task. As show
in Table 3, GuiLoMo exceeds AlphalLoRA + SoRA
by an average of of 2.48%, 2.61%, and 0.43% on
LLaMA7g, LLaMA-275, and LLaMA-3gg, respec-
tively. Based on these observations, we conclude
that: GuiLoMo, which flexibly allocates expert num-
ber and rank tailored to both model-specific and
task-specific demands, leads to improved perfor-
mance.

4.3 Further Analysis

2We adopt SoRA as it represents the current SOTA among
LoRA-based methods that enable dynamic adjustments to the
intrinsic rank during the adaptation process.

Strategy | Avg.
MoLA(5)-Uniform(8) | 79.42
GuiLoMo (Ours) 81.87
w/o adaptive expert allocation | 80.64
w/o varying rank 80.97

Table 4: Results of ablation studies on GuiLoMo
across from six benchmark. See Table 8 for detailed
results. “w/o” means the exclusion of this strategy from
GuiLoMo.

Ablation Study of GuiLoMo Strategy We con-
duct ablation studies to assess the effectiveness of
GuiL.oMo with LLaMA-27g across NLU and QA
benchmarks on two different settings: (1) a fixed
uniformly distributed number of experts with vary-
ing ranks, (2) a fixed uniformly assigned rank with
varying expert allocation. As shown in Table 4,
compared with the uniformly-allocated baseline
MoLA(5)-Uniform(8), applying GuiLoMo exclu-
sively to expert allocation or exclusively to rank
allocation results in average performance improve-
ments of 1.95% and 1.53%, respectively. The re-
sults also shows that excluding either expert alloca-
tion or rank allocation leads to performance drops
of 1.50% and 1.10%, respectively. Accordingly,
we highlight the following insight:

Insight 1. Jointly optimizing both expert
and rank allocations outperforms optimiz-
ing either one in isolation.

Results Across Model Families and Scales
We conduct extra experiments on another fam-
ily model Mistral-v0.17p and larger-scale model
LLaMA-2 35 across three benchmarks to exam-
ine the generalization of our GuiLoMo. As
shown in Table 5, GuiLoMo achieves aver-
age score improvements of 0.79% and 0.18%
over the AlphaLoRA+SoRA on LLaMA-2;35 and
Mistral-v0.17g, respectively. The results further
validate the widespread effectiveness of GuiLoMo
across models of different scales and families.

Models Strategy MRPC COLA ComQA Avg.
MoLA(5)-Uniform(8) 86.78 87.82 81.74 85.45
LLaMA2,35 AlphalLoRA + SoRA 87.13 88.97 83.21 86.44
GuiLoMo (Ours) 88.06 89.36 83.95 87.12
MoLA(5)-Uniform(8) 86.43 87.24 8296 85.54
Mistralyg AlphalLoRA + SoORA  88.00 89.26 83.87 87.04
GuiLoMo (Ours) 88.23 89.17 84.19 87.20

Table 5: The scores on MRPC, COLA and ComQA un-
der the Mistral-v0.175 and LLaMA-2 35 models. Avg.:
the average score over these three benchmarks.
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Figure 2: A comparative study of perturbed expert num-
ber e* and rank r* at different layers (8-th, 16-th, and
24-th). IEN(*) and DEN(*) denote the addition and re-
moval of * experts, respectively. MRA_half(*¥): Half of
the LoRA experts have their ranks increased by, while
the other half have their ranks decreased by * accord-
ingly. MRA_random(*): Randomly shuffling the ranks
of LoRA experts.

Effectiveness of the Expert Number and Rank
Assigned by GuiLoMo To validate the effective-
ness of expert number ¢* and rank r* assigned by
Guil.oMo that is tailored to specific models and
tasks, we additionally conduct experiments with
the following three strategies using LLaMA27p
on COLA benchmark. 1) Increase in Expert
Number (IEN) , increasing the number of experts
while keeping the total rank (Zf\; 1 Z?; T ;) con-
stant; 2) Decrease in Expert Number (DEN): De-
creasing the number of experts while keeping the
total rank constant 3; 3) Mixed Rank Adjustment
(MRA) : Keeping the number of experts fixed, we
randomly reassign ranks while keeping the total

rank unchanged.

Note that only the expert number and rank of the
specific m-th layer are intervened using the above
three strategies, while the expert number and rank
of the remaining layers remain unchanged. We
apply these strategies to three layers (8, 16, 24) and
report the results in Fig. 2. The results show that
GuiL.oMo outperforms all modified configurations,
achieving the highest overall performance. From
the results, we distill the following insight:

Insight 2. GuiLoMo allocates layer-wise
optimal expert number and rank, better ex-
ploiting the potential of LoRA-MoE.

3To maintain a constant total rank in the LoRA-MoE frame-
work, we proportionally reduce (or increase) the rank r* pre-
viously assigned by GuiLoMo to each individual LoRA expert
when total number of experts is increased (or decreased).
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Figure 3: Total Rank of each sub-module (MHA and
FFN) across different layer ranges in LLaMA-3gg on
CommonsenseQA. More details can be found in the
Appendix H.1.
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Figure 4: Distribution of ED scores computed by all the
modules on LLaMA,g, LLaMA-27g5, and LLaMA-3gg
under three NLU tasks.

Allocation for MHA and FFN To delve deeper,
we also observe the allocation patterns for MHA
and FFN separately. We report the total as-
signed rank of MHA and FFN under differ-
ent layer ranges in Fig. 3. For example,
the total r*ank (Total Rank of the Submodule =
(%, Z;;l 77 ;)/3) in layer range 1 ~ 8 of FFN,
which includes gate-, up-, and down-projection.
Based on Fig. 3, we draw the conclusion (see simi-
lar observations on other models and tasks in Ap-
pendix H.2):

Insight 3. The top layers require more ex-
perts and higher ranks. Moreover, while
MHA in the bottom layers often benefits
from increased ranks, FFN tends to require
such capacity in the top layers.

Expert diversity In the LoRA-MoE module,
we quantify Expert-Diversity score (ED) as the
ratio between the size of the largest subset
of experts whose ranks are all mutually dis-
tinct and the total number of experts (ED =
|largest rank-distinct subset| / |all experts|).

For example, consider the FFN’s up-projection



module, which contains five experts with ranks
[3,5,6,3,7], so the expert diversity score ED =
4/5 = 0.8. In Fig. 4, we analyze the ED score
for each submodule across NLU benchmarks on
LLaMA~5g, LLaMA-275, and LLaMA-3gg. The
results show that 38.1% of the ED scores fall within
the high range of 0.75 ~ 1.00, whereas only 8.7%
are in the low range of 0.00 ~ 0.25. Based on this
observation, we draw the following conclusion:

Insight 4. Allocating diverse expert ranks
enables more flexible and specialized adap-
tation to different tasks.

Impact of Task Difficulty We aim to investi-
gate how the expert number e* and rank r* derived
by GuiL.oMo differ when facing challenging tasks
compared to simpler ones. In pursuit of this goal,
we use two BBH (Suzgun et al., 2023) sub-tasks,
Tracking Shuffled Objects and Logical Deduc-
tion*, each consists of sub-tasks differing in the
number of objects K involved, with difficulty in-
creasing as the number of objects grows.

From Table 6, we observe that as the number of
objects increases, the number of experts assigned
to different sub-tasks scales proportionally with
the number of elements. However, the rank does
not exhibit such a trend. Hence, we derive the
following insight:

Insight 5. Within the LoORA-MoE, harder
tasks benefit more from adding experts than
from raising the rank of each LoRA expert.

Task Avg. Expert Avg. Rank
Tracking shuffled objects

— Object Number K = 3 5.87 6.13
— Object Number K = 5 6.13 5.98
— Object Number K = 7 6.35 6.07
Logical deduction

— Object Number K = 3 5.23 6.44
— Object Number K = 5 5.41 6.51
— Object Number K = 7 5.76 6.40

Table 6: Average number of assigned experts for each
module and the average rank of each expert across dif-
ferent object numbers within the same task.

*Given a set of K objects with initial positions and a se-
quence of pairwise swaps, determine their final positions after
all transformations. Determine the sequential arrangement
of K objects based on provided information regarding their
relative positions and spatial relationships.

5 Related work

LoRA-MoE Framework Recent research ex-
plores the integration of MoE (Shazeer et al., 2017)
and PEFT methods to boost performance in both
single-task and multi-task scenarios (Wu et al.,
2024; Gao et al., 2024; Qing et al., 2024; Dou
et al., 2024; Liu et al., 2023; Luo et al., 2024). For
instance, LORAMOE (Dou et al., 2024) integrates
MoE and LoRA into Transformer FFNs to reduce
forgetting during supervised fine-tuning. Similarly,
MOLE (Wu et al., 2024) treats each LoRA as an ex-
pert and uses hierarchical gating for efficient fusion
across NLP and Vision & Language tasks.

Allocation Strategy for LORA-MoE To mitigate
redundancy among LoRA experts in LORA-MOoE,
some prior works have proposed corresponding
solutions. Gao et al. (2024) examine redundancy
in parameter-efficient MoE by initializing different
numbers of experts with group-wise allocations,
revealing that higher layers require more LoRA
experts. Qing et al. (2024) leverage Heavy-Tailed
Self-Regularization (HT-SR) theory to develop a
training-free and theoretically grounded method
for reducing redundancy via expert allocation in
LoRA. However, previous methods only consider
the expert number while overlooking the expert
rank, which results in all experts having the same
capacity and thus lacking diversity. In contrast,
our proposed GuilLLoMo jointly optimizes both the
expert number and the rank.

6 Conclusion

In this work, we propose GuiL.oMo, a fine-grained
allocation strategy designed to fully exploit the
potential of LoORA-MoE. GuiLoMo jointly deter-
mines expert number and rank through a bilevel
optimization process. Unlike prior methods that
rely on uniform or task-agnostic configurations,
it introduces a GuidedSelection mechanism that
guides the layer-wise allocation of expert number
and rank in LoRA-MOoE, tailored to both model-
specific and task-specific needs. Extensive experi-
ments demonstrate that GuiLoMo consistently im-
proves model performance across a wide range of
tasks. Furthermore, our analysis reveals how op-
timal expert configurations vary across layers and
tasks, offering deeper insights into this field. We
believe GuiLoMo paves the way for more flexible
and efficient expert allocation strategies in future
research.



Limitations

While GuiLoMo demonstrates strong effectiveness
and scalability in allocating expert number and rank
for LoRA-MOoE to both model-specific and task-
specific settings, there remain two limitations. First,
our experiments are limited to models up to 13B
parameters, and we have not evaluated GuiLoMo
on larger open-source LLMs such as LLaMA-70B
due to computational constraints. Exploring its be-
havior on such super-sized models may provide
further insights into scalability. Second, our eval-
uation is restricted to standard NLP tasks. It re-
mains unclear whether GuiLoMo generalizes to
other modalities or task types, such as cross-modal
or multi-modal scenarios. We leave these directions
for future work.
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A Effect of Expert Number and Rank on Diverse Downstream Tasks

We design 6 allocation strategies to explore whether different tasks require different expert number and
rank configurations. The strategies include three options for expert number and two options for rank,
resulting in 6 combinations. Specifically, the expert number allocation includes two strategies from
MoLA (Gao et al., 2024), and a normal allocation: MoLA(2468), MoLA(8642), and Gaussian distribution
strategy (NormalE); the rank allocation strategies are remaining uniform (Uni), and Gaussian distribution
strategy (NormalR). We set the total rank budget for each module to 40. NormalE selects 32 values
of vertical coordinates from the standard normal distribution as selection probabilities, by uniformly
sampling 32 input values within the interval [—20, 20] and these values are then normalized and used to
proportionally allocate the number of experts across layers, as illustrated in Fig. 5. NormalR follows the
same allocation principle as NormalE, where ranks are proportionally assigned across layers based on a
normalized standard normal distribution, given a total rank budget of 40 and predefined expert number per
layer. For example, consider MoLA(2468)-Uni, where MoLLA(2468) allocates 2 experts to each layer for
the first 8 layers, 4 experts to each layer for 9-16 layers, 6 experts to each layer for 17-24 layers, and 8
experts to each layer for the last 8 layers. In the Uni setting, if the number of experts is 4, each expert is
assigned a rank of 40 4 = 10. LLaMA25 on MRPC and ScienceQA. The results are shown in Fig. 6.
It can be observed that the performance varies across different expert number and rank configurations for
the two tasks, demonstrating that different tasks require different expert number and rank.
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Figure 5: Allocating expert number across different layers using NormalE strategy.
B Dataset

The details are reported in Table 5. We source each dataset from Huggingface Datasets and utilize the full
dataset for our experiments.

Dataset | #Train #Valid #Test
CoLA 8,551 1,043 1,063
MRPC 3,668 408 1,725
RTE 2,490 277 3,000
ScienceQA 6,508 2,144 2,224
CommonsenseQA | 9,740 1,221 1,140
OpenbookQA 5,957 500 500

MultiArith 420 - 180

SVAMP 700 - 300

GSMS8K 7473 1319 -

Table 7: The detailed statistics of all the datasets we used in our experiments.

C Token Load Balance Loss

Consider a set of N experts indexed by ¢+ = 1, ..., N, and a batch of T" tokens. The auxiliary loss is the
scaled dot product of the expert usage vector f and routing probability vector P.

N
Loa=cp-N-> f;i-P, (14)
=1
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Performance Comparison Across 16 Expert Number and Rank Configurations
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Figure 6: Performance comparison across 16 expert number and rank configurations in LLaMA-275 on MRPC and
ScienceQA.

where f; denotes the proportion of tokens assigned to expert ¢ and P; is the fraction of the router probability
allocated for expert ¢.

D Implementation Details

All experiments are conducted on 8x NVIDIA A800-SXM4 80GB GPUs. The direct fine-tuning setting
aligns with AlphalLoRA (Qing et al., 2024). We perform a grid search on the number of training epochs,
including 10, 15, and 20 epochs for downstream task fine-tuning on the NLU and QA datasets. The
cutoff length is set to 256 and the batch size is 32. For the mathematical reasoning tasks, we conduct
instruction tuning on the MetaMathQA dataset (Yu et al., 2024) for 1 epoch with cutoff length set to 512.
In GuiLoMo, we employ two separate AdamW optimizers: one for the GuidedSelection Vector (GSVs)
and one for the trainable model parameters. In all experiments, we set epax = 8, max = 8 and LoRA
scale parameter o of LoRA to 16. The optimizer for GSVs is configured with a learning rate of 3e-3,
betas of (0.5, 0.999), a weight decay of le-3, and epsilon of 1e-8. The optimizer for the model parameters
uses a learning rate of 3e-4, betas of (0.9, 0.999), and epsilon of 1e-8. We also employ a cosine learning
rate scheduler to decay the learning rate. During the optimization process of Alg. 1, we trained for 3
epochs with a batch size of 64 on the NLU and QA datasets, and for 0.25 epoch with a batch size of 32
on the MetaMathQA dataset. 7" is computed as the dataset size divided by the batch size, multiplied by
the number of training epochs. Due to the intrinsic sparsity of GSV, we forgo the use of orthogonality
regularization loss (Ding et al., 2023).

E The Configuration of the Baselines

We set 5 = 2.5 in AlphalLoRA and specify the total number of experts to be 160. The baselines are
implemented using their open-sourced codes. For SORA (Ding et al., 2023), we set the maximum rank
for decay to 12, with A = 10~1, ¢ = 1074, and 1, = 10~'. MoLA(5) denotes using 5 experts per layer,
while AlphalLoRA employs 160 in total. Under the Uniform(8) setting, each expert is assigned a rank of 8.
When adopting the SoRA strategy for rank allocation, the maximum decayed rank is set to 12.
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F Prompt Templates for Fine-tuning

We use the Alpaca prompt template for instruction tuning on three question answering datasets (ScienceQA,
CommonsenseQA, and OpenbookQA):

Below is an instruction that describes
a task, paired with an input that provides
further context. Write a response that
appropriately completes the request.
### Instruction:
{instruction}
### Input:
{input}
### Response:

G H operation

We adopt the sensitivity (Zhang et al., 2023; Wang et al., 2020) without the norm to represent the
discriminative score of the currently selected configuration:

S(¢) = ¢Vl (15)

where ¢ is any trainable parameter. Based on the above, the output of #(¢) is such that at the position n*
(the index of the maximum value in ¢), its value equals ), S(¢), while all other positions are zero.
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H Allocation Details
H.1 Allocation Details of Llama-3gg

The average expert number, average rank, and total ranks of each sub-module (MHA and FFN) per layer
in LLaMA-3gg on CommonsenseQA are shown in Fig. 7, Fig. 8, and Fig. 9, respectively.
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Figure 7: Average expert number of each sub-module (MHA and FFN) across each layer in LLaMA-3gg on
CommonsenseQA.
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Figure 8: Average rank per expert for each sub-module (MHA and FFN) across all layers in LLaMA3gg on
CommonsenseQA.
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Figure 9: Total rank of each sub-module (MHA and FFN) across each layer in LLaMA-3gg on CommonsenseQA.
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H.2 Allocation Details on Additional Datasets and Models

The per-layer average expert number, average rank, and total rank of each sub-module (MHA and FFN)
for LLaMA-27B and Mistral-v0.17B on MetaMathQA and COLA are illustrated in Figs. 10, 11, 12 and
13, 14, 15, respectively.
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Figure 10: Average expert number of each sub-module (MHA and FFN) across each layer in LLaMA-2;5 on
MetaMathQA.
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Figure 11: Average rank per expert for each sub-module (MHA and FFN) across all layers in LLaMA2;5 on
MetaMathQA.

LLaMA-2-7B

wn [ MHA

< 60 [ FFN

©

o

@

3 40

o

£

Q

=}

Fol R0 m I

1 5 9 13 17 21 25 29 32

Layer Index

Figure 12: Total rank of each sub-module (MHA and FFN) across each layer in LLaMA2;5 on MetaMathQA.
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Mistral-7B
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Figure 13: Average expert number of each sub-module (MHA and FFN) across each layer in Mistral-v0.175 on
COLA.
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Figure 14: Average rank per expert for each sub-module (MHA and FFN) across all layers in Mistral-v0.175 on
COLA.
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Figure 15: Total rank of each sub-module (MHA and FFN) across each layer in Mistral-v0.175 on COLA.

Strategy | MRPC COLA SciQA ComQA GSMS8K MultiArith | Avg.
MoLA(5)-Uniform(8) | 84.17 86.19 92.08  77.55 49.50 87.00 | 79.42
GuiLoMo 8580 87.25 9299 7846 53.07 93.67 81.87
w/o adaptive expert allocation | 84.99  86.86 92.13 78.54 52.16 89.17 80.64
w/0 varying rank 8580 86.77 9236  78.13 51.10 91.67 80.97

Table 8: The detailed results of ablation studies on GuiLoMo across from six benchmark (MRPC, COLA, SciQA,
ComQA, GSMS8K, MultiArith).
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