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Abstract001

Parameter-efficient fine-tuning (PEFT)002
methods, particularly Low-Rank Adaptation003
(LoRA), offer an efficient way to adapt large004
language models with reduced computa-005
tional costs. However, their performance006
is limited by the small number of trainable007
parameters. Recent work combines LoRA008
with the Mixture-of-Experts (MoE), i.e.,009
LoRA-MoE, to enhance capacity, but its full010
potential remains underexplored. Existing011
methods often overlook two key factors: 1)012
the influence of downstream tasks when013
assigning expert numbers, and 2) the uniform014
rank assignment across all LoRA experts,015
which restricts representational diversity. To016
mitigate these gaps, we propose GuiLoMo, a017
fine-grained layer-wise expert numbers and018
ranks allocation strategy with GuidedSelection019
Vectors (GSVs). GSVs are learned via a020
prior bilevel optimization process to capture021
both model- and task-specific needs, and are022
then used to allocate optimal expert numbers023
and ranks. Experiments on three backbone024
models across diverse benchmarks show that025
GuiLoMo consistently achieves superior or026
comparable performance to all baselines.027
Further analysis offers key insights into how028
expert numbers and ranks vary across layers029
and tasks, highlighting the benefits of adaptive030
expert configuration. Our code is available031
at https://anonymous.4open.science/r/032
GuiLoMo-C638.033

1 Introduction034

Although large language models (LLMs) have035

demonstrated remarkable performance across a036

wide range of general tasks (Jiang et al., 2023;037

Brown et al., 2020; Chowdhery et al., 2023; Jian038

et al., 2023; Touvron et al., 2023b; Han et al., 2021),039

they still fall short in certain tasks or domains,040

such as reasoning (Gou et al., 2023; Srivastava041

and Gandhi, 2024; Yu et al., 2025), multilingual-042

ism (Huang et al., 2023; Gurgurov et al., 2024;043

MoLA AlphaLoRA
GuiLoMo

(Ours)

Model Specific

Task Specific

Expert Number

Expert Rank

Table 1: Compared to existing methods, our proposed
GuiLoMo strategy can allocate the optimal expert num-
bers and ranks within LoRA-MoE, tailored to specific
models and tasks.

Zhang et al., 2024a), and question answering in 044

specialized contexts (Biancotti et al., 2024; Zhang 045

et al., 2024b; Yang et al., 2024). To enhance the 046

performance of LLMs in these challenging areas, 047

a common practice is fine-tuning. However, with 048

the growing size of current LLMs, full fine-tuning 049

faces significant challenges in terms of computa- 050

tional efficiency and memory consumption. To mit- 051

igate these issues, parameter-efficient fine-tuning 052

(PEFT) methods have gained considerable atten- 053

tion (Houlsby et al., 2019; Li and Liang, 2021; 054

Lester et al., 2021; Hu et al., 2022; Liu et al., 2022; 055

Zhang et al., 2023; Yang et al., 2025). Among 056

these methods, Low-Rank Adaptation (LoRA) (Hu 057

et al., 2022) is regarded as one of the most efficient 058

approaches. Nonetheless, its performance remains 059

constrained due to the relatively small number of 060

trainable parameters (Xu et al., 2023). Recent stud- 061

ies suggest that combining LoRA with the Mixture- 062

of-Experts (MoE) paradigm, referred to as LoRA- 063

MoE, by incorporating multiple LoRA modules, 064

offers a promising solution to this limitation (Wu 065

et al., 2024; Gao et al., 2024; Qing et al., 2024; 066

Dou et al., 2024; Liu et al., 2023; Luo et al., 2024). 067

However, fully exploiting the potential of LoRA- 068

MoE remains an open research question. First, Gao 069

et al. (2024) considered that uniformly allocating 070

the number of experts across all layers is subop- 071

timal, as different layers play distinct roles in the 072
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model. Over-allocating experts to certain layers073

can lead to redundancy and degraded performance.074

To address this, they proposed a group-wise expert075

allocation strategy (MoLA), which divides all lay-076

ers into four groups and assigns varying numbers of077

experts to each group, ensuring that layers within078

the same group share the same number of experts.079

Building on this, Qing et al. (2024) introduced a080

layer-wise allocation strategy (AlphaLoRA), which081

theoretically determines the expert numbers for082

each layer based on its training quality.083

Despite these advancements, two critical lim-084

itations remain, as shown in Table 1: 1) These085

methods determine the expert number without con-086

sidering the downstream task. This is problematic,087

as different tasks may have varying levels of com-088

plexity and specific needs, which should influence089

the optimal expert configuration (as supported by090

experiments in Appendix A); 2) These methods091

also overlook the intrinsic rank of LoRA experts,092

typically assigning the same rank to all LoRA ex-093

perts. This uniformity leads to equivalent repre-094

sentational capacities across experts, causing them095

to capture similar information. Thus, LoRA-MoE096

struggles to handle diverse and complex inputs.097

To address these limitations, we propose098

GuiLoMo, a fine-grained strategy for jointly al-099

locating layer-wise expert numbers and ranks in100

LoRA-MoE based on bilevel optimization with101

GuidedSelection vectors. GuiLoMo operates in102

two steps: 1) Obtaining GuidedSelection Vectors103

(GSVs): Through an initial optimization, GSVs104

are learned to guide LoRA-MoE in selecting the105

optimal expert numbers and ranks tailored to both106

the model backbone and the downstream task; 2)107

Allocating Expert Numbers and Ranks: After the108

prior optimization, the optimized GSVs are used to109

allocate expert numbers and ranks for LoRA-MoE,110

followed by the final training phase.111

To summarize, our contributions are as follows:112

1) To further unlock the potential of LoRA-113

MoE, we propose GuiLoMo, a fine-grained layer-114

wise expert numbers and ranks allocation strategy115

based on proposed GuidedSelection mechanism.116

2) We conduct extensive experiments on a117

wide range of tasks, including natural language118

understanding, question answering, and mathemat-119

ical reasoning, demonstrating the effectiveness of120

GuiLoMo. For instance, GuiLoMo achieves an121

average 2.61% improvement on mathmatical rea-122

soning tasks with LLaMA-27B. Further analysis123

confirms the effectiveness of GuidedSelection vec- 124

tors in selecting optimal expert numbers and ranks. 125

3) We provide valuable insights into the rela- 126

tionship between expert numbers, ranks, and their 127

assigned layers. For example, we observe that top 128

layers require more experts and higher ranks. How- 129

ever, in bottom layers, multi-head attention (MHA) 130

benefits more from increased expert numbers and 131

ranks, whereas feed-forward networks (FFN) only 132

exhibit this behavior in middle and later layers. 133

2 Preliminary 134

LoRA-MoE Framework LoRA-MoE integrates 135

multiple vanilla LoRA experts into each pre-trained 136

LLM submodule. Vanilla LoRA (Hu et al., 2022) 137

efficiently adapts large models to downstream tasks 138

by lowering computational and memory costs. For 139

a pre-trained weight matrix W0 ∈ Rm×n, LoRA 140

creates two low-rank trainable matrices A and 141

B, where B ∈ Rm×r, A ∈ Rr×n, where r ≪ 142

min(m,n). During training, W0 remains fixed 143

while A and B are updated via gradient descent. 144

The output representation h is defined as follows: 145

h = W0x+BAx (1) 146

Every traditional LoRA-MoE layer incorporates N 147

LoRA experts. The forward pass through the layer 148

can be formulated as: 149

h = W0x+
N∑
i=1

G(x)iBiAix (2) 150

where G(x) = Softmax(xWr) represents the 151

router in the LoRA-MoE layer. Wr is the train- 152

able parameter matrix of the routing network that 153

directs input x to different experts. By adaptively 154

allocating inputs, the router promotes expert spe- 155

cialization, enhancing their ability to handle diverse 156

tasks and input patterns. 157

Applying LoRA-MoE for LLMs LoRA-MoE 158

is applied to key modules of LLMs, namely multi- 159

head attention (MHA) and feed-forward networks 160

(FFNs). In MHA, inputs are projected via WQ, 161

WK , WV , and WO ∈ Rd×d. Each FFN uses gate- 162

and up-projection matrices WG, WU ∈ Rd×d′ , a 163

activation (e.g., GELU), and a down-projection 164

WD ∈ Rd′×d, where d′ > d. GuiLoMo assigns 165

optimal expert number and rank to these matrices. 166
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Figure 1: An illustration of our GuiLoMo strategy. GuiLoMo involves two steps: (Step 1): Exploring the optimal
number of experts and ranks via a bilevel optimization algorithm. (Step 2): Allocate optimal expert number and
rank based on guided-selection vectors obtained in the previous step.

3 Method167

In this section, we present our GuiLoMo strategy,168

which consists of two main steps: 1) A bilevel op-169

timization algorithm is employed to obtain Guid-170

edSelection Vectors (GSVs) of expert number and171

rank for each module, tailored to the specific down-172

stream task and model (§ 3.1); 2) Based on the ob-173

tained GSVs, it allocates the optimal expert number174

and rank to each module in LoRA-MoE, which are175

then used for final training (§ 3.4). See § 3.2 and176

§ 3.3 for details of GSVs.177

3.1 Bilevel Optimization for Obtaining the178

GuidedSelection Vector179

In this section, we introduce the objective of bilevel180

optimization used to obtain GuidedSelection Vec-181

tors and its optimization process.182

Optimization Objective Formally, our objec-183

tive is to automatically determine the optimal184

expert number e∗i for a given module (e.g.,185

down-projection in FFN) within the i-th layer,186

and the optimal rank r∗i,j for the j-th expert under187

a specified LLM and downstream task setting.188

To achieve this, we formulate the problem as an189

optimization task. In this process, we introduce190

the Expert GuidedSelection Vector gE and Rank191

GuidedSelection Vector gR as key components of192

the optimization, and the optimization objective is:193

min
{gE ,gR}

L(D, πθ,gE,gR) (3)194

L =LSFT + LBAL (4)195

where πθ is specific LLM and LSFT denotes the su- 196

pervised fine-tuning loss, which is computed via au- 197

toregressive language modeling on the downstream 198

dataset D, while LBAL (refer to Eq. 14) represents 199

the MoE balancing loss (Fedus et al., 2022; Zoph 200

et al., 2022), which is introduced to encourage bal- 201

anced utilization across experts and prevent expert 202

collapse. The GuidedSelection Vector gE ∈ Remax 203

and gR ∈ Rrmax are both trainable, with emax and 204

rmax representing the predefined maximum number 205

of experts and rank in LoRA expert (see § 3.2 and 206

§ 3.3 for more details of gE and gR). Since the op- 207

timization of gE, gR should be under the optimal 208

π∗
θ , we draw inspiration from Liu et al. (2019) and 209

formulate the problem as a bilevel optimization: 210

min
{gE ,gR}

L(D1, π
∗
θ ,gE,gR)

s.t. π∗
θ = argmin

πθ

L(D2, πθ,gE,gR)
(5) 211

where D1 and D2 are two splits of the training set 212

D with equal size. 213

Optimization Process Based on the above objec- 214

tive, we formulate the overall procedure for obtain- 215

ing the optimized GSVs in only a few T training 216

steps.1 For a specific t-th training step, we first 217

update π∗
θ(t) from πθ as in Eq. 6, and then opti- 218

mize the GSVs (πθ and π∗
θ(t)) with {gE,gR}(t) 219

following Eq. 5. 220

π∗
θ (t) = πθ(t)− ξθ ∗ ∇πθ(t)L(D2, πθ(t),gE,gR) (6) 221

1T is a hyperparameter in our experiments.

3



where ξθ is the learning rate. The overall optimiza-222

tion procedure is summarized in Alg. 1. The final223

obtained g∗
E and g∗

R determine the optimal number224

of experts and ranks according to the strategy de-225

scribed in § 3.4. GuiLoMo progressively learns the226

optimal heterogeneous LoRA-MoE configuration,227

allowing it to meet model- and task-specific needs.228

Algorithm 1: Optimization Process
Input: Predefined maximum number of

experts emax and LoRA rank rmax
per module, T optimization steps,
learning rate ξg for GSVs.

Output: The optimized Expert GSV g∗
E

and Rank GSV g∗
R.

1 Initialize the LoRA-MoE framework
according to the emax and rmax;

2 Split the training set D into D1 and D2;
3 for t = 0; t < T do
4 Obtain π∗

θ(t) from Eq. 6;
5 Compute the gradients of GSVs

∇{gE ,gR}(t)L(D1, π
∗
θ(t),g

(t)
E ,g

(t)
R );

6 Update g
(t+1)
E and g

(t+1)
R using the

gradients in Eq. 9 and the learning rate
ξg for GSV parameters;

7 Update weights πθ(t+ 1) by
descending the gradients with respect
to model weights
∇πθ(t)L(D2, πθ(t),g

(t+1)
E ,g

(t)
R );

8 Derive the optimized Expert GSV g∗
E and

Rank GSV g∗
R.

229

3.2 Expert GuidedSelection Vector230

For the Expert GSVs gE ∈ Remax , we first predefine231

the maximum expert number emax and initialize232

them with Gaussian distribution:233

gE = Softmax
(
α
)
, with α = {αi}emax

i=1 (7)234

where αi ∼ N (0, 1), and gE denotes the selection235

probabilities for different allocated expert number236

settings. GuiLoMo selects the expert number set-237

ting by taking the index of the maximum value238

in gE. For example, if the maximum value of gi
E239

at the i-th layer occurs at the 3-th position dur-240

ing the current training step, we allocate 3 experts241

for this module (see the green region in Fig 1).242

Since gi
E is learned through a few optimization243

steps on the task-specific data, the expert selection244

process described above needs to be differentiable. 245

To guarantee gradient flow and enable end-to-end 246

optimization, we adopt the Straight-Through Gra- 247

dient Estimator (STGE) (Bengio et al., 2013) along 248

with an auxiliary virtual vector ME to approximate 249

discrete selection while maintaining differentiabil- 250

ity. Let n⋆ denote the index of the maximum value 251

in gE. The forward propagation of the expert vir- 252

tual vector ME ∈ {0,−∞}emax is formulated as 253

follows: 254

Mi
E =

{
0, if i ≤ n⋆

−∞, if i > n⋆ (8) 255

For example, when allocating 3 experts, the ex- 256

pert virtual vector ME is: [0, 0, 0,−∞, ...,−∞]. 257

Meanwhile, in the backward propagation, we prop- 258

agate the gradient flow from ME to gE: 259

∂L
∂gE

= H(
∂L

∂ME
) (9) 260

For more details on the H operation, please refer to 261

Appendix G. The ME is applied to top-K routing 262

process to guide the learning of gE: 263

Ĝ(x) =
TopK(Softmax(xWr +ME),K)i∑K
i=1 TopK(Softmax(xWr +ME),K)i

(10) 264

where Wr denotes the weight of routing network. 265

3.3 Rank GuidedSelection Vector 266

The Rank GSVs gR∈Rrmax shares a similar concept 267

with the Expert GSVs during bilevel optimization. 268

It begins by predefining the maximum rank rmax 269

and is also initialized with Gaussian distribution 270

using Eq. 7. However, the semantic meaning of 271

each element differs, where each element in gR 272

represents a specific rank assigned to the corre- 273

sponding expert. We select the index of maximum 274

value in gR, i.e., m⋆, to determine the rank for the 275

current training step. Similar to gE, gR is non- 276

differentiable during this process; therefore, we 277

design rank virtual vector MR ∈ {0, 1}rmax to ad- 278

dress this issue: 279

Mi
R =

{
1, if i ≤ m⋆

0, if i > m⋆ (11) 280

For example, if the maximum value of gR at a given 281

training step is located at the 4-th element, the rank 282

for this module is set to 4 (see the yellow region 283

in Fig. 1). Accordingly, the corresponding Rank 284

GuidedSelection Vector MR is [1, 1, 1, 1, 0, ..., 0]. 285

Then, we parameterize on each LoRA expert 286

matrix, denoted as ∆ = BA ∈ Rm×n (Eq. 1), in 287
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Models Strategy MRPC COLA RTE ScienceQA CommonsenseQA OpenBookQA Avg.

LLaMA7B

MoLA(5)-Uniform(8) 82.43 84.18 83.03 90.28 75.10 76.00 81.84
AlphaLoRA-Uniform(8) 85.19 85.42 85.19 90.37 76.49 78.20 83.48
MoLA(5) + SoRA 82.55 84.76 83.03 90.38 75.35 76.80 82.15
AlphaLoRA + SoRA 85.51 85.62 85.20 90.78 76.82 78.20 83.69
GuiLoMo (Ours) 85.04 85.71 85.92 91.50 77.15 78.60 83.99

LLaMA-27B

MoLA(5)-Uniform(8) 84.17 86.19 84.83 92.08 77.55 80.00 84.14
AlphaLoRA-Uniform(8) 84.23 86.67 87.36 92.71 78.05 80.80 84.97
MoLA(5) + SoRA 84.46 86.31 84.84 92.36 77.81 80.20 84.31
AlphaLoRA + SoRA 84.99 85.81 87.00 92.31 78.38 80.00 84.75
GuiLoMo (Ours) 85.80 87.25 87.36 92.99 78.46 81.20 85.51

LLaMA-38B

MoLA(5)–Uniform(8) 86.61 87.15 87.73 93.97 79.52 83.40 86.40
AlphaLoRA-Uniform(8) 87.13 88.88 88.09 94.42 80.02 83.80 87.06
MoLA(5) + SoRA 85.97 87.54 88.45 94.24 79.44 84.00 86.61
AlphaLoRA + SoRA 87.07 88.69 89.53 94.20 80.18 84.00 87.28
GuiLoMo (Ours) 87.77 89.26 88.45 94.83 81.24 85.60 87.86

Table 2: Accuracy comparison of different methods under direct fine-tuning for each dataset. MoLA(5) indicates
assigning a uniform 5 experts to each layer. Uniform(8) denotes setting all the rank of LORA expert to 8.

a form that mimic singular value decomposition288

(SVD) to obtain ∆ = PΛQ. P ∈ Rd1×rmax and289

Q ∈ Rrmax×d2 correspond to the original LoRA ma-290

trices B and A, respectively, and Λ are initialized291

to 1. Note that we do not perform exact SVD. Sub-292

sequently, the rank virtual vector MR is integrated293

with Λ and is incorporated into Eq. 2 to perform294

forward propagation:295

h′ = W0x+
K∑
i=1

Ĝ(x)iP(MR⊙Λ⊙Qx) (12)296

where ⊙ denotes element-wise dot product, and Ĝ297

is defined in Eq. 10. MR guide the learning of gR,298

and its gradients are backpropagated in the same299

manner as ME in Eq. 9, using STGE technique.300

3.4 Allocating Expert Number and Rank via301

GSV302

After obtaining optimized expert and rank GSVs,303

the optimal expert number e∗ and rank r∗ are deter-304

mined by selecting the index corresponding to the305

maximum values in gE and gR, respectively. The306

formulation is given as follows:307

e∗i = argmax (gi
E)

r∗i,j = argmax (gi,j
R )

(13)308

where e∗i ≤ emax and r∗i,j ≤ rmax denote the as-309

signed expert number and rank in the i-th layer and310

the rank of the j-th expert in the i-th layer, respec-311

tively. Subsequently, we fine-tune the model using312

the loss function defined in Eq. 4 with expert num-313

ber e∗ and rank r∗, where the LoRA-MoE weights314

are initialized with π∗
θ(T ).315

4 Experiment 316

In this section, we conduct extensive experiments 317

to examine the performance of GuiLoMo. We also 318

conduct experimental analyses to gain deeper in- 319

sights into this field, as presented in § 4.3. Imple- 320

mentation details can be found in Appendix D. 321

4.1 Experimental Settings 322

Datasets Following Qing et al. (2024), we evalu- 323

ate our model on six natural-language understand- 324

ing (NLU) and question-answering (QA) bench- 325

marks, three from GLUE and three focused on 326

reasoning: (1) the Microsoft Research Paraphrase 327

Corpus (MRPC) (Dolan and Brockett, 2005); (2) 328

the Recognizing Textual Entailment (RTE) dataset 329

(Wang et al., 2019); (3) the Corpus of Linguistic 330

Acceptability (CoLA) (Wang et al., 2019); (4) Sci- 331

enceQA (Lu et al., 2022); (5) CommonsenseQA 332

(Talmor et al., 2019); and (6) OpenBookQA (Mi- 333

haylov et al., 2018). 334

We also evaluate GuiLoMo on mathematical rea- 335

soning benchmarks. Specifically, we perform in- 336

struction tuning on the MetaMathQA (Yu et al., 337

2024) dataset and evaluate on three benchmarks: 338

1) MultiArith (Roy et al., 2015), 2) SVAMP (Patel 339

et al., 2021), and 3) GSM8K (Cobbe et al., 2021). 340

Comprehensive descriptions of all datasets appear 341

in Appendix B. 342

Models We have applied our method to 343

LLaMA7B (Touvron et al., 2023a), LLaMA-27B 344

(Touvron et al., 2023b), LLaMA-38B (Cobbe et al., 345

2021), and Mistral-v0.17B (Jiang et al., 2023). 346

Baselines We compare our GuiLoMo strategy 347

with current state-of-the-art (SOTA) baseline meth- 348
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Models Strategy GSM8K SVAMP MultiArith Avg.

LLaMA7B

M(5)-U(8) 44.04 52.00 88.16 61.40
A-U(8) 45.03 53.60 86.67 61.77
M(5) + S 43.97 53.80 88.50 62.09
A + S 46.10 54.80 89.17 63.36
GuiLoMo (Ours) 47.01 56.60 91.17 64.93

LLaMA-27B

M(5)-U(8) 49.50 57.10 87.00 64.53
A-U(8) 50.42 57.00 91.33 66.25
M(5) + S 50.42 57.90 88.33 65.55
A + S 51.48 58.00 92.50 67.33
GuiLoMo (Ours) 53.07 59.20 93.67 68.65

LLaMA-38B

M(5)-U(8) 71.03 74.30 96.83 80.72
A-U(8) 71.49 75.10 97.33 81.31
M(5) + S 71.72 73.50 97.00 80.74
A + S 73.01 75.30 97.33 81.88
GuiLoMo (Ours) 72.85 76.00 97.83 82.23

Table 3: The results of mathematical reasoning under
three models. M(5)-U(8): MoLA(5)–Uniform(8); A-
U(8): AlphaLoRA-Uniform(8); M(5) + S: MoLA(5) +
SoRA; A +S: AlphaLoRA + SoRA.

ods including MoLA (Gao et al., 2024)-Uniform,349

AlphaLoRA (Qing et al., 2024)-Uniform (where350

“Uniform” refers to either assigning the same351

number of experts to all layers or assigning the352

same rank to all experts), MoLA+SoRA, Al-353

phaLoRA+SoRA. SoRA (Ding et al., 2023) is a354

variant of LoRA that allows for dynamic adjust-355

ments to the intrinsic rank during the adaptation356

process.2 Implementation details of baselines can357

be found in Appendix E.358

4.2 Main Result359

Table 2 reports the results on three NLU tasks360

and three QA benchmarks. Across these datasets,361

GuiLoMo surpasses every baseline in terms of Avg.362

performance. Specifically, relative to AlphaLoRA-363

Uniform(8), GuiLoMo delivers consistent gains364

of 0.61%, 0.64%, and 0.84% on the three model365

settings, respectively. GuiLoMo also outperform366

baselines on mathematical reasoning task. As show367

in Table 3, GuiLoMo exceeds AlphaLoRA + SoRA368

by an average of of 2.48%, 2.61%, and 0.43% on369

LLaMA7B, LLaMA-27B, and LLaMA-38B, respec-370

tively. Based on these observations, we conclude371

that: GuiLoMo, which flexibly allocates expert num-372

ber and rank tailored to both model-specific and373

task-specific demands, leads to improved perfor-374

mance.375

4.3 Further Analysis376

2We adopt SoRA as it represents the current SOTA among
LoRA-based methods that enable dynamic adjustments to the
intrinsic rank during the adaptation process.

Strategy Avg.

MoLA(5)-Uniform(8) 79.42

GuiLoMo (Ours) 81.87
w/o adaptive expert allocation 80.64
w/o varying rank 80.97

Table 4: Results of ablation studies on GuiLoMo
across from six benchmark. See Table 8 for detailed
results. “w/o” means the exclusion of this strategy from
GuiLoMo.

Ablation Study of GuiLoMo Strategy We con- 377

duct ablation studies to assess the effectiveness of 378

GuiLoMo with LLaMA-27B across NLU and QA 379

benchmarks on two different settings: (1) a fixed 380

uniformly distributed number of experts with vary- 381

ing ranks, (2) a fixed uniformly assigned rank with 382

varying expert allocation. As shown in Table 4, 383

compared with the uniformly-allocated baseline 384

MoLA(5)-Uniform(8), applying GuiLoMo exclu- 385

sively to expert allocation or exclusively to rank 386

allocation results in average performance improve- 387

ments of 1.95% and 1.53%, respectively. The re- 388

sults also shows that excluding either expert alloca- 389

tion or rank allocation leads to performance drops 390

of 1.50% and 1.10%, respectively. Accordingly, 391

we highlight the following insight: 392

Insight 1. Jointly optimizing both expert
and rank allocations outperforms optimiz-
ing either one in isolation.

393

Results Across Model Families and Scales 394

We conduct extra experiments on another fam- 395

ily model Mistral-v0.17B and larger-scale model 396

LLaMA-213B across three benchmarks to exam- 397

ine the generalization of our GuiLoMo. As 398

shown in Table 5, GuiLoMo achieves aver- 399

age score improvements of 0.79% and 0.18% 400

over the AlphaLoRA+SoRA on LLaMA-213B and 401

Mistral-v0.17B, respectively. The results further 402

validate the widespread effectiveness of GuiLoMo 403

across models of different scales and families. 404

Models Strategy MRPC COLA ComQA Avg.

LLaMA213B

MoLA(5)–Uniform(8) 86.78 87.82 81.74 85.45
AlphaLoRA + SoRA 87.13 88.97 83.21 86.44
GuiLoMo (Ours) 88.06 89.36 83.95 87.12

Mistral7B

MoLA(5)–Uniform(8) 86.43 87.24 82.96 85.54
AlphaLoRA + SoRA 88.00 89.26 83.87 87.04
GuiLoMo (Ours) 88.23 89.17 84.19 87.20

Table 5: The scores on MRPC, COLA and ComQA un-
der the Mistral-v0.17B and LLaMA-213B models. Avg.:
the average score over these three benchmarks.
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Figure 2: A comparative study of perturbed expert num-
ber e∗ and rank r∗ at different layers (8-th, 16-th, and
24-th). IEN(*) and DEN(*) denote the addition and re-
moval of * experts, respectively. MRA_half(*): Half of
the LoRA experts have their ranks increased by, while
the other half have their ranks decreased by * accord-
ingly. MRA_random(*): Randomly shuffling the ranks
of LoRA experts.

Effectiveness of the Expert Number and Rank405

Assigned by GuiLoMo To validate the effective-406

ness of expert number e∗ and rank r∗ assigned by407

GuiLoMo that is tailored to specific models and408

tasks, we additionally conduct experiments with409

the following three strategies using LLaMA27B410

on COLA benchmark. 1) Increase in Expert411

Number (IEN) , increasing the number of experts412

while keeping the total rank (
∑N

i=1

∑e∗i
j=1 r

∗
i,j) con-413

stant; 2) Decrease in Expert Number (DEN): De-414

creasing the number of experts while keeping the415

total rank constant 3; 3) Mixed Rank Adjustment416

(MRA) : Keeping the number of experts fixed, we417

randomly reassign ranks while keeping the total418

rank unchanged.419

Note that only the expert number and rank of the420

specific m-th layer are intervened using the above421

three strategies, while the expert number and rank422

of the remaining layers remain unchanged. We423

apply these strategies to three layers (8, 16, 24) and424

report the results in Fig. 2. The results show that425

GuiLoMo outperforms all modified configurations,426

achieving the highest overall performance. From427

the results, we distill the following insight:428

Insight 2. GuiLoMo allocates layer-wise
optimal expert number and rank, better ex-
ploiting the potential of LoRA-MoE.

429

3To maintain a constant total rank in the LoRA-MoE frame-
work, we proportionally reduce (or increase) the rank r∗ pre-
viously assigned by GuiLoMo to each individual LoRA expert
when total number of experts is increased (or decreased).
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Figure 3: Total Rank of each sub-module (MHA and
FFN) across different layer ranges in LLaMA-38B on
CommonsenseQA. More details can be found in the
Appendix H.1.

38.1%

32.3%

20.9%

8.7%
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0.75~1.00
0.50~0.75
0.25~0.50
0.00~0.25

Figure 4: Distribution of ED scores computed by all the
modules on LLaMA7B, LLaMA-27B, and LLaMA-38B
under three NLU tasks.

Allocation for MHA and FFN To delve deeper, 430

we also observe the allocation patterns for MHA 431

and FFN separately. We report the total as- 432

signed rank of MHA and FFN under differ- 433

ent layer ranges in Fig. 3. For example, 434

the total rank (Total Rank of the Submodule = 435

(
∑8

i=1

∑e∗i
j=1 r

∗
i,j)/3) in layer range 1 ∼ 8 of FFN, 436

which includes gate-, up-, and down-projection. 437

Based on Fig. 3, we draw the conclusion (see simi- 438

lar observations on other models and tasks in Ap- 439

pendix H.2): 440

Insight 3. The top layers require more ex-
perts and higher ranks. Moreover, while
MHA in the bottom layers often benefits
from increased ranks, FFN tends to require
such capacity in the top layers.

441

Expert diversity In the LoRA-MoE module, 442

we quantify Expert-Diversity score (ED) as the 443

ratio between the size of the largest subset 444

of experts whose ranks are all mutually dis- 445

tinct and the total number of experts (ED = 446

|largest rank-distinct subset| / |all experts|). 447

For example, consider the FFN’s up-projection 448
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module, which contains five experts with ranks449

[3, 5, 6, 3, 7], so the expert diversity score ED =450

4/5 = 0.8. In Fig. 4, we analyze the ED score451

for each submodule across NLU benchmarks on452

LLaMA7B, LLaMA-27B, and LLaMA-38B. The453

results show that 38.1% of the ED scores fall within454

the high range of 0.75 ∼ 1.00, whereas only 8.7%455

are in the low range of 0.00 ∼ 0.25. Based on this456

observation, we draw the following conclusion:457

Insight 4. Allocating diverse expert ranks
enables more flexible and specialized adap-
tation to different tasks.458

Impact of Task Difficulty We aim to investi-459

gate how the expert number e∗ and rank r∗ derived460

by GuiLoMo differ when facing challenging tasks461

compared to simpler ones. In pursuit of this goal,462

we use two BBH (Suzgun et al., 2023) sub-tasks,463

Tracking Shuffled Objects and Logical Deduc-464

tion4, each consists of sub-tasks differing in the465

number of objects K involved, with difficulty in-466

creasing as the number of objects grows.467

From Table 6, we observe that as the number of468

objects increases, the number of experts assigned469

to different sub-tasks scales proportionally with470

the number of elements. However, the rank does471

not exhibit such a trend. Hence, we derive the472

following insight:473

Insight 5. Within the LoRA-MoE, harder
tasks benefit more from adding experts than
from raising the rank of each LoRA expert.

474

Task Avg. Expert Avg. Rank

Tracking shuffled objects
— Object Number K = 3 5.87 6.13
— Object Number K = 5 6.13 5.98
— Object Number K = 7 6.35 6.07

Logical deduction
— Object Number K = 3 5.23 6.44
— Object Number K = 5 5.41 6.51
— Object Number K = 7 5.76 6.40

Table 6: Average number of assigned experts for each
module and the average rank of each expert across dif-
ferent object numbers within the same task.

4Given a set of K objects with initial positions and a se-
quence of pairwise swaps, determine their final positions after
all transformations. Determine the sequential arrangement
of K objects based on provided information regarding their
relative positions and spatial relationships.

5 Related work 475

LoRA-MoE Framework Recent research ex- 476

plores the integration of MoE (Shazeer et al., 2017) 477

and PEFT methods to boost performance in both 478

single-task and multi-task scenarios (Wu et al., 479

2024; Gao et al., 2024; Qing et al., 2024; Dou 480

et al., 2024; Liu et al., 2023; Luo et al., 2024). For 481

instance, LoRAMoE (Dou et al., 2024) integrates 482

MoE and LoRA into Transformer FFNs to reduce 483

forgetting during supervised fine-tuning. Similarly, 484

MOLE (Wu et al., 2024) treats each LoRA as an ex- 485

pert and uses hierarchical gating for efficient fusion 486

across NLP and Vision & Language tasks. 487

Allocation Strategy for LoRA-MoE To mitigate 488

redundancy among LoRA experts in LoRA-MoE, 489

some prior works have proposed corresponding 490

solutions. Gao et al. (2024) examine redundancy 491

in parameter-efficient MoE by initializing different 492

numbers of experts with group-wise allocations, 493

revealing that higher layers require more LoRA 494

experts. Qing et al. (2024) leverage Heavy-Tailed 495

Self-Regularization (HT-SR) theory to develop a 496

training-free and theoretically grounded method 497

for reducing redundancy via expert allocation in 498

LoRA. However, previous methods only consider 499

the expert number while overlooking the expert 500

rank, which results in all experts having the same 501

capacity and thus lacking diversity. In contrast, 502

our proposed GuiLoMo jointly optimizes both the 503

expert number and the rank. 504

6 Conclusion 505

In this work, we propose GuiLoMo, a fine-grained 506

allocation strategy designed to fully exploit the 507

potential of LoRA-MoE. GuiLoMo jointly deter- 508

mines expert number and rank through a bilevel 509

optimization process. Unlike prior methods that 510

rely on uniform or task-agnostic configurations, 511

it introduces a GuidedSelection mechanism that 512

guides the layer-wise allocation of expert number 513

and rank in LoRA-MoE, tailored to both model- 514

specific and task-specific needs. Extensive experi- 515

ments demonstrate that GuiLoMo consistently im- 516

proves model performance across a wide range of 517

tasks. Furthermore, our analysis reveals how op- 518

timal expert configurations vary across layers and 519

tasks, offering deeper insights into this field. We 520

believe GuiLoMo paves the way for more flexible 521

and efficient expert allocation strategies in future 522

research. 523
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Limitations524

While GuiLoMo demonstrates strong effectiveness525

and scalability in allocating expert number and rank526

for LoRA-MoE to both model-specific and task-527

specific settings, there remain two limitations. First,528

our experiments are limited to models up to 13B529

parameters, and we have not evaluated GuiLoMo530

on larger open-source LLMs such as LLaMA-70B531

due to computational constraints. Exploring its be-532

havior on such super-sized models may provide533

further insights into scalability. Second, our eval-534

uation is restricted to standard NLP tasks. It re-535

mains unclear whether GuiLoMo generalizes to536

other modalities or task types, such as cross-modal537

or multi-modal scenarios. We leave these directions538

for future work.539
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A Effect of Expert Number and Rank on Diverse Downstream Tasks805

We design 6 allocation strategies to explore whether different tasks require different expert number and806

rank configurations. The strategies include three options for expert number and two options for rank,807

resulting in 6 combinations. Specifically, the expert number allocation includes two strategies from808

MoLA (Gao et al., 2024), and a normal allocation: MoLA(2468), MoLA(8642), and Gaussian distribution809

strategy (NormalE); the rank allocation strategies are remaining uniform (Uni), and Gaussian distribution810

strategy (NormalR). We set the total rank budget for each module to 40. NormalE selects 32 values811

of vertical coordinates from the standard normal distribution as selection probabilities, by uniformly812

sampling 32 input values within the interval [−2σ, 2σ] and these values are then normalized and used to813

proportionally allocate the number of experts across layers, as illustrated in Fig. 5. NormalR follows the814

same allocation principle as NormalE, where ranks are proportionally assigned across layers based on a815

normalized standard normal distribution, given a total rank budget of 40 and predefined expert number per816

layer. For example, consider MoLA(2468)-Uni, where MoLA(2468) allocates 2 experts to each layer for817

the first 8 layers, 4 experts to each layer for 9-16 layers, 6 experts to each layer for 17-24 layers, and 8818

experts to each layer for the last 8 layers. In the Uni setting, if the number of experts is 4, each expert is819

assigned a rank of 40÷ 4 = 10. LLaMA27B on MRPC and ScienceQA. The results are shown in Fig. 6.820

It can be observed that the performance varies across different expert number and rank configurations for821

the two tasks, demonstrating that different tasks require different expert number and rank.822
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Figure 5: Allocating expert number across different layers using NormalE strategy.

B Dataset823

The details are reported in Table 5. We source each dataset from Huggingface Datasets and utilize the full824

dataset for our experiments.

Dataset #Train #Valid #Test

CoLA 8,551 1,043 1,063
MRPC 3,668 408 1,725
RTE 2,490 277 3,000
ScienceQA 6,508 2,144 2,224
CommonsenseQA 9,740 1,221 1,140
OpenbookQA 5,957 500 500
MultiArith 420 - 180
SVAMP 700 - 300
GSM8K 7473 1319 -

Table 7: The detailed statistics of all the datasets we used in our experiments.
825

C Token Load Balance Loss826

Consider a set of N experts indexed by i = 1, ..., N , and a batch of T tokens. The auxiliary loss is the827

scaled dot product of the expert usage vector f and routing probability vector P .828

LBAL = cB ·N ·
N∑
i=1

fi · Pi (14)829
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Figure 6: Performance comparison across 16 expert number and rank configurations in LLaMA-27B on MRPC and
ScienceQA.

where fi denotes the proportion of tokens assigned to expert i and Pi is the fraction of the router probability 830

allocated for expert i. 831

D Implementation Details 832

All experiments are conducted on 8× NVIDIA A800-SXM4 80GB GPUs. The direct fine-tuning setting 833

aligns with AlphaLoRA (Qing et al., 2024). We perform a grid search on the number of training epochs, 834

including 10, 15, and 20 epochs for downstream task fine-tuning on the NLU and QA datasets. The 835

cutoff length is set to 256 and the batch size is 32. For the mathematical reasoning tasks, we conduct 836

instruction tuning on the MetaMathQA dataset (Yu et al., 2024) for 1 epoch with cutoff length set to 512. 837

In GuiLoMo, we employ two separate AdamW optimizers: one for the GuidedSelection Vector (GSVs) 838

and one for the trainable model parameters. In all experiments, we set emax = 8, rmax = 8 and LoRA 839

scale parameter α of LoRA to 16. The optimizer for GSVs is configured with a learning rate of 3e-3, 840

betas of (0.5, 0.999), a weight decay of 1e-3, and epsilon of 1e-8. The optimizer for the model parameters 841

uses a learning rate of 3e-4, betas of (0.9, 0.999), and epsilon of 1e-8. We also employ a cosine learning 842

rate scheduler to decay the learning rate. During the optimization process of Alg. 1, we trained for 3 843

epochs with a batch size of 64 on the NLU and QA datasets, and for 0.25 epoch with a batch size of 32 844

on the MetaMathQA dataset. T is computed as the dataset size divided by the batch size, multiplied by 845

the number of training epochs. Due to the intrinsic sparsity of GSV, we forgo the use of orthogonality 846

regularization loss (Ding et al., 2023). 847

E The Configuration of the Baselines 848

We set β = 2.5 in AlphaLoRA and specify the total number of experts to be 160. The baselines are 849

implemented using their open-sourced codes. For SoRA (Ding et al., 2023), we set the maximum rank 850

for decay to 12, with λ = 10−1, ξ = 10−4, and ηt = 10−1. MoLA(5) denotes using 5 experts per layer, 851

while AlphaLoRA employs 160 in total. Under the Uniform(8) setting, each expert is assigned a rank of 8. 852

When adopting the SoRA strategy for rank allocation, the maximum decayed rank is set to 12. 853
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F Prompt Templates for Fine-tuning854

We use the Alpaca prompt template for instruction tuning on three question answering datasets (ScienceQA,855

CommonsenseQA, and OpenbookQA):856

Below is an instruction that describes857

a task, paired with an input that provides858

further context. Write a response that859

appropriately completes the request.860

### Instruction:861

{instruction}862

### Input:863

{input}864

### Response:865

G H operation866

We adopt the sensitivity (Zhang et al., 2023; Wang et al., 2020) without the norm to represent the867

discriminative score of the currently selected configuration:868

Ŝ(ϕ) = ϕ∇ϕL (15)869

where ϕ is any trainable parameter. Based on the above, the output of H(ϕ) is such that at the position n⋆870

(the index of the maximum value in ϕ), its value equals
∑n⋆

i=1 Ŝ(ϕ), while all other positions are zero.871
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H Allocation Details 872

H.1 Allocation Details of Llama-38B 873

The average expert number, average rank, and total ranks of each sub-module (MHA and FFN) per layer 874

in LLaMA-38B on CommonsenseQA are shown in Fig. 7, Fig. 8, and Fig. 9, respectively. 875
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Figure 7: Average expert number of each sub-module (MHA and FFN) across each layer in LLaMA-38B on
CommonsenseQA.
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Figure 8: Average rank per expert for each sub-module (MHA and FFN) across all layers in LLaMA38B on
CommonsenseQA.
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Figure 9: Total rank of each sub-module (MHA and FFN) across each layer in LLaMA-38B on CommonsenseQA.
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H.2 Allocation Details on Additional Datasets and Models876

The per-layer average expert number, average rank, and total rank of each sub-module (MHA and FFN)877

for LLaMA-27B and Mistral-v0.17B on MetaMathQA and COLA are illustrated in Figs. 10, 11, 12 and878

13, 14, 15, respectively.
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Figure 10: Average expert number of each sub-module (MHA and FFN) across each layer in LLaMA-27B on
MetaMathQA.
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Figure 11: Average rank per expert for each sub-module (MHA and FFN) across all layers in LLaMA27B on
MetaMathQA.
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Figure 12: Total rank of each sub-module (MHA and FFN) across each layer in LLaMA27B on MetaMathQA.
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Figure 13: Average expert number of each sub-module (MHA and FFN) across each layer in Mistral-v0.17B on
COLA.
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Figure 14: Average rank per expert for each sub-module (MHA and FFN) across all layers in Mistral-v0.17B on
COLA.
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Figure 15: Total rank of each sub-module (MHA and FFN) across each layer in Mistral-v0.17B on COLA.

Strategy MRPC COLA SciQA ComQA GSM8K MultiArith Avg.

MoLA(5)-Uniform(8) 84.17 86.19 92.08 77.55 49.50 87.00 79.42

GuiLoMo 85.80 87.25 92.99 78.46 53.07 93.67 81.87
w/o adaptive expert allocation 84.99 86.86 92.13 78.54 52.16 89.17 80.64
w/o varying rank 85.80 86.77 92.36 78.13 51.10 91.67 80.97

Table 8: The detailed results of ablation studies on GuiLoMo across from six benchmark (MRPC, COLA, SciQA,
ComQA, GSM8K, MultiArith).

17


	Introduction
	Preliminary
	Method
	Bilevel Optimization for Obtaining the GuidedSelection Vector
	Expert GuidedSelection Vector
	Rank GuidedSelection Vector
	Allocating Expert Number and Rank via GSV

	Experiment
	Experimental Settings
	Main Result
	Further Analysis

	Related work
	Conclusion
	Effect of Expert Number and Rank on Diverse Downstream Tasks 
	Dataset
	Token Load Balance Loss
	Implementation Details
	The Configuration of the Baselines
	Prompt Templates for Fine-tuning
	H operation
	Allocation Details
	Allocation Details of Llama-38B
	Allocation Details on Additional Datasets and Models


