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Abstract

Existing infrared and visible image fusion methods often face the dilemma of
balancing modal information. Generative fusion methods reconstruct fused images
by learning from data distributions, but their generative capabilities remain lim-
ited. Moreover, the lack of interpretability in modal information selection further
affects the reliability and consistency of fusion results in complex scenarios. This
manuscript revisits the essence of generative image fusion under the inspiration
of human cognitive laws and proposes a novel infrared and visible image fusion
method, termed HCLFuse. First, HCLFuse investigates the quantification theory of
information mapping in unsupervised fusion networks, which leads to the design of
a multi-scale mask-regulated variational bottleneck encoder. This encoder applies
posterior probability modeling and information decomposition to extract accurate
and concise low-level modal information, thereby supporting the generation of
high-fidelity structural details. Furthermore, the probabilistic generative capability
of the diffusion model is integrated with physical laws, forming a time-varying
physical guidance mechanism that adaptively regulates the generation process at
different stages, thereby enhancing the ability of the model to perceive the intrinsic
structure of data and reducing dependence on data quality. Experimental results
show that the proposed method achieves state-of-the-art fusion performance in
qualitative and quantitative evaluations across multiple datasets and significantly
improves semantic segmentation metrics. This fully demonstrates the advantages
of this generative image fusion method, drawing inspiration from human cognition,
in enhancing structural consistency and detail quality. The source code is available
at https://github.com/lxq-jnu/HCLFuse

1 Introduction

Infrared and visible image fusion has been extensively employed as a core technique in multi-
modal sensing systems, which are widely adopted in surveillance, autonomous driving, and target
tracking [1, 2, 3]. Infrared sensors capture thermal radiation and are effective under low-light
conditions, while visible sensors perform better in well-lit environments but degrade in darkness or
adverse weather. Image fusion aims to combine complementary advantages from both modalities,
traditionally formulated as a deterministic mapping based on handcrafted features, using techniques
like multi-scale decomposition[4, 5, 6] or sparse representation[7, 8, 9]. Although these methods
are computationally efficient, they lack the ability to capture semantic relationships and handle
uncertainty, which often results in suboptimal integration of multi-modal information. Recent
deep learning-based approaches adopt data-driven strategies to automatically learn cross-modal

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/lxq-jnu/HCLFuse


Figure 1: Comparative visualization of gaussian curvature in generative infrared and visible image
fusion methods.

relationships, substantially improving fusion quality. Generative models further advance this by
modeling the task as a conditional distribution p(z | x, y), capable of handling uncertainty and
capturing deeper modality interactions. However, existing generative methods still face several
limitations:

Limited generative capability: Existing methods often focus on feature extraction (representative
methods: Dif-Fusion[10], LFDT-Fusion[11]) or optimization (representative methods: Diff-IF[12]),
failing to fully leverage the potential of generative models.

Lack of interpretability: Current methods lack sufficient interpretability regarding how information
from different modalities is selected and processed during fusion.

Strong data dependence: These models heavily rely on statistical distribution properties and lack a
deep understanding of the intrinsic rules of the modalities. As a result, their robustness is weak when
confronted with data distribution shifts or noise interference.

To visualize these limitations, Gaussian curvature is introduced as a geometric indicator of structural
consistency. As shown in Fig. 1(b), existing diffusion-based methods exhibit fragmented curvature
patterns in critical regions, suggesting incoherent structure retention and biased information integra-
tion. This indicates that the methods fail to achieve optimal information selection and retention in the
integration of modal information. Existing generative models focus primarily on data distribution,
neglecting the intrinsic understanding of the data. In contrast, human cognition inspires us to combine
empirical data with abstract reasoning and domain knowledge. As highlighted by Tenenbaum et
al.[13], mechanisms such as selective attention and physical laws play a crucial role in guiding
robust perception under uncertainty, which remains largely absent in current fusion models. Selective
attention involves prioritizing task-relevant information while disregarding redundant or irrelevant
inputs. Adherence to physical laws involves integrating perceptual input with domain knowledge to
support robust inference.

This paper revisits generative infrared and visible image fusion through cognition-inspired modeling
principles and proposes a novel method. The framework(see Fig. 2(a)) integrates a data-driven
generative model with theorem-constrained probabilistic reasoning, enabling more interpretable
and robust fusion. A multi-scale variational bottleneck encoder is designed to extract structured
low-level features through information quantization, which are then guided by a physics-aware
diffusion process. By incorporating physical laws into the generative trajectory, HCLFuse enhances
semantic consistency and reduces reliance on high-quality data. As shown in Fig. 1, HCLFuse not
only demonstrates more complete structural features in curvature visualization but also surpasses the
curvature quality of the original images in certain regions. Overall, the main contributions of this
paper are summarized as follows:

• A novel generative fusion framework is proposed to enhance modality interpretability and structural
consistency by incorporating human cognitive laws.

• A multi-scale variational bottleneck encoder is introduced to extract discriminative low-level
representations through unsupervised information mapping quantization theory.

• The generative ability of the diffusion model is combined with physical laws to form a time-varying
physical guidance mechanism, enhancing the ability of the model to perceive the intrinsic nature of
data, reducing data dependence.
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• Extensive experiments demonstrate superior performance in both fusion quality and downstream
semantic segmentation.

2 Related Work

2.1 Deep Learning-Based Fusion Methods

With the advancement of deep learning, image fusion has evolved from traditional deterministic
models to data-driven approaches capable of capturing complex modality relationships. Early
methods such as DenseFuse[14] introduced convolutional encoders with dual fusion strategies,
while NestFuse[15] enhanced detail preservation via multi-scale nested connections. To improve
interpretability, LRRNet[16] employed a lightweight architecture that approximates optimal fusion
solutions, and MMAE[17] incorporated masked attention mechanisms into a general two-stage fusion
pipeline. Recent trends favor end-to-end architectures. PMGI[18] unified diverse fusion objectives
under a common optimization formulation, and STDFusionNet[19] leveraged salient target masks
to jointly model detection and fusion. Transformer-based methods further expanded global context
modeling: SwinFusion[20] designed intra- and inter-domain modules based on the Swin Transformer;
SegMiF[21] applied hierarchical attention for fine-grained representation; STFNet[22] focused
on pixel-level dependencies to mitigate ghosting; and CrossFuse[23] proposed complementary
attention to suppress modality-specific redundancy. While these methods have improved cross-modal
feature integration, they often treat fusion as deterministic overlay, overlooking its generative nature.
Consequently, their performance is limited when handling degraded inputs or incomplete modality
information, restricting the semantic expressiveness of fused outputs.

2.2 Generative Models for Image Fusion

With the evolution of generative models, image fusion task has gradually been formulated within
the framework of Generative Adversarial Networks (GAN). FusionGAN[24] was among the earliest
attempts to establish an adversarial learning scheme between a generator and a discriminator, wherein
the generator synthesized fused image and the discriminator evaluated the detail-level differences
between the fused image and the visible image. This setup was intended to improve the structural
integrity and perceptual realism of the fused result. The application of GAN in image fusion is
hindered by inherent limitations, including training instability and mode collapse, which reduce both
generalization ability and generation quality. To address these limitations, diffusion models(DM)
have been introduced as a compelling alternative, offering advantages such as progressive generation,
high fidelity, and stable training dynamics. Dif-Fusion[10] employed a diffusion model as a feature
extractor to guide the fusion process and produced fused images with improved color fidelity. Diff-
IF[12] incorporated prior knowledge of the fusion task to condition the diffusion model, enabling
the generation of high-quality fused image even in the absence of ground-truth. CCF[25] proposed
a conditionally controllable fusion framework that relaxed the constraints imposed by fixed fusion
paradigms and improved the adaptability and generalization of the generation process.

Although diffusion-based image fusion methods have demonstrated notable advances in both per-
formance and representational capability, most existing approaches continue to rely heavily on
conditioning from data distribution. Therefore, the full potential of diffusion models as generative
mechanisms for image fusion remains underexplored. This work establishes a theoretical framework
for unsupervised image fusion from the perspective of human cognitive principles. Furthermore, a
time-varying physical guidance mechanism is developed by integrating physical laws with data-driven
distributions, aiming to generate fused images with improved structural consistency and information
completeness.

3 Method

3.1 Problem Statement and Modeling

In HCLFuse, let the infrared image domain be denoted as X and the visible image domain as Y ,
with joint observations (x, y) ∼ px,y . A fusion mapping F(X ,Y)→ Z is constructed to generate a
fused latent representation z = F(x, y) ∈ Z , where Z ⊆ Rd denotes the fusion space. The detailed
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Figure 2: Overall architecture of HCLFuse and feature evolution across the diffusion process.

architecture and optimization workflow of HCLFuse are provided in Appendix B. Ideally, the fused
representation is expected to effectively preserve complementary information from both modalities
while suppressing redundancy and noise. The image fusion task is formulated as a trade-off between
compressive sensing and information preservation, aiming to optimize the selectivity of information
to extract the most discriminative features. Specifically, assuming the fused representation follows a
conditional distribution Z ∼ q(z|x, y), the optimization objective is defined as the maximization of
the joint mutual information between Z and the modal inputs:

max
q(z|x,y)

I(Z;X,Y ) (1)

Here, the mutual information I(Z;X,Y ) quantifies the amount of information from the modal inputs
preserved in the fused representation[26], and is defined as follows:

I(Z;X,Y ) =

∫∫
q(z, x, y) log

q(z|x, y)
p(z)

dz dx dy (2)

However, directly maximizing the information quantity may lead to the retention of excessive
redundant content, which contradicts the selective attention mechanism observed in human cognitive
systems. Within the predictive brain framework proposed by Clark[27], cognition is interpreted as an
active process that adjusts internal models by minimizing prediction errors, thereby emphasizing the
necessity of focusing on task-relevant information. To address this issue, the information bottleneck
(IB)[28] theory is introduced as a mechanism to regulate information flow. The IB principle seeks a
balance between compression and preservation by maximizing the mutual information between the
fused representation and a task-relevant variable C, while minimizing its mutual information with the
input:

max
q(z|x,y)

I(Z;C)− βI(Z;X,Y ) (3)

Here, β serves as a trade-off coefficient that controls the balance between task relevance and com-
pression. In unsupervised image fusion scenarios, explicit labels C are unavailable. Therefore, a
proxy task is designed by leveraging the modality alignment capability as a surrogate measure of task
relevance.
Theorem 1. (Lower Bound of Mutual Information under Unsupervised Mapping) Let modal inputs
X ∼ pX and Y ∼ pY , with the fused representation Z ∼ q(z|x, y). Assume the existence of a latent
task-relevant variable C that satisfies the causal dependency C → (X,Y )→ Z. Then, there exists
an optimal transport mapping [29] T ∗ : X → X ′, such that the fused representation Z generated
from the transformed X ′ = T ∗(X) and Y satisfies the following lower bound on mutual information
(the full derivation is provided in Appendix A.1):

I(Z;C) ≥ I(Z;X ′, Y )− ε ≥ I(Z;X,Y )− α ·
[
W2(pX , pY )−W2(T

∗#pX , pY )
]

(4)

where ε > 0 denotes an upper bound on the residual task-irrelevant information, α > 0 is a
sensitivity factor, W2(·, ·) represents the second-order Wasserstein distance, and T ∗#pX denotes
the pushforward distribution of pX under the optimal mapping T ∗. This establishes a principled
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foundation for fusion optimization through transport-based modality alignment. It reveals that the
improvement in I(Z;C) is lower bounded by the reduction in Wasserstein distance after applying the
optimal transport map T ∗, offering a quantifiable and optimizable surrogate objective for information
alignment under unsupervised conditions.

3.2 Variational Bottleneck Encoder

Under the guidance of the optimal transport mapping proposed in Theorem 1, a variational bottleneck
encoder (VBE) is designed to extract salient and compact representations under information alignment.
The input to the encoder consists of the concatenated transformed infrared image X ′ and the visible
image Y . Only the infrared image is transformed according to an optimal transport plan, while the
visible image remains unchanged to ensure stability and efficiency. The transformation operator
T ∗ is obtained by multiplying the optimal transport plan P∗ with the flattened infrared tensor
Xflat ∈ RB×N×C , where N = H ×W :

T ∗(X) = P∗ ·Xflat, P∗ = arg min
P∈U(r,c)

∑
i,j

PijCij + ε
∑
i,j

Pij logPij . (5)

Here, U(r, c) denotes the set of doubly stochastic matrices with row and column marginals r and
c, Cij represents the squared Euclidean distance between flattened pixel values of infrared and
visible images, and ε is a regularization coefficient. Through this transformation, the infrared image
is geometrically and semantically aligned to the visible modality, reducing structural discrepancy
between modalities and improving training efficiency. The transformed infrared image X ′ = T ∗(X)
and the original visible image Y are then jointly encoded to model their latent representation as
Z ∼ q(Z|X ′, Y ). The optimization objective of the VBE is formulated as:

LVBE =− Eq(Z|X′,Y )[log p(Y |Z)]− αEq(Z|X′,Y )[log p(X
′|Z)]

+ β DKL[q(Z|X ′, Y )∥p(Z)] (6)

The first two terms evaluate the reconstruction capability of Z with respect to Y and X ′, while the third
term imposes a Kullback–Leibler (KL) divergence regularization to constrain the posterior q(Z|X ′, Y )
from deviating significantly from the prior p(Z), thereby enabling controllable compression. The
parameter β > 0 governs the strength of this information bottleneck constraint. The objective
LVBE essentially unifies the modeling principles of the Variational Autoencoder and the Information
Bottleneck framework. It ensures robust cross-modal reconstruction while compressing redundant
information in the latent space, thus generating structurally consistent and semantically compact
fused representations Z for the subsequent conditional modeling stage of the diffusion model. Under
this bottleneck constraint, a multi-scale masking mechanism is further introduced to adaptively filter
features at different scales, serving as a complementary enhancement rather than the bottleneck itself,
thereby enhancing the expressiveness of the latent representation Z. This process is formulated as:

Fs = concat(X ′, Y ), Fm = σ (θs · (Ms ⊙ Fs)) (7)

where σ(·) denotes the activation function, θs represents learnable parameters, and Ms denotes the
mask weights that determine the importance of each feature, which are learnable parameters obtained
through a differentiable transformation Ms = sigmoid(ws), where ws ∈ R1×C×1×1 is initialized
from a normal distribution and jointly optimized with LVBE. Fs refers to the input of the VBE module.
The operator ⊙ indicates element-wise multiplication, through which the mask Ms is applied to the
features Fs to obtain the condensed key feature representation Fm. To characterize the distributional
properties of critical and uncertain information within the latent representation Z more explicitly,
the posterior distribution q(Z|Fm) is modeled as a Gaussian distribution. Due to its continuity and
differentiability, the Gaussian distribution facilitates sampling and optimization within the variational
inference framework. Meanwhile, its parameterized structure enables effective modeling of both
deterministic and uncertain components in the latent space. This modeling is expressed as:

q(Z|Fm) ∼ N (µ, σ2) (8)

The mean µ and variance σ2 of the latent variable Z are computed from the masked features Fm to
represent the deterministic and uncertain components, respectively. This design enables a controllable
generative capacity in the latent space while preserving discriminative semantic features from the
multi-modal input, thereby facilitating improved expressiveness and structural consistency in the
subsequent diffusion model. To further characterize the information structure within the latent
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representation, the latent variable Z ∼ N (µ, σ2) output by the variational bottleneck encoder is
structurally decomposed. Specifically, considering that the encoder output contains both deterministic
information driven by the input features and stochastic perturbations introduced by the variational
modeling, the latent variable Z can be expressed as:

Z = µ+R, R ∼ N (0, σ2), (9)

where µ denotes the mean vector computed from the masked features Fm, representing task-relevant
structural information, and R denotes a zero-mean Gaussian perturbation with covariance σ2, model-
ing the uncertainty introduced during the information bottleneck compression process.

Theorem 2 (Upper Bound of Redundant Mutual Information in the Perturbation Term). Based on
the decomposition in (9), we consider the mutual information between the perturbation term R and
the task-relevant component µ. Assuming a heteroscedastic Gaussian reparameterization consistent
with the encoder implementation,

R = σ ⊙ ε, ε ∼ N (0, I),

Under the joint-Gaussian and channel-diagonal dominance assumptions (see Appendix A.2), the
redundant mutual information admits the following upper bound:

I(R;µ) ≤ 1

2

d∑
i=1

[
− log

(
1− Var[µi]

σ2
i

)]
, (10)

The latent variables decoupled by the variational bottleneck encoder provide critical features for the
diffusion model. By constraining the redundancy in R, the diffusion process focuses on task-relevant
structures, thereby improving the quality and consistency of the generated results. As shown in the
first row of Fig. 2(b), the encoder output gradually captures refined and discriminative structural
information, which is then fed into the subsequent generation and reconstruction processes.

3.3 Physics-Guided Conditional Diffusion Model

Diffusion models synthesize images via reverse denoising processes, capturing distributional patterns
from large-scale data. Inspired by the interplay between empirical learning and physical reasoning in
human cognition, a physics-guided conditional diffusion model is proposed, in which data-driven
estimation is integrated with physically grounded constraints derived from domain knowledge. This
hybrid mechanism enhances generalizability and interpretability while reducing dependence on
high-quality data. In basic diffusion models, the reverse process (denoising sampling) is entirely
based on the learned conditional distribution, typically formulated as:

pθ(zt−1 | zt) ≈ N (µθ(zt, t),Σθ(zt, t)) (11)

To reinforce structural consistency and physical interpretability, the proposed physics-guided diffusion
model introduces a physically grounded correction term ∆µphys(zt, t) into the reverse process, with
the VBE-generated latent Z as input. The modified sampling is defined as:

pphys
θ (zt−1 | zt) ≈ N (µθ(zt, t) + ∆µphys(zt, t), Σθ(zt, t)) (12)

where ∆µphys(zt, t) denotes a physics-based correction term that guides the generation process to
obey fundamental physical laws. The probabilistic model provides an experience-driven initial
estimate, while the physical constraints serve as rule-based corrections, jointly forming a generation
process akin to the human cognitive laws between empirical experience and physical theorems. At
each diffusion step t, generation proceeds in two stages: (1) a probabilistic estimate ẑ0 is computed
via denoising; (2) a physics-based correction ẑphys

0 = Φphysics(ẑ0, t) is applied, followed by reverse
sampling:

zt−1 =
√
αt−1 ẑ

phys
0 +

√
1− αt−1 ϵ

phys
t (13)

Where ϵphys
t represents the re-estimated noise corresponding to ẑphys

0 , ensuring consistency in both
semantic structure and noise components. This two-stage reasoning is executed at every timestep,
enabling the generative trajectory to maintain data-driven capabilities while incorporating structural
and physical corrections, leading to more realistic, stable, and physically plausible outputs. Under
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the proposed physics-guided framework, three types of physical constraints are introduced to capture
the intrinsic physical laws relevant to infrared and visible image fusion:

Φphysics(ẑ0, t) = Φcon(Φstru(Φheat(ẑ0, t), t), t) (14)

Heat Conduction Constraint. This constraint reflects the law of energy transfer in physical materials,
modeled on thermodynamic heat conduction. It describes the spatial diffusion of thermal energy across
object surfaces, enforcing smooth and physically plausible energy distributions within homogeneous
regions. The constraint is defined as:

Φheat(ẑ0, t) = ẑ0 + λheat(t) · ∇2ẑ0 (15)

where∇2 denotes the Laplacian operator, and λheat(t) is the time-dependent heat diffusion coefficient.
This constraint encourages the generated image to follow the heat conduction equation ∂u

∂t = α∇2u,
thereby suppressing artifacts and discontinuities inconsistent with thermal physics.

Structure Preservation Constraint. Based on the assumption that object boundaries and structural
features remain stable over short temporal intervals, this constraint is designed to maintain edge
sharpness and shape consistency during fusion. It is formulated as:

Φstru(ẑ
heat
0 , t) = ẑheat

0 + λstru(t)
(
Gmax −Gẑheat

0

)
Mstru, (16)

Where Gmax denotes the maximum gradient map of the source image pair, providing structural edge
information. Gẑheat

0
is the gradient of the current estimate. And Mstru is a structural mask derived

from the high-frequency responses of the visible image, indicating important structural regions. This
constraint enforces structural similarity to the source, ensuring the physical stability of prominent
object boundaries.

Physical Consistency Constraint. This constraint enhances cross-modal physical coherence, ensur-
ing that both modalities depict the object consistently in terms of physical properties. It is defined
as:

Φcon(ẑ
stru
0 , t) = ẑstru

0 + λcon(t)
(
wir ·X ·Mheat + wvis · Y ·Mstru

)
, (17)

Where Mheat is the mask derived from the thermal–intensity distribution of the infrared image.Both
masks are non-learnable spatial physical priors that guide the diffusion process toward physically
plausible and cross-modally consistent regions. The weights wir and wvis control the contributions
of the infrared and visible modalities, respectively. To adapt to the varying uncertainty and mitigate
potential bias introduced by imperfect masks during the diffusion process, a Time-varying Physical
Guidance (TPG) mechanism is introduced, which defines each of the above λi(t) as:

λi(t) = λ0
i · e−γt (18)

where λ0
i is the initial constraint weight, γ is a decay factor, and t is the normalized timestep. This

mechanism reflects the cognitive process of “coarse perception followed by fine reasoning”: in early
steps (high noise, high uncertainty), stronger physical constraints provide guidance, while in later
steps (low noise, high certainty), the model relies more on learned semantics and structural details
for restoration. By leveraging this mechanism, the model dynamically adjusts physical guidance
intensity, enabling robust and physically grounded cross-modal generation. As illustrated in Fig. 2(b),
the visualized feature maps at different timesteps clearly exhibit this transition from noisy coarse
perception to refined semantic restoration.

4 Experiments

4.1 Experimental Setup

HCLFuse is evaluated on four public datasets: MSRS [30], TNO [31], FMB [21] and MFNet [32],
covering diverse conditions such as urban driving, nighttime military scenes, and adverse weather.
Seventeen representative fusion methods are selected for comparison. Quantitative evaluations
are performed using seven no-reference and five reference-based metrics. All experiments are
implemented on an NVIDIA RTX 3090 GPU. Detailed descriptions of datasets, competing methods,
hardware, and evaluation metrics are provided in Appendix C.1.
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(a) Visible (b) Infrared (c) FusionGAN (d) NestFuse (e) SwinFusion

(f) TarDAL (g) SegMiF (h) SOSMaskFuse (i) LRRNet (j) STFNet

(k) CrossFuse (l) DDFM (m) Diff-IF (n) Text-IF (o) CCF

(p) Text-DiFuse (q) MMAE (r) LFDT-Fusion (s) GIFNet (t) Ours

Figure 3: Visualization results of several methods on MSRS dataset 00621D (image name) scene.

Table 1: The quantitative metrics of various algorithms in MSRS dataset. Bold indicates the best
result. underline indicates the second-best result.

Method SD↑ AG↑ CC↑ SCD↑ EN↑ SF↑ Nabf↓ DF↑ QSF↑ VIF↑ PIQE↓ BRI.↓

FusionGAN 19.644 1.6646 0.6276 1.0763 5.5537 5.0135 0.0239 1.9605 -0.5557 0.4627 44.120 35.543
NestFuse 46.141 3.5573 0.5941 1.5632 6.1205 11.616 0.0112 4.0834 -0.0207 0.9099 41.856 37.513
SwinFusion 47.651 3.7885 0.5900 1.5815 6.0590 12.550 0.0095 4.3502 0.0651 0.9119 38.137 37.551
TarDAL 35.460 3.1149 0.6261 1.4837 6.3476 9.8729 0.0098 3.8817 -0.1419 0.6728 22.898 26.165
SegMiF 40.351 3.0449 0.6130 1.5482 6.3297 9.4273 0.0177 3.4624 -0.1968 0.6239 42.081 34.445
SOSMaskFuse 45.647 3.3081 0.5492 1.2552 5.8463 11.248 0.0143 3.7733 -0.0457 0.8585 44.769 40.064
LRRNet 36.849 3.0502 0.5171 0.8356 6.3341 9.8093 0.0208 3.6042 -0.1617 0.5680 29.963 30.822
STFNet 46.980 3.3167 0.5992 1.5931 6.3750 9.9802 0.0113 3.6135 -0.1389 0.8463 54.532 43.027
CrossFuse 36.309 3.0084 0.5433 1.0533 6.4947 9.6134 0.0243 3.5304 -0.1805 0.8374 33.084 33.594
DDFM 28.923 2.5219 0.6585 1.4493 6.1748 7.3879 0.0196 2.9599 -0.3581 0.74291 37.389 35.674
Diff-IF 42.598 3.7100 0.6023 1.6243 6.6686 11.460 0.0087 4.3206 -0.0237 1.0417 32.734 31.515
Text-IF 44.588 3.8811 0.5982 1.6976 6.7280 11.879 0.0075 4.5075 0.0165 1.0506 33.987 31.681
CCF 28.946 2.8753 0.6495 1.4087 6.1917 9.0417 0.0154 3.6091 -0.2369 0.6847 17.338 26.380
Text-DiFuse 54.243 3.7000 0.5710 1.3816 7.1436 11.408 0.0125 4.1898 -0.0168 0.73116 35.283 34.988
MMAE 41.938 3.5325 0.6034 1.4173 6.1731 12.839 0.0087 4.1595 0.0719 0.8090 33.176 31.247
LFDT-Fusion 43.052 3.6429 0.6003 1.6370 6.6504 11.230 0.0095 4.1986 -0.0422 1.0296 38.861 32.374
GIFNet 32.901 3.3673 0.6278 1.4082 5.9404 12.705 0.0110 3.8030 0.0654 0.5823 43.581 38.136
Ours 49.546 6.4355 0.6186 1.6575 6.8704 17.899 0.0017 7.6427 0.5374 0.8540 25.193 26.215

4.2 Qualitative Comparisons

Fig. 3 and Fig. 4 illustrate the fusion results of various methods on the MSRS dataset under daytime
and nighttime scenes, respectively. As shown in Fig. 3, the red bounding box highlights pedestrian
targets that are prominently captured in the infrared modality. Several methods, including FusionGAN,
SOSMaskFuse, CrossFuse, and CCF, tend to over-enhance the thermal response, resulting in unnatural
brightness distributions and noticeable visual artifacts. Additionally, MMAE fails to preserve the sign
within the green box, leading to a critical loss of structural information—an example of severe fusion
error. In contrast, only the proposed HCLFuse successfully preserves complementary features from
both modalities, while also demonstrating a degree of detail restoration. For instance, fine details such
as the bicycle wheels, leaves in the background, and pavement textures are clearly visible, indicating
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(a) Visible (b) Infrared (c) FusionGAN (d) NestFuse (e) SwinFusion

(f) TarDAL (g) SegMiF (h) SOSMaskFuse (i) LRRNet (j) STFNet

(k) CrossFuse (l) DDFM (m) Diff-IF (n) Text-IF (o) CCF

(p) Text-DiFuse (q) MMAE (r) LFDT-Fusion (s) GIFNet (t) Ours

Figure 4: Visualization results of several methods on MSRS dataset 00774N scene.

better semantic preservation and structural coherence. As shown in Fig. 4 the scene is captured under
low-light conditions, where infrared saliency becomes particularly important. However, methods
such as LRRNet, CrossFuse and GIFNet fail to maintain the thermal prominence of pedestrians
in the red box, thereby compromising target visibility. From a global perspective, TarDAL, Text-
DiFuse, and HCLFuse preserve structural information in the green-box region, while only our method
maintains higher perceptual resolution with clearer details. These results are generated by effectively
integrating visible and infrared sources while maintaining structural integrity, thereby achieving
superior perceptual quality without deviating from the underlying content.

4.3 Quantitative Comparisons

Table 1 reports the quantitative results of all compared methods on the MSRS dataset. The proposed
HCLFuse achieves superior performance on most metrics, particularly excelling in texture clarity and
structural fidelity. In terms of perceptual sharpness, HCLFuse obtains the highest AG, outperforming
the second-best method by 69.87%, and reaches the best SF with a 39.41% relative gain, reflecting
its strong capability in preserving fine-grained details. For DF, HCLFuse improves upon the next
best result by 65.56%, indicating significantly enhanced visual clarity. Notably, HCLFuse achieves
a substantially higher QSF score compared to all competing methods, demonstrating its superior
capability in preserving directionally distributed frequency information. In addition, HCLFuse attains
the highest EN, confirming its ability to maintain information richness while suppressing unnatural
responses.

4.4 Generalization Evaluation

To further verify the robustness and generalization ability of HCLFuse across diverse datasets and
scenarios, additional comparative experiments are conducted on the TNO, FMB, and MFNet datasets,
with detailed quantitative and qualitative results presented in Appendix C, HCLFuse consistently
outperforms existing fusion methods by leveraging its human cognition-inspired generative capability,
while simultaneously maintaining strong generalization and robustness under varying conditions.
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4.5 Downstream Task Evaluation

The ultimate goal of image fusion is to enhance the performance of downstream vision tasks. Among
them, semantic segmentation places particularly strict demands on fine-grained semantic details.
To evaluate this aspect, comparative experiments are conducted on the MSRS dataset using the
Mask2Former[33] framework. As shown in Appendix C.6, HCLFuse achieves superior segmenta-
tion performance, attributed to its ability to retain fine structural and semantic cues, consistently
outperforming other fusion baselines in this challenging downstream setting.

4.6 Ablation Studies

To evaluate the effectiveness of each component in HCLFuse, ablation experiments are conducted
using the same quantitative metrics. As shown in Table 2, the complete model achieves the best
performance on most indicators. In W/O TPG, the physics-guided constraint is removed, and sampling
is performed purely through data-driven diffusion. While CC and Nabf show slight improvements,
most metrics drop significantly, indicating unstable generation without physical priors. In W/O VBE,
the VBE is replaced with a standard multi-scale encoder. Although this variant ranks second overall,
visual artifacts such as coarse building textures and unnatural sky transitions appear (see Fig. 5),
reflecting the model’s reduced ability to filter and synthesize relevant features. In W/O OT, the
optimal transport module proposed in Theorem 1 is removed, resulting in sharp declines across all
metrics. This highlights the necessity of distribution alignment between modalities for stable fusion.
In W/O DDIM, the deterministic diffusion sampling module (DDIM [34]) is disabled, which degrades
both quantitative scores and visual quality. This confirms the critical role of the diffusion process in
generating coherent fused images. More detailed ablation studies are presented in Appendix C.7 to
further illustrate the effectiveness of the proposed method.

Table 2: Quantitative comparison of fusion performance in ablation studies on the effectiveness of
designed modules. Bold indicates the best result. underline indicates the second-best result.

DDIM OT VBE TPG SD↑ AG↑ CC↑ SCD↑ EN↑ SF↑ Nabf↓ DF↑ QSF↑ VIF↑ PIQE↓ BRI.↓
W/O TPG ✓ ✓ ✓ × 36.90 5.521 0.646 1.595 6.495 15.158 0.0015 6.513 0.303 0.738 22.21 33.54
W/O VBE ✓ ✓ × × 42.68 6.038 0.607 1.521 6.736 17.259 0.0018 7.838 0.459 0.804 23.07 32.69
W/O OT ✓ × × × 28.66 3.578 0.629 1.322 6.188 11.090 0.0107 4.391 -0.058 0.734 23.97 29.85
W/O DDIM × × × × 28.36 3.626 0.635 1.337 6.176 11.218 0.0099 4.386 -0.047 0.741 26.77 32.08
Ours ✓ ✓ ✓ ✓ 49.55 6.436 0.619 1.658 6.870 17.899 0.0017 7.643 0.537 0.854 25.19 26.22

(a) Visible (b) Infrared (c) W/O DDIM (d) W/O OT (e) W/O TPG (f) W/O VBE (g) Ours

Figure 5: Visualization of ablation study results on the MSRS dataset.

5 Conclusion

A novel generative fusion framework is proposed by revisiting infrared and visible image fusion
through the lens of human cognitive laws. Existing generative methods often lack modality inter-
pretability and exhibit weak generative capability.To resolve these problems, a multi-scale mask-
modulated variational bottleneck encoder grounded in information mapping theory is developed. This
encoder enables accurate extraction of low-level modal cues, which significantly enhance structural
fidelity during generation. Furthermore, physical laws are incorporated into the diffusion process to
form a time-varying physical guidance mechanism, which enhances the model capacity to perceive
intrinsic data structures and reduces dependence on data quality. HCLFuse achieves strong perfor-
mance across various benchmarks. However, its reliance on well-aligned infrared and visible image
pairs, together with the computational overhead introduced by the diffusion process, may limit its
applicability in real-time or resource-constrained scenarios.

10



Acknowledgement

This work was supported in part by the National Key Research and Development Program of China
under Grant (2023YFF1105102, 2023YFF1105105), the National Natural Science Foundation of
China under Grant 61772237, the Joint Fund of Ministry of Education for Equipment Pre-research
under Grant 8091B042236.

References
[1] Linfeng Tang, Hao Zhang, Han Xu, and Jiayi Ma. Deep learning-based image fusion: A survey.

Journal of Image and Graphics, 28(1):3–36, 2023.

[2] Yuhang He, Zhiheng Ma, Xing Wei, and Yihong Gong. Knowledge synergy learning for
multi-modal tracking. IEEE Transactions on Circuits and Systems for Video Technology,
34(7):5519–5532, 2024.

[3] Tianrui Hui, Zizheng Xun, Fengguang Peng, Junshi Huang, Xiaoming Wei, Xiaolin Wei, Jiao
Dai, Jizhong Han, and Si Liu. Bridging search region interaction with template for rgb-t tracking.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 13630–13639, 2023.

[4] N Nagaraja Kumar, T Jayachandra Prasad, and K Satya Prasad. An intelligent multimodal
medical image fusion model based on improved fast discrete curvelet transform and type-2
fuzzy entropy. International Journal of Fuzzy Systems, 25(1):96–117, 2023.

[5] Yipeng Liu, Jing Jin, Qiang Wang, Yi Shen, and Xiaoqiu Dong. Region level based multi-focus
image fusion using quaternion wavelet and normalized cut. Signal Processing, 97:9–30, 2014.

[6] Zhiqiang Zhou, Bo Wang, Sun Li, and Mingjie Dong. Perceptual fusion of infrared and
visible images through a hybrid multi-scale decomposition with gaussian and bilateral filters.
Information fusion, 30:15–26, 2016.

[7] Qiang Zhang, Guanghe Li, Yunfeng Cao, and Jungong Han. Multi-focus image fusion based on
non-negative sparse representation and patch-level consistency rectification. Pattern Recognition,
104:107325, 2020.

[8] Hui Li, Xiao-Jun Wu, and Josef Kittler. Mdlatlrr: A novel decomposition method for infrared
and visible image fusion. IEEE Transactions on Image Processing, 29:4733–4746, 2020.

[9] Qilei Li, Wei Wu, Lu Lu, Zuoyong Li, Awais Ahmad, and Gwanggil Jeon. Infrared and
visible images fusion by using sparse representation and guided filter. Journal of Intelligent
Transportation Systems, 24(3):254–263, 2020.

[10] Jun Yue, Leyuan Fang, Shaobo Xia, Yue Deng, and Jiayi Ma. Dif-fusion: Toward high color
fidelity in infrared and visible image fusion with diffusion models. IEEE Transactions on Image
Processing, 32:5705–5720, 2023.

[11] Bo Yang, Zhaohui Jiang, Dong Pan, Haoyang Yu, Gui Gui, and Weihua Gui. Lfdt-fusion: a
latent feature-guided diffusion transformer model for general image fusion. Information Fusion,
113:102639, 2025.

[12] Xunpeng Yi, Linfeng Tang, Hao Zhang, Han Xu, and Jiayi Ma. Diff-if: Multi-modality image
fusion via diffusion model with fusion knowledge prior. Information Fusion, page 102450,
2024.

[13] Joshua B Tenenbaum, Charles Kemp, Thomas L Griffiths, and Noah D Goodman. How to grow
a mind: Statistics, structure, and abstraction. science, 331(6022):1279–1285, 2011.

[14] Hui Li and Xiao-Jun Wu. Densefuse: A fusion approach to infrared and visible images. IEEE
Transactions on Image Processing, 28(5):2614–2623, 2018.

[15] Hui Li, Xiao-Jun Wu, and Tariq Durrani. Nestfuse: An infrared and visible image fusion
architecture based on nest connection and spatial/channel attention models. IEEE Transactions
on Instrumentation and Measurement, 69(12):9645–9656, 2020.

11



[16] Hui Li, Tianyang Xu, Xiao-Jun Wu, Jiwen Lu, and Josef Kittler. Lrrnet: A novel representation
learning guided fusion network for infrared and visible images. IEEE transactions on pattern
analysis and machine intelligence, 45(9):11040–11052, 2023.

[17] Xiangxiang Wang, Lixing Fang, Junli Zhao, Zhenkuan Pan, Hui Li, and Yi Li. Mmae: A
universal image fusion method via mask attention mechanism. Pattern Recognition, 158:111041,
2025.

[18] Hao Zhang, Han Xu, Yang Xiao, Xiaojie Guo, and Jiayi Ma. Rethinking the image fusion: A fast
unified image fusion network based on proportional maintenance of gradient and intensity. In
Proceedings of the AAAI conference on artificial intelligence, volume 34, pages 12797–12804,
2020.

[19] Jiayi Ma, Linfeng Tang, Meilong Xu, Hao Zhang, and Guobao Xiao. Stdfusionnet: An infrared
and visible image fusion network based on salient target detection. IEEE Transactions on
Instrumentation and Measurement, 70:1–13, 2021.

[20] Jiayi Ma, Linfeng Tang, Fan Fan, Jun Huang, Xiaoguang Mei, and Yong Ma. Swinfusion:
Cross-domain long-range learning for general image fusion via swin transformer. IEEE/CAA
Journal of Automatica Sinica, 9(7):1200–1217, 2022.

[21] Jinyuan Liu, Zhu Liu, Guanyao Wu, Long Ma, Risheng Liu, Wei Zhong, Zhongxuan Luo,
and Xin Fan. Multi-interactive feature learning and a full-time multi-modality benchmark for
image fusion and segmentation. In Proceedings of the IEEE/CVF international conference on
computer vision, pages 8115–8124, 2023.

[22] Qiao Liu, Jiatian Pi, Peng Gao, and Di Yuan. Stfnet: Self-supervised transformer for infrared
and visible image fusion. IEEE Transactions on Emerging Topics in Computational Intelligence,
8(2):1513–1526, 2024.

[23] Hui Li and Xiao-Jun Wu. CrossFuse: A Novel Cross Attention Mechanism based Infrared and
Visible Image Fusion Approach. Information Fusion, 103:102147, 2024.

[24] Jiayi Ma, Wei Yu, Pengwei Liang, Chang Li, and Junjun Jiang. Fusiongan: A generative
adversarial network for infrared and visible image fusion. Information fusion, 48:11–26, 2019.

[25] Bing Cao, Xingxin Xu, Pengfei Zhu, Qilong Wang, and Qinghua Hu. Conditional controllable
image fusion. arXiv preprint arXiv:2411.01573, 2024.

[26] Ben Poole, Sherjil Ozair, Aaron Van Den Oord, Alex Alemi, and George Tucker. On variational
bounds of mutual information. In International conference on machine learning, pages 5171–
5180. PMLR, 2019.

[27] Andy Clark. Whatever next? predictive brains, situated agents, and the future of cognitive
science. Behavioral and brain sciences, 36(3):181–204, 2013.

[28] Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck method.
arXiv preprint physics/0004057, 2000.

[29] Cédric Villani et al. Optimal transport: old and new, volume 338. Springer, 2008.

[30] Linfeng Tang, Jiteng Yuan, and Jiayi Ma. Image fusion in the loop of high-level vision tasks:
A semantic-aware real-time infrared and visible image fusion network. Information Fusion,
82:28–42, 2022.

[31] Alexander Toet. The tno multiband image data collection. Data in brief, 15:249, 2017.

[32] Qishen Ha, Kohei Watanabe, Takumi Karasawa, Yoshitaka Ushiku, and Tatsuya Harada. Mfnet:
Towards real-time semantic segmentation for autonomous vehicles with multi-spectral scenes.
In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
5108–5115. IEEE, 2017.

[33] Bowen Cheng, Ishan Misra, Alexander G Schwing, Alexander Kirillov, and Rohit Girdhar.
Masked-attention mask transformer for universal image segmentation. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 1290–1299, 2022.

12



[34] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

[35] Guofa Li, Xuanhu Qian, and Xingda Qu. Sosmaskfuse: An infrared and visible image fusion
architecture based on salient object segmentation mask. IEEE Transactions on Intelligent
Transportation Systems, 24(9):10118–10137, 2023.

[36] Xunpeng Yi, Han Xu, Hao Zhang, Linfeng Tang, and Jiayi Ma. Text-if: Leveraging semantic text
guidance for degradation-aware and interactive image fusion. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 27026–27035, 2024.

[37] Chunyang Cheng, Tianyang Xu, Zhenhua Feng, Xiaojun Wu, Zhangyong Tang, Hui Li, Zeyang
Zhang, Sara Atito, Muhammad Awais, and Josef Kittler. One model for all: Low-level task
interaction is a key to task-agnostic image fusion. In Proceedings of the Computer Vision and
Pattern Recognition Conference, pages 28102–28112, 2025.

[38] Jinyuan Liu, Xin Fan, Zhanbo Huang, Guanyao Wu, Risheng Liu, Wei Zhong, and Zhongxuan
Luo. Target-aware dual adversarial learning and a multi-scenario multi-modality benchmark to
fuse infrared and visible for object detection. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 5802–5811, 2022.

[39] Zixiang Zhao, Haowen Bai, Yuanzhi Zhu, Jiangshe Zhang, Shuang Xu, Yulun Zhang, Kai
Zhang, Deyu Meng, Radu Timofte, and Luc Van Gool. Ddfm: denoising diffusion model for
multi-modality image fusion. In Proceedings of the IEEE/CVF international conference on
computer vision, pages 8082–8093, 2023.

[40] Hao Zhang, Lei Cao, and Jiayi Ma. Text-difuse: An interactive multi-modal image fusion frame-
work based on text-modulated diffusion model. Advances in Neural Information Processing
Systems, 37:39552–39572, 2024.

[41] Guangmang Cui, Huajun Feng, Zhihai Xu, Qi Li, and Yueting Chen. Detail preserved fu-
sion of visible and infrared images using regional saliency extraction and multi-scale image
decomposition. Optics Communications, 341:199–209, 2015.

[42] J Wesley Roberts, Jan A Van Aardt, and Fethi Babikker Ahmed. Assessment of image fusion
procedures using entropy, image quality, and multispectral classification. Journal of Applied
Remote Sensing, 2(1):023522, 2008.

[43] Ahmet M Eskicioglu and Paul S Fisher. Image quality measures and their performance. IEEE
Transactions on communications, 43(12):2959–2965, 2002.

[44] Narasimhan Venkatanath, D Praneeth, S Channappayya Sumohana, S Medasani Swarup, et al.
Blind image quality evaluation using perception based features. In 2015 twenty first national
conference on communications (NCC), pages 1–6. IEEE, 2015.

[45] Anish Mittal, Anush Krishna Moorthy, and Alan Conrad Bovik. No-reference image quality
assessment in the spatial domain. IEEE Transactions on Image Processing, 21(12):4695–4708,
2012.

[46] V Aslantas and Emre Bendes. A new image quality metric for image fusion: The sum of
the correlations of differences. Aeu-international Journal of electronics and communications,
69(12):1890–1896, 2015.

[47] Yufeng Zheng, Edward A Essock, Bruce C Hansen, and Andrew M Haun. A new metric based
on extended spatial frequency and its application to dwt based fusion algorithms. Information
Fusion, 8(2):177–192, 2007.

[48] Yu Han, Yunze Cai, Yin Cao, and Xiaoming Xu. A new image fusion performance metric based
on visual information fidelity. Information fusion, 14(2):127–135, 2013.

13



Appendix

A Proof

A.1 Proof of Theorem 1

In the absence of explicit labels, the task-relevant variable C is unobservable, which makes the direct
optimization of I(Z;C)− β I(Z;X,Y ) intractable. We therefore derive a computable lower bound
on I(Z;C) by aligning modal distributions via optimal transport.

A.1.1 Information Inequality from the Causal Structure

Given the causal Markov condition C → (X,Y ) → Z, we have the conditional data-processing
identity:

I(Z;C) = I(Z;X,Y ) − I(Z;X,Y | C) ≥ I(Z;X,Y ) − ε (19)
where ε > 0 is an upper bound on the residual task-irrelevant information conditioned on C. Let
T : X →X ′ be a measurable map and set X ′ = T (X). Since X→X ′→(Z | Y ) is a Markov chain:

I(Z;X ′, Y ) ≤ I(Z;X,Y ) (20)

Combining (19) with (20) yields:

I(Z;C) ≥ I(Z;X ′, Y )− ε (21)

A.1.2 Effect of Distributional Transformation

View I(Z;X ′, Y ) = H(Z) − H(Z | X ′, Y ) as a functional of the pushed-forward marginal
pX′ = T#pX . Assume the conditional negative log-likelihood (decoder) − log q(z | x, y) is L-
Lipschitz in (x, y). By the Kantorovich–Rubinstein duality, there exists L′ > 0 such that∣∣H(Z | X ′, Y )−H(Z | X,Y )

∣∣ ≤ L′ W1

(
pX , T#pX

)
. (22)

Using W1≤W2 yields∣∣H(Z | X ′, Y )−H(Z | X,Y )
∣∣ ≤ L′ W2

(
pX , T#pX

)
. (23)

Moreover, we consider T chosen along the W2 displacement interpolation from pX to pY (i.e.,
T = Tt with t ∈ [0, 1] on the McCann geodesic induced by the OT map), for which the metric
projection satisfies

W2

(
pX , T#pX

)
=

∣∣W2

(
pX , pY

)
− W2

(
T#pX , pY

) ∣∣. (24)

Combining (23) and (24), and absorbing constants into α > 0, we obtain∣∣H(Z | X ′, Y )−H(Z | X,Y )
∣∣ ≤ α

∣∣W2

(
pX , pY

)
−W2

(
T#pX , pY

) ∣∣. (25)

Hence, for any such T along the geodesic we have

I(Z;X ′, Y ) ≥ I(Z;X,Y ) − α
∣∣W2

(
pX , pY

)
−W2

(
T#pX , pY

) ∣∣. (26)

A.1.3 Optimal Transport Map and Final Bound

Define the optimal transport map by:

T ∗ = argmin
T

W2

(
T#pX , pY

)
(27)

For T = T ∗ we have W2(T
∗#pX , pY ) ≤ W2(pX , pY ), so the difference is non-negative and (26)

gives:

I(Z;X ′, Y ) ≥ I(Z;X,Y ) − α
[
W2

(
pX , pY

)
−W2

(
T ∗#pX , pY

) ]
with X ′ = T ∗(X) (28)

Finally, combining (21) and (28) yields the two-step chain in Theorem 1:

I(Z;C) ≥ I(Z;X ′, Y )− ε ≥ I(Z;X,Y ) − α ·
[
W2

(
pX , pY

)
−W2

(
T ∗#pX , pY

) ]
(29)
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A.2 Proof of Theorem 2

We consider I(R;µ) with R = z − µ = σ ⊙ ε and ε ∼ N (0, I). Let Σµ = Cov(µ), ΣR = Cov(R)
(diagonal, with entries σ2

i understood as the batch+spatial mean per channel), and ΣR,µ = Cov(R,µ).
Under the joint-Gaussian assumption, the mutual information admits the Schur-complement form:

I(R;µ) =
1

2
log
|ΣR|
|ΣR|µ|

, ΣR|µ = ΣR − ΣR,µΣ
−1
µ Σµ,R. (30)

Define
M := Σ

−1/2
R ΣR,µ Σ

−1
µ Σµ,R Σ

−1/2
R ⪰ 0. (31)

Then (30) can be rewritten as

I(R;µ) =
1

2
log det

(
(I −M)−1

)
= −1

2
log det(I −M). (32)

To obtain a computable and conservative upper bound, we adopt a channel-diagonal dominance
approximation,

M ⪯ D := diag(d1, . . . , dd), di :=

[
ΣR,µΣ

−1
µ Σµ,R

]
ii

σ2
i

≤ Var[µi]

σ2
i

. (33)

By Loewner order monotonicity, (I −M)−1 ⪯ (I −D)−1, hence

det
(
(I −M)−1

)
≤ det

(
(I −D)−1

)
=

d∏
i=1

1

1− di
. (34)

Taking logarithm and using di ≤ Var[µi]/σ
2
i yields

I(R;µ) ≤ 1

2

d∑
i=1

[
− log(1− di)

]
≤ 1

2

d∑
i=1

[
− log

(
1− Var[µi]

σ2
i

)]
, (35)

B Algorithm

HCLFuse first applies an optimal-transport-based mapping T ∗ to the infrared image X , aligning its
distribution with that of the visible image Y and thereby improving the optimization lower bound
of the mutual-information objective. The aligned pair (T ∗(X), Y ) is then fed into a multi-scale,
mask-regulated variational bottleneck encoder (VBE) to compress and model the latent representation
z, so that z captures modality-discriminative and compact features under an unsupervised learning
setting. Subsequently, z is refined through a reverse-time diffusion generation process, in which
physically guided constraints are dynamically injected at each denoising timestep to regulate the
evolution of latent features. Finally, the optimized latent representation z0 is decoded to produce the
fused image F . The pseudocode implementations of both the training and inference procedures are
provided in Algorithm 1 and Algorithm 2, respectively.

C Experimental Results

C.1 Experimental Details

Datasets. To comprehensively assess the fusion performance of HCLFuse method, three publicly
available datasets are utilized: MSRS[30], TNO[31], FMB [21], and MFNet [32]. The MSRS dataset
provides 1,444 co-registered infrared and visible image pairs, primarily depicting urban driving
scenes under both daytime and nighttime conditions. The TNO dataset contains 80 multispectral
image pairs focused on nighttime military applications. FMB offers 1,500 aligned infrared-visible
image pairs, covering a broad range of scenarios and illumination settings. Lastly, the MFNet dataset
contains 1,569 pairs of co-registered RGB and thermal infrared images, captured in urban driving
scenes under both daytime and nighttime conditions. In the experiments, a subset is sampled to
ensure diversity and representative coverage: 361 pairs are selected from MSRS, 42 pairs from TNO,
280 pairs from FMB, and 393 pairs from MFNet. These selected subsets are used to validate the
generalization capability of HCLFuse across varying scenes and lighting conditions.
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Algorithm 1 Training

Input: Source images X and Y , total diffusion steps T
Output: Trained noise predictor ϵθ and fused image F

1: for epoch = 1 to epochs do
2: X ′ ← T ∗(X)
3: z ← VBE(concat(X ′, Y ))
4: Sample t ∼ Uniform({1, . . . , T})
5: Sample ϵt ∼ N (0, I)
6: for t = T, T − 1, . . . , 1 do
7: ϵθ ← NoisePredictor(zt, z, t)
8: Update λi(t) using Eqs. (17–18)
9: Calculate the zphys0 using Eqs. (14–16)

10: Calculate the zt−1 using Eq. (13)
11: F ← Decoder(zphys0 )
12: Update ϵθ using training loss

Algorithm 2 Inference

Input: Source images X and Y , total diffusion steps T
Output: Fused image F

1: z ← VBE(concat(X,Y ))
2: Sample zT ∼ N (0, I)
3: for t = T, T − 1, . . . , 1 do
4: ϵθ ← NoisePredictor(zt, z, t)
5: Update λi(t) using Eqs. (17–18)
6: Calculate the zphys0 using Eqs. (14–16)
7: Calculate the zt−1 using Eq. (13)
8: F = Decoder(zphys0 )

Competing Methods. To comprehensively assess the effectiveness and robustness of HCLFuse
method, comparisons are conducted against seventeen state-of-the-art image fusion methods. These
include three non end-to-end methods: NestFuse[15], LRRNet[16], and MMAE[17]; seven end-
to-end learning-based methods: SwinFusion[20], SegMiF[21], SOSMaskFuse[35], STFNet[22],
CrossFuse[23], Text-IF[36] and GIFNet[37]; as well as seven generative approaches: FusionGAN[24],
TarDAL[38], DDFM[39], Diff-IF[12], CCF[25], Text-DiFuse[40], and LFDT-Fusion[11]. All experi-
mental evaluations are performed on a computational platform equipped with an NVIDIA GeForce
RTX 3090 GPU and an Intel(R) Core(TM) i7-6850K CPU operating at 3.60 GHz.The Adam optimizer
with a learning rate of 2× 10−5 is used for parameter updates.

Metrics. To quantitatively evaluate the fusion performance of HCLFuse, twelve metrics are adopted,
consisting of seven no-reference indicators and five reference-based measures. The no-reference
metrics include standard deviation (SD), average gradient (AG)[41], entropy (EN)[42], spatial
frequency (SF)[43], definition (DF), perception-based image quality evaluator(PIQE)[44], and
blind/referenceless image spatial quality evaluator (BRISQUE, abbreviated as BRI.)[45]. The
reference-based metrics comprise the correlation coefficient (CC), the modified fusion artifacts
measure (Nabf), the sum of correlations of differences (SCD)[46], the quality via spatial frequency
(QSF)[47], and the visual information fidelity (VIF)[48].

C.2 Comparison on TNO dataset

Qualitative Evaluation. Fig. 6 and Fig. 7 present visual comparisons between HCLFuse and 17
existing fusion methods on the TNO dataset. As a military-focused benchmark, TNO emphasizes
the preservation of thermally salient targets under low-illumination conditions. In Fig. 6(c), (f),
(i),(k), and (s), the thermal prominence of soldiers within the red box is noticeably suppressed
by most baseline methods. In contrast, HCLFuse preserves high-contrast thermal features and
structural detail, particularly in critical regions such as weapons and head contours, which appear
more distinguishable from the background. In addition, surface textures—such as roof tiles—are
reconstructed with enhanced clarity, indicating the generative capacity of the proposed diffusion-
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based model in recovering fine-grained visual information. Similar superiority is observed in
Fig. 7, where both target saliency and detail sharpness are consistently maintained across complex
nighttime scenarios. Overall, the results produced by HCLFuse achieve a compelling balance between
structural integrity and perceptual contrast, contributing to enhanced visual quality and improved
target interpretability.

(a) Visible (b) Infrared (c) FusionGAN (d) NestFuse (e) SwinFusion

(f) TarDAL (g) SegMiF (h) SOSMaskFuse (i) LRRNet (j) STFNet

(k) CrossFuse (l) DDFM (m) Diff-IF (n) Text-IF (o) CCF

(p) Text-DiFuse (q) MMAE (r) LFDT-Fusion (s) GIFNet (t) Ours

Figure 6: Visualization results of several methods on TNO dataset soldiers_with_jeep scene.

Quantitative Evaluation. As shown in Table 3, the proposed method consistently outperforms
all competing approaches across most metrics. In particular, notable improvements are observed
in the no-reference metrics, where several indicators exhibit substantial gains—for example, AG
and DF improve by over 40% relative to the second-best results. The performance advantages
demonstrated on the MSRS dataset are well preserved in the TNO dataset, highlighting the model’s
strong generalization capability. The observed robustness is attributed to the introduction of physics-
guided sampling, which enhances the model’s ability to capture the intrinsic structure of multimodal
data. As a result, the fusion process becomes more stable and effective under varying scene conditions.

C.3 Comparison on FMB dataset

Qualitative Evaluation. To further evaluate the adaptability of HCLFuse to complex and adverse
environments, comparative experiments are conducted on the FMB dataset, which includes diverse
weather conditions. The corresponding visual results are illustrated in Fig. 8 and Fig. 9. Fig. 8
shows a foggy daytime scene where the fusion objective lies in distinguishing salient targets from
atmospheric interference. In this scenario, methods such as SegMiF, STFNet, CrossFuse, Diff-IF,
Text-DiFuse, MMAE, and LFDT-Fusion fail to preserve the semantic integrity of the pedestrian
target within the red box. Although other methods succeed in retaining this target, they struggle to
reconstruct background structures, such as the high-rise building. Notably, FusionGAN discards
almost all fog-related information, reflecting a biased fusion strategy favoring a single modality.
In contrast, HCLFuse is capable of simultaneously preserving fog boundaries and target saliency
while enhancing background texture fidelity. As a result, the output achieves a natural and balanced
visual appearance. In Fig. 9, which presents a nighttime scenario, HCLFuse continues to emphasize
global clarity and local saliency. Compared to other methods, it delivers a more comprehensive and
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(a) Visible (b) Infrared (c) FusionGAN (d) NestFuse (e) SwinFusion

(f) TarDAL (g) SegMiF (h) SOSMaskFuse (i) LRRNet (j) STFNet

(k) CrossFuse (l) DDFM (m) Diff-IF (n) Text-IF (o) CCF

(p) Text-DiFuse (q) MMAE (r) LFDT-Fusion (s) GIFNet (t) Ours

Figure 7: Visualization results of several methods on TNO dataset 042 scene.

Table 3: The quantitative metrics of various algorithms in TNO dataset. Bold indicates the best result.
underline indicates the second-best result.

Method SD↑ AG↑ CC↑ SCD↑ EN↑ SF↑ Nabf↓ DF↑ QSF↑ VIF↑ PIQE↓ BRI.↓

FusionGAN 30.663 2.4211 0.4404 1.3793 6.5580 6.2753 0.0816 3.2441 -0.4550 0.4220 23.094 27.802
NestFuse 41.875 3.8485 0.4773 1.6899 7.0465 10.047 0.0328 4.9654 -0.1315 0.8651 22.776 24.693
SwinFusion 39.447 4.2113 0.4744 1.7130 6.8909 10.722 0.0358 5.4839 -0.1168 0.7503 20.655 24.113
TarDAL 40.141 3.8912 0.4538 1.5842 6.8079 10.621 0.0350 5.0487 -0.0922 0.6006 21.454 24.665
SegMiF 47.609 4.2884 0.4657 1.6577 6.9097 10.721 0.0322 5.1762 -0.0382 0.7028 23.350 25.405
SOSMaskFuse 44.896 3.8377 0.4264 1.5129 7.0393 10.161 0.0658 5.1514 -0.1355 0.8765 21.640 25.888
LRRNet 40.879 3.7690 0.4461 1.5264 6.9881 9.5219 0.0557 5.0105 -0.1674 0.5612 16.415 29.521
STFNet 37.997 2.8956 0.4467 1.5583 6.8148 6.9920 0.0497 3.3568 -0.4066 0.7205 35.979 37.469
CrossFuse 39.674 3.7431 0.4015 1.3436 6.9075 9.9126 0.0731 5.1490 -0.1427 0.7365 20.297 26.882
DDFM 34.295 3.3802 0.5307 1.7770 6.8496 8.5554 0.0443 4.3377 -0.2628 0.6409 19.561 28.662
Diff-IF 39.245 4.2131 0.4468 1.5627 6.8949 11.344 0.0260 5.5671 -0.0735 0.8433 20.635 22.832
Text-IF 46.866 4.6621 0.4614 1.6856 7.1878 11.752 0.0187 5.6968 -0.0179 0.8110 27.487 32.399
CCF 36.888 2.8500 0.5227 1.7999 6.8925 7.3515 0.0512 3.4028 -0.3740 0.5503 31.043 36.625
Text-DiFuse 51.276 3.0653 0.4516 1.6108 7.1521 8.0038 0.0602 3.4862 -0.3407 0.4865 41.602 38.513
MMAE 39.987 3.5560 0.4292 1.5075 6.7764 10.151 0.0330 4.6762 -0.1666 0.8229 25.222 26.164
LFDT-Fusion 40.100 4.1246 0.4483 1.5865 6.9395 10.892 0.0307 5.2708 -0.1078 0.8774 23.424 25.183
GIFNet 40.406 4.9954 0.4966 1.8010 6.9213 13.358 0.0255 6.0598 0.0817 0.5045 22.094 34.594
Ours 47.726 7.2112 0.4838 1.7673 7.0975 17.625 0.0051 9.1041 0.5264 0.6137 25.710 29.259

perceptually coherent fusion result. This performance is attributed to the cognitive-guided fusion
mechanism, where human perception principles are incorporated to enhance the model’s ability to
perceive, filter, and generate modality-specific information, resulting in high-quality generative fusion
outputs.

Quantitative Evaluation. The quantitative results on the FMB dataset are reported in Table 4. It
can be observed that the performance advantages previously demonstrated on the TNO and MSRS
datasets are consistently maintained. Notably, each evaluation metric exhibits a considerable relative
improvement over the second-best methods. Since the task of image fusion demands both high-fidelity
generation and semantic consistency with the source modalities, the fusion results are expected to
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(p) Text-DiFuse (q) MMAE (r) LFDT-Fusion (s) GIFNet (t) Ours

Figure 8: Visualization results of several methods on FMB dataset 00005 scene.

preserve the intrinsic characteristics of input images while enhancing perceptual quality. As evidenced
across all experimental settings, HCLFuse effectively fulfills these dual objectives, demonstrating
superior robustness and consistent performance gains across diverse conditions.

C.4 Comparison on MFNet dataset

Qualitative Evaluation. To further investigate the robustness of HCLFuse, additional experiments
are conducted on the MFNet dataset, which includes both daytime and nighttime scenarios. As
illustrated in Fig. 10 and Fig. 11, most existing methods struggle to clearly reveal fine-grained details
such as the bicycles in the background, often producing blurred and noisy regions. In contrast,
HCLFuse achieves cleaner visual outputs through its pre-fusion information filtering mechanism,
effectively suppressing irrelevant artifacts. Moreover, the diffusion-based generative process enhances
the overall image quality and enriches structural and semantic information, yielding visually coherent
and detailed fusion results.

Quantitative Evaluation. The quantitative results on the MFNet dataset are summarized in Table 5.
Consistent with previous experiments, HCLFuse maintains stable superiority across all evaluation
metrics. Notably, for the five leading indicators, the proposed method consistently ranks first across
all four datasets, further highlighting the remarkable generative capability and robustness of HCLFuse
in diverse fusion scenarios.

C.5 Comparison on MFNet dataset

Qualitative Evaluation. To further investigate the robustness of HCLFuse, additional experiments
are conducted on the MFNet dataset, which includes both daytime and nighttime scenarios. As
illustrated in Fig. 10 and Fig. 11, most existing methods struggle to clearly reveal fine-grained details
such as the bicycles in the background, often producing blurred and noisy regions. In contrast,
HCLFuse achieves cleaner visual outputs through its pre-fusion information filtering mechanism,
effectively suppressing irrelevant artifacts. Moreover, the diffusion-based generative process enhances
the overall image quality and enriches structural and semantic information, yielding visually coherent
and detailed fusion results.
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(a) Visible (b) Infrared (c) FusionGAN (d) NestFuse (e) SwinFusion

(f) TarDAL (g) SegMiF (h) SOSMaskFuse (i) LRRNet (j) STFNet

(k) CrossFuse (l) DDFM (m) Diff-IF (n) Text-IF (o) CCF

(p) Text-DiFuse (q) MMAE (r) LFDT-Fusion (s) GIFNet (t) Ours

Figure 9: Visualization results of several methods on FMB dataset 00001 scene.

Table 4: The quantitative metrics of various algorithms in FMB dataset. Bold indicates the best result.
underline indicates the second-best result.

Method SD↑ AG↑ CC↑ SCD↑ EN↑ SF↑ Nabf↓ DF↑ QSF↑ VIF↑ PIQE↓ BRI.↓

FusionGAN 33.175 2.8539 0.5637 1.2070 6.6987 9.6152 0.0152 3.5124 -0.3202 0.4452 38.193 28.462
NestFuse 41.053 4.0541 0.6040 1.5107 6.8918 13.640 0.0070 4.8555 -0.0352 0.8818 33.856 21.748
SwinFusion 40.766 4.6374 0.6194 1.6075 6.8552 15.496 0.0062 5.5574 0.0871 0.8965 30.361 24.851
TarDAL 40.943 3.3670 0.5873 1.5439 6.9166 11.196 0.0061 4.1873 -0.2084 0.6338 28.446 18.729
SegMiF 38.091 3.7627 0.6076 1.5381 6.8625 11.766 0.0101 4.4029 -0.1613 0.6722 37.482 22.024
SOSMaskFuse 36.870 4.3831 0.5464 1.1598 6.7717 14.866 0.0094 5.2575 0.0447 0.9628 32.527 22.598
LRRNet 30.471 3.5878 0.6223 1.3898 6.4809 11.814 0.0112 4.2965 -0.1676 0.6324 33.792 19.414
STFNet 37.496 3.1591 0.5802 1.3915 6.7345 9.6157 0.0100 3.5607 -0.3159 0.6476 51.921 30.633
CrossFuse 29.547 3.7301 0.5424 0.9238 6.4546 12.518 0.0147 4.5228 -0.1135 0.8142 30.349 23.815
DDFM 31.975 2.7999 0.6615 1.6080 6.6920 9.0465 0.0119 3.3765 -0.3608 0.6767 33.487 26.861
Diff-IF 34.229 4.0550 0.5837 1.3669 6.6349 13.870 0.0066 4.9305 -0.0324 0.8717 29.142 20.140
Text-IF 34.552 4.5068 0.6031 1.5119 6.7451 15.050 0.0066 5.3928 0.0546 0.9518 30.216 22.977
CCF 37.310 2.2258 0.6476 1.7469 6.8266 7.4817 0.0135 2.5307 -0.4742 0.5252 49.217 34.470
Text-DiFuse 39.806 3.3414 0.6121 1.5324 6.9141 11.475 0.0121 4.0719 -0.1946 0.5996 26.496 37.312
MMAE 29.307 3.6648 0.5538 1.1878 6.4622 12.443 0.0109 4.3846 -0.1285 0.8526 33.387 22.276
LFDT-Fusion 34.109 4.1304 0.5752 1.3411 6.6373 13.867 0.0082 4.9312 -0.0292 0.7291 33.123 22.705
GIFNet 39.102 5.0481 0.6474 1.7283 6.9011 18.715 0.0043 5.9137 0.2999 0.5931 36.716 25.380
Ours 41.360 6.9814 0.6275 1.6321 7.0580 21.012 0.0018 8.8132 0.4947 0.7629 26.418 33.844

Quantitative Evaluation. The quantitative results on the MFNet dataset are summarized in Table 5.
Consistent with previous experiments, HCLFuse maintains stable superiority across all evaluation
metrics. Notably, for the five leading indicators, the proposed method consistently ranks first across
all four datasets, further highlighting the remarkable generative capability and robustness of HCLFuse
in diverse fusion scenarios.

C.6 Segmentation comparison and analysis

The semantic segmentation performance is illustrated in Fig. 12 and Table 6. Fig. 12 presents visual
comparisons on both daytime and nighttime scenes from the MSRS dataset. It can be observed that
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(a) Visible (b) Infrared (c) FusionGAN (d) NestFuse (e) SwinFusion

(f) TarDAL (g) SegMiF (h) SOSMaskFuse (i) LRRNet (j) STFNet
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(p) Text-DiFuse (q) MMAE (r) LFDT-Fusion (s) GIFNet (t) Ours

Figure 10: Visualization results of several methods on MFNet dataset 01304N scene.

Table 5: The quantitative metrics of various algorithms in MFNet dataset. Bold indicates the best
result. underline indicates the second-best result.

Method SD↑ AG↑ CC↑ SCD↑ EN↑ SF↑ Nabf↓ DF↑ QSF↑ VIF↑ PIQE↓ BRI.↓

FusionGAN 23.892 2.1156 0.5896 1.2885 6.0584 6.4544 0.0068 2.5495 -0.4253 0.5563 38.692 33.244
NestFuse 39.939 3.6089 0.5677 1.5369 6.6525 11.437 0.0024 4.2067 -0.0540 1.0281 38.603 33.102
SwinFusion 40.076 4.1712 0.5538 1.5156 6.5820 12.867 0.0024 4.8956 0.0816 0.9410 31.849 32.661
TarDAL 36.600 3.3083 0.5681 1.5599 6.6831 10.524 0.0035 4.0647 -0.0536 0.7657 27.878 24.251
SegMiF 36.595 3.0624 0.5601 1.4905 6.3983 9.1332 0.0062 3.4995 -0.2315 0.6699 44.895 34.382
SOSMaskFuse 43.790 3.7247 0.5087 1.3222 6.6309 11.868 0.0042 4.3045 -0.0053 0.9405 40.792 35.119
LRRNet 32.355 2.9572 0.5356 1.3819 6.3787 9.1486 0.0066 3.4833 -0.2174 0.7167 30.942 31.166
STFNet 36.427 3.0490 0.5554 1.4466 6.4178 9.0055 0.0033 3.3810 -0.2399 0.8524 51.422 38.718
CrossFuse 34.719 3.2444 0.4836 1.1286 6.5573 9.9844 0.0081 3.8144 -0.1568 0.8669 34.462 33.696
DDFM 30.751 2.7653 0.6082 1.6632 6.4816 8.2793 0.0051 3.2343 -0.2938 0.7792 31.617 32.383
Diff-IF 33.823 3.5852 0.5467 1.3797 6.3762 11.468 0.0025 4.2272 -0.0403 0.9191 36.260 33.043
Text-IF 41.337 4.0105 0.5394 1.5982 6.7777 12.275 0.0031 4.6470 0.0379 1.0711 36.734 32.907
CCF 28.369 2.7630 0.6077 1.5403 6.3183 8.9107 0.0041 3.4424 -0.2492 0.7539 20.218 29.497
Text-DiFuse 48.269 3.5280 0.5262 1.4753 7.0612 10.971 0.0050 4.0200 -0.0471 0.7792 36.220 34.261
MMAE 53.914 3.3900 0.3530 0.8330 6.5531 11.549 0.0042 3.8339 0.0505 0.8061 44.603 39.086
LFDT-Fusion 35.264 3.6937 0.5434 1.3966 6.4728 11.402 0.0033 4.2848 -0.0428 0.9713 40.759 34.148
GIFNet 35.754 4.3341 0.5626 1.5210 6.3456 15.246 0.0035 4.9290 0.2699 0.6674 40.658 37.567
Ours 46.386 6.0428 0.5454 1.5466 6.9013 17.424 0.0007 7.2109 0.4782 0.9261 24.135 27.994

HCLFuse exhibits superior detail preservation and semantic awareness compared to other methods.
In addition, the quantitative results in Table 6 show that HCLFuse consistently ranks among the top
two across most metrics and achieves the highest mIoU score. These results demonstrate that the
fused images generated by HCLFuse are more favorable for downstream semantic segmentation
tasks, highlighting its notable advantage in semantic-level fusion quality.

C.7 Additional ablation studies

Effectiveness of physical constraints. To validate the contribution of each physical constraint
in HCLFuse, a comprehensive ablation study was conducted, as summarized in Table 7. Three
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(a) Visible (b) Infrared (c) FusionGAN (d) NestFuse (e) SwinFusion
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Figure 11: Visualization results of several methods on MFNet dataset 01493D scene.

Table 6: The quantitative metrics of various algorithms in semantic segmentation. Bold indicates the
best result. underline indicates the second-best result.

Method unlabelled car person bike curve car_stop guardrail color_cone bump mIOU

Visible 98.97 93.86 75.50 85.48 76.63 85.46 91.56 77.04 88.82 85.92
Infrared 98.74 92.14 79.14 81.91 70.24 72.55 54.83 70.34 83.16 78.12
FusionGAN 99.05 93.71 81.89 85.60 77.54 83.25 89.74 75.76 86.34 85.88
NestFuse 99.11 94.13 82.78 86.08 78.04 85.68 92.62 76.77 89.53 87.19
SwinFusion 99.10 94.09 82.87 86.16 77.71 85.94 90.41 76.58 89.45 86.92
TarDAL 99.10 94.08 82.53 86.78 76.98 85.37 91.47 77.44 89.92 87.07
SegMiF 99.10 94.12 82.69 86.41 77.89 84.97 90.13 78.04 89.44 86.98
SOSMaskFuse 99.24 95.02 85.02 88.72 82.43 87.80 92.68 78.47 90.01 88.82
LRRNet 99.23 94.93 84.18 88.63 82.07 88.56 92.04 80.13 90.29 88.90
STFNet 99.23 94.99 84.83 88.83 82.21 87.47 92.51 80.49 90.64 89.02
CrossFuse 99.24 95.06 84.66 88.97 82.02 88.52 92.77 80.27 89.68 89.02
DDFM 99.22 95.05 84.68 88.48 81.95 87.39 92.06 78.27 89.72 88.54
Diff-IF 99.27 95.08 85.38 89.42 83.32 88.51 92.91 81.07 91.19 89.57
Text-IF 99.27 95.15 85.17 89.26 83.38 88.57 91.81 80.61 91.87 89.45
CCF 99.24 95.00 85.18 88.18 83.07 87.58 92.26 80.40 91.12 89.11
Text-DiFuse 99.27 95.07 84.6 89.24 84.18 88.52 93.08 80.87 91.55 89.60
MMAE 99.25 94.96 84.95 88.43 84.42 87.84 92.54 80.15 90.40 89.22
LFDT-Fusion 99.28 95.19 85.17 89.02 83.69 88.61 92.57 80.99 91.24 89.53
GIFNet 99.25 95.01 84.74 88.71 83.31 88.14 92.98 80.13 90.50 89.20
Ours 99.28 95.17 85.35 89.11 84.60 88.87 92.98 80.70 91.40 89.72

constraint terms were examined individually and jointly, including the heat conduction constraint
(Φheat), the structure preservation constraint (Φstru), and the physical consistency constraint (Φcon).
Introducing only Φheat leads to noticeable improvements in several perceptual indicators (e.g., AG,
EN, and SF) and achieves the lowest Nabf and PIQE scores, indicating more stable and perceptually
faithful generation. When Φstru is further incorporated, structural similarity metrics such as SCD
are further enhanced, demonstrating that the structure constraint helps maintain edge integrity and
sharpness. Finally, including the physical consistency term Φcon yields the best overall performance
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Figure 12: Segmentation visualization results of several methods based on the MSRS dataset.

across almost all metrics, with remarkable gains in SD, AG, EN, SF, and VIF. These results reveal
the complementary and synergistic roles of the three physical constraints, collectively contributing to
enhanced fidelity and stability of the generative process. Overall, the combination of all three physical
terms produces the most balanced and high-quality fusion results, confirming that comprehensive
physical modeling is essential for achieving optimal fusion performance.

Table 7: Ablation study on the effectiveness of the designed physical constraints. Bold indicates the
best result.

Φheat Φstru Φcon SD↑ AG↑ CC↑ SCD↑ EN↑ SF↑ Nabf↓ DF↑ QSF↑ VIF↑ PIQE↓ BRI.↓
W/O Φheat × × × 43.11 6.615 0.503 1.809 6.929 15.95 0.004 8.126 0.384 0.520 20.37 37.25
W/O Φstru ✓ × × 42.04 6.872 0.504 1.808 7.044 16.56 0.002 8.595 0.448 0.516 18.36 35.05
W/O Φcon ✓ ✓ × 41.25 6.705 0.508 1.818 7.025 16.51 0.003 8.694 0.432 0.505 21.21 35.35
Ours ✓ ✓ ✓ 47.73 7.211 0.484 1.767 7.098 17.63 0.005 9.104 0.526 0.614 25.71 29.26

Effectiveness of mask components. To further investigate the effectiveness of the mask mechanisms
in HCLFuse, we conducted a detailed ablation study covering all three types of masks involved
in the framework. Two ablation settings were designed to assess their individual and combined
contributions, as summarized in Table 8. W/O Ms indicates that the semantic mask Ms is removed
from the latent representation, which leads to a clear performance degradation across multiple
perceptual and structural metrics. The results confirm that Ms plays an essential role in filtering
informative latent variables and reducing redundancy within the bottleneck representation. In another
setting, the heat and structure masks (Mheat and Mstru) are replaced with all-one masks, effectively
removing their spatial selectivity. Performance decreases consistently across key indicators related
to detail and structure preservation (e.g., AG, SF, and QSF), indicating that omitting spatial mask
guidance weakens both visual quality and perceptual fidelity. The quantitative results demonstrate
that each mask plays an indispensable role within its respective mechanism: Ms in the bottleneck
pathway, and Mheat and Mstru in physically guided image generation. Collectively, these results
highlight the necessity of multi-level mask modulation for achieving stable and high-quality fusion
performance.

Table 8: Ablation study on the effectiveness of the mask components. Bold indicates the best result.

SD↑ AG↑ CC↑ SCD↑ EN↑ SF↑ Nabf↓ DF↑ QSF↑ VIF↑ PIQE↓ BRI.↓
W/O Ms 43.98 7.140 0.503 1.752 7.119 16.89 0.002 8.657 0.469 0.568 25.61 32.86
W/O Mheat & Mstru 39.16 6.821 0.507 1.749 6.991 15.74 0.003 7.974 0.369 0.517 19.12 39.70
Ours 47.73 7.211 0.484 1.767 7.098 17.63 0.005 9.104 0.526 0.614 25.71 29.26

C.8 Broader impacts

Positive Impacts. The proposed method enhances image fusion quality and robustness in degraded
scenarios, which can benefit applications such as autonomous driving, medical imaging, and disaster
response by improving reliability and safety. Negative Impacts. Advanced fusion capabilities may
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raise concerns about misuse in surveillance or military contexts. Additionally, the method involves
computationally intensive models and assumes well-aligned inputs, which may limit accessibility
and generalizability.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The central claim of this paper is to address the limitations of generative
infrared and visible image fusion by enhancing the diffusion model’s understanding of
the intrinsic nature of data through the incorporation of human cognitive principles.These
claims correspond to our contributions and are verified in the methodological and experiment
sections.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed the limitations of this work in the conclusion. Specifically,
its reliance on well-aligned infrared and visible image pairs, as well as the computational
overhead introduced by the diffusion process, may constrain its practicality in real-time
applications or under resource-limited conditions.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: For each theoretical result presented in the paper, we provide a full set of
underlying assumptions along with complete and rigorous proofs. The detailed derivations
are provided in Appendix A.1 and Appendix A.2, which contain the full proofs of Theorem 1
and ??, respectively.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification:The paper provides all necessary details to reproduce the main experimental
results. This includes comprehensive descriptions of the model architecture, training pipeline,
loss functions, datasets used, evaluation metrics, and implementation settings such as
hyperparameters and computational resources.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: To ensure reproducibility, we provide a detailed description of the experimental
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not publicly available at this stage to prevent potential disclosure of personal information
during the review process. We also commit to releasing the complete codebase, along
with training and inference scripts and environment configuration instructions, via a public
GitHub repository once the paper progresses beyond the review stage. These measures
are intended to ensure that all experimental results reported in this work can be reliably
reproduced.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We describe in detail the experimental conditions of this work in the experi-
mental configuration section, including datasets, training details, and computing hardware
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: : The experimental results reported in this paper are the average of a large
number of test results in the dataset. Therefore, they are statistically significant, being able
to support and validate the contributions and claims of this paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: In the experimental configuration section, we provide the computing resources
required to reproduce the experiments in this paper, including an NVIDIA GeForce RTX
3090 GPU and an Intel(R) Core(TM) i7-6850K CPU operating at 3.60 GHz.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: All data, codes, and methodologies involved in this paper comply with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the potential impacts of this work in the supplementary material.
The proposed method has the potential to bring positive societal impacts by improving
the quality and robustness of image fusion in degraded visual environments, which can
benefit applications such as autonomous driving, medical diagnostics, and disaster response
through enhanced perception and decision-making. However, it also raises potential negative
societal concerns. The improved fusion performance may be misused in surveillance or
military systems, leading to privacy risks or ethical dilemmas. Additionally, as a data-driven
generative model, HCLFuse may inherit biases from training data and incurs computational
overhead, which could limit its accessibility or fairness in broader deployments.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.
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• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All data covered in this paper are publicly available, and we provide accurate
citations for them.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The code for our work is provided as a zip file, which already contains an MIT
License.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not involve human subjects, human data, or any interaction
with human participants. Therefore, IRB approval is not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Large language models were not used in any part of the core methodology,
experimental design, or analysis. Any usage was limited to writing or language polishing,
which does not affect the scientific validity or originality of the research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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