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Abstract

Temporal Knowledge Graph Completion001
(TKGC) is a complex task involving the predic-002
tion of missing event links at future timestamps003
by leveraging established temporal structural004
knowledge. This paper aims to provide a com-005
prehensive perspective on harnessing the ad-006
vantages of Large Language Models (LLMs)007
for reasoning in temporal knowledge graphs,008
presenting an easily transferable pipeline. In009
terms of graph modality, we underscore the010
LLMs’ prowess in discerning the structural in-011
formation of pivotal nodes within the histori-012
cal chain. As for the generation mode of the013
LLMs utilized for inference, we conduct an ex-014
haustive exploration into the variances induced015
by a range of inherent factors in LLMs, with016
particular attention to the challenges in compre-017
hending reverse logic. We adopt a parameter-018
efficient fine-tuning strategy to harmonize the019
LLMs with the task requirements, facilitating020
the learning of the key knowledge highlighted021
earlier. Comprehensive experiments are under-022
taken on several widely recognized datasets,023
revealing that our framework exceeds or paral-024
lels existing methods across numerous popular025
metrics. Additionally, we execute a substan-026
tial range of ablation experiments and draw027
comparisons with several advanced commer-028
cial LLMs, to investigate the crucial factors029
influencing LLMs’ performance in structured030
temporal knowledge inference tasks.031

1 Introduction032

Knowledge Graphs (KGs), defined as meticulously033

structured repositories of deterministic knowledge,034

have been utilized across a wide range of do-035

mains such as recommender systems (Qin et al.,036

2024), question-answering (Liu et al., 2023b), and037

more recently, in the emerging field of Retrieval-038

augmented Generation (RAG) (Sun et al., 2023;039

Feng et al., 2023). In recent years, the concept of040

Temporal Knowledge Graphs (TKGs) has gained041

increased attention due to their ability to provide042

Finetune Inference

296: Japan, Make_a_visit, North_Korea
297: Japan, Make_a_visit, South_Korea
298: Japan, Make_a_visit, Philippines

303: Japan, Make_a_visit, North_Korea

305: Japan, Make_a_visit, ? 

The missing entity is North_Korea.

LLM

304: Japan, Make_a_visit, North_Korea

Figure 1: LLM undergoes fine-tuning on known data
and subsequently utilizes the chain of known factual
information to generate the next event.

more accurate information. (Leblay and Chekol, 043

2018; Han et al., 2021a; Li et al., 2022; Lee et al., 044

2023a). A Temporal Knowledge Graph (TKG) 045

stores numerous facts in the form of quadruples 046

(eh, r, et, tT ), denoting that eh has a directional 047

edge r into et at timestamp tT . Given a series of 048

observed facts denoted as F = {(s, p, o, ts)|s, o ∈ 049

S, p ∈ P, ts < T}, TKGC under extrapolative set- 050

ting requires the capability to predict links to future 051

timestamps, i.e., quadruples containing ts ≥ T . 052

This extrapolative setting has attracted more re- 053

search than the interpolation setting, which primar- 054

ily focuses on events in observed timestamps (Zhu 055

et al., 2021; Sun et al., 2021). 056

Previous research has approached the TKGC 057

task from various angles. Some models, integrating 058

Graph Neural Networks (GNNs) with gated mech- 059

anisms, focus on the evolution of embeddings over 060

time (Chung et al., 2014; Li et al., 2021a, 2022; 061

Zhang et al., 2023). Rule learning aims to provide 062

ample prior knowledge (Liu et al., 2022), while 063

reinforcement learning models (Sun et al., 2021) 064

propose time-shaped rewards to guide the learn- 065

ing process. Despite these efforts, these methods 066

often fall short in utilizing the rich text informa- 067

tion and underperform when the links are sparse. 068
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Recently, with the demonstrated capabilities of069

LLMs in various fields, some attempts have been070

made to explore the utilization of LLMs for TKGC071

tasks. (Lee et al., 2023a) explores the potential of072

in-context learning (ICL) capabilities of LLMs to073

perform on the TKGC task. GenTKG (Liao et al.,074

2023) leverages the partial idea of tLogic (Liu et al.,075

2022) to provide LLMs with the most temporal076

logic-relevant inputs to counsel decisions.077

In this paper, we seek to thoroughly examine078

whether LLMs are effective TKG reasoning agents079

and how to reveal genuinely beneficial factors. On080

one hand, TKGs are essentially graph structures081

with textual information, and recent research has082

demonstrated that LLMs possess certain capabili-083

ties in understanding structural information, yield-084

ing promising results in tasks such as node classifi-085

cation (Tang et al., 2023; Qin et al., 2023; Guo et al.,086

2023a; Liu et al., 2023a). On the other hand, as087

an inference task, TKGC specifically requires the088

natural advantage of textual reasoning possessed by089

LLMs. Considering the aforementioned character-090

istics, we develop a general and easily transferable091

framework: 1) For structural awareness of TKGs,092

in addition to considering the history that directly093

provides candidate answers, we also incorporate094

additional neighboring interaction information of095

entities and relations. 2) Regarding LLM inference096

within the TKG context, our focus lies in mitigating097

the reversal curse in structured expression reason-098

ing. 3) We employ the Parameter-Efficient Fine-099

Tuning (PEFT) technique for fine-tuning LLMs100

to enhance the model’s understanding of histori-101

cal context and integrate the two aforementioned102

solutions.103

Specifically, as shown in Fig. 1, during the fine-104

tuning process, we partition the known data into105

an input section and a supervised labeling segment,106

guiding LLMs in adapting the mapping relation-107

ship between the textual information of the specific108

TKG and the intricate logic inherent in temporal109

events. We propose to use local information across110

multiple single-step graphs for historical data aug-111

mentation to explore the ability of LLMs to per-112

ceive graph-modality information. In addition, we113

explore different ways of reverse data incorpora-114

tion to alleviate the reversal curse (Lv et al., 2023)115

problem in structured knowledge reasoning.116

We carry out comprehensive experiments on117

widely used TKGC datasets, including the118

ICEWS (Li et al., 2021a) series from news and the119

commonsense dataset YAGO (Mahdisoltani et al., 120

2015). Significantly, we report the Hits@n met- 121

ric under raw setting and time-aware filtered set- 122

ting, achieving highly competitive results. We also 123

provide the 8-shot ICL1 performance of several 124

open-source models as a comparative reference. 125

Furthermore, we conduct exhaustive ablation ex- 126

periments to validate the effectiveness of structure- 127

based historical data augmentation methods and 128

the introduction of reverse logic. Additionally, we 129

investigate the impact of historical chain length, 130

model size, and the performance of LLMs like 131

GPT-4 and GPT-3.5-turbo, with the aim to uncover 132

key factors influencing temporal structural infor- 133

mation reasoning using LLMs. 134

2 Related Work 135

Temporal Knowledge Graph Completion in- 136

volves two essential reasoning settings: inter- 137

polation and extrapolation. Interpolation-based 138

TKG reasoning addresses the challenge of fill- 139

ing in missing links within observed timestamps. 140

TTransE (Leblay and Chekol, 2018) introduces 141

time-based encoding through translation operations. 142

TNTComplEx (Lacroix et al., 2020) and Tuck- 143

ERTNT (Shao et al., 2022) propose complex de- 144

composition and TuckER decomposition of four- 145

order tensors, respectively, to augment model ex- 146

pressiveness under temporal conditions. However, 147

the interpolation setting has limitations, as it can- 148

not infer missing information in future timestamps, 149

thereby restricting its applicability. 150

Extrapolative reasoning in TKGC, involving the 151

prediction of facts for future timestamps, represents 152

a more challenging yet valuable task. Recent works 153

have concentrated on leveraging multi-relational 154

graph convolutional networks (Li et al., 2021a; Jin 155

et al., 2020). xERTE (Han et al., 2021a) captures 156

query-related subgraph information through dy- 157

namic pruning operations. TANGO (Han et al., 158

2021b) adopts neural ordinary differential equa- 159

tions to model the temporal representation of enti- 160

ties. TITer (Sun et al., 2021) stands out as the first 161

model to utilize temporal-path-based reinforcement 162

learning for TKG reasoning. TLogic (Liu et al., 163

2022) enhances interpretability by extracting tem- 164

poral logic rules through random exploration of 165

time. TiRGN (Li et al., 2022) and HGLS (Zhang 166

et al., 2023) utilize graph learning methods for 167

comprehensive structural information capture dur- 168

1Prompts can be found in Appendix A.1 and A.2.

2



ing temporal wandering. (Lee et al., 2023a)169

first explores the potential of ICL in TKGC. Gen-170

TKG (Liao et al., 2023) provides the most relevant171

interactions in temporal logic for LLMs to learn172

and infer.173

LLMs-as-Predictors Many recent studies trans-174

form graph structure information into sequential175

representations and utilize LLMs as standalone176

predictors. Graph4GPT (Guo et al., 2023b) uses177

InstructGPT-3 (Ouyang et al., 2022) to conduct178

an empirical study to assess LLMs’ capabilities in179

graph understanding, and GraphLLM (Chai et al.,180

2023) uses LLaMA2 for the graph reasoning task,181

but these work ignore LLM’s ability to TKGC.182

Most relevant to our work, (Lee et al., 2023b) uses183

ICL with LLMs for TKGC, which may not fully184

exploit the extensive learning capabilities of LLMs.185

Parameter-Efficient Fine-tuning Recent studies186

have introduced several PEFT techniques, includ-187

ing the addition of adapters (He et al., 2022; Re-188

buffi et al., 2017; Houlsby et al., 2019; Bapna189

et al., 2019), which entail the insertion of small190

trainable feed-forward networks between fixed191

pre-trained models. Additionally, low-rank up-192

dates (Hu et al., 2021) have been proposed as an193

alternative, wherein the fine-tuning process lever-194

ages low-dimensional representations. Moreover,195

prompt tuning (Lester et al., 2021) and prefix tun-196

ing (Li and Liang, 2021) have been developed,197

which involve augmenting the model’s input or198

activations with learnable parameters.199

3 Preliminary200

Definition 3.1. TKGC A TKG is defined as a201

sequence G = {G1, · · · ,Gt, · · · ,Gn} comprising202

static KGs. Here, each static KG denoted as Gt203

contains factual triplets at timestamp t. A single204

static KG is formulated as {E ,R, T }, in which205

E , R and T = {si, pj , ok} respectively represent206

entities, relations and triplets within it. TKGC in-207

volves bidirectional prediction of query quadruples,208

specifically, (si, pj , ?, ts) and (ok, p
−1
j , ?, ts).209

Definition 3.2. Fine-tuning Given a pre-210

trained LLM denoted as M with parame-211

ters θ, and a dataset comprising n instances212

{Queryi,Responsei}, the fine-tune processing213

aims to minimize the following loss function:214

θ⋆ = argmin
θ′

n−1∑
i=0

L
(
M

(
Q|θ′) ;R)

(1)215

where M(|θ′) denotes the output of the fine-tuned216

LLM M with parameters θ′, Q represents Query 217

and R represents response. 218

4 Methodology 219

4.1 Structure-augmented History Modeling 220

The LLM’s predictions of undiscovered links in 221

the TKG rely on knowledge derived from histori- 222

cal facts. In particular, when dealing with a query 223

quadruple represented as q = (si, pj , ?, tq) in a 224

forward reasoning mode, we aim to model the his- 225

torical chain Hq associated with this query. 226

Schema-matching History. The initial 227

set of historical facts we leverage originates 228

from schema-matching records, denoted as 229

Hs = {(si, pj , o, t)|o ∈ E , t < tq}. Specifically, 230

given a query (Japan, Make_a_visit, ?, 305), Hs = 231

{(Japan, Make_a_visit, North_Korea, 296), · · · , 232

(Japan, Make_a_visit, North_Korea, 304)} en- 233

compasses relevant schema-matching facts that 234

align with the subject and predicate of the query q, 235

providing inference basis for LLMs. 236

Entity-augmented History. Similar to many 237

prior works that leverage structural information 238

from KGs to enhance the reasoning capabilities 239

of LLMs (Luo et al., 2023; Tian et al., 2023), we 240

focus on semantically enriching the representation 241

of central entities by utilizing links with neighbors 242

in TKGs. The entity-augmented history He is de- 243

fined as {(si, p, o, t)|(si, p, o, t) ∈ Gt, p ∈ R, o ∈ 244

E , t < tq} formally. 245

Relation-augmented History. In addition to com- 246

pleting the historical chain based on entity-based 247

neighbor information, we introduce a supplemen- 248

tary strategy based on relations. We believe that 249

it’s beneficial for enhancing the model’s intrinsic 250

understanding of relation inference (Xiong et al., 251

2018). Formally, relation-augmented history set 252

Hr = {(s, pj , o, t)|(s, pj , o, t) ∈ Gt, p, o ∈ E , t < 253

tq}. 254

When modeling Hq, we adhere to two criteria 255

for selecting data from Hs,He, and Hr. i) We 256

prioritize the ground-truth history directly related 257

to q, which is Hs. If the history length does not 258

meet the specified value, we then sequentially in- 259

corporate facts from He and Hr. ii) Data close to 260

the current timestamp is introduced with priority. 261

By following these two criteria, we aim to select 262

the most relevant knowledge to inspire forecasting 263

capabilities in LLMs. 264
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Strategy Prompt

Ordinary

280: [Japan, Make_a_visit, China]
281: [Japan, Make_a_visit, Vietnam]
· · ·
304: [Japan, Make_a_visit, Kiichi_Miyazawa]
Query: 305: [Japan, Make_a_visit, ]

Text-aware

280: [Japan, reverse Make_a_visit, China]
281: [Japan, reverse Make_a_visit, Vietnam]
· · ·
304: [Japan, reverse Make_a_visit, Kiichi_Miyazawa]
Query: 305: [Japan, reverse Make_a_visit, ]

Position-aware

280: [China, Make_a_visit, Japan]
281: [Vietnam, Make_a_visit, Japan]
· · ·
304: [Kiichi_Miyazawa, Make_a_visit, Japan]
Query: 305: [ , Make_a_visit, Japan]

Table 1: Prompts for query (Japan, Make_a_visit−1, ?,
305).

4.2 Introduction of Reverse Logic265

Similar to reasoning on static KGs, we require the266

model to also possess the capability of reverse in-267

ference on TKG (Li et al., 2021a). However, re-268

cent research indicates that LLM’s reasoning has269

encountered the issue of reversal curse (Qi et al.,270

2023; Berglund et al., 2023; Lv et al., 2023). In this271

problem, models often succeed in correctly deduc-272

ing questions like ’Who is Tom Cruise’s mother?’273

but struggle to answer ’Who is the son of Mary Lee274

Pfeiffer?’. We believe that this phenomenon also275

exists in structured knowledge reasoning. We pro-276

pose using three prompt strategies to incorporate277

reverse quadruples during the fine-tuning phase to278

alleviate this issue, and explore the performance279

patterns in the context of structured knowledge rea-280

soning scenarios.281

As demonstrated in Tbl. 1, the most ordinary282

construction is to treat the structure of backward283

inferences as forward inferences. The text-aware284

prompt leverages reverse to indicate reverse rea-285

soning, and the position-aware prompt follows the286

order of backward inference, providing different287

head entities in the historical records.288

4.3 Instruction-tuning in TKGC289

Instruction-tuning (Wei et al., 2021) achieves re-290

markable zero-shot generalization results by train-291

ing LLMs on different tasks with instructions.292

While prior work has demonstrated the effective-293

ness of fine-tuning LLMs via full-parameter up-294

dates, this approach presents considerable chal-295

lenges at large scale. Hence, we apply the Low-296

Rank Adaptation (LoRA) (Hu et al., 2021) method297

due to its effectiveness for Llama-style models.298

This method, founded on the plugin encapsulation299

strategy of PEFT, furnishes us with lightweight300

task-specific plugins.301

The LLM M generates a sequence of tokens 302

R̂ = {r̂1, r̂2, ...r̂n}, where response R we need 303

must be extracted and consists of a set of consec- 304

utive tokens. Similarly to most fine-tuning LLMs 305

process using LoRA, the parameter update for a 306

pre-trained weight matrix W0 ∈ Rd×k is specified 307

by product of two low-rank matrices WA and WB: 308

δW = WAWB (2) 309

where WA ∈ Rd×r and WB ∈ Rr×k are matrices 310

of trainable parameters and rank r ≪ min(d, k). 311

Therefore, the forward pass for h = W0x is altered 312

as : 313

h = W0x+ δWx = W0x+WAWBx (3) 314

We employ cross-entropy loss which constrains 315

the similarity between estimated and ground-truth 316

tokens, to fine-tune LLMs by LoRA, which can be 317

presented as 318

L = CE(R̂, R̃) (4) 319

where R̂ is the temporal knowledge graph com- 320

pletion predicted by LLM M and R̃ is the given 321

label. 322

4.4 Predict with LLMs 323

The instructions constructed are fed into the trained 324

LLMs for prediction. The response is obtained by 325

beam search, which is a decoding strategy that 326

maintains k beams of possible generated responses 327

at each time step t. The generation of response is 328

updated as follows: for each generated response, 329

the k tokens with the highest probabilities are se- 330

lected based on Eq. 5. This results in k × k new 331

response candidates. The next k beams of response 332

are obtained by selecting the top k responses with 333

the highest probabilities from the generated re- 334

sponse candidates. The highest probability is deter- 335

mined by the product of probabilities of |R̂| tokens 336

that constitute the response, where |R̂| represents 337

the length of the current response. 338

rt = argmaxrP (r|r1:t−1) (5) 339

In this context, the single step setting is em- 340

ployed, wherein for each test query in the test 341

dataset, the model can access the ground truth from 342

past timestamps. Consequently, after the prediction 343

for this step is completed, the ground truth from 344

the current timestamp is added to the history of the 345

next timestamp before its execution. 346
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5 Experiments347

5.1 Datasets348

In our experimental setup, we utilize the ICEWS14349

dataset (García-Durán et al., 2018), ICEWS18350

dataset (Li et al., 2021a), ICEWS05-15 dataset (Li351

et al., 2021b), and YAGO dataset (Mahdis-352

oltani et al., 2015) as benchmarks for evalua-353

tion. The specific statistics are listed in Tbl. 2.354

We employ partition criteria widely accepted355

in prior studies (Han et al., 2021a) and estab-356

lish instruction-tuning data on the validation set.357

Specifically, for the ordered timestamp set T =358

{t1train, t2train, · · · , tntrain, t1val, · · · , tmval}, compris-359

ing training and validation sets, when gathering360

historical data for timestamp tival, we observe only361

facts within the range t < tival. In the context362

of testing under a single-step setup (Trivedi et al.,363

2017), for a query at timestamp tq, we construct a364

ground-truth chain of history based on facts preced-365

ing timestamp tq, serving as the input to the model.366

Datasets Entity Relation Train Valid Test Interval
ICEWS14 6869 230 74845 8514 7371 1 day
ICEWS05-15 10094 251 368868 46302 46159 1 day
ICEWS18 23033 256 373018 45995 49545 1 day
YAGO 10623 10 161540 19523 20026 1 year

Table 2: Statistics of leveraged datasets.

367

5.2 Baseline Models368

The models selected for comparative analysis pri-369

marily fall into two categories: embedding-based370

methods and LLM-based approaches. Within the371

realm of embedding-based methods, we present372

the performance evaluations of RE-NET (Jin et al.,373

2020), RE-GCN (Li et al., 2021a), TiRGN (Li et al.,374

2022), xERTE (Han et al., 2021a), TANGO (Han375

et al., 2021b), Timetraveler (Sun et al., 2021).376

As for GNN-based methodologies, we choose377

TiRGN (Li et al., 2022) and HGLS (Zhang et al.,378

2023) for comparison. Regarding LLM-based ap-379

proaches, we test GenTKG (Liao et al., 2023) and380

align with our model settings, we focus on the381

effects of 8-shot in-context learning for Llama-382

2-7b (Touvron et al., 2023), Vicuna-7b (Vicuna,383

2023), and GPT-NeoX-20B (Black et al., 2022). In384

addition to these, we also include the rule-based385

method TLogic (Liu et al., 2022) in our compari-386

son.387

5.3 Evaluation Protocol 388

We acknowledge that, at the metric level, notable 389

distinctions exist between LLM-based methods and 390

embedding-based approaches. The latter proves ad- 391

vantageous as it can furnish a precise ranking of 392

all entities in the graph for a query presented in the 393

form of (s, q, ?), facilitating the calculation of met- 394

rics like Mean Reciprocal Rank (Chao et al., 2021; 395

Yu et al., 2022). However, for LLM-based methods, 396

we can only furnish the ranking of a predetermined 397

number of candidates, relying on the probabilities 398

of output paths from the open-source model (Lee 399

et al., 2023a). This is in contrast to obtaining the 400

ranking of all entities in the graph. This constraint 401

stems from the inability to compel the model to 402

remember all entities directly, and it introduces im- 403

practical search costs. Consequently, we choose 404

to report relatively accurate Hits@1, Hits@3, and 405

Hits@10 (Sun et al., 2019). Furthermore, we align 406

with the perspective outlined in (Ding et al., 2021; 407

Jain et al., 2020) that directly excluding all other 408

valid candidates to a specific query in a filtering set- 409

ting is not entirely reasonable. Additionally, given 410

that the proprietary LLMs we employ for compar- 411

ison lack the opportunities to output ranking lists, 412

we report raw metrics without loss of generality.2 413

5.4 Main Results 414

As shown in Tbl. 3, Llama-2-7b-CoH and Vicuna- 415

7b-CoH achieves results that surpass or are compa- 416

rable to the state-of-the-art across multiple metrics 417

under raw setting. Significantly, on the ICEWS05- 418

15 and YAGO datasets, Vicuna-7b-CoH shows an 419

improvement of 3.3% and 1.9% in the Hits@1 met- 420

ric compared to the current best models. We ob- 421

serve that on the YAGO dataset, the 8-shot ICL 422

performance of GPT-NeoX-20B, Llama-2-7b, and 423

vicuna-7b is not significantly worse than Llama- 424

2-7b-CoH. However, there is a noticeable gap 425

on the ICEWS14 series datasets, even falling be- 426

hind embedding-based models. We also report 427

the metrics under the time-aware filtered setting 428

in Tbl. 4, where Llama-2-7b-CoH outperforms the 429

previous best-performing TiRGN model by 4.1 per- 430

centage points in the Hits@1 on YAGO and also 431

exhibits a substantial advantage on ICEWS05-15 432

and ICEWS18. The relative performance of the 433

model remains generally consistent under both set- 434

tings. 435

2Supplementary details are in Appendix A.3.
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Datasets YAGO ICEWS14 ICEWS05-15 ICEWS18
Model Hits@1 Hits@3 Hits@10 Hits@1 Hits@3 Hits@10 Hits@1 Hits@3 Hits@10 Hits@1 Hits@3 Hits@10
RE-NET (Jin et al., 2020) 0.404 0.530 0.629 0.293 0.431 0.575 0.334 0.478 0.611 0.192 0.323 0.483
RE-GCN (Li et al., 2021a) 0.499 0.663 0.779 0.297 0.441 0.586 0.336 0.487 0.658 0.193 0.331 0.494
xERTE (Han et al., 2021a) 0.506 0.719 0.828 0.312 0.453 0.570 0.347 0.497 0.633 0.206 0.330 0.458
TANGO† (Han et al., 2021b) 0.409 0.554 0.637 0.151 0.272 0.431 0.311 0.476 0.622 0.178 0.314 0.460
Timetraveler (Sun et al., 2021) 0.494 0.675 0.790 0.313 0.451 0.571 0.341 0.494 0.667 0.210 0.325 0.437
TLogic (Han et al., 2021b) 0.454 0.703 0.782 0.322 0.470 0.603 0.345 0.525 0.673 0.205 0.339 0.484
TiRGN (Li et al., 2022) 0.509 0.710 0.864 0.313 0.468 0.612 0.358 0.535 0.690 0.202 0.350 0.514
HGLS (Zhang et al., 2023) 0.508 0.721 0.866 0.349 0.480 0.688 0.351 0.521 0.673 0.192 0.323 0.494
GenTKG (Liao et al., 2023) 0.520 0.731 0.870 0.349 0.473 0.619 0.360 0.525 0.687 0.215 0.366 0.496
GPT-NeoX-20B-ICL (Black et al., 2022) 0.520 0.722 0.870 0.295 0.406 0.475 0.348 0.497 0.586 0.177 0.290 0.385
Llama-2-7b-ICL (Touvron et al., 2023) 0.517 0.725 0.868 0.275 0.391 0.453 0.353 0.490 0.563 0.177 0.295 0.364
Vicuna-7b-ICL (Vicuna, 2023) 0.514 0.714 0.868 0.270 0.386 0.453 0.347 0.483 0.563 0.172 0.288 0.364
Llama-2-7b-CoH 0.527 0.747 0.874 0.338 0.462 0.587 0.370 0.531 0.699 0.219 0.361 0.520
Vicuna-7b-CoH 0.530 0.754 0.859 0.315 0.445 0.648 0.372 0.531 0.701 0.206 0.344 0.531

Table 3: Temporal forecasting with raw metrics Hits@1, Hits@3 and Hits@10. The best results are highlighted
in bold and the second-rank results are underlined. The results of the model with † are derived from (Han et al.,
2021b), while other models have been reproduced by us.

Datasets YAGO ICEWS14 ICEWS05-15 ICEWS18
Model Hits@1 Hits@3 Hits@10 Hits@1 Hits@3 Hits@10 Hits@1 Hits@3 Hits@10 Hits@1 Hits@3 Hits@10
RE-NET† (Jin et al., 2020) 0.586 0.715 0.868 0.301 0.440 0.582 0.336 0.488 0.627 0.197 0.326 0.485
RE-GCN† (Li et al., 2021a) 0.788 0.843 0.886 0.313 0.470 0.613 0.366 0.527 0.671 0.215 0.354 0.515
xERTE† (Han et al., 2021a) 0.801 0.880 0.898 0.327 0.457 0.573 0.378 0.523 0.639 0.210 0.335 0.465
TANGO‡ (Han et al., 2021b) 0.590 0.646 0.677 0.272 0.408 0.550 0.344 0.499 0.640 0.191 0.318 0.462
Timetraveler† (Sun et al., 2021) 0.801 0.900 0.903 0.327 0.465 0.584 0.383 0.527 0.649 0.221 0.335 0.448
TLogic‡ (Han et al., 2021b) 0.740 0.789 0.791 0.336 0.483 0.612 0.362 0.531 0.674 0.205 0.340 0.485
TiRGN (Li et al., 2022) 0.839 0.907 0.923 0.328 0.481 0.622 0.379 0.544 0.698 0.220 0.366 0.522
HGLS (Zhang et al., 2023) 0.827 0.911 0.926 0.368 0.490 0.691 0.360 0.525 0.678 0.200 0.316 0.494
GenTKG (Liao et al., 2023) 0.813 0.901 0.922 0.365 0.488 0.633 0.378 0.541 0.692 0.220 0.370 0.497
GPT-NeoX-20B-ICL (Black et al., 2022) 0.792 0.890 0.909 0.295 0.406 0.475 0.367 0.503 0.587 0.192 0.300 0.389
Llama-2-7b-ICL (Touvron et al., 2023) 0.767 0.852 0.868 0.286 0.397 0.453 0.353 0.490 0.563 0.177 0.294 0.364
Vicuna-7b-ICL (Vicuna, 2023) 0.747 0.840 0.868 0.281 0.391 0.453 0.347 0.483 0.563 0.172 0.288 0.364
Llama-2-7b-CoH 0.880 0.929 0.931 0.349 0.470 0.591 0.386 0.541 0.699 0.223 0.363 0.522
Vicuna-7b-CoH 0.851 0.903 0.918 0.328 0.457 0.656 0.392 0.546 0.707 0.209 0.347 0.536

Table 4: Temporal forecasting with time-aware filtered metrics Hits@1, Hits@3 and Hits@10. The best results are
highlighted in bold and the second-rank results are underlined. The results of the model with † are derived from (Li
et al., 2022), and results with ‡ are taken from (Lee et al., 2023a).

6 Analysis436

6.1 Effective Stucture-based Augmentation437

To assess the efficacy of the structure-augmented438

history modeling strategy, we conduct comprehen-439

sive ablation experiments on all used datasets, em-440

ploying Hits@1 as the evaluation criterion. For441

comparison, we exclude entity-augmented and442

relation-augmented histories during both the fine-443

tuning and inference phases, relying solely on444

schema-matching history for predictive determina-445

tion. The results of the ablation studies are depicted446

in Tbl. 5, enabling a clear analysis that structure-447

augmented history is beneficial for both forward448

and backward inference.449

Illustrating with a practical case, when reason-450

ing about the quadruple (Economist (United King-451

dom), Criticize or denounce, ?, 6960), due to452

schema-matching history capturing only a histor-453

ical fact (Economist (United Kingdom), Criticize454

or denounce, Silvio Berlusconi, 120), this leads to455

an incorrect inference of Afghanistan. However,456

the entity-augmented history contains multiple in- 457

stances of Economist (United Kingdom) linked 458

through the Make statement relation to United King- 459

dom. This similar behavior guides the model to 460

output the correct answer United Kingdom. Thus, 461

supplementation enhances to some extent the ex- 462

pression of structured information related to the 463

central node, thereby aiding LLM in making more 464

accurate predictions beyond simply relying on the 465

ground truth history. 466

6.2 Effect of Introducing Reverse Logic 467

We conduct a comprehensive ablation experiment 468

for the introduction of reverse quadruples in the 469

fine-tuning phase. Considering the difficulty of 470

ICEWS18 dataset, we set the length of the history 471

chain to 30, and we set this value to 10 on the other 472

datasets. We use the ordinary prompt as a compari- 473

son to verify the effect of the reverse data introduc- 474

tion. The results are demonstrated in Tbl. 6, where 475

Llama-2-7b-CoH (w/o rq) indicates that no reverse 476

quadruples are added during the fine-tuning phase. 477
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Datasets ICEWS14 ICEWS05-15 ICEWS18 YAGO
Forward Backward Overall Forward Backward Overall Forward Backward Overall Forward Backward Overall

Llama-2-7b-CoH w/o aug 0.353 0.297 0.325 0.400 0.357 0.379 0.226 0.196 0.211 0.555 0.491 0.523
Llama-2-7b-CoH 0.370 0.308 0.339 0.408 0.359 0.383 0.236 0.204 0.220 0.560 0.491 0.526
∆ 4.8% 3.7% 4.3% 2.0% 0.6% 1.1% 4.4% 4.1% 4.3% 0.9% 0.0% 0.6%

Table 5: Ablations on the structure-based history augmentation. We also report Hits@1 metric. The strategy has
achieved comprehensive improvement in bi-directional forecasting.

Datasets ICEWS14 ICEWS05-15 ICEWS18 YAGO
Forward Backward Overall Forward Backward Overall Forward Backward Overall Forward Backward Overall

Llama-2-7b-CoH w/o rq 0.367 0.298 0.333 0.396 0.343 0.369 0.238 0.188 0.213 0.560 0.489 0.524
Llama-2-7b-CoH 0.370 0.308 0.339 0.408 0.359 0.383 0.236 0.204 0.220 0.560 0.491 0.526
∆ 0.8% 3.4% 1.8% 3.0% 4.7% 3.8% 0.8% 8.5% 3.3% 0.0% 0.4% 0.4%

Table 6: Ablations on the incorporation of reciprocal quadruples when fine-tuning. We report Hits@1 on four
datasets. Rising and falling trends are indicated by green and red respectively. In order to more clearly observe
differences, we use historical chain with a length of 30 on the ICEWS18 dataset, while for other datasets, this value
is set to 10.

Strategy YAGO ICEWS14 ICEWS05-15 ICEWS18
Ordinary 0.526 0.339 0.383 0.209
Text-aware 0.525 0.333 0.382 0.214
Position-aware 0.525 0.330 0.381 0.213

Table 7: Overall Hits@1 metrics for three utilized
prompt strategies under the raw setting.

We can see that all the results show an upward trend478

except for a slight dip in the forward inference on479

the ICEWS18 dataset. Therefore, we can argue480

that the inclusion of reverse logic in the fine-tuning481

stage is not only beneficial to alleviate the curse482

of reversal in structured knowledge reasoning, but483

also largely harmless to forward reasoning.484

We still give a comparison of three proposed485

prompt styles in Tbl. 7. We observe that ordinary486

and text-aware strategies always lead to better re-487

sults, so we believe that consistency in preserv-488

ing the inflectional position of different structured489

quadruples during fine-tuning is more critical.490

6.3 Exploration on History Length491

The length of the historical chain L significantly in-492

fluences prediction outcomes, reflecting the amount493

of information provided to the LLMs. We conduct494

experiments with varying history lengths (L =495

10, 20, 30, 50), while maintaining other settings496

constant. We choose the ordinary prompt for in-497

corporating reverse quadruples and harness entity-498

augmented and relation-augmented quadruples to499

enrich historical facts.500

As illustrated in Fig. 2, except the ICEWS14501

dataset, on other datasets, the Hits@1 metric ex-502

hibits an upward trend followed by stabilization as503

L increases. We calculate the average length of504

schema-matching history for each query in the test505

10 20 30 40 50

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55 Dataset
ICEWS14
ICEWS05-15
ICEWS18
YAGO

History Length

H
its

@
1

0.339 0.343 0.339 0.338

0.383 0.39 0.391 0.393

0.209 0.218 0.22 0.225

0.526 0.527 0.527 0.527

Figure 2: The evolution pattern of the Hits@1 met-
ric across four utilized datasets concerning the history
length L.

Model YAGO ICEWS14 ICEWS05-15 ICEWS18
Llama-2-7b-CoH 0.527 0.343 0.390 0.218
Llama-2-13b-CoH 0.526 0.343 0.392 0.210
Vicuna-33b 0.530 0.338 0.390 0.216

Table 8: Overall Hits@1 metrics on different model
sizes.

sets of four datasets. For the ICEWS14 dataset, this 506

value is 30.05, significantly lower than the other 507

datasets. On the ICEWS05-15 dataset, this value is 508

56.95. Consequently, an excessively long required 509

history length may negatively impact the reason- 510

ing of LLM due to interference from numerous 511

historical quadruples used for padding. However, 512

even with a smaller input cost (i.e., smaller L) on 513

the ICEWS14 dataset, significant effectiveness is 514

already achievable. 515

6.4 How Model Size Affects Results 516

In this section, we explore how model size of LLMs 517

affects performance in TKGC. We choose Llama- 518

2-13b and Vicuna-33b as comparison and consider 519

leveraging total history length with L = 20, and 520
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Datasets ICEWS14 ICEWS05-15 ICEWS18 YAGO
Forward Backward Overall Forward Backward Overall Forward Backward Overall Forward Backward Overall

GPT-3.5-turbo 0.260 0.158 0.209 0.157 0.177 0.167 0.079 0.070 0.075 0.496 0.441 0.481
GPT-4 (OpenAI, 2023) 0.298 0.233 0.266 0.293 0.260 0.277 0.096 0.092 0.094 0.510 0.484 0.497
Qwen-72B-Chat (Bai et al., 2023) 0.279 0.216 0.248 0.357 0.343 0.350 0.159 0.148 0.154 0.499 0.463 0.481

Table 9: The performance of some powerful commercial models on 1000 randomly selected test samples in each
dataset.

both add inverse quadruples and structure-based521

augmentation data for fine-tuning. The results, as522

shown in Tbl. 8, depict that these three sizes mod-523

els achieve very similar results in Hits@1. Unusu-524

ally, Hits@1 on ICEWS18 dataset decreases by525

3.7% and 0.9% compared to Llama-2-7b-CoH. We526

point out that increasing the size of the model is527

a relatively inefficient approach in the context of528

temporal logical reasoning. Larger models do not529

necessarily result in a better understanding of inter-530

active information along the temporal chain. This531

leads us to explore data-centric approaches and im-532

provements in the inherent reasoning limitations533

of LLMs, such as catastrophic forgetting and the534

curse of reversibility.535

6.5 Performance of Commercial LLMs536

In this section, we test the effectiveness of three537

powerful commercial LLMs on the TKGC task,538

aiming to explore the performance differences after539

multi-task instruction fine-tuning and Reinforce-540

ment Learning from Human Feedback (RLHF). We541

provide the same 8-shot ICL prompt samples for542

each of the three models on different datasets, as543

detailed in the appendix. For the test data, we ran-544

domly select 1000 queries for both directions on545

each dataset. Since these models do not provide546

output probabilities, we only present the most accu-547

rate exact match metric, equivalent to the Hits@1548

metric under the raw setting. After confirming that549

there are no fine-tuning on TKGC task and related550

datasets in the available technical reports (OpenAI,551

2023; Bai et al., 2023), we consider this compari-552

son to be relatively fair.553

The evaluation results are shown in Tbl. 9.554

Firstly, we can observe that Qwen-72B-Chat is able555

to achieve performance comparable to or surpass556

GPT-4. In contrast, the performance of GPT-3.5-557

turbo is not satisfactory. We are currently observing558

that the few-shot capabilities of Qwen-72B-Chat on559

the MMLU evaluation set are approaching those of560

GPT-4 and surpassing the performance of GPT-3.5-561

turbo. This eliminates a significant bias in terms of562

language tendency. On the other hand, we demon-563

strate that chat models, carefully fine-tuned and 564

applying RLHF, exhibit superior performance in 565

TKGC tasks. However, when we compare the re- 566

sults of Tbl. 9 and Tbl. 3, we can observe that the 567

8-shot ICL capability of commercial LLMs is still 568

significantly lower on the ICEWS series dataset 569

compared to the capabilities of Llama-2-7b-CoH, 570

while the difference is not substantial on the YAGO. 571

This is because YAGO is a dataset biased towards 572

common knowledge, and therefore, commercial 573

LLMs may already be familiar with a considerable 574

number of rules. However, the reasoning in the 575

ICEWS series news dataset emphasizes the inter- 576

action and evolutionary information of nodes in 577

the graph rather than relying on textual features. 578

This results in commercial LLMs underperforming 579

in ICL, as they struggle to effectively capture the 580

evolutionary patterns along historical chains and 581

utilize augmented structure-based knowledge. 582

7 Conclusion 583

In this study, we conceptualize Temporal Knowl- 584

edge Graph Completion (TKGC) as a dual-process 585

of fine-tuning and generative procedures of LLMs 586

along the historical chain. Our comprehensive ex- 587

ploration extends to the perceptual capabilities of 588

LLMs to interpret graph modality and structured 589

knowledge. To augment the understanding of cen- 590

tral nodes by LLMs, we devise a series of structure- 591

based enhanced quadruples, premised on entity 592

nodes and relations. Furthermore, we address the 593

reversal curse in LLMs by introducing reverse logic 594

data. Our approach surpasses or equals the perfor- 595

mance of existing models. We also offer in-depth 596

analysis of the factors influencing the model’s infer- 597

ence capabilities, highlighting the contributions of 598

the proposed fine-tuning pipeline. Our findings still 599

indicate that models tend to fit better with extended 600

historical data. However, the model’s size is a less 601

significant factor, and the subpar performance of 602

commercial LLMs suggests that RLHF in broad 603

domains may not necessarily enhance inference 604

tasks. We posit that our discoveries will stimulate 605

the reciprocal advancement of LLMs and TKGC. 606
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8 Ethics Consideration607

I ensure that every author reads and consciously608

adheres to the ACL Code of Ethics. The ethical con-609

cerns in our experiments mainly stem from the use610

of open-source LLMs and the employment of news611

and common knowledge datasets involving politi-612

cal people and events. Consequently, the process613

of generating answers may uncontrollably produce614

incorrect results that may be misunderstood to a615

certain degree by specific groups of people. How-616

ever, our results are only used for recording the617

correctness of inference and will not be disclosed618

or disseminated.619

9 Limitaions620

Our research still has many limitations. The in-621

tegration of TKGs and LLMs has some inherent622

flaws. For example, whether LLMs have previ-623

ously stored the knowledge in these widely-used624

datasets in the form of unstructured text, and a625

considerable portion of the queries in the bench-626

mark of TKGs cannot be answered correctly by627

known events. These factors limit the accuracy and628

scalability of the study. Moreover, in exploring629

the impact of model size on experimental results,630

we have not yet explored models larger than 33b631

parameters. Although current data suggests that632

model size does not bring about positive gains in633

inference, there is still the possibility of qualitative634

changes due to quantitative changes. Our model635

selection is also limited to the Llama and Vicuna636

series, without extending to other open-source mod-637

els.638
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A Appendix 940

A.1 Instruction Used by CoH 941

In this section, we provide a comprehensive de- 942

sign for the prompt, including versions that utilize 943

only entity text (Tbl. 10) and versions identified by 944

number id (Tbl. 11). 945

A.2 Prompt for 8-shot ICL 946

We design different prompts on different datasets to 947

test the ability of different models to perform ICL 948

on the TKGC task. We show the prompt template 949

on the ICEWS18 dataset as a concrete example, as 950

shown in the Tbl. 12. 951

A.3 Supplementary Details 952

In this section, we describe the supplementary set- 953

tings of our experiments. The open-source models 954

mainly used are llama-2-7b, llama-2-13b, vicuna- 955

7b-v1.5, and vicuna-33b-v1.3. The key search 956

parameters during fine-tuning and inference are 957

shown in the Tbl. 13. Our main experiments in 958

Tbl. 3 and Tbl. 4 run on 4*NVIDIA GeForce 959

RTX 4090, and studies of vicuna-33b-v1.3 run on 960

4*NVIDIA A100-SXM-80G. 961
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Section Prompt
Instruction Given contexts consisting of multiple quadruplets in the form of {time}: [{subject},

{relation}, {object}], please predict the missing entity in the query quadruplet {time}:
[{subject}, {relation}, ] in the end.

Input 295: [[Victor_Ponta, Make_statement, Romania]
296: [Victor_Ponta, Make_statement, North_Atlantic_Treaty_Organization]
296: [Victor_Ponta, Make_statement, Romania]
300: [Victor_Ponta, Make_statement, Viorel_Hrebenciuc]
301: [Victor_Ponta, Make_statement, Romania]
302: [Victor_Ponta, Make_statement, Romania]
303: [Victor_Ponta, Make_statement, National_Liberal_Party_(Romania)]
303: [Victor_Ponta, Make_statement, Romania]
304: [Victor_Ponta, Make_statement, Romania]
307: [Victor_Ponta, Make_statement, Representatives_(Romania)]
Query:
308: [Victor_Ponta, Make_statement, ]

Output The missing entity of query quadruplet is Romania.

Table 10: Prompt design using text only.

Section Prompt
Instruction Given contexts consisting of multiple quadruplets in the form of {time}: [{subject},

{relation}, {label}.{object}], please predict the missing entity in the query quadruplet
{time}: [{subject}, {relation}, ] in the end.

Input 295: [[Victor_Ponta, Make_statement, 0.Romania]
296: [Victor_Ponta, Make_statement, 1.North_Atlantic_Treaty_Organization]
296: [Victor_Ponta, Make_statement, 0.Romania]
300: [Victor_Ponta, Make_statement, 2.Viorel_Hrebenciuc]
301: [Victor_Ponta, Make_statement, 0.Romania]
302: [Victor_Ponta, Make_statement, 0.Romania]
303: [Victor_Ponta, Make_statement, 3.National_Liberal_Party_(Romania)]
303: [Victor_Ponta, Make_statement, 0.Romania]
304: [Victor_Ponta, Make_statement, 0.Romania]
307: [Victor_Ponta, Make_statement, 4.Representatives_(Romania)]
Query:
308: [Victor_Ponta, Make_statement, ]

Output The missing entity of query quadruplet is 0.Romania.

Table 11: Prompt design using text and id.
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8-shot Prompt
You must be able to correctly predict the next {object} from a given text consisting of multiple
quadruplets in the form of "{time}:[{subject}, {relation}, {object}]" and the query in the form of
"{time}:[{subject}, {relation}," in the end.
Example 1: 3864: [Police (Malaysia), Confiscate property, Malaysia] 4272: [Police (Malaysia),
Confiscate property, Malaysia] 4944: [Police (Malaysia), Confiscate property, Malaysia] 5952: [Police
(Malaysia), Confiscate property, Malaysia] 6072: [Police (Malaysia), Confiscate property, Malaysia]
6192: [Police (Malaysia), Confiscate property, Indonesia] 6288: [Police (Malaysia), Confiscate property,
Citizen (Malaysia)] 6336: [Police (Malaysia), Confiscate property, Citizen (Malaysia)]
Example 2: 6408: [Police (India), Accuse, Criminal (India)] 6408: [Police (India), Accuse, Student
(India)] 6408: [Police (India), Accuse, Citizen (India)] 6432: [Police (India), Accuse, Criminal (India)]
6456: [Police (India), Accuse, Inspector General (India)] 6456: [Police (India), Accuse, Citizen (India)]
6456: [Police (India), Accuse, Children (India)] 6456: [Police (India), Accuse, Women (India)]
Example 3: 6120: [China, Reject, India] 6336: [China, Reject, United States] 6384: [China, Reject,
United States] 6432: [China, Reject, Naval (United States)] 6432: [China, Reject, Donald Trump] 6432:
[China, Reject, United States] 6456: [China, Reject, Donald Trump] 6456: [China, Reject, United
States]
Example 4: 6408: [Shinzo Abe, Consult, North Korea] 6408: [Shinzo Abe, Consult, Head of Govern-
ment (South Korea)] 6432: [Shinzo Abe, Consult, Kim Jong-Un] 6432: [Shinzo Abe, Consult, Moon
Jae-in] 6432: [Shinzo Abe, Consult, Hassan Rouhani] 6432: [Shinzo Abe, Consult, Donald Trump]
6432: [Shinzo Abe, Consult, UN General Assembly] 6456: [Shinzo Abe, Consult, Donald Trump]
Example 5: 5568: [Joao Lourenco, Make a visit, Germany] 5592: [Joao Lourenco, Make a visit,
Germany] 5616: [Joao Lourenco, Make a visit, Germany] 5736: [Joao Lourenco, Make a visit, Angola]
5976: [Joao Lourenco, Make a visit, China] 6408: [Joao Lourenco, Make a visit, United States] 6720:
[Joao Lourenco, Make a visit, China] 6768: [Joao Lourenco, Make a visit, China]
Example 6: 5208: [Saudi Arabia, Demand, Foreign Affairs (Canada)] 5256: [Saudi Arabia, Demand,
Student (Saudi Arabia)] 5256: [Saudi Arabia, Demand, Canada] 5304: [Saudi Arabia, Demand, Student
(Saudi Arabia)] 5760: [Saudi Arabia, Demand, Sudan] 6288: [Saudi Arabia, Demand, Citizen (Saudi
Arabia)] 6792: [Saudi Arabia, Demand, Jamal Khashoggi] 6816: [Saudi Arabia, Demand, Jamal
Khashoggi]
Example 7: 4248: [Wei Fenghe, Express intent to cooperate, James Mattis] 6552: [Wei Fenghe,
Consult, Department of Defense] 6552: [Wei Fenghe, Halt negotiations, James Mattis] 6960: [Wei
Fenghe, Consult, James Mattis] 6960: [Wei Fenghe, Meet at a ’third’ location, James Mattis] 6960:
[Wei Fenghe, Make a visit, ASEAN Defense Ministers] 6960: [Wei Fenghe, Engage in negotiation,
James Mattis] 6960: [Wei Fenghe, Halt negotiations, James Mattis]
Example 8: 6936: [Police (India), Arrest, detain, or charge with legal action, Student (India)] 6960:
[Police (India), Arrest, detain, or charge with legal action, Men (India)] 6960: [Police (India), Arrest,
detain, or charge with legal action, Criminal (India)] 6960: [Police (India), Arrest, detain, or charge
with legal action, Children (India)] 6960: [Police (India), Arrest, detain, or charge with legal action,
Citizen (India)] 6960: [Police (India), Arrest, detain, or charge with legal action, Student (India)] 6960:
[Police (India), Arrest, detain, or charge with legal action, Parkash Singh Badal] 6960: [Police (India),
Arrest, detain, or charge with legal action, Women (India)]

Table 12: 8-shot ICL prompt design on ICEWS18.
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Parameter Candidates
batch_size 4, 8
lora_rank 8, 32
lora_dropout 0.1
lora_target_modules {q_proj,k_proj,v_proj,o_proj}, {q_proj, k_proj}
lora_alpha 16
truncation_length 3000
L 10, 20, 30, 40, 50
single_step_inference_candidate 10

Table 13: Parameter search space.
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