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ABSTRACT

Preference-based reward learning is widely used for shaping agent behavior to
match a user’s preference, yet its sparse binary feedback makes it especially
vulnerable to causal confusion. The learned reward often latches onto spurious
features that merely co-occur with preferred trajectories during training, collapsing
when those correlations disappear or reverse at test time. We introduce ReCouPLe,
a lightweight framework that uses natural language rationales to provide the missing
causal signal. Each rationale is treated as a guiding projection axis in an embedding
space, training the model to score trajectories based on features aligned with that
axis while de-emphasizing context that is unrelated to the stated reason. Because
the same rationales (e.g., “avoids collisions”, “completes the task faster”) can
appear across multiple tasks, ReCouPLe naturally reuses the same causal direction
whenever tasks share semantics, and transfers preference knowledge to novel tasks
without extra data or language-model fine-tuning. Our learned reward model can
ground preferences on the articulated reason, aligning better with user intent and
generalizing beyond spurious features. ReCouPLe outperforms baselines by up
to 1.5x in reward accuracy under distribution shifts, and 2x in downstream policy
performance in novel tasks.

1 INTRODUCTION

Designing reward functions that faithfully capture human intent is one of the central obstacles to
deploying learning agents in the real world. Preference-based reinforcement learning (PbRL) removes
the need for hand-crafted rewards by asking a human preference queries, queries in which the human
is asked for their preference between two trajectories (Christiano et al., 2017; Sadigh et al., 2017;
Bıyık et al., 2019; Hejna & Sadigh, 2023; Lee et al., 2021; Ouyang et al., 2022). Unfortunately, this
binary feedback conveys at most a single bit of information and leaves the reward model free to
explain the preference with any correlating feature in its observation space. Under the presence of
non-causal distractor features that are spuriously correlated with preference labels, reward models
often learn to rely on such features (Tien et al., 2023). These features, however, are irrelevant to
the task success. When they disappear or change at test time, the agent can suffer from reward
misidentification and fail to generalize. Since each comparison supplies so little information, it leaves
many causal explanations indistinguishable. Without extra guidance, the learner cannot tell whether
users prefer a trajectory for its smoothness, its speed, or some spurious cue in the background.

For example, suppose we want to train a robotic arm to pick up a box large enough to store toys
(Figure 1). During data collection, every preference query shows a large red box and a small blue
box, and the annotator always prefers the former. Because size and color are perfectly correlated in
these comparisons, a reward model can reach zero training error by attending to the color cue instead
of true size. At test time, when it encounters a large blue box next to a small red box, the learned
reward could mistakenly favor the small red box.

A natural way to overcome this ambiguity is to supply richer feedback. Following advancements in
natural language processing, recent works in robot learning employed language for task planning
(Ahn et al., 2022; Sharma et al., 2022; Singh et al., 2023; Bucker et al., 2022), policy learning (Cui
et al., 2023; Dai et al., 2025; Shi et al., 2024), and reward shaping (Goyal et al., 2019; Yang et al.,
2024; Holk et al., 2024). We claim that short natural language rationales carry exactly the causal

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Without 
reasoning

Wait, the blue box is larger.
Does the user prefer A over B 
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I want the robot to pick up a box where I can put my toys.

Trajectory A Trajectory B

Figure 1: Preference learning can be susceptible to causal confusion, especially with the presence of
non-causal distractor features that merely co-occur with preferred trajectories. In the example above,
the reward model struggles to identify the exact feature of a trajectory that determined the user’s
preference. By providing a reason, the agent can identify the causal feature.

signal the model is missing. “I prefer this trajectory because it picks up the large box” tells the learner
which feature matters for the user’s preference.

We present ReCouPLe (Reason-based Confusion Mitigation in Preference Learning), a lightweight
framework which consists of a data modality that couples preferences with their reasons/rationale and
a learning algorithm that treats each rationale as a directional guide in a shared trajectory-language
representation space. We design a simple loss that encourages the preference to be based on the
direction of the reason specified by the user, rather than on incidental correlations in a pair of
trajectories. The language encoder shared across all tasks makes sure we retain the same semantics
between them. Subsequently, this decoupling of reason components enables us to leverage shared
rationales appearing across tasks, learning a reward function that generalizes zero-shot from one task
to another.

In summary, our contributions are:

1. Based on the observation that pairwise preferences provide limited information in the presence of
non-causal distractor features, leaving reward models prone to causal confusion, we design a new
feedback type by supplying complementary causal cues that help disambiguate the true preference
signal.

2. We introduce ReCouPLe, a framework that injects causal structure into preference learning by
aligning trajectory representations with rationale embeddings.

3. We demonstrate that augmenting comparisons with rationales produces reward models that
significantly reduce causal confusion relative to state-of-the-art baselines. Moreover, these models
transfer across tasks without additional preference queries by leveraging shared underlying reasons.

2 RELATED WORK

Learning from Human Feedback. Policy learning from human feedback has taken many forms,
including demonstrations (Schaal, 1996; Ho & Ermon, 2016), corrections (Bajcsy et al., 2017; 2018),
interventions (Korkmaz & Bıyık, 2025; Kelly et al., 2019), language (Shi et al., 2024; Sharma et al.,
2022), and preferences (Bıyık et al., 2019; Christiano et al., 2017; Hejna & Sadigh, 2023). Among
these, preferences and language occupy opposite ends of the spectrum: binary comparisons are
intuitive and easy to provide but limited in expressivity, whereas natural language is rich and flexible
but often underconstrained due to the vagueness and ambiguity of natural language, necessitating an
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additional modality (Casper et al., 2023; Zeng et al., 2023; Shi et al., 2024; Cui et al., 2023). In this
work, we complement pairwise comparisons with natural language rationales, which provides richer
causal information while preserving the ease of use.

Preference-based Learning. Preference-based methods have become popular for reinforcement
learning, especially where explicit rewards are unavailable (Christiano et al., 2017; Sadigh et al., 2017;
Hejna & Sadigh, 2023; Bıyık et al., 2019). While effective, their reliance on binary comparisons poses
two main challenges: (i) each query conveys at most one bit of information, and (ii) the feedback is
ambiguous when multiple task-relevant features exist (Casper et al., 2023). This makes reward models
prone to relying on spurious, non-causal cues (Tien et al., 2023). Prior efforts to enrich preference
signals include active query selection strategies such as, information gain (Bıyık et al., 2019), volume
removal (Sadigh et al., 2017) and maximum regret (Wilde et al., 2020), and augmentations with
feature-level queries (Basu et al., 2018). More recently, Peng et al. (2024) proposed feature-wise
preference learning, asking users why an example is preferred. However, these methods assume
access to structured, task-specific features and have been demonstrated in limited settings like linear
bandits. In contrast, we employ free-form natural language rationales alongside binary preferences,
aligning the reward model with causal explanations while reducing reliance on spurious correlations.

Robot Learning with Language Feedback. There have been several recent works that utilize natural
language for improving learned robot policies via different strategies such as task planning (Ahn et al.,
2022; Singh et al., 2023), policy learning (Cui et al., 2023; Dai et al., 2025; Shi et al., 2024), and
reward shaping (Goyal et al., 2019). Shi et al. (2024) employ language-conditioned behavior cloning
(LCBC) for corrective language commands and improving policies. Cui et al. (2023) introduce an
approach to use human language feedback to correct robot manipulation in real-time via shared
autonomy. Dai et al. (2025) propose a data generation pipeline that automatically augments expert
demonstrations with failure recovery trajectories and fine-grained language annotations for training
recovery policies. In the domain of preference learning, Yang et al. (2024) learn a shared latent space
for trajectories and comparative language like “move farther from the stove”, showing that language
can make reward learning faster and more intuitive. Holk et al. (2024) instead use a predefined
set of relevant features and human prompts to extract trajectory segments corresponding to each
feature, which are then used for reward modeling. These existing approaches treat language as an
additional input to the reward model, without exploiting its compositional structure or underlying
rationale. In contrast, we explicitly use rationales to reveal the causal factors behind preferences,
thereby mitigating causal confusion and enabling better transfer across tasks.

3 PRELIMINARIES

We consider a collection of tasks modeled as finite-horizon Markov decision processes (MDPs)
M = (S,A, P, r, γ, T ), where S is the state space, A is the action space, P (st+1 | st, at) is the
transition kernel, r : S × A → R is the reward function, γ ∈ [0, 1) is the discount factor, and T is
the maximum time horizon. The reward function r is unknown and must be inferred from the user’s
pairwise preference feedback augmented with rationales.

3.1 REWARD LEARNING FROM PREFERENCE DATA

We assume access to preference data in the form of binary comparisons. Given a pair of trajectory
segments (τA, τB) of horizon H ≤ T , a user (either human, or a proxy) provides preference label y:

y =

{
1 if τA ≻ τB ,

0 otherwise.

where each segment is a sequence of observations and actions (sk, ak, . . . , sk+H , ak+H). Following
the Bradley-Terry model (Bradley & Terry, 1952), the probability that the trajectory τA is preferred
over the trajectory τB is given by:

Pr(τA ≻ τB) =
exp(r(τA))

exp(r(τA)) + exp(r(τB))
(1)

where r(τ) is the cumulative discounted reward of trajectory τ . In order to infer the reward function,
prior works (Christiano et al., 2017; Sadigh et al., 2017; Lee et al., 2021) in preference-based RL
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train a reward function r̂ω : S ×A → R parameterized by ω, on a dataset D of (τA, τB , y) triplets
by minimizing the binary cross-entropy (BCE) loss with the Bradley-Terry model:

LBCE-BT = −E(τA,τB ,y)∼ D[y logPr̂ω (τA ≻ τB) + (1− y) log(1− Pr̂ω (τA ≻ τB))] (2)

3.2 LANGUAGE INTERFACES

In addition to the standard MDP formulation, each task is associated with a task description ℓtask, a
short instruction such as “pick up the cup” or “push the cube.” These descriptions provide high-level
semantic grounding for the task but are not sufficient on their own to fully specify the reward function.
To capture the finer distinctions that matter to the users, we rely on preference queries. Additionally,
each preference label has an optional reason ℓreason that explains why one trajectory is preferred over
the other (e.g., “because it avoids collisions”). A frozen language encoder LM maps these strings to
fixed embeddings of dimensionality d: θ = LM(ℓtask) ∈ Rd and ψ = LM(ℓreason) ∈ Rd.

4 METHOD

Preference-based reinforcement learning typically fits a single-task reward by maximizing the likeli-
hood of observed comparisons (Eq. 1). We extend this framework to the multi-task setting, where
each task is identified by its language description. Specifically, we model the reward as the inner
product between the trajectory representation and the task embedding:

r(τ, ℓtask) = ϕ(τ)⊤LM(ℓtask) = ϕ(τ)⊤θ, (3)
where the trajectory encoder ϕ : τ → Rd is the only trainable component, as the task embedding
θ = LM(ℓtask) is frozen. We use this reward formulation across all methods for consistency. Although
linear in structure, the nonlinearity of both the trainable trajectory encoder and the frozen language
model allows this simple form to capture complex, task-specific reward structures, similar to CLIP-
based reward models (Sontakke et al., 2023). In our experiments, we use the pretrained T5 (Raffel
et al., 2020) language model encoder as LM.

4.1 RECOUPLE - REASON-BASED CONFUSION MITIGATION IN PREFERENCE LEARNING

￼ ￼  ￼  ￼ ￼(ϕ∥(τA))Tθ > (ϕ∥(τB))Tθ
￼ ￼  ￼  ￼ ￼(ϕ⊥(τA))Tθ ≈ (ϕ⊥(τB))Tθ

Trajectories

Language

￼ϕ(τB)￼ϕ

￼ℓreason
“clears a wall  

with a puck lifted”

￼ℓtask
“pick a puck, 
bypass a wall, 
and place the 

puck to a goal”

Reason-Aligned:

Reason-Orthogonal:

￼ψ

￼θ

￼LM

￼LM

￼ψ

￼ϕ(τA)
￼ϕ(τB)

￼ϕ∥(τB) ￼ϕ∥(τA)

￼ϕ⊥(τB)
￼ϕ⊥(τA)

Joint Representation 
Space￼τA

Rewards

Goal: decompose trajectory 
embedding to ground 

preference on stated reasons 

￼τB

￼ϕ(τA)￼ϕ

Figure 2: ReCouPLe decomposes the task re-
ward by orthogonally projecting the trajectory
representation to the reason language embed-
ding and decomposing the representation into
reason-aligned and reason-orthogonal compo-
nents. This allows the reward model to isolate
the causal feature specified in the rationale to
explain the user’s preference.

Our key idea is that short natural language rationales
may reveal the causal features underlying a prefer-
ence and thereby mitigate spurious correlations. For
example, the statement “I prefer this path because
it avoids collisions” explicitly identifies the relevant
factor influencing the user’s choice. Given a ratio-
nale ℓreason, we obtain its embedding via the frozen
language encoder, ψ = LM(ℓreason). ReCouPLe
then treats ψ as a projection axis and decomposes
the trajectory embedding ϕ(τ) into two components:
(i) a reason-aligned part parallel to ψ, and (ii) an
orthogonal part corresponding to features unrelated
to the rationale. Figure 2 visualizes this process.

Mathematically, this orthogonal projection onto ψ
induces two disjoint subspaces:
ϕ(τ) = ϕ∥(τ)︸ ︷︷ ︸

reason-aligned

+ ϕ⊥(τ)︸ ︷︷ ︸
reason-orthogonal

, ϕ⊤∥ϕ⊥ = 0,

which is achieved by

ϕ∥(τ) =
(ϕ(τ)⊤ψ

∥ψ∥22

)
ψ, ϕ⊥(τ) = ϕ(τ)− ϕ∥(τ)

Correspondingly, the reward term (Eq. 3) decom-
poses as
r(τ, ℓtask) = r∥(τ, ℓtask)︸ ︷︷ ︸

explained by rationale

+ r⊥(τ, ℓtask)︸ ︷︷ ︸
residual task signal

,

4
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with the following components:

• r∥(τ, ℓtask)=ϕ
⊤
∥θ is the reason-aligned, causal component explicitly justified by the user’s rationale.

• r⊥(τ, ℓtask) = ϕ⊤⊥θ is the orthogonal component that captures any task-relevant information the
rationale overlooks (e.g., shaping rewards or domain priors).

Our insight is to ground the pairwise preference on the stated reason and prevent the model from
relying on incidental correlations. This is achieved by forcing reward differences to depend solely on
r∥ while holding r⊥ neutral.

Given the decomposed reward, we train our trajectory representation by three loss terms:

1. Reason loss: BCE loss using Bradley-Terry model with r∥ only, enforcing that preferences are
explained through the stated causal feature.

Lreason = −E(τA,τB ,y)∼ D[y logPr∥(τA ≻ τB) + (1− y) log(1− Pr∥(τA ≻ τB))] (4)

2. Orthogonal consistency loss: Consistency loss prevents non-causal features explaining pairwise
preferences but still encourages them to capture any task-relevant information.
We propose two different versions of this term, resulting in two variants of ReCouPLe:

(a) ReCouPLe-EC: Equality constraint r⊥(τA, ℓtask) ≈ r⊥(τB , ℓtask) for every comparison,
ensuring ϕ⊥ carries no preference signal:

Leq =
(
r⊥(τA, ℓtask)− r⊥(τB , ℓtask)

)2
(5)

(b) ReCouPLe-IC: Inequality constraint encouraging the difference between r∥ to be greater
than that of r⊥ for a given pair of trajectories. A regularizer term computed by taking the
BCE loss on total reward (r∥ + r⊥) (Eq. 2) is also added to prevent potential mode collapses:

diffr(A ≻ B) = r(τA, ℓtask)− r(τB , ℓtask)

S(A ≻ B) =
exp(diffr∥(A ≻ B))

exp(diffr∥(A ≻ B)) + exp(diffr⊥(A ≻ B))

Lineq = −E(τA,τB ,y)∼ D[y logS(A ≻ B) + (1− y) log(1− S(A ≻ B))] + LBCE-BT (6)

ReCouPLe-EC imposes a strict condition, requiring the reason-orthogonal components to be
identical for compared trajectories. In contrast, ReCouPLe-IC is less restrictive, incentivizing
differences in the reason-aligned component to dominate differences in total task rewards. As
such, ReCouPLe-EC is more effective when a small, recurring set of reasons largely governs
preferences and variability in the reason-orthogonal components is minimal, whereas ReCouPLe-
IC is preferable when many plausible reasons may explain comparisons and when variation in
reason-orthogonal reward is non-negligible.

3. Reward-ratio regularizer: Lratio for keeping the magnitude of r∥ below a fraction α of the total
reward magnitude r∥ + r⊥, preventing the trivial collapse of the reward into the causal subspace:

Lratio = ReLU
(

|r∥|
|r∥|+|r⊥|+ϵ − α

)
, where a small constant ϵ is included in the denominator to

prevent division by zero.

The final objective is the following:

LReCouPLe=Lreason + λratioLratio +

{
λeqLeq (ReCouPLe-EC),
λineqLineq (ReCouPLe-IC).

5 EXPERIMENTS

We evaluate ReCouPLe on two complementary suites that probe distinct facets of the method. The
first suite focuses on causal robustness in a single visuomotor task whose visual cues are deliberately
confounded; the second investigates cross-task generalization in a multi-task manipulation benchmark.
Together they address two research questions:

5
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• RQ1 (Robustness against causal confusion): Can ReCouPLe maintain preference accuracy when
the covariate distribution shifts in a way that exposes spurious correlations?

• RQ2 (Task transfer): Does the reason-aligned subspace learned on a small set of tasks transfer to a
semantically related, novel task without additional preference queries?

We address RQ1 with a custom ManiSkill (Tao et al., 2025) suite that deliberately entangles distractor
features (object color) with the ground-truth causal factor (object size) and then evaluates under a
color-swapped distribution. We assess RQ2 with a set of Meta-World (Yu et al., 2020) tasks that are
widely used to test few-shot/zero-shot transfer.

For both experiments, we compute a per-step embedding by first encoding each state-action pair
(st, at) with a modality-appropriate encoder: a convolutional encoder for image observations (Yarats
et al., 2021) and a fully connected network for state-based control tasks. Concretely, we use a
neural network encoder e : S × A → Rd to encode every state-action pair of a trajectory into the
corresponding per-step embedding. We then obtain a trajectory embedding ϕ(τ) by aggregating these
stepwise embeddings over time. This additive design mirrors prior works in preference learning that
formulates trajectory features as a sum of per-step features (Yang et al., 2024).

Baselines. We compare ReCouPLe against two baselines that share the same multi-task reward
formulation but differ in the loss terms used to train the trajectory encoder ϕ.

• Multi-Task Bradley-Terry (BT-Multi): This baseline learns the trajectory encoder, ϕ by minimiz-
ing the binary cross-entropy loss LBCE-BT (Eq. 2) across all tasks, using the shared reward definition
above and ignoring the rationale ℓreason. It therefore serves as the baseline without reason inputs.

• Reason-Feature Preference (RFP): This baseline is an extension of Pragmatic Feature Preferences
(PFP) (Peng et al., 2024). PFP assumes that each state can be represented by an explicit, hand-
designed feature vector. Humans (i) specify which of those features are relevant to the task and
(ii) give pairwise labels that compare each relevant feature across two items. In our setting, such
features do not exist. Instead, we treat the frozen rationale embedding ψ = LM(ℓreason) as a single
implicit feature direction in the representation space. Besides the shared reward r(τ, ℓtask) from
Eq. 3, we also define a reason score, q(τ, ℓreason) = ϕ(τ)⊤ψ, and minimize the standard BCE loss
from Eq. 2 and an additional auxiliary BCE loss term for the specified reason’s score.

Metrics. After training each reward model, we report reward accuracy: the proportion of held-out
preference pairs where the preferred trajectory is labeled with a higher reward. We evaluate ManiSkill
on in-distribution (ID) and color-swapped (OOD; out-of-distribution) splits, and Meta-World on
three training tasks (validation split) plus a held-out novel task. We then validate the reward model’s
usefulness in downstream policy learning. To assess this, we use the learned model to assign reward
values to trajectories in offline play data and train an offline RL policy for each task to report its task
success rate. These offline datasets have trajectories with different levels of optimality, so simply
imitating the behavior in the dataset would not produce successful policies. Rather, the learned
reward model has to discern the difference between preferred and undesirable behaviors and assign
appropriate rewards to trajectories with varying optimality.

5.1 MANISKILL TASK SUITE FOR RQ1

Task design. To test whether our proposed method can mitigate causal confusion in preference-based
learning, we design a set of object manipulation tasks in ManiSkill. Each scene has two cubes of
different sizes and colors (red vs. blue) on a tabletop, and the agent must manipulate the larger cube.
We have 4 total tasks: MS-Pick-Larger, MS-Push-Larger, MS-Place-Larger, and MS-Pull-Larger.
During training, the larger cube is always a fixed color for each task, creating a perfect correlation
between color and the correct behavioral choice; The larger cube is always red in MS-Pick-Larger and
MS-Pull-Larger, whereas the larger cube is always blue in MS-Place-Larger and MS-Push-Larger.
At test time we swap the colors so that the distribution shift induces the classic “shortcut” failure: a
model that latches onto color will choose the wrong object. Implementation details are described in
Appendix A.

Data generation. We collect synthetic preference queries for each task by pairing trajectories
that manipulate the larger and smaller cubes, respectively. These trajectories are generated by
training oracle SAC (Haarnoja et al., 2018) policies that manipulate either larger cubes or smaller
cubes. Details in environments and data collection process are introduced in Appendix A. Then, the

6
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Table 1: Reward accuracy comparison for ManiSkill (RQ1), averaged over 3 seeds. Left block: 2-task
setting; right block: 4-task setting. Methods with highest accuracies in each OOD task are bold-faced.

2-task 4-task

In Distribution Color Swapped In Distribution Color Swapped

Model Pick Place Pick Place Pick Push Place Pull Pick Push Place Pull

Single Task
BT 0.980 1.000 0.540 0.830 0.980 1.000 1.000 1.000 0.540 0.987 0.830 0.867

Multi-Task
BT-Multi 0.953 1.000 0.600 0.820 0.987 1.000 1.000 1.000 0.707 1.000 0.840 0.907

Multi-Task with Reasons
RFP 0.940 1.000 0.620 0.800 0.993 0.980 1.000 0.700 0.700 0.980 0.807 0.913
ReCouPLe-EC 0.993 1.000 0.820 0.940 1.000 1.000 1.000 1.000 0.773 1.000 0.880 0.860
ReCouPLe-IC 0.967 1.000 0.633 0.807 0.993 0.987 0.993 0.993 0.600 1.000 0.807 0.867

preference label selects the trajectory handling the larger cube. The accompanying rationale ℓreason
is “(because) the cube is larger.” The task label ℓtask is simply “[manipulating verb] the larger cube.”
Even though the task text already mentions “larger cube,” ReCouPLe uses the rationale as a shared
causal axis, projecting trajectories to isolate the size feature in the reason-aligned component while
keeping the manipulation verb in a reason-orthogonal, task-specific residual. By contrast, methods
without this decomposition often entangle causal (size) and distractor cues (e.g., color), leading to
overfitting and failures under color-swap distribution shifts.

Preference prediction results. Table 1 shows that all methods are near-ceiling on the ID validation
split, but clear gaps appear on the color-swapped OOD split that flips the color–size correlation.
Single-task BT and BT-Multi drop markedly, and a naive reason auxiliary loss (RFP) offers only
modest recovery. In contrast, ReCouPLe-EC attains the best OOD accuracy across tasks, with the
only exception of MS-Pull-Larger. This indicates that ReCouPLe can extract the common causal
feature (cube color) from tasks with different color–size correlations (e.g., red larger cube in MS-
Pick-Larger) and blue larger cube in MS-Place-Larger)) by projecting trajectory embeddings onto
the common reason embedding and isolating such causal features from distractor features (cube size).
ReCouPLe-IC is comparatively less effective here, since a single causal feature dominates all pairs
and the reason-orthogonal components vary little in this suite, and the stricter equality constraint in
ReCouPLe-EC yields a clearer advantage.

Policy Learning Results. Using the learned rewards to train policies on the OOD environments
for 2-task and 4-task settings (Figure 3) mirrors the reward-accuracy trends: offline RL dataset with
ReCouPLe-trained rewards yield policies with higher success than BT-Multi and RFP. Noticeable
advantage is observed in MS-Pick-Larger and MS-Pull-Larger. Both ReCouPLe-EC and ReCouPLe-
IC consistently outperform naive behavior cloning of play dataset, suggesting that improvements in
reward preference prediction translate into downstream policy learning in OOD environments.
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Figure 3: ManiSkill policy learning results, averaged over 3 seeds (mean ± std).
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5.2 META-WORLD TASK SUITE FOR RQ2

Task design. We select three training tasks from Meta-World: Push, Push-Wall, and Pick-Place-Wall.
We reserve Pick-Place, a variant of Pick-Place-Wall task without a wall that parallels the structural
difference between Push and Push-Wall. Each task’s ground-truth reward is linearly decomposed into
interpretable components (grasp, lift, collision avoidance waypoints, etc.) provided by the benchmark.

Data generation. We first collect trajectories by rolling out policies with different levels of optimality
and Gaussian noise, similar to the data collection procedure in Hejna & Sadigh (2023). Then, for
each query, we randomly sample two trajectory segments τA and τB and generate the preference
label based on their total reward

∑
i r(si, ai), where Meta-World’s pre-defined environment reward

can be linearly decomposed into feature components {fj}: r(s, a) =
∑

j wjfj(s, a). Without loss
of generality, suppose τA is preferred over τB . Now, we synthetically generate the reason label by
computing component-wise advantages ∆j = wj(fj(τA)− fj(τB)) and convert them to a softmax
distribution from which we sample the reason behind the preference:

Pr(choose reason j) =
exp(∆j)∑
k exp(∆k)

Each sampled reason is a free-form sentence such as “keeps a firm grasp while steering toward the
goal.” Please refer to Appendix B.3 for details. We generate 2000 preference–rationale pairs for each
training task (6000 total).

Table 2: Reward accuracy comparison for Meta-World
(RQ2), averaged over 3 seeds.

Model Training Tasks Novel Task
Push Push-Wall Pick-Place-Wall Pick-Place

Multi-Task
BT-Multi 0.873 0.893 0.577 0.547

Multi-Task w/ Reasons
RFP 0.870 0.900 0.647 0.553
ReCouPLe-EC 0.863 0.843 0.650 0.663
ReCouPLe-IC 0.893 0.823 0.657 0.627

Reward learning results. As demon-
strated in Table 2, there is no mean-
ingful difference in validation reward
accuracy of training tasks. However,
in the novel Pick-Place task, both
ReCouPLe-IC and ReCouPLe-EC out-
perform our baselines. This indi-
cates that the reason-aligned subspace
learned on the training tasks captures
transferable cues for held-out task. Re-
CouPLe can better transfer preference
to novel tasks by decomposing and recomposing semantically grounded features in training tasks
(e.g., Pick-Place-Wall − (Push-Wall − Push) ≃ Pick-Place).
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Figure 4: Meta-World policy earning on the
held-out task, averaged over 3 seeds (mean ±
std). Both ReCouPLe variants outperform the
baselines, showing task transfer capability.

Policy learning results. We label the rewards of the
novel Pick-Place task’s play data using learned mod-
els to assess how well our reward model transfers
to the downstream policy learning of a novel task.
As indicated in the Figure 4, a similar pattern per-
sists from reward learning results. ReCouPLe can
better transfer to a novel task without additional pref-
erence queries, compared to both of our baselines.
Among our variants for orthogonal consistency loss,
ReCouPLe-IC slightly outperforms ReCouPLe-EC
in terms of overall preference accuracies. Unlike our
ManiSkill experiment, in which preference queries
consist of a pair of trajectories with a minimal differ-
ence in features other than the stated reasons, datasets
in Meta-World contain noisy trajectories with differ-
ent levels of optimality. Also, each query has a dif-
ferent reason behind its preference. Thus, it is less re-
alistic to assume that reason-orthogonal components
should remain identical across compared trajectories.
In this setting, the strict equality constraint enforced
by ReCouPLe-EC may overly penalize legitimate dif-
ferences unrelated to the stated reason, harming its
performance.
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5.3 ABLATIONS AND ANALYSIS

Table 3: Mean reward prediction accuracy over
ManiSkill manipulation tasks, averaged over 3
seeds. ID and OOD refer to in-distribution and
out-of-distribution tasks, respectively.

Model 2-task 4-task
ID OOD ID OOD

ReCouPLe 0.995 0.872 1.000 0.878
ReCouPLe-no-consistency 0.980 0.726 0.977 0.745
ReCouPLe-no-consistency-no-ratio 0.987 0.727 0.990 0.730

Ablations. Table 3 verifies the efficacy of
each component in our method: ReCouPLe-no-
consistency removes the consistency constraint
and ReCouPLe-no-consistency-ratio further ab-
lates the reward-ratio regularizer in the loss func-
tion. Both ablations retain high ID accuracy, but
suffer large drops on OOD cases. The consistency
loss ensures that preferences are not explained by
the non-causal, reason-orthogonal component, and
the ratio regularizer prevents the trivial collapse
of this component. Together, they account for ReCouPLe’s robustness gains under distribution shift.

Effectiveness of ReCouPLe in image-based control tasks. While our main experiments were
tested in state-based control tasks, previous works demonstrate that manipulation tasks can be
especially vulnerable to causal confusion from distribution shift in non-causal visual features (Park
et al., 2021). Table 4 shows this clearly. With raw visual inputs as observations, all baselines yield
significantly lower reward accuracy prediction with OOD validation set; their reward models pay too
much attention to the spurious feature (cube color) in raw pixel inputs. RFP raises OOD accuracy
only slightly, confirming that naively adding the auxiliary BCE loss for reasons alone provides an
informative but insufficient signal. ReCouPLe significantly improves its accuracy under distribution
shift and outperforms baselines in all tasks, demonstrating its robustness against causal confusion.
Especially, under the 4-task setting, both variants reach near-perfect accuracies (≥ 0.96). In summary,
ReCouPLe remains effective in mitigation of causal confusion in image-based tasks.

Table 4: Reward accuracy comparison for in image-based ManiSkill (RQ1) environment, averaged
over 3 seeds. Methods with highest accuracies in each OOD task are bold-faced.

2-task 4-task

In Distribution Color Swapped In Distribution Color Swapped

Model Pick Push Pick Push Pick Push Place Pull Pick Push Place Pull

Single Task
BT 0.833 1.000 0.167 0.610 0.833 1.000 0.980 1.000 0.167 0.610 0.460 0.053

Multi-Task
BT-Multi 0.870 0.999 0.167 0.673 0.867 1.000 0.987 1.000 0.533 0.867 0.833 0.587

Multi-Task with Reasons
RFP 0.847 0.990 0.290 0.813 0.867 1.000 0.993 1.000 0.807 0.967 0.947 0.833
ReCouPLe-EC (λratio = 0.4) 0.980 1.000 0.707 0.987 0.980 1.000 0.993 1.000 0.960 1.000 1.000 0.980
ReCouPLe-IC (λratio = 0.4) 0.940 1.000 0.433 0.927 0.960 1.000 1.000 1.000 0.960 1.000 0.993 0.987

6 CONCLUSION

Summary. We introduce ReCouPLe, a lightweight preference learning method that is robust against
causal confusion and effective for task transfer by leveraging natural language reasons behind
preferences. ReCouPLe turns free-form language rationales into causal projection axes for preference-
based reward learning, and uses them to separate out the part of the trajectory that explains the
preference, ensuring the model focuses on the feature that actually matters. Furthermore, ReCouPLe
leverages shared causal structure across multiple tasks to transfer reward signals without additional
preference data or language model fine-tuning. Across two complementary evaluations, ReCouPLe
consistently mitigates causal confusion and exhibits strong zero-shot transfer to novel tasks.

Limitations and Future Work. While ReCouPLe shows strong gains, some limitations remain. Our
method assumes that rationales are easily available and reliable, yet in practice they may be noisy or
costly to obtain. A promising future direction is to explore active learning strategies that selectively
query rationales when they are expected to provide the most causal signal. Another limitation is that
our evaluation is restricted to simulated domains; validating ReCouPLe in real-world robotic settings
will be essential to assess its robustness under natural human input. Finally, our current framework
focuses on reward modeling, leaving an additional RL step for policy learning. Extending it to
directly learn policies from rationales and preferences (An et al., 2023; Rafailov et al., 2023; Hejna
et al., 2024), bypassing the reward-learning loop, could further improve efficiency and practicality.
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REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide the source code in the supplementary material, with a README
file containing commands for all experiments. We describe the evaluation environment and training
details in the Appendix.

LLM USAGE

We only used large language models (LLMs) to assist with grammar correction and rewording. No
model-generated content was used for scientific claims, experiments, or core contributions. All ideas
and analyses are original and solely developed by the authors.
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A MANISKILL EXPERIMENTAL DETAILS

A.1 DETAILS AND IMPLEMENTATION OF TASKS

As introduced in Section 5.1, we design 4 custom manipulation environments (MS-Pick-Larger,
MS-Push-Larger, MS-Place-Larger, and MS-Pull-Larger) in which each scene has two cubes of
different sizes and colors by modifying a set of tabletop manipulation tasks provided in ManiSkill
(Tao et al., 2025). All the original tasks require the robot to manipulate a single cube or sphere, but
we instead put two cubes with different sizes and colors in the scene to entangle a causal feature
(object size) with a non-causal distractor feature (object color), as shown in Table 5.

Table 5: Task descriptions and settings for ManiSkill tasks.

Task Task Description Larger Cube Color Smaller Cube Color

MS-Pick-Larger “pick up larger cube to target sphere” Red Blue
MS-Place-Larger “place larger cube in target bin” Blue Red
MS-Push-Larger “push larger cube toward target line” Blue Red
MS-Pull-Larger “pull larger cube toward green line” Red Blue

For all tasks, we randomize the initial pose of two cubes and the target object. Additionally, for each
task, we design two versions of ground-truth reward function that incentivizes the robot to manipulate
either the larger cube or the smaller cube. This is later used for training expert RL policies with which
we collect trajectories in preference dataset.

Observation modalities. For state-based experiments in Section 5.1, we design a compact state
that includes, for each of the two cubes, its color, size, and pose. To avoid trivial dependence on
input ordering, we randomize the order of the two cubes in the concatenated state at every episode.
This forces methods to identify the correct causal feature (size) rather than relying on position/order
or color; it thus mirrors the causal-confusion risk present in visuomotor policy learning. We then
concatenate this with the robot proprioception and the target object pose to create the state. For
image-based experiments in Section 5.3, we use a raw 128×128 RGB frame as an input modality.

A.2 DATA COLLECTION DETAILS

For the state-based experiments (Section 5.1), we train SAC (Haarnoja et al., 2018) policies that either
manipulate the larger cube or the smaller cube, for each manipulation task. The former policy is used
to collect preferred trajectories, and the latter is used to collect trajectories that are not preferred.
Then, for each task, we generate 1000 synthetic preference pairs by pairing trajectory segments
that manipulate the larger and smaller cubes, respectively. These segments are sub-sampled from
the oracle’s collected trajectories, with the length of 4. For the image-based experiments (Section
5.3), we design motion planning solutions that manipulate either the larger or the smaller cube for
each task due to higher sample complexity in training visuomotor RL policies. Similar to the state-
based experiments, we generate 500 synthetic preference pairs for each task, where the sub-sampled
segment length is 64.
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B META-WORLD EXPERIMENTAL DETAILS

B.1 DATA COLLECTION

In this section, we provide details on how offline datasets for Meta-World tasks are constructed.
Similar to Hejna & Sadigh (2023), we first collect trajectories with varying levels of optimality and
behavior for each task, as follows:

• 400 trajectories collected with the ground-truth policy for the target task, with varying levels of
random noise. We use Gaussian noise with standard deviations [0.1, 0.3, 0.5].

• 100 random trajectories with uniform random actions.
• 100 suboptimal trajectories collected with the ground-truth policy, but for a different random

initialization in each target environment.
• 100 suboptimal trajectories collected with the ground-truth policy for a different task, other than

each target environment. For tasks without a wall in the center (i.e., Pick-Place and Push),

We over-sample trajectories with the noisy ground-truth policy, in order to guarantee diversity in
sampled reasons. If we only collect substantially suboptimal or nearly random trajectories, we
empirically observed that it significantly limits the diversity of reasons; reasons that are related to
near-goal states are barely sampled as most trajectories achieve limited task progression.

After we collect trajectories, we construct our preference dataset with the following procedure. We
first uniformly sample segments with sub-trajectory length 32 from the collected trajectories. For
each task, we sample 4000 segments and create 2000 preference pairs. Assignment of preference
labels and corresponding reason texts is described in Section 5.2. This process results in 6000 total
preference pairs, as we have three training tasks (Pick-Place-Wall, Push, Push-Wall).

For our held-out validation dataset for reward accuracy evaluation, we simply repeat the same process
as training dataset. We however collect 100 preference pairs per task, which results in 400 total
preference pairs (3 training tasks and 1 novel task). We also collect play data (i.e., offline RL data
without reward label) in the same process. For each task, we collect 2000 preference pairs, which we
later label reward values with our learned reward models and train offline RL policies with.

B.2 META-WORLD NATURAL LANGUAGE TASK DESCRIPTIONS

Table 6 has a compiled list of task descriptions ℓtask. As described in Section 3.2, we convert these
task descriptions to create task embeddings θ.

Table 6: Natural language task descriptions for Meta-World tasks.

Task Task Description

Push “make contact and push puck to goal”
Push-Wall “make contact, bypass wall via waypoint, and push puck to goal”
Pick-Place “pick up puck, lift it, and place it on goal”
Pick-Place-Wall “pick up puck, use waypoint to bypass wall, and place it on goal”
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B.3 META-WORLD NATURAL LANGUAGE RATIONALES

Table 7 has a compiled list of reasons ℓreason. As described in the data generation section of 5.2, we
sample the reason behind the preference from softmax distribution of component-wise advantages.
Here, each reason corresponds to an appropriate feature component in the total reward function,
where the environment reward can be linearly decomposed into interpretable feature components.
This decomposition is based on the reward formulation of Meta-world environments Yu et al. (2020).

Table 7: Reason codes used per task.

Code Reason Text

Push “pushes more decisively after making contact”
Push “pushes puck closer to goal”
Push-Wall “pushes puck toward waypoint”
Push-Wall “guides puck past wall”
Push-Wall “pushes puck toward goal after clearing wall”
Push & Push-Wall “maintains firm grip on puck”
Push & Push-Wall “makes contact with puck sooner”
Pick-Place “keeps firm grip while moving puck toward goal”
Pick-Place “carries puck toward goal while lifted”
Pick-Place-Wall “keeps firm grip while moving puck toward waypoint”
Pick-Place-Wall “carries puck toward waypoint while lifted”
Pick-Place-Wall “clears wall with puck lifted”
Pick-Place-Wall “carries puck toward goal after clearing wall”
Pick-Place & Pick-Place-Wall “lifts puck cleanly”
All tasks “finishes at goal spot”
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