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Abstract

Learning to predict rare medical events is difficult
due to the inherent lack of signal in highly imbal-
anced datasets. Yet, oftentimes we also have access
to surrogate or related outcomes that we believe
share etiology or underlying risk factors with the
event of interest. In this work, we propose the use
of two variants of a well-known approach, regular-
ized multi-label learning (MLL), that we hypothe-
size are uniquely suited to leverage this similarity
and improve model performance in rare event set-
tings. Whereas most analyses of MLL emphasize
improved performance across all event types, our
analyses quantify benefits to rare event prediction
offered by our approach when a more common,
related event is available to enhance learning. We
begin by deriving asymptotic properties and provid-
ing theoretical insight into the convergence rates of
our proposed estimators. We then provide simula-
tion results highlighting how characteristics of the
data generating process, including the event simi-
larity and event rate, affect our proposed models’
performance. We conclude by showing real-world
benefit of our approach in two clinical settings:
prediction of rare cardiovascular morbidities in the
setting of preeclampsia; and early prediction of
autism from the electronic health record.

1 INTRODUCTION

Predicting the risk of an adverse event is one of the most
common applications of machine learning in medicine. The
ability to identify patients at risk of developing a disease,
suffering a side-effect from a treatment, or seeing a drastic
change in their health allows clinicians to take the appro-
priate steps to prevent or mitigate the negative outcome.

*Equal contribution.

However, many clinically important events are highly im-
pactful but extremely rare, resulting in imbalanced training
datasets and making it difficult to train an effective model
[Megahed et al., 2021, He and Garcia, 2009]. Yet, oftentimes
we also have access to surrogate or related outcomes that
are more common, yet share etiology or risk factors with the
rare event(s) of interest. In such scenarios, we would like
to leverage information from the more common event(s) to
help us predict the rare event(s).

In this paper, we consider two separate medical contexts
in which rare event prediction is challenging, but related
outcomes are available to enhance learning. Our first task
aims to predict stroke in patients with hypertensive disorders
of pregnancy (HDP). HDP put pregnant people at high risk
for stroke as well as several other severe complications, such
as hypertensive crisis, that are more common [Meng et al.,
2023]. Our second task aims to predict autism at an early
age based on electronic health record (EHR) data collected
from birth through age 18 months. While autism diagnosis
is uncommon, the condition shares clinical features and
risk factors with several more common neurodevelopmental
conditions, including ADHD and developmental delays. In
both of these tasks, the events of interest are rare and we
would like to share information across related outcomes to
help improve model performance.

In such settings, it is natural to consider multi-label learning
(MLL) as a way to share information between outcomes. In-
deed, the concept of MLL has been studied extensively and
successfully applied to many prediction tasks in medicine
[Zhang et al., 2015, Li et al., 2015, Zufferey et al., 2015,
Ge et al., 2020]. However, typical MLL methods aim to
improve performance across all event types and were not
designed specifically to improve rare event prediction by
leveraging related but more common events. Moreover, we
know very little, both empirically and theoretically, about
the conditions under which MLL confers benefit for rare
event prediction tasks. For the same reasons, we do not
know which MLL methods are well suited to the clinical
scenarios previously described.

mailto:<quinn.lanners@duke.edu>?Subject=Common Event Tethering to Improve Prediction of Rare Clinical Events


In this work, we expand upon existing MLL literature to
focus on rare event prediction. Specifically, we provide in-
sight into how event rarity and underlying similarity affect
MLL performance. Motivated by this insight, we propose a
variant of regularized MLL when working with rare events.
Our approach bridges early MLL literature, which largely
focused on task-sharing shrinkage/priors, with more recent
work, which has focused on representation learning-based
methods [Evgeniou and Pontil, 2004, Zhou et al., 2012,
Huang et al., 2019, Zhu et al., 2021]. We show that a combi-
nation of these two may be suitable for cases where clinical
events share latent risk factors but the events we are trying
to model are extremely rare.

Contributions. Our work contributes to the field of MLL
learning and rare event prediction with a focus on its appli-
cations to medical settings. Our main contributions are as
follows:

• Propose a variant of regularized MLL, which we call
common event tethering (CET), that is specifically
suited for rare events.

• Provide theoretical analysis identifying conditions on
event similarity under which CET is superior to stan-
dard shrinkage estimators.

• Analyze the effect of event similarity and event rate on
the effectiveness of CET for rare events both theoreti-
cally (Sections 4) and via simulation (Section 5).

• Demonstrate the benefits of our approach when predict-
ing rare cardiovascular morbidities in pregnant people
with HDP and predicting autism likelihood in early
childhood.

This paper proceeds as follows. In Section 2, we outline the
setup of our problem statement and discuss related work.
We proceed to introduce our MLL methods, which we call
common event tethering logistic regression (CET-LR) and
common event tethering neural network (CET-NN), in Sec-
tion 3. We then provide theoretical results on the asymptotic
properties of our estimators in Section 4. Section 5 uses sim-
ulation to highlight how the underlying similarity between
and rate of events affects the performance of our CET meth-
ods. We ultimately highlight the benefits of these methods
in our two real-world applications in Section 6.

2 SETUP AND RELATED WORK

We consider the setting where we have a dataset Dn =
{(xi,yi)}ni=1 of n independent samples where, for each
patient i, xi is a p-dimensional feature vector and yi ∈
{0, 1}M is a vector of M binary outcomes. We consider the
case where M = 2, though our results can easily be gener-
alized to settings where M > 2. Without loss of generality,
we let yi,1 be the label for a rare event of interest such that
the event rate, 1

n

∑n
i=1 yi,1, is low (e.g. 0.01, 0.001, ...) and

we let yi,2 be the label for another more common, related
event.

We assume that the probabilities of yi,1 and yi,2 can be
written as

P (yi,1 = 1|xi) = σ(θ′
1h(xi)), and

P (yi,2 = 1|xi) = σ(θ′
2h(xi)).

(1)

In Equation 1, xi is assumed to include a constant feature,
σ is the sigmoid function, θ1,θ2 ∈ Rd, and h : Rp → Rd is
a function that maps xi to a d-dimensional vector of latent
features.

Note that when h(xi) = xi this simplifies to a standard
logistic model. In this way, we view the probabilities of
yi,1 and yi,2 as being determined by two separate logistic
models on either the input features themselves or some
latent features that we can learn. θ1 and θ2 then act as
the d dimensional parameter vectors for the corresponding
outcome.

2.1 LOGISTIC REGRESSION & L2
REGULARIZATION

Logistic regression (LR) is a commonly employed tech-
nique for classification. However, LR is infamous for being
biased and unstable in small sample sizes [Firth, 1993]. In
the context of rare events, Wang [2020] showed that the
convergence rate of the LR MLE is much slower; specifi-
cally Op(n

− 1
2

1 ) where n1 =
∑n

i=1 yi,1.* In turn, the amount
of information available for rare event problems is directly
related to the number of events in the dataset. This essen-
tially decreases the effective size of a dataset, making LR for
rare events particularly unstable and susceptible to problems
with small sample sizes. To offset this unstable behavior,
ridge regression was proposed by Hoerl and Kennard [1970]
and later extended to LR by Cessie and Houwelingen [1992].
This ubiquitous technique places an L2 penalty on model
coefficients to decrease the variance of the estimate at the
expense of a higher bias.

In the setting of rare events, where little information is
present in the data, such regularization can lead to better
out-of-sample performance [Pavlou et al., 2016]. However,
as noted by Šinkovec et al. [2021], tuning of the penalty
parameter can be unstable and ultimately penalization alone
cannot overcome insufficient sample sizes or extreme class
imbalance [Riley et al., 2020, Blagus and Lusa, 2010].

2.2 MULTI-LABEL AND MULTI-TASK LEARNING

One approach to combat the small effective sample size of
rare events is to leverage information from related events.
MLL methods are designed to predict a set of outcomes from

*The standard convergence rate is Op(n
− 1

2 ) [Wang, 2020].



a collection of input features, often sharing information
between labels [Aly, 2005, Zhang and Zhou, 2013, Liu
et al., 2021]. Related to MLL methods, multi-task learning
(MTL) methods can leverage information from different
tasks trained on different datasets to improve performance
across all tasks [Zhang and Yang, 2021]. In general, multi-
label learning can be seen as a form of multi-task learning
where the same dataset is used to learn about each task.

We combine a specific form of regularization based informa-
tion sharing with representation learning based information
sharing to improve performance of rare event modeling.
The idea of regularized MLL (or MTL) has been widely
studied [Cao et al., 2019]. Evgeniou and Pontil [2004] and
Evgeniou et al. [2005] were among the first to explore the
topic in the context of kernel estimators. Zhou et al. [2012]
used a version of fused-lasso with an L1 penalty between
the coefficient vectors and more recent works like He et al.
[2019], Yu et al. [2020], and Alesiani et al. [2021] have im-
posed a variety of related penalties on coefficient vectors for
scalable and interpretable MTL. More recently, Janati et al.
[2019] used the Wasserstein distance for sparse regression,
Tang et al. [2020] utilized evolutionary algorithms, and Bai
and Zhao [2022] looked at regularization in multi-task deep
learning problems.

The growth of deep learning methods has led to represen-
tation learning being used extensively for MLL [Huang
et al., 2019, Liu et al., 2021]. Recent work has combined
this approach with regularization based information sharing
techniques by using methods such as manifold regulariza-
tion [Zhu et al., 2021], full-order label correlation [Chen
and Zhang, 2019], shrinkage methods [Han et al., 2010],
and dimensionality-reduction [Huang et al., 2020].

Regularized MLL/MTL has become increasingly popular
for medical applications [Hossain et al., 2021, Zhu et al.,
2022], but limited work has focused on rare event prediction.
Zhang et al. [2015] proposed a regularized MLL approach
for the prediction of drug side effects, using regularization
to inform feature selection for an ensemble model. Faletto
and Bien [2023] considered a regularized ordinal regression
method inspired by fused LASSO and designed to shrink
towards proportional odds in settings where the rare event
can be characterized as the most extreme of a set of ordered
outcomes. Most similar to our approach is Lapedriza et al.
[2007] which imposes a penalty between the coefficient
vectors of logistic regression models for related tasks. Our
approach builds on this in two important ways. It is the
first to explore, via both simulation and theory, the impact
of event relatedness and event rate when using shrinkage
penalties like those proposed by Lapedriza et al. [2007] and
our method. Secondly, we incorporate feature learning via a
neural network architecture to allow our approach to extend
to more complicated non-linear setups.

2.3 OTHER APPROACHES

There are various other approaches that are less related to
our proposed method but can also be used for rare event
prediction tasks. These approaches often employ similar
regularization or information-sharing strategies but also in-
clude pre-processing steps and different machine learning
model architectures.

Transfer learning is a well-known information sharing ap-
proach that aims to adapt a model trained on one task –
typically with plentiful data – to a second task for which
less data are available [Zhuang et al., 2020]. Unlike MLL
and MTL, transfer learning involves training on these tasks
in sequence rather than simultaneously. We note that multi-
label, multi-task, and transfer learning are not mutually ex-
clusive. For example, transfer learning can be used to train
a multi-class classifier on new tasks.

There are also a number of single-label learning approaches
that have been employed for rare event prediction. Firth
logistic regression is a widely-used method for prediction
of imbalanced binary outcomes [Puhr et al., 2017]. It intro-
duces a penalization term which helps to eliminate bias in
parameter estimation when dealing with rare events [Olmuş
et al., 2022]. Ensemble-based machine learning algorithms,
including gradient boosting and random forests, are also
commonly used for rare event prediction due to their abil-
ity to model complex and non-linear relationships while
also mitigating overfitting by drawing random subsamples
during training [Shyalika et al., 2023].

Another traditional method to address data imbalance is us-
ing resampling algorithms, such as under-sampling (down-
sampling) and over-sampling (up-sampling) [Barandela
et al., 2004]. Under-sampling removes examples from the
majority class, while over-sampling replicates minority
class samples to balance the dataset. However, the former
may lead to loss of important information, so it is usually
preferable to combine over-sampling with other techniques.
For example, Synthetic Minority Over-sampling Technique
(SMOTE) generates synthetic minority class samples based
using a nearest neighbors approach [Elreedy and Atiya,
2019]. In practice, these data preprocessing techniques can
be used together with our proposed approach and compara-
tor methods. However, the exploration of this is outside the
scope of this paper and we leave it to future work.

3 COMMON EVENT TETHERING

We consider the use of two models, common event tethering
logistic regression (CET-LR) and common event tethering
neural network (CET-NN), that share information across rare
events to improve performance. The sharing of information
is encouraged by incorporating a regularization term that
penalizes the difference between either the weights in a



logistic regression model or the final layer weights in a
neural network.

3.1 CET LOGISTIC REGRESSION

In Equation 1, if h(xi) = Hxi, for some matrix H ∈
R

d×p, logistic regression is correctly specified to learn the
underlying probability models. For such cases, we introduce
a common event tethering logistic regression (CET-LR)
model.

CET-LR simultaneously maximizes the joint log-likelihood
of θ1 and θ2 while incorporating a similarity penalty be-
tween the parameter vectors. Let θ = [θ1,θ2] ∈ R2p. The
log-likelihood of CET-LR is

L(s)(θ|Dn) = L(θ|Dn)−
1

2
s∥θ1 − θ2∥22. (2)

Here, L(θ|Dn) is the unregularized log-likelihood of θ and
s ≥ 0 is a constant used to control the strength of the similar-
ity regularization term. We note that CET-LR is equivalent
to Lapedriza et al. [2007] in the case when M = 2.

3.2 CET NEURAL NETWORK

We now consider the setting where h(xi) maps to a set of
latent features that are a non-linear combination of the input
features in xi. As such, a logistic regression model on the
input features will be underspecified. To combat this, we
introduce common event tethering neural network (CET-
NN) as an extension to CET-LR. CET-NN fits an encoder,
ĥϕ, that maps the input features to a set of latent features. It
then uses these latent features as input to a CET-LR model.

The learning of ĥϕ and the θ parameters of CET-NN are
done simultaneously in a standard neural network architec-
ture. In this setup, θ simply becomes the final layer weight
matrix mapping to the outcome vector yi. In particular, we
can write the unregularized log-likelihood as

L(θ,ϕ|Dn) =
n∑

i=1

[
y′
i log

([
f̂1(xi)

f̂2(xi)

])
+

([
1
1

]
− yi

)′

log

([
1− f̂1(xi)

1− f̂2(xi)

])]
.

(3)

where

f̂1(xi) = σ(θ1ĥϕ(xi)), f̂2(xi) = σ(θ2ĥϕ(xi)).

Then, the log-likelihood of CET-NN with similarity penalty
is

L(s)(θ,ϕ|Dn) = L(θ,ϕ|Dn)−
1

2
s∥θ1 − θ2∥22. (4)

where s ≥ 0 is again a constant used to control the strength
of the regularization term.

3.3 METHOD IMPLEMENTATION

We solve CET-LR and CET-NN by minimizing the negative
log-likelihood. Having derived the log-likelihood of CET-
LR in Equation 2 and CET-NN in Equation 4, we write the
optimization problem in Equation 5.

min
θ,ϕ

[
− L(s)(θ,ϕ|Dn) + Reg(θ)

]
(5)

where ϕ is ommitted for CET-LR . Reg(θ) is used to denote
any additional regularization applied to the learned param-
eters. One may want to employ a general penalty term in
addition to the similarity penalty to stabilize performance
and further reduce overfitting.

The L2 similarity penalty in Equations 2 and 4 can be re-
placed with any measure of distance/similarity between two
vectors. The choice of this may vary depending on the ap-
plication. Section 5 presents experimental results using the
L2 and L1 magnitude of the difference of θ1 and θ2 as well
as the cosine-similarity between the two vectors.

Equation 5 can be solved using any applicable optimization
approach such as stochastic gradient descent. The parameter
s can be learned using validation or set based on pre-existing
knowledge of the similarity between the events of interest.

4 THEORETICAL RESULTS

In this section, we conduct a theoretical analysis of our
proposed method. We first describe a two-step approach to
CET-LR and derive asymptotic properties of this estimator.
This setup allows us to compare directly to unregularized
and ridge LR (Section 4.2). We also use this setup to illus-
trate the efficiency advantages of utilizing related outcomes
that occur more frequently (Section 4.3).

We proceed to derive the asymptotic properties of CET-LR.
We establish that this estimator is asymptotically unbiased
with a lower asymptotic mean-squared error than LR when
the slope parameters of the outcome models are the same
and the similarity penalty is greater than zero.

Finally, we discuss how with additional assumptions on the
latent features these theoretical results can be extended to
CET-NN .

4.1 TWO-STEP APPROACH

We consider a two-step variation of LR that incorporates
a penalty term between the current parameters being es-
timated and parameters previously estimated with LR for



another outcome. It is akin to ridge LR where the the esti-
mated parameters are penalized by their distance from the
parameters of a similar event, rather than by their distance
from zero.

We let θ̂(k)
2 denote our parameter estimates for the more

common event that are estimated from ridge LR with penalty
parameter k. For simplicity, we omit the k superscript from
this estimate and let θ̂2 = θ̂

(k)
2 .

We then estimate the parameters θ1 of our rare event logistic
model by maximizing the log-likelihood

L(s)(θ1|Dn, θ̂2) = L(θ1|Dn)−
1

2
s∥θ1 − θ̂2∥22, (6)

where L(θ1|Dn) is the unregularized log-likelihood and s
is the similarity penalty parameter that controls the strength
of the penalization term. We let θ̂(s)

1 denote this estimate
but once again omit the s superscript for the majority of this
paper, letting θ̂1 = θ̂

(s)
1 .*

Like ridge LR, this two-step approach to CET-LR introduces
an L2 penalty term into the log-likelihood. In doing so, it
maintains the desirable properties of ridge regularization
such as avoiding overfitting and handling multicollinearity.
However, rather than pulling the coefficients of θ1 towards
zero, it pulls them towards the estimated coefficients of the
more common event.

4.2 TWO-STEP ASYMPTOTIC PROPERTIES

Theorem 4.1 establishes the asymptotic bias and variance
of the two-step CET-LR approach.

Theorem 4.1 (Two-Step CET-LR Asymptotic Properties).
Let E[θ̂2] and Var[θ̂2] be the asymptotic expectation and
variance of the estimate of θ2. Then the MLE estimate of
L(s)(θ1|Dn, θ̂2), θ̂1, has asymptotic bias

E[θ̂1 − θ1] = −s (Ω(θ1) + sI)
−1

[
θ1 −E[θ̂2]

]
(7)

and asymptotic variance

Var[θ̂1] =

(Ω(θ1) + sI)
−1

(
Ω(θ1) + s2Var[θ̂2]

)
(Ω(θ1) + sI)

−1
.

(8)
Here, Ω(·) is the negative of the hessian matrix and θ1 is
the true parameter vector of event 1. I is a p × p identity
matrix.

We observe from Equation 7 in Theorem 4.1 that, compared
to ridge LR, two-step CET-LR can decrease the asymptotic
bias of the estimated parameter vector of event 1 (θ̂1) if

*We mention this superscript notation for use in Section 4.3.

it’s true parameter vector (θ1) is closer to the asymptotic
expectation of event 2 (E[θ̂2]) than it is to the zero vector.*

In particular, we note that the estimate of two-step CET-LR
is asymptotically unbiased if the true parameters of event
1 (θ1) equal the asymptotic expectation of the estimated
parameters of event 2 (E[θ̂2]).

However, two-step CET-LR does incur slightly higher vari-
ance from using the estimates of θ2 in its regularization
term.* We quantify when this exchange of decreased bias
for higher variance is beneficial by comparing the asymp-
totic mean-squared error (MSE) of the two-step CET-LR
estimator versus ridge LR in Theorem 4.2.

Theorem 4.2 (Two-Step CET-LR vs. Ridge LR MSE). Let
θ̃1 be the ridge LR estimate of θ1 with ridge penalty pa-
rameter s. And let θ̂1 be the two-step CET-LR estimate with
similarity parameter also s and θ̂2 the estimate for event 2
used in the penalty term. As in Theorem 4.1, let E[θ̂2] be
the asymptotic expectation of θ̂2.

We let θ1 and θ2 be the true parameter vectors for events
1 and 2 respectively, and assume that there exists an or-
thogonal matrix P such that Ω(θ1) = PAP′ and Ω(θ2) =
PBP′ for diagonal matrices A and B.

We then let a = Pθ1 and b = PE[θ̂2] be the projections of
θ1 and E[θ̂2] onto the column space of P.

Denoting MSE as the asymptotic mean-squared error of an
estimator, we find that

MSE
(
θ̂1

)
< MSE

(
θ̃1

)
(9)

when
bj (2aj − bj) >

Bj,j

(Bj,j + k)2
(10)

for all j ∈ {1, p}.

The above is a sufficient, but not necessary, condition. If
we denote the left-hand side of Equation 10 as ηj and the
right-hand side as βj , and further let αj = 1

(Aj,j+s)2 , a
more relaxed condition sufficient to imply Equation 9 is that

p∑
j=1

αjηj >

p∑
j=1

αjβj . (11)

Theorem 4.2 establishes a relationship between the reduced
bias and added variance of using estimated parameter values
of a related event as a baseline for regularization. In essence,
this theorem shows that the degree to which the parameter
vector for event 1 is closer to the parameter vector for event

*The asymptotic bias of θ̂1 estimated with ridge LR and
penalty parameter s is E[θ̂1 − θ1] = −s (Ω(θ1) + sI)−1 θ1.

*The asymptotic variance of θ̂1 estimated with
ridge LR and penalty parameter s is Var[θ̂1] =
(Ω(θ1) + sI)−1 Ω(θ1) (Ω(θ1) + sI)−1.



2 than it is to the zero vector must be enough to outweigh
the added variance of estimating the parameters for event
2. In practice, this suggests that a tethering approach can be
beneficial when a more common event’s parameters can be
estimated with low variance and are believed to be similar
to the parameters for a rare event of interest. However, teth-
ering to a more common event may not be a good idea if
the variance of the common event’s estimated parameters
is large. We include the proof for Theorem 4.2 and expand
further on its implications in Appendix A

The formalization of just how close θ1 needs to be to E[θ̂2]
is made difficult due to the complex behavior of MLE
solvers. Using intuition drawn from [Keskar et al., 2016],
one can view the eigenvalues (i.e. diagonal values of A and
B) as characterizing the sharpness of the minimizer along
its corresponding eigenvector in P. In this case, for CET-LR
to improve upon ridge RL, a needs to be closer to b than 0,
particularly in the crucial directions for loss minimization.

4.3 FINITE SAMPLE EFFICIENCY

It has long been understood that rare event prediction is
hindered by the lack of positive samples. Such behavior
can be understood by observing the asymptotic efficiency
of MLE estimators for rare events. Whereas the unregular-
ized MLE of LR converges at a rate of n− 1

2 , Wang [2020]
showed that the the convergence rate of θ̂1 is Op(n

− 1
2

1 ),
where n1 =

∑n
i=1 yi,1. To better understand the benefit of

sharing information between rare events in finite samples we
decompose the two-step CET-LR into two components. To
do so, we reintroduce the superscript s into the estimate θ̂(s)

1

and let θ̂1 and θ̂2 denote the unregularized LR estimates of
the parameter vectors. With this notation, we can write

θ̂
(s)
1 =

(
Ω(s)(θ1)

)−1

Ω(θ1)θ̂1 + s
(
Ω(s)(θ1)

)−1

θ̂2

(12)

where Ω(s)(θ1) = Ω(θ1) + sI.

If we let n2 =
∑n

i=1 yi,2 and assume that n2 > n1, then
there is more information in Dn about the more common
outcome, yi,2, than the rarer outcome, yi,1. In terms of con-

vergence rates, we note that θ̂2 = Op(n
− 1

2
2 ) converges faster

than θ̂1 = Op(n
− 1

2
1 ). We further observe that as s increases,

the coefficient values of θ̂(s)
1 becomes more strongly com-

posed of θ̂2 than θ̂1. From here, we see how, when we
believe θ1 and θ2 to be similar, imposing a strong simi-
larity regularization term can help with faster convergence
and ultimately result in better performance on real-world
datasets.

4.4 CET-LR ASYMPTOTIC PROPERTIES

We derive the asymptotic properties of the CET-LR estima-
tor in Appendix A.1 which we use to prove Theorem 4.3.

Theorem 4.3 (CET-LR Asymptotic MSE). If θ1 = θ2,
then for any s′ > s ≥ 0 the asymptotic MSE of the MLE
estimate of θ = [θ1,θ2] is less under the log-likelihood of
L(s′)(θ|Dn) than L(s)(θ|Dn).

Theorem 4.3 shows that when θ1 = θ2 CET-LR is a better
estimator than unregularized LR (i.e. s = 0) and continues
to improve as s grows. In fact, as s → ∞, the asymptotic
MSE of CET-LR for θ = [θ1,θ2] approaches that of LR for
just θ1.*

4.5 EXTENSION TO CET-NN

Theoretical analysis of feature learning in neural networks is
notoriously challenging and beyond the scope of this work.
However, we note that the preceding theoretical analyses
apply not only in the linear case, but also in the case where
nonlinear DGP features are faithfully recovered (up to per-
mutation), as this assumption reduces learning to logistic
regression on latent rather than raw features. Thus, under-
standing differences in benefits of CET-LR and CET-NN
depends on a theoretical account of feature learning in the
MLL setting.

5 SIMULATIONS

In this section, we conduct a simulation study to test the
performance of CET-LR and CET-NN under a wide range
of settings. Our goal is to determine how the performance
of CET-LR and CET-NN are affected by (i) the underlying
data generation process (DGP), (ii) the degree of similarity
between the rare and common outcomes, and (iii) the event
rate of the common outcome. We outline the linear and
non-linear DGPs we use in these simulations and other
simulation setups details in Section 5.1. We then explore the
impact of varying event similarity in Section 5.2 and varying
common outcome event rate in Section 5.3. Our results
provide a foundation for understanding the conditions under
which CET methods provide additional benefit and set the
stage for the use of these methods in real-world clinical
applications (Section 6). *

5.1 SETUP

Both our linear and non-linear DGPs are designed to sim-
ulate a setup where 25 input patient features are used to

*See the proof of Theorem 4.3 in Appendix A for the calcula-
tion of the asymptotic MSE of CET-LR .

*Code to run experiments available at https://github.
com/engelhard-lab/rare_event_mll.
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 https://github.com/engelhard-lab/rare_event_mll


predict a rare disease of interest, yi,1, whose underlying
risk function is related to a more common disease, yi,2. The
degree of similarity between the underlying risk functions
for yi,1 and yi,2 is a controllable parameter passed as an
argument to the DGP. For details on both the linear and
non-linear DGP setups see Appendix B.1.

For all experiments using the linear DGP, we generate a
training set of 15,000 synthetic patients. We increase the
number of training samples to 75,000 for the non-linear
DGP. In addition to the L2 similarity penalty in Equations 2
and 4, we consider a corresponding L1 variety as well as a
version that uses cosine similarity.

We compare CET-LR and CET-NN to single-label learning
trained exclusively on yi,1, and standard MLL without simi-
larity penalty (i.e., CET method with s = 0). All methods
use standard ridge (i.e., L2) regularization to avoid over-
fitting. Both s and the regularization strength parameter
are optimized by grid search on a validation set. See Ap-
pendix B.2 for further training details.

We use a large test set of 35,000 synthetic patients to reduce
the uncertainty in the evaluation stemming from the rarity of
the outcomes. We adopt the evaluation method described in
Kmetzsch et al. [2022], which uses Spearman’s rank corre-
lation (ρ) as the primary metric on simulated data to assess
the discrepancy between predicted and actual disease risk
rankings. We include results using AUC as the evaluation
metric in Appendix C.2, as it serves as a proxy for ρ in
real-world settings where true risk is unknown.

In Appendix C.1, we include additional results comparing
CET approaches to Firth regression, gradient boosting, and
transfer learning. These methods provide alternative base-
lines for rare event prediction and are discussed further in
the Appendix.

5.2 VARYING EVENT SIMILARITY

We first explore how the benefit of CET is affected by event
similarity by varying the risk function similarity between
the rare and common event from 0% to 100%. We set the
expected event rate to 1% for the rare disease and to 5% for
the more common disease. Simulations are run using both
the linear and non-linear DGPs.

Figure 1a shows how CET-LR enhances rare disease predic-
tion under the linear DGP at different similarity levels. All
three variants of CET-LR outperform the baseline single-
label learning when event similarity exceeds a certain thresh-
old (∼40%), and this improvement grows as event similarity
increases. Note that in contrast to the non-linear setting (Fig-
ure 1b), the standard MLL without a similarity penalty has
no benefit, because no information is shared between labels
without a similarity regularization term.

Figure 1b shows the results for the same experiment using

the non-linear DGP, where we see similar results for CET-
NN as we did for CET-LR on the linear DGP. However, in
this setup, the standard MLL approach (i.e. no similarity
penalty) does improve upon single-label learning, a result
that is consistent with the literature on MLL with neural
networks. However, we note that the similarity penalty can
result in further improvement, specifically when there is suf-
ficient overlap of the latent features and their corresponding
weights (e.g., ≥40%).

Figure 1: Boxplots representing pairwise enhancement for
rare disease prediction based on 10 iterations for each event
similarity setting. The red line indicates the baseline of
single-label learning for each iteration.

We further analyze the similarity penalty parameter (s) se-
lected via validation versus the underlying event similarity
in Appendix C.3. The positive correlation supports the claim
that the improved performance of the CET methods is com-
ing from the added similarity penalty.

5.3 VARYING EVENT RATE

We now explore how the benefit of CET is affected by the
event rate of the more common event. To do so, we hold the
event similarity and rare outcome event rate constant at 80%
and 1%, respectively. We then vary the common outcome
event rate from 1% to 30%.

Figure 2a shows that increasing the event rate of yi,2 not only
improves predictive performance for yi,2, but also provides
substantial improvement for yi,1. We observe a similar trend



in non-linear settings (Appendix C.4), supporting the claim
that CET methods can leverage the additional information
in a dataset for a more common event to help overcome the
lack of information for a rarer event.

Figure 2: Performance of single-label learning and CET-
LR on (a) rare and (b) common diseases generated by the
linear DGP. The rare disease (y1) event rate is 1%, and the
common disease (y2) event rate is varied from 1% to 30%.
Shading represents 95% confidence intervals.

6 REAL-WORLD EXPERIMENTS

The simulation results in Section 5 demonstrate the effec-
tiveness of CET in settings with sufficient event similarity
and common event rate. In this section, we implement our
CET approach on two real-world datasets, analyzing the
extent to which their ability to leverage information from a
more common outcome can facilitate better performance.

Our two datasets are comprised of electronic health record
(EHR) data. The first comes from a preeclampsia study on
women with hypertensive disorders of pregnancy [Meng
et al., 2023] and the second comes from an early autism
study on children under the age of 18 months. We are in-
terested in using each dataset to train a prognostic model
for a rare outcome and wish to leverage similar alternative
patient outcomes.

Similar to Section 5, we compare CET-LR and CET-NN to a
single-label learning baseline and MLL without a similarity
penalty. For both datasets, we use a validation set to perform
early stopping and hyperparameter tuning. We employ AUC
as our performance metric and show results on the rare out-
come of interest. This section shows results for NN models
due to their superior performance. See Appendix B.2 for
more implementation details and Appendix C.5 for results
using LR models.

6.1 MATERNAL MORBIDITY IN PREECLAMPSIA

The maternal morbidity dataset is composed of 553,658 pa-
tients with hypertensive disorders of pregnancy. The input
features include patient demographics and ICD code-based

diagnoses and medical procedures as well as hospital-level
characteristics. The dataset contains four binary outcomes
denoting whether a rare morbidity event occurred within
one-year post-delivery. These outcomes are stroke (event
rate 0.075%), hypertensive crisis (0.193%), heart failure
(0.248%), and acute renal failure (0.171%). Stroke has low-
est event rate and high clinical importance, therefore we
select it as our primary outcome of interest. We separately
assess the benefit of using each of the remaining outcomes
as our common event, and discuss the possibility of adopt-
ing an architecture that uses all four outcomes together in
Section 7.

This dataset is unusually large compared to single-institution
clinical datasets more commonly used to train risk predic-
tion models due to the complexities of sharing medical data
across sites. To align more closely with such datasets, we
randomly sampled a subset of 80,000 patients for model
training and allocated the remaining patients to be used for
evaluation. In doing so, we are also able to mitigate the
unstable performance metrics that can often be produced
with small test sets for rare events.

Figure 3 shows that CET-NN consistently outperforms the
baseline when each of the three other morbidity outcomes
are used as the common event, with the most significant im-
provement observed when using hypertensive crisis. Given
the similar event rates among the three common outcomes
we considered, the increased benefit of using hypertensive
crisis suggests a high degree of similarity between its risk
factors and the risk factors of stroke. This aligns with clini-
cal understanding of the strong link between hypertensive
crisis and stroke [Pistoia et al., 2016].

Figure 3: Boxplots showing pairwise improvement in the
AUC of stroke prediction via CET-NN across 10 iterations.
The red line indicates the single-label learning baseline.

6.2 EARLY AUTISM PREDICTION

The early autism dataset contains medical information on
18,156 children. Features for a given patient were derived
by first extracting each diagnosis and procedure code docu-
mented in that patient’s chart from birth to 18 months, then
mapping them to corresponding 256-dimensional word2vec
embeddings. The resulting diagnosis and procedure embed-
dings were mean-pooled, and the resulting vectors were



concatenated to a single 512-dimensional feature vector.
The outcomes are comprised of multiple neurodevelopmen-
tal diagnoses (ND) including ADHD, developmental delay,
language delay, motor delay, and autism. We select autism
as the target outcome (event rate 2.2%) and define the pres-
ence of any other ND as the common event (18.5%). We
also explore the effect of splitting common event to single
ND in the Appendix C.7. We divided the data into training
and testing sets with a ratio of 4:1, and implemented the
same model training and validation strategies as in previous
experiments.

The result shows that incorporating more common ND out-
comes into MLL models via CET-NN (Figure 4) or CET-LR
(Appendix C.5) significantly enhances autism prediction per-
formance. This indicates a substantial similarity in features
or latent features across various ND outcomes.

Figure 4: Boxplots showing pairwise improvement in the
AUC of autism prediction via CET-NN across 10 iterations.
The red line indicates the single-label learning baseline.

7 CONCLUSION

We propose the use of common event tethering as a variation
of regularized MLL optimized for rare event modeling. Our
proposed methods, CET-LR and CET-NN, build on existing
literature by coupling the learning of shared features via
neural network with a regularization approach that shrinks
rare event coefficients toward those of a more common
event using several alternative measures of vector similarity.
We provide rigorous supporting theoretical and empirical
analyses showing the conditions under which CET methods
are beneficial and exploring how leveraging more common
events can lead to faster convergence rates. We support our
findings with results on two real-world medical applications;
first predicting rare cardiovascular morbidities in pregnant
people with HDP and then predicting autism likelihood in
early childhood. We provide proofs to our theoretical results
as well as additional experimental results in the Appendix.

We conclude this paper with a brief commentary of impor-
tant considerations when implementing our CET approach.
We provide insight into finding surrogate events, comment
on important ethical considerations, address the case when
M > 2, and outline limitations and future work.

Finding Surrogate Events In our real-world experiments,
we saw greatest improvement in predicting a rare event
(stroke) when we used a more common event (hyperten-
sive crisis) that is known to be physiologically related and
shares clinical risk factors [Pistoia et al., 2016]. In contrast,
our other real-world examples used rare and common event
combinations without a similarly strong known physiologi-
cal link. This finding suggests that previous literature and
domain knowledge should inform selection of suitable sur-
rogate events.

Ethical Considerations and Bias In this paper, we show
the potential performance gains of tethering rare events to
related, more common events. However, we note that it
is important for researchers to consider biases in a given
clinical context and setting that may be relevant to the use
of CET. The naive use of CET or other MLL approaches
could worsen existing biases by propagating bias from one
(biased) outcome to another (less biased) outcome.

For example, both autism and ADHD are more common
in boys than girls, but the imbalance is greater for autism,
and girls tend to be diagnosed less often and at a later age
[Loomes et al., 2017]. Therefore, tethering ADHD to autism
could lead to a more biased model compared to training
using ADHD outcomes alone.

More Than Two Outcomes We explored using all four
outcomes to help predict stroke in the maternal morbidity
dataset by including a penalty for all pairs of coefficients.
In this setup, we saw negligible improvement, as the AUC
went from 0.670 without the CET penalty to 0.674 with
the CET penalty (full results included in Appendix C.5).
We hypothesize that including additional outcomes is more
forgiving for feature learning improvement but is less bene-
ficial for similarity-based penalty approaches when all the
outcomes are not closely related, as is the case in the ma-
ternal morbidity dataset (see the pairwise comparisons in
Figure 3).

The baseline approach for M > 2 incorporates a penalty
for each pair of outcome coefficient vectors. However, with
domain knowledge the framework could be modified to
only incorporate penalty terms between the rare event and
a select number of the most similar common events. We
leave a more detailed exploration of this topic to future
work. At this time, we advocate for targeted selection of a
limited number of outcomes with related clinical etiology,
especially when you consider the previously discussed risks
of common event tethering .

Limitations & Future Work The primary limitation of
CET-LR and CET-NN is that using it effectively requires do-
main knowledge (i.e., clinical expertise) to select common
events that share risk factors with rare events of interest.
Results show that under typical conditions, our approach



does not worsen performance even when the common and
rare events are unrelated. Nevertheless, we believe standard
MLL approaches may be more appropriate when such do-
main knowledge is not available.

Additionally, CET-LR and CET-NN effectiveness depends
on a reasonable choice of the similarity penalty parameter s.
While validation or domain knowledge can guide the choice
of s, poorly chosen s values may lead to suboptimal results.

Finally, whereas the current work does explore empirically
the interaction betweeen feature learning and our proposed
regularization term, in future work we will more rigorously
explore whether benefits of CET-NN depend on the number
of latent features (i.e., hidden layer width). We hypothesize
that CET-NN provides greater benefit in the neural tangent
kernel regime (i.e., wide hidden layer) [Jacot et al., 2018]
and less benefit in the feature learning regime (i.e., narrow
hidden layer).
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of penalized logistic regression models for rare event case.
Communications in Statistics-Simulation and Computa-
tion, 51(4):1578–1590, 2022.

Menelaos Pavlou, Gareth Ambler, Shaun Seaman, Maria
De Iorio, and Rumana Z Omar. Review and evaluation of
penalised regression methods for risk prediction in low-
dimensional data with few events. Statistics in medicine,
35(7):1159–1177, 2016.

Piyada Phrueksawatnon, Jirawan Jitthavech, and Vichit
Lorchirachoonkul. Determining the optimal ridge param-
eter in logistic regression. Communications in Statistics-
Simulation and Computation, 50(11):3569–3580, 2021.

Francesca Pistoia, Simona Sacco, Diana Degan, Cindy
Tiseo, Raffaele Ornello, and Antonio Carolei. Hyper-
tension and stroke: epidemiological aspects and clinical
evaluation. High Blood Pressure & Cardiovascular Pre-
vention, 23:9–18, 2016.

Rainer Puhr, Georg Heinze, Mariana Nold, Lara Lusa, and
Angelika Geroldinger. Firth’s logistic regression with
rare events: accurate effect estimates and predictions?
Statistics in medicine, 36(14):2302–2317, 2017.

Richard D Riley, Joie Ensor, Kym IE Snell, Frank E Harrell,
Glen P Martin, Johannes B Reitsma, Karel GM Moons,
Gary Collins, and Maarten Van Smeden. Calculating the
sample size required for developing a clinical prediction
model. Bmj, 368, 2020.

Chathurangi Shyalika, Ruwan Wickramarachchi, and Amit
Sheth. A comprehensive survey on rare event prediction,
2023.

https://proceedings.mlr.press/v89/janati19a.html
https://proceedings.mlr.press/v89/janati19a.html


John R Silvester. Determinants of block matrices. The
Mathematical Gazette, 84(501):460–467, 2000.

Hana Šinkovec, Georg Heinze, Rok Blagus, and Angelika
Geroldinger. To tune or not to tune, a case study of
ridge logistic regression in small or sparse datasets. BMC
Medical Research Methodology, 21:1–15, 2021.

Zedong Tang, Maoguo Gong, Yue Wu, Wenfeng Liu, and
Yu Xie. Regularized evolutionary multitask optimization:
Learning to intertask transfer in aligned subspace. IEEE
Transactions on Evolutionary Computation, 25(2):262–
276, 2020.

HaiYing Wang. Logistic regression for massive data with
rare events. In International Conference on Machine
Learning, pages 9829–9836. PMLR, 2020.

Ulyana P Williams. On some ridge regression estimators
for logistic regression models. 2018.

Shujian Yu, Francesco Alesiani, Ammar Shaker, and Wen-
zhe Yin. Learning an interpretable graph structure in
multi-task learning. arXiv preprint arXiv:2009.05618,
2020.

Min-Ling Zhang and Zhi-Hua Zhou. A review on multi-
label learning algorithms. IEEE transactions on knowl-
edge and data engineering, 26(8):1819–1837, 2013.

Wen Zhang, Feng Liu, Longqiang Luo, and Jingxia Zhang.
Predicting drug side effects by multi-label learning and
ensemble learning. BMC bioinformatics, 16(1):1–11,
2015.

Yu Zhang and Qiang Yang. A survey on multi-task learning.
IEEE Transactions on Knowledge and Data Engineering,
34(12):5586–5609, 2021.

Jiayu Zhou, Jun Liu, Vaibhav A Narayan, and Jieping Ye.
Modeling disease progression via fused sparse group
lasso. In Proceedings of the 18th ACM SIGKDD inter-
national conference on Knowledge discovery and data
mining, pages 1095–1103, 2012.

Jiacheng Zhu, Gregory Darnell, Agni Kumar, Ding Zhao,
Bo Li, Xuanlong Nguyen, and Shirley You Ren. Phys-
iomtl: Personalizing physiological patterns using op-
timal transport multi-task regression. arXiv preprint
arXiv:2203.12595, 2022.

Yi Zhu, Yang Yang, Yun Li, Jipeng Qiang, Yunhao Yuan,
and Runmei Zhang. Representation learning with dual
autoencoder for multi-label classification. IEEE Access,
9:98939–98947, 2021.

Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi,
Yongchun Zhu, Hengshu Zhu, Hui Xiong, and Qing He. A
comprehensive survey on transfer learning. Proceedings
of the IEEE, 109(1):43–76, 2020.

Damien Zufferey, Thomas Hofer, Jean Hennebert, Michael
Schumacher, Rolf Ingold, and Stefano Bromuri. Perfor-
mance comparison of multi-label learning algorithms on
clinical data for chronic diseases. Computers in biology
and medicine, 65:34–43, 2015.



Common Event Tethering to Improve Prediction of Rare Clinical Events
(Supplementary Material)

Quinn Lanners*1 Qin Weng*1 Marie-Louise Meng2 Matthew M. Engelhard1

1Department of Biostatistics & Bioinformatics, Duke University School of Medicine, Durham, NC, USA
2Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA

A PROOFS FOR THEOREMS IN SECTION 4

Theorem 4.1 (Two-Step CET-LR Asymptotic Properties). LetE[θ̂2] and Var[θ̂2] be the asymptotic expectation and variance
of the estimate of θ2. Then the MLE estimate of L(s)(θ1|Dn, θ̂2), θ̂1, has asymptotic bias

E[θ̂1 − θ1] = −s (Ω(θ1) + sI)
−1

[
θ1 −E[θ̂2]

]
(7)

and asymptotic variance
Var[θ̂1] =

(Ω(θ1) + sI)
−1

(
Ω(θ1) + s2Var[θ̂2]

)
(Ω(θ1) + sI)

−1
.

(8)

Here, Ω(·) is the negative of the hessian matrix and θ1 is the true parameter vector of event 1. I is a p× p identity matrix.

Proof. We use an approach and notation similar to that of Cessie and Houwelingen [1992]. In particular, we use the
Newton-Raphson maximization procedure to arrive at these asymptotic properties. Let L(s)(θ1) = L(s)(θ1|Dn, θ̂2) for
simplicity. Before proceeding, we add the superscript k to the ridge estimate of θ2 with ridge penalty parameter k, making it
θ̂
(k)
2 . This is done so we can allow θ̂2 to denote the unregularized estimate. We do a similar thing for the estimate of θ1 from

CET-LR , letting θ̂
(s)
1 be the regularized estimate and θ̂1 be the unregularized estimate.

We take the first derivative of L(s)(θ1)

U(s)(θ1) = U(θ1)− s(θ1 − θ̂
(k)
2 ).

U(θ1) is the first derivative of the unregularized L(θ1).

We then compute the negative hessian matrix,

Ω(s)(θ1) = Ω(θ1) + sI

.

We now derive large sample properties of our estimate, θ̂(s)
1 , using Taylor series expansion about the true parameter, θ1. We

have

U(s)(θ̂
(s)
1 ) = U(s)(θ1)− (θ̂

(s)
1 − θ1)Ω

(s)(θ1) + o
(
∥θ̂(s)

1 − θ1∥
)
.

We then arrive at a first-order approximation of θ̂(s)
1
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θ̂
(s)
1 = θ1 + (Ω(θ1) + sI)

−1
(
U(θ1)− s(θ1 − θ̂

(k)
2 )

)
.

Now, as stated in Cessie and Houwelingen [1992], we have that the first order estimate θ1 that maximizes the unregularized
log-likelihood is θ̂1 = θ1 +Ω−1(θ1)U(θ1). And under certain regularity conditions, we have that θ̂1 is asymptotically
unbiased with covariance matrix Ω(θ1)

−1. Cessie and Houwelingen [1992] also show that the ridge LR estimate of the true
θ2 with ridge penalty parameter k is

θ̂
(k)
2 = (Ω(θ2) + kI)

−1
Ω(θ2)θ̂2

where θ̂2 is again the estimate from unregularized logistic regression. From here, we get that the asymptotic bias of θ̂(k)
2 is

−k (Ω(θ2) + kI)
−1

θ2

and asymptotic variance is
(Ω(θ2) + kI)

−1
Ω(θ2) (Ω(θ2) + kI)

−1
.

Using these properties, we perform the following calculations to arrive at our asymptotic bias.

E[θ̂(s)
1 − θ1] =E

[
θ1 + (Ω(θ1) + sI)

−1
(
U(θ1)− s(θ1 − θ̂

(k)
2 )

)
− θ1

]
=E

[
(Ω(θ1) + sI)

−1
(
U(θ1)− s(θ1 − θ̂

(k)
2 )

)]
=− s (Ω(θ1) + sI)

−1
[
θ1 − E[θ̂(k)

2 ]
]
.

To derive the variance, we first rewrite our estimate as

θ̂
(s)
1 = (Ω(θ1) + sI)

−1
(
Ω(θ1)θ̂1 + sθ̂

(k)
2

)
.

From here, we can derive the asymptotic variance as shown below.

Var(θ̂(s)
1 ) =Var

[
(Ω(θ1) + sI)

−1
(
Ω(θ1)θ̂1 + sθ̂

(k)
2

)]
=Var

[
(Ω(θ1) + sI)

−1
Ω(θ1)θ̂1 + s (Ω(θ1) + sI)

−1
(Ω(θ2) + kI)

−1
Ω(θ2)θ̂2

]
Now, let

A = (Ω(θ1) + sI)
−1

Ω(θ1)θ̂1

and let
B = s (Ω(θ1) + sI)

−1
(Ω(θ2) + kI)

−1
Ω(θ2)θ̂2.

Then, we can calculate Var(A+B). Note that the unregularized estimate θ̂1 is independent of the unregularized estimate
θ̂2. Therefore, Var(A+B) = (Var(A) + Var(B)). We conclude

Var(θ̂(s)
1 ) = (Ω(θ1) + sI)

−1
Ω(θ1) (Ω(θ1) + sI)

−1
+

s2 (Ω(θ1) + sI)
−1

(Ω(θ2) + kI)
−1

Ω(θ2) (Ω(θ2) + kI)
−1

(Ω(θ1) + sI)
−1

=(Ω(θ1) + sI)
−1

Ω(θ1) (Ω(θ1) + sI)
−1

+ s2 (Ω(θ1) + sI)
−1 Var[θ̂(k)

2 ] (Ω(θ1) + sI)
−1

=(Ω(θ1) + sI)
−1

(
Ω(θ1) + s2Var[θ̂(k)

2 ]
)
(Ω(θ1) + sI)

−1
.



Theorem 4.2 (Two-Step CET-LR vs. Ridge LR MSE). Let θ̃1 be the ridge LR estimate of θ1 with ridge penalty parameter
s. And let θ̂1 be the two-step CET-LR estimate with similarity parameter also s and θ̂2 the estimate for event 2 used in the
penalty term. As in Theorem 4.1, let E[θ̂2] be the asymptotic expectation of θ̂2.

We let θ1 and θ2 be the true parameter vectors for events 1 and 2 respectively, and assume that there exists an orthogonal
matrix P such that Ω(θ1) = PAP′ and Ω(θ2) = PBP′ for diagonal matrices A and B.

We then let a = Pθ1 and b = PE[θ̂2] be the projections of θ1 and E[θ̂2] onto the column space of P.

Denoting MSE as the asymptotic mean-squared error of an estimator, we find that

MSE
(
θ̂1

)
< MSE

(
θ̃1

)
(9)

when

bj (2aj − bj) >
Bj,j

(Bj,j + k)2
(10)

for all j ∈ {1, p}.

The above is a sufficient, but not necessary, condition. If we denote the left-hand side of Equation 10 as ηj and the right-hand
side as βj , and further let αj =

1
(Aj,j+s)2 , a more relaxed condition sufficient to imply Equation 9 is that

p∑
j=1

αjηj >

p∑
j=1

αjβj . (11)

Proof. Begin by noting that the MSE(θ̂1) =
[
Bias(θ̂1,θ1)2 + Var(θ̂1)

]
.

As shown by Phrueksawatnon et al. [2021], the asymptotic variance and squared bias of the MLE of ridge LR with ridge
penalty s is

Var(θ̃1) = tr
[
(Ω(θ1) + sI)

−1
Ω(θ1) (Ω(θ1) + sI)

−1
]

=

p∑
j=1

Aj,j

(Aj,j + s)2

and

Bias(θ̃1,θ1)2 = s2
p∑

j=1

a2j
(Aj,j + s)2

Note that we can always diagonalize Ω(θ1) = PAP′ as such because it is a real symmetric matrix.

Recall that the asymptotic variance of our the similar two-step logistic regression estimator is

Var(θ̂r
(s)) = (Ω(θ1) + sI)

−1
(
Ω(θ1) + s2Var[θ̂2]

)
(Ω(θ1) + sI)

−1

Then,
tr
[
(Ω(θ1) + sI)

−1
(
Ω(θ1) + s2Var[θ̂2]

)
(Ω(θ1) + sI)

−1
]

=

tr
[
(Ω(θ1) + sI)

−1
Ω(θ1) (Ω(θ1) + sI)

−1
]
+ s2tr

[
(Ω(θ1) + sI)

−1 Var[θ̂2] (Ω(θ1) + sI)
−1

]
Note the first term is equal to Var(θ̃1). Namely,

tr
[
(Ω(θ1) + sI)

−1
Ω(θ1) (Ω(θ1) + sI)

−1
]
= Var(θ̃1).



We then expand the second term, making

s2tr
[
(Ω(θ1) + sI)

−1 Var[θ̂2] (Ω(θ1) + sI)
−1

]
=

s2tr
[
(Ω(θ1) + sI)

−1
(Ω(θ2) + kI)

−1
Ω(θ2) (Ω(θ2) + kI)

−1
(Ω(θ1) + sI)

−1
]

where k is the ridge parameter used to estimate θ̂2. Now, we use the fact that Ω(θ1) = PAP′ and Ω(θ2) = PBP′ for
diagonal matrices A and B. In particular, we manipulate this second term similar to Williams [2018] as shown below.

s2tr
[
(Ω(θ1) + sI)

−1
(Ω(θ2) + kI)

−1
Ω(θ2) (Ω(θ2) + kI)

−1
(Ω(θ1) + sI)

−1
]

=

s2tr
[
PP′ (Ω(θ1) + sI)

−1
PP′ (Ω(θ2) + kI)

−1
PP′Ω(θ2)PP′ (Ω(θ2) + kI)

−1
PP′ (Ω(θ1) + sI)

−1
]

=

s2tr
[
P′ (Ω(θ1) + sI)

−1
PP′ (Ω(θ2) + kI)

−1
PP′Ω(θ2)PP′ (Ω(θ2) + kI)

−1
PP′ (Ω(θ1) + sI)

−1
P
]

=

s2tr
[
(P′Ω(θ1)P+ sI)

−1
(P′Ω(θ2)P+ kI)

−1
P′Ω(θ2)P (P′Ω(θ2)P+ kI)

−1
(P′Ω(θ1)P+ sI)

−1
]

=

s2tr
[
(A+ sI)

−1
(B+ kI)

−1
B (B+ kI)

−1
(A+ sI)

−1
]

=

s2
p∑

j=1

Bj,j

(Bj,j + k)2(Aj,j + s)2
.

Therefore, asymptotically,

Var(θ̂1) = Var(θ̃1) + s2
p∑

j=1

Bj,j

(Bj,j + k)2(Aj,j + s)2
.

We can then rewrite,

Bias(θ̂1,θ1)2 =
[
Bias(θ̂1,θ1)

]′ [
Bias(θ̂1,θ1)

]
=
[
−s (Ω(θ1) + sI)

−1
(
θ1 − E

[
θ̂2

])]′ [
−s (Ω(θ1) + sI)

−1
(
θ1 − E

[
θ̂2

])]
Then

Bias(θ̂1,θ1)2 =s2
(
θ1 − E

[
θ̂2

])′
(Ω(θ1) + sI)

−2
(
θ1 − E

[
θ̂2

])
=s2θ′

1 (Ω(θ1) + sI)
−2

θ1 − 2s2θ′
1 (Ω(θ1) + sI)

−2 E
[
θ̂2

]
+ s2E

[
θ̂2

]′
(Ω(θ1) + sI)

−2 E
[
θ̂2

]
Now, similar to Phrueksawatnon et al. [2021], we use the diagonalization of Ω(θ1) to see that

Bias(θ̂1,θ1)2 = s2
p∑

j=1

a2j
(Aj,j + s)2

− 2s2
p∑

j=1

ajbj
(Aj,j + s)2

+ s2
p∑

j=1

b2j
(Aj,j + s)2



where again a = Pθ1 and b = PE
[
θ̂2

]
.

Now, note again that the first term above is equal to Bias(θ̃1,θ1)2. Therefore,

Bias(θ̂1,θ1)2 = Bias(θ̃1,θ1)2 − s2
p∑

j=1

1

(Aj,j + s)2
[
2ajbj − b2j

]
Putting this all together, this makes

MSE(θ̂1) = MSE(θ̃1) + s2
p∑

j=1

1

(Aj,j + s)2
Bj,j

(Bj,j + k)2
− s2

p∑
j=1

1

(Aj,j + s)2
[
2ajbj − b2j

]

Therefore,

MSE
(
θ̂1

)
< MSE

(
θ̃1

)
when

s2
p∑

j=1

1

(Aj,j + s)2
[
2ajbj − b2j

]
> s2

p∑
j=1

1

(Aj,j + s)2
Bj,j

(Bj,j + k)2
.

Which of course holds under the weaker condition that

bj (2aj − bj) >
Bj,j

(Bj,j + k)2

for all j ∈ {1, p}.

Note on implications of Theorem 4.2 Because ∀j, βj > 0, it is necessary for |aj | > |aj − bj | in order for the inequality
in Equation 10 to hold. If we further observe that Var(θ̂2) =

∑p
j=1 βj , Theorem 4.2 shows that the degree to which a

is closer to b than 0 must be enough to account for the added variance of estimating θ2. And noting that a = Pθ1 and
b = PE[θ̂2], the most intuitive way for a to be close to b is for θ1 to be close to E[θ̂2].

A.1 ASYMPTOTIC PROPERTIES OF CET-LR

Theorem A.1. Let L(s,k)(θ|Dn) = L(s)(θ|Dn)− 1
2k∥θ∥

2
2 be the log-likelihood of CET-LR with an added L2 regularization

penalty on the magnitude of θ. Then, the MLE estimate of L(s,k)(θ|Dn), denoted θ̂(s,k), has asymptotic bias

E[θ̂(s,k) − θ] = −
{
Ω(s,k)(θ)

}−1
(
kθ + s

[
θ1 − θ2
θ2 − θ1

])
(13)

and asymptotic variance

Var(θ̂(s,k)) =
{
Ω(s,k)(θ)

}−1

Ω(θ)
{
Ω(s,k)(θ)

}−1

. (14)

Above, we recall that

θ =

[
θ1
θ2

]
and use Ω(θ) and Ω(s,k)(θ) to denote the negative of the hessian matrix from the unregularized log-likelihood and
L(s,k)(θ|Dn) respectively.



Proof. We proceed similarly to the proof for Theorem 4.1. Thus,

U(s,k)(θ) = U(θ)− kθ − s

[
θ1 − θ2
θ2 − θ1

]
and

Ω(s,k)(θ) = Ω(θ) + kI∗ + s

(
I∗ +

[
0 −I
−I 0

])
.

I∗ is a 2p× 2p identity matrix and [
0 −I
−I 0

]
is a 2p× 2p matrix where I is a p× p identity matrix and 0 is a p× p matrix of all zeros.

Then, we derive the large sample properties of our estimate, θ̂(s,k), with the Taylor series expansion about the true parameter
θ. This gives

U(s,k)(θ̂(s,k)) = U(s,k)(θ)−
(
θ̂(s,k) − θ

)
Ω(s,k)(θ) + o

(
∥θ̂(s,k) − θ∥

)
and the first-order approximation is

θ̂(s,k) = θ +
{
Ω(s,k)(θ)

}−1
(
U(θ)− kθ − s

[
θ1 − θ2
θ2 − θ1

])
.

From here, we arrive at an asymptotic bias

E[θ̂(s,k) − θ] = −
{
Ω(s,k)(θ)

}−1
(
kθ + s

[
θ1 − θ2
θ2 − θ1

])
.

Now, noting as in Theorem 4.1 that the unregularized MLE estimate θ̂ = θ +Ω−1(θ)U(θ), we rewrite

θ̂(s,k) =
{
Ω(s,k)(θ)

}−1

(U(θ)−Ω(θ)θ)

=
{
Ω(s,k)(θ)

}−1 (
U(θ)−Ω(θ)

(
θ̂ − Ω−1(θ)U(θ)

))
=
{
Ω(s,k)(θ)

}−1

Ω(θ)θ̂

.

And since the asymptotic variance of θ̂ = Ω−1(θ), we have the asymptotic variance

Var(θ̂(s,k)) =
{
Ω(s,k)(θ)

}−1

Ω(θ)
{
Ω(s,k)(θ)

}−1

.

We establish Lemma A.2 for use in our proof to Theorem 4.3.

Lemma A.2. Let A be an n× n diagonalizable matrix such that A = QΛQ−1 where {λi}ni=1 are the n diagonal entries
of Λ and eigenvalues of A. Then for an n× n identity matrix I and any real constant c we have that the eigenvalues of the
2n× 2n matrix

B =

[
A+ cI −cI
−cI A+ cI

]
are {λi}ni=1 ∪ {λi + 2c}ni=1.

Proof. We find the eigenvalues by solving the equation

det(B− λI∗) = 0

where I∗ is a 2n× 2n matrix. Note that

B− λI∗ =

[
A+ (c− λ)I −cI

−cI A+ (c− λ)I

]



Since A+ (c− λ)I and −cI commute with each other, by Silvester [2000] we have that

det(B− λI∗) =det
(
(A+ (c− λ)I)2 − (−cI)2

)
=det (A+ (c− λ)I− cI)

det (A+ (c− λ)I+ cI)

=det (A− λI) det (A+ (2c− λ)I)

(15)

Therefore, setting det(B− λI∗) = 0, and noting that the eigenvalues of A are {λi}ni=1, we conclude that the eigenvalues of
B are {λi}ni=1 ∪ {λi + 2c}ni=1.

Theorem 4.3 (CET-LR Asymptotic MSE). If θ1 = θ2, then for any s′ > s ≥ 0 the asymptotic MSE of the MLE estimate of
θ = [θ1,θ2] is less under the log-likelihood of L(s′)(θ|Dn) than L(s)(θ|Dn).

Proof. Start by noting that this log-likelihood is of the same form as L(s,k) from Theorem A.1 with k = 0. Therefore, we
use those same results, setting k = 0 and dropping k from the superscript. Then, with θ1 = θ2, Theorem A.1 shows that
L(s) is asymptotically unbiased for any value of s.

Therefore, the asymptotic MSE is just the asymptotic variance of the estimate, θ̂(s).

Var(θ̂(s)) = tr
[{

Ω(s)(θ)
}−1

Ω(θ)
{
Ω(s)(θ)

}−1
]

We observe that Ω(s)(θ) has the following structure[
Ω(θ1) + sI −sI

−sI Ω(θ1) + sI

]
From here, using Lemma A.2 we have that

MSE(θ̂(s)) = Var(θ̂(s)) =

p∑
j=1

1

λj
+

λj

(λj + s)2

where λj is the j-th eigenvalue of Ω(θ1).

Therefore, for any s′ > s ≥ 0, we have that

MSE(θ̂(s′)) < MSE(θ̂(s)).

And we note that as s → ∞, MSE(θ̂(s)) →
∑p

j=1
1
λj

which is the MSE of the MLE estimator of the unregularized
log-likelihood of θ1.



B EXPERIMENTAL DETAILS

B.1 DATA GENERATING PROCESS (DGP) FOR SYNTHETIC DATASET

In simulation experiments, we first generated a synthetic dataset X ∈ Rn×k comprising n patients with k patient features.
All patient features are independently and identically sampled from a normal distribution of N (0, 10). We then use linear or
non-linear DGP to generate observations of two binary outcomes, yi,1 and yi,2, with expected event rate πi,1 and πi,2, and
expected event similarity ρ between yi,1 and yi,2. Only a randomly-selected subset of the feature matrix, X(r) ∈ Rn×r with
r ≤ k relevant features, are used to compute outcome probabilities, while the remaining features served as noise. We set
k = 25 and r = 20 for all our simulations.

For the linear DGP, we first generated a pair of standardized r-dimension vectors θ1 and θ2 with cosine similarity ρ, and
used these vectors as feature coefficients to compute initial logits for yi,1 and yi,2 through linear combinations with x

(r)
i .

The intercept terms γ1 and γ2 are searched as offsets to align event probability with expected event rates π1 and π2, which
can be written as

P (yi,1 = 1|xi) = σ(θ1x
(r)
i + γ1), and

P (yi,2 = 1|xi) = σ(θ2x
(r)
i + γ2),

(16)

where σ denotes the sigmoid function. Finally, the synthetic observations of yi,1 and yi,2 are generated through a random
Bernoulli draw based on the event probability for each patient.

For the non-linear DGP, we used two mapping function h1(·) and h2(·) that map x
(r)
i to l-dimensional latent feature vectors

x
(l)
i,1 and x

(l)
i,2. Specifically, we generated two orthogonal mapping matrices, W1 and W2, each combined with a ReLU

activation function. Thus the mapping can be written as

x
(l)
i,1 = h1(x

(r)
i ) = ReLU(W1x

(r)
i ), and

x
(l)
i,2 = h2(x

(r)
i ) = ReLU(W2x

(r)
i ),

(17)

where W1 ∈ Rl×r, W2 ∈ Rl×r. We then follow the same process to generate outcome observations as linear DGP but
replace the features vector x(r)

i with latent feature vector x(l)
i . The event probabilities in non-linear DGP would subsequently

become
P (yi,1 = 1|xi) = σ(θ1x

(l)
i,1 + γ1), and

P (yi,2 = 1|xi) = σ(θ2x
(l)
i,2 + γ2).

(18)

Specifically, the non-linear DGP partially shares l × ρ latent features between x
(l)
i,1 and x

(l)
i,2. In other words, a subset

proportion of ρ is used to select subsets from mapping matrices W1 and W2, as well as the corresponding subsets from the
coefficient vectors θ1 and θ2, which are designed to be identical.

The sample size of the synthetic datasets are n = 50, 000 for linear DGP experiments, and increase to n = 250, 000 for
non-linear DGP experiments. The size of latent space for non-linear DGP is set as l = 5 in our simulation experiments.

In experiments varying event similarity or event rate, we only modify the synthetic observations of common outcomes y2,
while maintaining the feature matrix X and observations of rare outcome y1 consistent across different experiment setups
with same random seed.

B.2 ADDITIONAL DETAILS FOR MODEL TRAINING

In both simulation and real-world experiments, we conduct 10 iterations under every experimental setup. For each iteration,
we either randomly generate a synthetic dataset, or conduct a random partitioning to generate the training and testing sets on
the real-world datasets. The random seeds are always set to match with the iteration number.

We allocate 25% of the samples from the training set for validation. In the validation for MLL, simulation experiments use
aggregated performance across all outcomes as the criterion, whereas real-world experiments focus solely on the outcome
of interest. The learning rate, batch size, and hidden layer size (exclusively for NN models), are pre-tuned and fixed as
constant across iterations. The strength parameters for ridge regularization and similarity penalty were dynamically learned
for each iterations by grid search based on the validation performance of AUC. Early stopping are also implemented to
avoid overfitting based on validation performance of the cross-entropy loss.



C ADDITIONAL EXPERIMENTAL RESULTS

C.1 COMPARISON WITH ALTERNATIVE APPROACHES

We compare our proposed methods with several established approaches in the context of rare event prediction and multi-event
information sharing. For single-label learning, we use Firth logistic regression and gradient boosting as two alternative
baselines, known for their high performance in rare event prediction with high-dimensional datasets similar to our setup
[Doerken et al., 2019]. We conduct feature selection using LASSO prior to running Firth logistic regression to avoid
convergence issues that arise on large datasets with linearly dependent variables. For multi-event learning, we include
transfer learning as an additional baseline where neural networks were pre-trained on common events and then fine tuned on
the target event.

The rare event prediction performance of all alternative approaches, as well as the methods we propose, is summarized in
Table 1 and Table 2 for synthetic datasets using non-linear DGP and real-world datasets, respectively. For CET methods, we
only include the result of using L2 magnitude for similarity.

Notably, our proposed method CET-NN outperforms all other methods across all real-world datasets and in the synthetic
dataset when event similarity exceeds 40%.

Table 1: Average (standard deviation) AUC or Spearmen’s correlation coefficient on synthetic non-linear DGP.

Multi-label learning Single-label learning
Similarity Multilabel NN Transfer NN CET NN LR Firth LR GDBoost NN

AUC

100% 0.880 (.070) 0.886 (.067) 0.895 (.067)

0.884
(.079)

0.884
(.078)

0.869
(.081)

0.871
(.074)

80% 0.880 (.069) 0.883 (.070) 0.890 (.070)
60% 0.878 (.071) 0.878 (.071) 0.884 (.072)
40% 0.875 (.072) 0.877 (.074) 0.881 (.073)
20% 0.874 (.072) 0.875 (.072) 0.876 (.076)
0% 0.873 (.073) 0.874 (.075) 0.876 (.073)

ρ

100% 0.842 (.045) 0.861 (.050) 0.900 (.040)

0.778
(.049)

0.780
(.049)

0.731
(.049)

0.796
(.051)

80% 0.834 (.049) 0.849 (.048) 0.873 (.042)
60% 0.820 (.047) 0.828 (.046) 0.840 (.042)
40% 0.811 (.051) 0.826 (.047) 0.824 (.051)
20% 0.801 (.051) 0.806 (.045) 0.796 (.053)
0% 0.799 (.055) 0.799 (.045) 0.797 (.049)

Table 2: Average (standard deviation) AUC on real-world rare disease.

Multi-label learning Single-label learning
Target Secondary disease Multilabel NN Transfer NN CET NN LR Firth LR GDBoost NN
Stroke Hypertensive crisis 0.652 (.008) 0.639 (.012) 0.670 (.017) 0.605

(.018)
0.633
(.019)

0.643
(.016)

0.627
(.009)Stroke Heart failure 0.651 (.010) 0.636 (.020) 0.656 (.013)

Stroke Renal failure 0.653 (.014) 0.630 (.014) 0.656 (.025)
Autism Any other ND 0.770 (.019) 0.731(.026) 0.775 (.020) 0.721

(.022)
0.733
(.029)

0.726
(.020)

0.738
(.023)Autism Language delay 0.768 (.021) 0.743 (.024) 0.772 (.025)

Autism Motor delay 0.737 (.014) 0.732 (.025) 0.742 (.017)

C.2 ADDITIONAL RESULTS FOR SIMULATIONS VARYING SIMILARITY

In the simulation experiments using the linear DGP, we test the performance of CET-LR for both rare and common outcomes
with two evaluation metrics, Spearman’s rank correlation ρ and AUC. The performance of AUC in Figure 5b shows
consistent trend with ρ in Figure 5a, supporting our strategy of using AUC as a proxy for real-world dataset evaluation.
Figure 5c shows that the performance for y2 is mostly consistent with the baseline, indicating that the learning for the
common outcome is not be compromised by the CET approach.



Figure 5: Boxplots representing pairwise enhancement of (a) Spearman’s rank (ρ) for the rare outcome y1, (b) AUC for the
rare outcome y1, (c) Spearman’s rank for the common outcome y2. The red line indicates baseline of single-label learning
for each setup across iterations.



Besides the experiments for models on the corresponded synthetic datasets, i.e., LR for linear DGP and NN for non-linear
DGP, we also investigate the LR model performance on the non-linear synthetic dataset. Figrue 6 shows that the mismatch
between model structure and underlying generative function not only leads to a decreased performance, but further invalidate
the CET enhancement across all levels of event similarity.

Figure 6: Boxplots representing pairwise enhancement for the rare outcome y1 of (a) CET-LR, (b) CET-NN on non-linear
DGP generated datasets. The red line indicates baseline of single-label learning for each iteration.

C.3 ADDITIONAL RESULTS FOR SIMILARITY PENALTY STRENGTH

To support the claim that the performance enhancement for CET methods is from the added similarity term, we plot the
similarity penalty parameter (s) selected via validation versus the underlying event similarity. Figure 7 shows the positive
correlation between these two factors. It is worth mentioning that this behavior makes our method robust to imposing a
similarity penalty on unrelated events when a validation set is used to tune s. The fact that this behavior is more apparent in
CET-LR than CET-NN may be due to our earlier observation that MLL using NNs can leverage shared information across
events even without a similarity penalty.

C.4 ADDITIONAL RESULTS FOR SIMULATION VARYING EVENT RATE

Figure 8 shows that increasing the common event rate has a similar impact on prediction performance for CET-LR in a
linear setting (Figure 2) and CET-NN in a non-linear setting (Figure 8). Both patterns support the claim that more common
events can help rarer event prediction by leveraging additional information via CET methods.



Figure 7: Log score of similarity penalty parameter s learned by validation. Shaded areas represent 95% confidence intervals.

Figure 8: Performance of single-label learning and CET-NN on (a) rare and (b) common diseases generated by the non-linear
DGP. The rare disease (y1) event rate is 1%, and the common disease (y2) event rate is varied from 1% to 30%. Shading
represents 95% confidence intervals.



C.5 ADDITIONAL RESULTS FOR LR MODELS ON REAL-WORLD DATASETS

In this section, we show results using LR models on our real-world datasets. We replot the results using the NN models for the
sake of comparison (these are the results shown in Section 6 of the main text). Figure 9 shows that both CET-LR and CET-NN
significantly enhance the stroke prediction when incorporating a more common outcome, implying a substantial similarity in
patient features or latent features across various maternal morbidities. It is notable that models with an NN structure achieve
superior baseline performance compared to those using LR in both real-world experiments of stroke (Figure 9) and autism
prediction (Figure 10), and show a more pronounced enhancement effect through CET. The performance gap between LR
and NN is especially significant in the autism dataset, which suggests the embedding features derived from diagnosis and
procedures in EHRs are nonlinearly associated with ND outcomes.

We additionally explore the setting of utilizing multiple common events for CET approach in the preeclampsia study, which
includes all pairs of coefficients to the CET penalty (Figure 9). The result shows the performance without CET penalty
significantly enhanced, but minimal additional improvement from CET penalty are observed .

Figure 9: Boxplots showing pairwise improvement in the AUC of stroke prediction via (a) CET-LR, (b) CET-NN across 10
times resampling. The red line indicates the single-label learning baseline.



Figure 10: Boxplots showing pairwise performance improvement in the AUC of (a) autism via CET-LR, (b) other neurode-
velopmental diagnoses (ND) via CET-LR, (c) autism via CET-NN, (d) other ND via CET-NN across 10 times resampling.
The red line indicates the single-label learning baseline.

C.6 ADDITIONAL RESULTS ON EXPANDED TRAINING SET FOR PREECLAMPSIA STUDY

We performed an alternative partitioning by enlarging the training set to 270,000 samples to test the method efficacy in
datasets with enriched sample size. This results in an improved baseline performance, yet a diminished enhancement from
MLL, shows in Figure 11.

C.7 ADDITIONAL RESULTS OF USING SINGLE ND EVENT FOR AUTISM STUDY

As discussed in Section 7, including additional outcomes could benefit CET by increasing the common event rate. However,
there is also the potential that including more unrelated events could reduce the similarity between events. In our autism
study in Section 6, we defined our secondary outcome as a union over several events. This can be seen as a simplistic
approach for utilizing more than two outcomes. To investigate the trade-off of including more events in our common event,
we examined the performance of MLL and CET methods on the autism dataset when using a single ND outcome as the
common outcome or combining multiple NDs into one common outcome (event rate 18.5%). Specifically, we considered
using the two most prevalent ND events, language delay (15.6%) and motor delay (5.7%), as the common outcome. The
results in Table 2 show that the combined common event demonstrates superior performance than either of these single ND
events. Additionally, the CET method is significantly better when using language delay (AUC: 0.772) compared to motor
delay (AUC: 0.742), which further validates the enhanced effectiveness of using events with a higher event rate as surrogate
events.



Figure 11: Boxplots showing pairwise improvement in the AUC of stroke prediction via CET-NN on the expanded dataset
across 10 times resampling. The red line indicates the single-label learning baseline.
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